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Abstract
Quadratic assignment problems arise in a wide variety of domains, spanning operations re-

search, graph theory, computer vision, and neuroscience, to name a few. The graph match-

ing problem is a special case of the quadratic assignment problem, and graph matching is

increasingly important as graph-valued data is becoming more prominent. With the aim of

efficiently and accurately matching the large graphs common in big data, we present our

graph matching algorithm, the Fast Approximate Quadratic assignment algorithm. We em-

pirically demonstrate that our algorithm is faster and achieves a lower objective value on

over 80% of the QAPLIB benchmark library, compared with the previous state-of-the-art.

Applying our algorithm to our motivating example, matching C. elegans connectomes

(brain-graphs), we find that it efficiently achieves performance.

1 Introduction
In its most general form, the graph matching problem (GMP)—finding an alignment of the
vertices of two graphs which minimizes the number of induced edge disagreements—is equiva-
lent to a quadratic assignment problem (QAP) [1]. QAPs were first devised by Koopmans and
Beckmann in 1957 to solve a ubiquitous problem in distributed resource allocation [2], and
many important problems in combinatorial optimization (for example, the “traveling salesman
problem,” and the GMP) have been shown to be specialized QAPs. While QAPs are known to
beNP-hard in general [3], they are widely applicable and there is a large literature devoted to
their approximation and formulation; see [4] for a comprehensive literature survey. In casting
the GMP as a QAP, we bring to bear a host of existing optimization theoretic tools and meth-
odologies for addressing graph matching: Frank-Wolfe [5], gradient-descent [6], etc.

Graph matching has applications in a wide variety of disciplines, spanning computer vision,
image analysis, pattern recognition, and neuroscience; see [7] for a comprehensive survey of
the graph matching literature. We are motivated by applications in “connectomics,” an emerg-
ing discipline within neuroscience devoted to the study of brain-graphs, where vertices
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represent (collections of) neurons and edges represent connections between them [8, 9]. Ana-
lyzing connectomes is an important step for many neurobiological inference tasks. For exam-
ple, it is becoming increasingly popular to diagnose neurological diseases via comparing brain
images [10]. To date, however, these comparisons have largely rested on anatomical (e.g.,
shape) comparisons, not graph (e.g., structural) comparisons. This is despite the widely held
doctrine that many psychiatric disorders are fundamentally “connectopathies,” i.e. disorders of
the connections of the brain [11–14]. Thus, available tests for connectopic explanations of psy-
chiatric disorders hinge on first choosing particular graph invariants to compare across popu-
lations, rather than comparing the graphs’ structure directly. Yet, recent results suggest that the
graph invariant approach to classifying is both theoretically and practically inferior to compar-
ing whole graphs via matching [15].

Part of the reason for the lack of publications that structurally compare brain-graphs is
that existing algorithms for matching very large graphs are largely ineffective, often sacrificing
accuracy for efficiency. Indeed, available human connectomes haveO(106) vertices and
O(108) edges, and building them leverages state-of-the-art advances in DT-MRI imagery, big
data processing and computer vision [16]. Contrast this with the fact that the human brain
consists of approximately 86 billion neurons [17]. At the other end of the spectrum, the small
hermaphroditic Caenorhabditis elegans worm (C. elegans) has only 302 neurons, with a
fully mapped connectome. Consequently, these graphs demand GM algorithms that both
accurately match small–to–moderately sized graphs and also scale to match very large
graphs.

When matching these large connectome graphs (and, more broadly, the large graphs com-
mon in big data [18]), we necessarily face an accuracy/efficiency trade-off when approximately
solving these GMPs: slower algorithms could achieve better performance given more time (at
the extreme, exhaustive search algorithms clearly have optimal performance). Our algorithm—

the Fast Approximate QAP (FAQ) algorithm for approximate GM—achieves the best available
trade-off between accuracy and efficiency, outperforming the existing state-of-the-art in both
accuracy and efficiency on a large proportion of QAP benchmarks and biologically inspired
network matching problems.

The remainder of this paper is organized as follows. Section 2.1 formally defines the QAP
and a relaxation thereof that we will operate under. Section 2.3 defines graph matching, and ex-
plains how it can be posed as a QAP.

Section 3 describes the FAQ algorithm. Section 4 provides a number of theoretical and em-
pirical results, and compares our algorithm to previous state-of-the-art algorithms. This sec-
tion concludes with an analysis of FAQ on our motivating problem of matching worm brain
connectomes. We conclude with a discussion of possible extensions of FAQ and related work
in Section 5.

2 Preliminaries
In this section, we formally define the QAP and the GMP. We then show how the GMP can be
recast as a special case of the QAP.

2.1 Quadratic Assignment Problems
We first define the general quadratic assignment problem. Let A = (auv), B = (buv) 2 R

n×n be
two n × n real matrices. LetP: =Pn be the set of permutation functions (bijections) of the set
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[n] = {1,. . ., n}. We define the Koopmans-Beckmann (KB) version QAP via:

ðKBÞ
minimize

X
u;v2½n�buvapðuÞpðvÞ

subject to p 2 P:

ð1Þ

Note that occasionally an additional linear function is added, though we drop it here
for brevity.

Eq (1) can also be recast in matrix notation. Let P be the set of n × n permutation matrices,
P ¼ fP 2 f0; 1gn�n

: PT1 ¼ P1 ¼ 1g, where 1 is the n-dimensional column vector consisting
of all 1’s.

Thus, Eq (1) can be written more compactly in matrix notation via:

ðQAPÞ
minimize traceðAPBTPTÞ

subject to P 2 P:
ð2Þ

We hereafter refer to (2) as the QAP optimization function.

2.2 Relaxed Quadratic Assignment Problem
Eq (2) is a binary quadratic program with linear constraints. Because of the combinatorial na-
ture of the feasible region, finding a global optimum of (2) isNP-hard. Rather than directly op-
timizing over the permutation matrices, we begin by relaxing the constraint set to the convex
hull of P, the set of doubly stochastic matrices (i.e. the Birkhoff polytope),

D :¼ Dn ¼ fP 2 R
n�n : PT1 ¼ P1 ¼ 1; P � 0g;

where� indicates an element-wise inequality. Relaxing P toD in (2) yields the relaxed qua-
dratic assignment problem (rQAP):

ðrQAPÞ
minimize traceðAPBTPTÞ

subject to P 2 D:
ð3Þ

Note that, although rQAP is a quadratic program with linear constraints, it is not necessarily
convex. Indeed, the objective function, f ðPÞ ¼ traceðAPBTPTÞ, has a Hessian that is not neces-
sarily positive definite:r2f ðPÞ ¼ B� Aþ BT � AT, where� indicates the Kronecker product
(note that if A and B are hollow matrices—as is common for graphs—thenr2 f(P) has trace
equal to 0, and is indefinite).

While nonconvex quadratic optimization is, in general,NP-hard, relaxing the feasible re-
gion allows us to employ the tools of continuous optimization to search for a local optima of
(3). These local optima can then be projected onto P, yielding an approximate solution of (2).
We also note that when relaxed toD, the QAP optimization function is often multimodal,
making initialization important when solving (3).

2.3 Graph Matching

A labeled graph G = (V, E) consists of a vertex set V = [n], and an edge set E � V

2

 !
in the un-

directed case, or E� V × V in the directed case. For an n-vertex graph G, we define the associat-
ed adjacency matrix A = (auv) 2 {0,1}n × n to be the binary n × nmatrix with auv = 1if {u, v} 2 E
in the undirected setting, or (u, v) 2 E in the directed setting. Given a pair of n-vertex graphs
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GA = (VA,EA) and GB = (VB,EB), with respective adjacency matrices A and B, we consider the
following two closely related problems:

• Graph Isomorphism (GI): Does there exist a P 2 P such that A ¼ PBPT.

• Graph Matching: minP2PkA� PBPTkF , where k�kF is the usual matrix Frobenius norm.
GI is one of few problems with unknown computational complexity in theNP-hierarchy

[19]; indeed, if P 6¼ NP, then GI might reside in an intermediate complexity class called GI-
complete. Moreover, GI is, at worst, only moderately exponential, with complexityO(exp{n1/2
+o(1)}) [20]. On the other hand, the (harder) GMP—reducible to a QAP—is known to be NP-
hard in general. Although polynomial time algorithms are available for GM (and GI) for large
classes of problems (e.g., planar graphs, trees) [21], these algorithms often have lead constants
which are very large. For example, if all vertices have degree less than k, there is a linear time al-
gorithm for GI. However, the hidden constant in this algorithm is (512k3)! [22]. Because we are

interested in solving GM for graphs with	_ 106 or more vertices, exact GM solutions will be
computationally intractable. As such, we develop a fast approximate graph matching algo-
rithm. Our approach is based on formulating GM as a quadratic assignment problem.

2.4 Graph Matching as a Quadratic Assignment Problem
Given a pair of n-vertex graphs GA = (VA, EA) and GB = (VB, EB), with respective adjacency ma-
trices A and B, we can formally write the graph matching problem as an optimization problem:

minimize kAP � PBk2F
subject to P 2 P:

ð4Þ

Simple algebra yields that,

kAP � PBk2F ¼ tracefðAP � PBÞTðAP � PBÞg
¼ traceðATAÞ þ traceðBBTÞ � 2traceðAPBTPTÞ�

ð5Þ

The GMP is then equivalent (i.e. same argmin) to

ðGMÞ
minimize �traceðAPBTPTÞ

subject to P 2 P�
ð6Þ

The objective function for GM is just the negative of the objective function for QAP. Thus, any
descent algorithm for the former can be directly applied to the latter. Moreover, any QAP ap-
proximation algorithms also immediately yields an analogous GM approximation.

As is common in solving general QAPs, GM algorithms often begin by first relaxing (4) to a
continuous problem (see, for example, [23]). The resulting problem is a convex quadratic pro-
gram and can be efficiently exactly solved. The obtained solution is then projected back onto P
yielding an approximate solution to (4). Contrary to popular existing approaches, our FAQ al-
gorithm first solves a relaxed version of (6) and subsequently projects the solution back onto P.
This relaxation yields an indefinite quadratic program, and indefinite quadratic programs are
are NP-hard to solve in general. However, recent theory indicates that the indefinite relaxation
of (6), and not the convex relaxation of (4) is the provably correct approach [24]. Reflecting
this theory, we find that FAQ obtains state-of-the-art performance in terms of both computa-
tional efficiency and objective function value for various QAPs (see Section 4).

Fast Approximate Quadratic Programming for Graph Matching
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3 Fast Approximate QAP Algorithm
Our algorithm, called FAQ, proceeds in three steps:

A. Choose a suitable initial position

B. Find a local solution to rQAP.

C. Project back onto the set of permutation matrices.

These steps are summarized in Algorithm 1. Below, we provide details for each step.

Algorithm 1 FAQ for finding a local optimum of rQAP

Require: Graphs (adjacency matrices) A and B as well as a stopping criteria

Ensure: P̂, an estimated permutation matrix
1: Choose an initialization, Pð0Þ ¼ 11T=n
2: while stopping criteria not met do
3: Compute the gradient of f at the current point via Eq (3)
4: Compute the direction Q(i) by solving Eq (8) via the

Hungarian algorithm
5: Compute the step size α(i) by solving Eq (9)
6: Update P(i) according to Eq (10)
7: end while
8: Obtain P̂ by solving Eq (11) via the Hungarian algorithm.

A: Find a suitable initial position. While any doubly stochastic matrix would be a feasible

initial point, we choose the noninformative “flat doubly stochastic matrix,” J ¼ 1 � 1T=n, i.e.
the barycenter of the feasible region. Alternately, we could use multiple restarts, each initial
point near J. Specifically, we could sample K, a random doubly stochastic matrix using 10
iterations of Sinkhorn balancing [25], and let P(0) = (J+K)/2. Given this initial estimate (or
estimates), we would then iterate the following five steps until convergence.

B: Find a local solution to rQAP. As mentioned above, rQAP is a quadratic problem with
linear constraints. A number of off-the-shelf algorithms are readily available for finding local
optima in such problems. We utilize the Frank-Wolfe algorithm (FW), a successive first-order
optimization procedure originally devised to solve convex quadratic programs [5, 26]. Al-
though FW is a relatively standard solver, especially as a subroutine for QAP algorithms [27],
we provide a detailed view of applying FW to rQAP.

Given an initial position, P(0), iterate the following four steps:
Step 1, Compute the gradientrf(P(i)): The gradient of f ðPÞ ¼ �traceðAPBTPTÞ with respect

to P, evaluated at P(i), is given byrf ðPðiÞÞ ¼ �APðiÞBT � ATPðiÞB.
Step 2, Compute the search direction Q(i): The search direction is given by the argument that

minimizes a first-order Taylor series approximation to f(P) around the current estimate, P(i):

~f ðiÞðPÞ :¼ f ðPðiÞÞ þ rf ðPðiÞÞTðP � PðiÞÞ� ð7Þ

Dropping terms independent of P, we obtain the following sub-problem:

minimize traceðrf ðPðiÞÞTPÞ

subject to P 2 D;
ð8Þ

which is equivalent to a Linear Assignment Problem (LAP), and can therefore be solved in O
(n3) time via the “Hungarian Algorithm” of [28, 29]. Let Q(i) indicate the argmin of Eq (8).
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Step 3, Compute the step size α(i): Given Q(i), we minimize the original optimization prob-
lem, along the line segment from P(i) to Q(i):

minimize f ðPðiÞ þ aðiÞQðiÞÞ

subject to a 2 ½0; 1��
ð9Þ

This can be solved exactly, as f is a quadratic function of α. Let α(i) indicate the argmin of Eq
(9).

Step 4, Update P(i): Finally, the next iterate is the doubly stochastic matrix

Pðiþ1Þ ¼ PðiÞ þ aðiÞQðiÞ� ð10Þ
Stopping criteria: Steps 1–4 are iterated until some stopping criterion is met. Often, a thresh-

old � > 0 or an iteration limit is given, and the algorithm iterates until the iteration limit is
reached, kP(i)−P(i−1)kF < �, or krf(P(i))kF < �. In practice, the algorithm often converges with
a modest number of FW iterates.

C: Project onto the set of permutation matrices. Let P(final) be the doubly stochastic ma-
trix resulting from the final iteration of FW. We project P(final) onto the set of permutation ma-
trices via

minimize �traceðPðfinalÞPTÞ

subject to P 2 P:
ð11Þ

Note that Eq (11) is again equivalent to a LAP and can be solved in O(n3) time.

4 Results
Below we present a number of empirical and theoretical results demonstrating the state-of-the-
art efficiency and accuracy of the FAQ algorithm.

4.1 Algorithm Complexity and leading constants
As mentioned above, GM is computationally difficult, and even in the special cases for which
polynomial time algorithms are available, the leading constants are intractably large. Given a
bounded number of FW iterates, the FAQ algorithm has complexity O(n3). However, a very
large lead order constant could still render this algorithm practically infeasible. Fig 1 suggests
that FAQ has O(n3) complexity, and also has very small leading constants (	 10−9). This sug-
gests that this algorithm is feasible for matching even reasonably large graphs. Note that other
state-of-the-art approximate graph matching algorithms also have cubic or worse time com-
plexity in the number of vertices. We will describe these other algorithms and their time com-
plexity in greater detail below.

4.2 QAP Benchmark Accuracy
Having demonstrated both theoretically and empirically that FAQ has cubic time complexity,
we evaluate the algorithms accuracy on a suite of standard benchmarks. More specifically,
QAPLIB is a library of 137 quadratic assignment problems, ranging in size from 10 to 256 ver-
tices [30]. Recent graph matching papers typically evaluate the performance of their algorithm
on 16 of the benchmark QAPs that are known to be particularly difficult [23, 31]. We compare
the results of FAQ to the results of four other state-of-the-art graph matching algorithms:

Fast Approximate Quadratic Programming for Graph Matching
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1. the PATH algorithm, which solves the relaxation of (4), and then solves a sequence of con-
cave and convex problems to project the solution onto P [23];

2. QCV which solves the relaxation of (4), and projects the obtained solution onto the closest
permutation in P;

3. the RANK algorithm [32], a spectral graph matching procedure;

4. the Umeyama algorithm (denoted by U), another spectral graph matching procedure [1].

Note that the code for these four algorithms is freely available from the graphm package [23].
Performance is measured by minimizing the assignment cost f ðPÞ ¼ traceðAPBTPTÞ. We

write f̂ X for the value of the local minimum of f obtained by the algorithm X 2 {FAQ, PATH,
QCV, RANK, U, all}, where “all” is just the best performer of all the non FAQ algorithms. Fig 2

plots the logarithm (base 10, here and elsewhere) of the relative accuracy, i.e. log10ðf̂ FAQ=f̂ XÞ,
for X 2 {PATH, QCV, RANK, U, all}. FAQ performs significantly better than the other algo-
rithms, outperforming all of them on	 94% of the problems, often by nearly an order of mag-
nitude in terms of relative error.

4.3 QAP Benchmark Efficiency
The utility of an approximation algorithm depends not just on its accuracy, but also its efficien-
cy. To empirically test these algorithms’ efficiency, we compare the wall time of each of the five
algorithms on all 137 QAPS in QAPLIB in Fig 3. For each of the 5 algorithms, we fit an itera-
tively weighted least squares linear regression function (Matlab’s “robustfit”) to regress the log-
arithm of time (in seconds) onto the logarithm of the number of vertices being matched. The
numbers beside the lines indicate the slopes of the regression functions.

Fig 1. Running time of FAQ as function of number of vertices.Data was sampled from an Erdös-Rényi
model with p = log(n)/n. Each dot represents a single simulation, with 100 simulations per n. The solid line is
the best fit cubic function. Note the leading constant is	 10−9. FAQ finds the optimal objective function value
in every simulation.

doi:10.1371/journal.pone.0121002.g001
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The figure demonstrates that the PATH algorithm has the largest slope, significantly larger
than that of FAQ. QCV and FAQ have nearly identical slopes, which makes sense, given that
the are solving very similar objective functions. Similarly, RANK and U have very similar
slopes; they are both using spectral approaches. Note, however, that although the slope of
RANK and U are smaller than that of FAQ, they both appear to be super linear in this log-log
plot, suggesting that as the number of vertices increases, their compute time might exceed that
of the other algorithms.

Combined with Fig 2, this figure suggests that FAQ achieves the state-of-the-art trade-off
between efficiency and accuracy. Of note is that the FAQ algorithm has a relatively high vari-
ance in wall time for these problems. This is due to the number of Hungarian algorithms per-
formed in the FW subroutine. We could fix the number of Hungarian algorithms, in which
case the variance would decrease dramatically. However, in application, this variance is
not problematic.

4.4 QAP Benchmark Accuracy/Efficiency Trade-off
In [23], the authors demonstrated that PATH outperformed both QCV and U on a variety of
simulated and real examples. Fig 4 compares the performance of FAQ with PATH along both
dimensions of performance—accuracy and efficiency—for all 137 benchmarks in the QAPLIB
library. The right panel indicates that FAQ is bothmore accurate and more efficient on 80% of

Fig 2. Relative accuracy—defined to be log10ðf̂ FAQ=f̂ X Þ—of all the four algorithms compared with FAQ.Note that FAQ is better than all the other
algorithms on	 94% of the benchmarks. The abscissa is the log number of vertices. The gray dot indicates the mean improvement of FAQ over the
other algorithms.

doi:10.1371/journal.pone.0121002.g002
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Fig 4. Comparison of FAQwith PATH in terms of both accuracy and efficiency. The left panel is the same as the left panel of Fig 2. The middle plots the
relative wall time of FAQ to PATH as a function of the number of vertices, also on a log-log scale. The gray line is the best fit slope on this plot. Finally, the
right panel plots log relative time versus log relative objective function value, demonstrating that FAQ outperforms PATH on both dimensions on 80% of
the benchmarks.

doi:10.1371/journal.pone.0121002.g004

Fig 3. Absolute wall time for running each of the five algorithms on all 137 QAPLIB benchmarks.We fit
a line on this log-log plot for each algorithm; the slope is displayed beside each line. The FAQ slope is much
better than the PATH slope, and worse than the others. Note, however, the time for RANK and U appears to
be superlinear on this log-log plot, suggesting that perhaps as the number of vertices increases, PATHmight
be faster.

doi:10.1371/journal.pone.0121002.g003
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the problems (and is more accurate on 99% of the benchmarks). The middle plots the relative
wall time of FAQ to PATH as a function of the number of vertices, also on a log-log scale. The
gray line is the best fit slope on this plot, suggesting that FAQ is getting exponentially faster
than PATH as the number of vertices gets larger.

4.5 QAP Directed Benchmarks
Recently, Liu et al. [33] proposed a modification of the PATH algorithm that adjusted PATH
to be more appropriate for directed graphs Note that our FAQ algorithm easily extend to di-
rected or weighted graphs. Liu et al. compare the performance of their algorithm (EPATH)
with U, QCV, and the GRAD algorithm of [34] on a set of 16 particularly difficult directed
benchmarks from QAPLIB. The EPATH algorithm achieves at least as low objective value as
the other algorithms on 15 of 16 benchmarks. Our algorithm, FAQ, performs at least as well as
EPATH, U, QCV, and GRAD on all 16 benchmarks, and achieves the singular best perfor-
mance on 8 of the benchmarks. Table 1 shows the numerical results comparing FAQ to
EPATH and GRAD, the only algorithm considered in [33] to outperform EPATH. Note that
some of the algorithms achieve the absolute minimum on 8 of the benchmark.

4.6 Theoretical properties of FAQ
In addition to guarantees on computational time, we have a guarantee on performance:

Proposition 1 If A is the adjacency matrix of an asymmetric simple graph G, then

argmin
D2D

�traceðADATDTÞ ¼ fIg:

Proof Letm denote the number of edges in G. As G is asymmetric,

traceðAPATPTÞ < 2m ¼ traceðAATÞ
for any P 6¼ I. By the Birkhoff-von Neuman Theorem,D is the convex hull of P, i.e., for all D 2

Table 1. Comparison of FAQwith optimal objective function value and previous state-of-the-art for directed graphs. The best (lowest) value is in
bold. Asterisks indicate achievement of the global minimum. The number of vertices for each problem is the number in its name (second column).

# Problem Optimal FAQ EPATH GRAD

1 lipa20a 3683 3791 3885 3909

2 lipa20b 27076 27076* 32081 27076*

3 lipa30a 13178 13571 13577 13668

4 lipa30b 151426 151426* 151426* 151426*

5 lipa40a 31538 32109 32247 32590

6 lipa40b 476581 476581* 476581* 476581*

7 lipa50a 62093 62962 63339 63730

8 lipa50b 1210244 1210244* 1210244* 1210244*

9 lipa60a 107218 108488 109168 109809

10 lipa60b 2520135 2520135* 2520135* 2520135*

11 lipa70a 169755 171820 172200 173172

12 lipa70b 4603200 4603200* 4603200* 4603200*

13 lipa80a 253195 256073 256601 258218

14 lipa80b 7763962 7763962* 7763962* 7763962*

15 lipa90a 360630 363937 365233 366743

16 lipa90b 12490441 12490441* 12490441* 12490441*

doi:10.1371/journal.pone.0121002.t001
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D, there exists constants {αD, P}P 2 P such that D = ∑P 2 P αD, P P and ∑P 2 P αD, P = 1. Thus, if
D is not the identity matrix,

traceðADATDTÞ ¼
X
P

X
Q

aD;PaD;QtraceðAPATQTÞ

¼
X
P

a2D;PtraceðAPATPTÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
<2m if P 6¼I

þ
X
P

X
Q 6¼P

aD;PaD;QtraceðAPATQTÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

2m

< 2m

as D 6¼ I implies that αD, P > 0 for some P 6¼ I.■
Remark 1Note that it trivially follows from Proposition 1 that if A and B are the adjacency

matrices of asymmetric isomorphic simple graphs, then the minimum objective function value
of rGMP is equal to the minimum objective function value of GMP.

Remark 2 For the convex quadratic GM relaxation, Eq (4), in general argminD2DkAD�
DAk2F 6¼ fIg; even if G (the graph with adjacency matrix A) is asymmetric. Indeed, degree reg-

ular graphs provide a simple counterexample, as in this case J 2 argminD2DkAD� DAk2F . We
will empirically explore the ramifications of this phenomena further in Section 4.8

This result says that, when solving the GI problem, nothing is lost by relaxing the indefinite
GM problem as done by FAQ. Recent results also show this is almost surely the case (in a
broad class of random graphs) when relaxing the indefinite GM problem, even in the non-iso-
morphic graph setting [24] (and is again almost surely not the case when relaxing the convex
GM formulation). Combined, this serve to provide theoretical justification for our
FAQ procedure.

4.7 Multiple Restarts
Due to the indefiniteness of the relaxation of (6), the feasible region may be rife with local mini-
ma. As a result, our FAQ procedure is sensitive to the chosen initial position. With this in
mind, we propose a variant of the FAQ algorithm in which we run the FAQ procedure with
multiple initializations. The algorithm outputs the best FAQ iterate over all the initializations.
For each initialization, we sample K 2D, a random doubly stochastic matrix, using 10 itera-
tions of Sinkhorn balancing [25], and let our initialization be P(0) = (J+K)/2, where J is the dou-
bly stochastic barycenter. Fixing the number of restarts, this variant of FAQ still has O
(n3) complexity.

Table 2 shows the performance of running FAQ 3 and 100 times, reporting only the best re-
sult (indicated by FAQ3 and FAQ100, respectively), and comparing it to the best performing re-
sult of the five algorithms (including the original FAQ)—note that the best performing of the
original five tested was always FAQ. Note that we only consider the 16 particularly difficult
benchmarks for this evaluation. FAQ only required three restarts to outperform all other ap-
proximate algorithms on all 16 of 16 difficult benchmarks. Moreover, after 100 restarts, FAQ
finds the absolute minimum on 3 of the 16 benchmarks. Note that no other algorithm ever
achieved the absolute minimum on any of these benchmarks.

Remark 3 Another natural starting position for FAQ is the doubly stochastic solution of
rGMP, the relaxed Eq (4). Promising results in this direction are pursued further in [24].

4.8 Brain-Graph Matching
The Caenorhabditis elegans (C. elegans) is a small worm (nematode) with 302 labeled neurons
(in the hermaphroditic sex). The chemical connectome of C. elegans is a weighted directed
graph on 279 vertices, with edge weights in {0,1,2,. . .} counting the number of directed
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chemical synapses between the neurons [35, 36]. We conduct the following synthetic experi-
ments. For A = (Auv) count the number of synapses (in {0,1,2,. . .}) from neuron u to neuron v
in the C. elegans connectome, for all u, v. For k = 1,2,. . .,1000, we choose Q(k) uniformly at ran-
dom from P, and let BðkÞ ¼ QðkÞAQðkÞ

T , effectively shuffling the vertex labels of the connectome.

Then, we match graphs A to B(k). We define accuracy as the fraction of vertices correctly as-
signed (i.e. unshuffled).

Fig 5 displays the results of FAQ (initialized at J) along with U, QCV, and PATH. The left
panel indicates that FAQ always perfectly unshuffles the chemical connectome, whereas none
of the other algorithms ever perfectly unshuffles the graph. In light of Proposition 1, this is un-
surprising. Indeed, there is a unique automorphism for this connectome, and the graph is
asymmetric. For any choice of Q(k), the indefinite problem (6) therefore has a unique solution,
namely QT

ðkÞ. FAQ finds this global minima in all the cases. Contrast this with Eq (4)—the ob-

jective function of PATH and QCV—which could have multiple global minima inD. This
could account for the high variance in the performance of QCV and PATH in Fig 5.

The right panel compares the wall time of the various algorithms, running on an 2.2 GHz
Apple MacBook. Note that we only have a Matlab implementation of FAQ, whereas the other
algorithms are implemented in C. Unlike in the QAPLIB benchmarks, FAQ runs nearly as
quickly as both U and QCV; and as expected, FAQ runs significantly faster than PATH. We

also ran FAQ on a binarized symmeterized versions of the chemical connectome graph ~A (i.e.
~Auv ¼ 1 if and only if Auv� 1 or Avu� 1). The resulting errors are nearly identical to those pre-
sented in Fig 5, although speed increased for FAQ by more than a factor of two. Note that the
number of vertices in this brain-graph matching problem—279—is larger than the largest of
the 137 benchmarks used above.

Table 2. Comparison of FAQwith optimal objective function value and the best result on the undirected benchmarks. Note that FAQ restarted 100
times finds the optimal objective function value in 3 of 16 benchmarks, and that FAQ restarted 3 times finds a minimum better than the previous state-of-the-
art on all 16 particularly difficult benchmarks.

# Problem Optimal FAQ100 FAQ3 FAQ1

1 chr12c 11156 12176 13072 13072

2 chr15a 9896 9896* 17272 19086

3 chr15c 9504 10960 14274 16206

4 chr20b 2298 2786 3068 3068

5 chr22b 6194 7218 7876 8482

6 esc16b 292 292* 294 296

7 rou12 235528 235528* 238134 253684

8 rou15 354210 356654 371458 371458

9 rou20 725522 730614 743884 743884

10 tai10a 135028 135828 148970 152534

11 tai15a 388214 391522 397376 397376

12 tai17a 491812 496598 511574 529134

13 tai20a 703482 711840 721540 734276

14 tai30a 1818146 1844636 1890738 1894640

15 tai35a 2422002 2454292 2460940 2460940

16 tai40a 3139370 3187738 3194826 3227612

doi:10.1371/journal.pone.0121002.t002
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5 Discussion
This work presents the FAQ algorithm, a fast algorithm for approximately matching very large
graphs. Our key insight was to continuously relax the indefinite formulation of the GMP in the
FW implementation. We demonstrated that not only is FAQ cubic in time, but also its leading
constant is quite small—10−9—suggesting that it can be used for graphs with hundreds or thou-
sands of vertices (§4.1).

Moreover, FAQ achieves better accuracy than previous state-of-the-art approximate algo-
rithms on on over 93% of the 137 QAPLIB benchmarks (§4.2), is faster than the state-of-the-
art PATH algorithm (§4.3), and is both faster and achieves at least as low performance as
PATH on over 80% of the tested benchmarks (§4.4), including both directed and undirected
graph matching problems (§4.5). In addition to the theoretical guarantees of cubic run time,
we provide theoretical justification for optimizing the indefinite GM formulation, Eq (6) as op-
posed to Eq (4) (§4.6). Indeed, the indefinite formulation (and not the convex formulation) has
the property that when matching asymmetric isomorphic graphs, the unique global minimum
of the indefinite relaxation is the isomorphism between the two graphs.

Because rQAP is indefinite, we also considered FAQ with multiple restarts, and achieve im-
proved performance for the particularly difficult benchmarks using only three restarts (§4.7).
Finally, we used FAQ to match permuted versions of the C. elegans connectomes (§4.8). Of the
four state-of-the-art algorithms considered, FAQ achieved perfect performance 100% of the
time, whereas none of the other three algorithms ever matched the connectomes perfectly.
Moreover, FAQ ran comparably fast to U and QCV and significantly faster than PATH, even
though FAQ is implemented in Matlab, and the others are implemented in C. Note that these
connectomes have 279 vertices, more vertices than the largest QAP benchmarks.

5.1 Related Work
Our approach is quite similar to other approaches that have recently appeared in the literature.
Perhaps its closest cousins include [23, 37–39], which are all of the “PATH” following or FW

Fig 5. Performance of U, QCV, PATH, and FAQ on synthetic C. elegans connectome data, graph
matching the true chemical connectome with permuted versions of itself. Error is the fraction of vertices
incorrectly matched. Circle indicates the median, thick black bars indicate the quartiles, thin black lines
indicate extreme but non-outlier points, and plus signs are outliers. The left panel indicate error (fraction of
misassigned vertices), and the right panel indicates wall time on a 2.2 GHz Apple MacBook. FAQ always
obtained the optimal solution, whereas none of the other algorithms ever found the optimal. FAQ also ran
very quickly, nearly as quickly as U and QCV, and much faster than PATH, even though the FAQ
implementation is in Matlab, and the others are in C.

doi:10.1371/journal.pone.0121002.g005
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varieties. These algorithms begin by relaxing the convex objective function in (4), while FAQ
begins by relaxing the indefinite objective function in (6). Although the convex relaxation is ef-
ficiently solvable, the obtained solution is almost surely incorrect (for a broad class of random
graphs) and the correct solution is often not obtained even post projection [24]. The indefinite
relaxation however, almost surely yields the correct solution when exactly solved (for a broad
class of random graphs) [24]. With this in mind, it is unsurprising that FAQ outperforms
PATH on nearly all benchmark problems. Others have considered similar relaxations to
PATH, but usually in the context of finding lower bounds [40] or as subroutines for finding
exact solutions [41]. Our work seems to be the first to utilize the precise algorithm described in
Algorithm 1 to find fast approximate solutions to GMP and QAP.

We note that the work in [38] is a generalization of our FW approach. The authors of [38]
apply FW with exact line search to find

x� ¼ argmaxðxTMxÞ s:t: Cx ¼ 1; x 2 f0; 1gn; ð12Þ

whereM is an n2 × n2 matrix whoseMi, j;k,ℓ entry measures the similarity between the vertex
pairs (i, k) and (j,ℓ), and C is a constraint matrix enforcing the one–to–one (easily generalizing
to many–to–one) matching of vertices. Our GM formulation (6), and our subsequent FW im-
plementation, can be realized from (12) by settingM = −BT� AT, and having C enforce a one–
to–one matching of the vertices. Our approach offers several distinct advantages over the gen-
eral approach of [38], namely:

• The ability to efficiently employ multiple random restarts for enhanced performance (see
Section 4.7 for detail);

• Our FW implementation exploits the Kronecker product structure ofM which reduces the
runtime of an O(n4) procedure to O(n3);

• Our final step is projected to the nearest permutation matrix, which is not part of the algo-
rithm outlined in [38];

• In [38], they consider generalM, and in so doing, they are considering all quadratic-objective
optimizations (albeit without a linear and constant term). There are many quadratic formu-
lations of GM, and our contribution is touting the efficiency and efficacy of solving our par-
ticular indefinite form.

5.2 Future Work
Even with the very small lead order constant for FAQ, as n increases, the computational burden
gets quite high. For example, extrapolating the curve of Fig 1, this algorithm would take about 20
years to finish (on a standard laptop) when n = 100,000. We hope to be able to approximately
solve rQAP on graphs much larger than that, given that the number of neurons even in a fly
brain, for example, is	 250,000. More efficient algorithms and/or implementations are required
for such massive graph matching. Although a few other state-of-the-art algorithms were more ef-
ficient than FAQ, their accuracy was significantly worse. We are actively working on combining
FAQ with dimensionality reduction procedures to achieve the desired scaling from FAQ [42].

We are also pursuing additional future work to generalize FAQ in a number of ways:

• In addition to the theoretical results contained in Section 4.6, we have studied the properties
of the convex and indefinite GMP relaxations in a very general random graph model [24].
Under some general assumptions on the random graph model, the indefinite relaxation of
(6), and not the convex relaxation of (4) is the provably correct approach [24].
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• Many (brain-) graphs of interest will be errorfully observed [43], that is, vertices might be
missing and putative edges might exhibit both false positives and negatives. Explicitly dealing
with this error source is both theoretically and practically of interest [15].

• For many brain-graph matching problems, the number of vertices will not be the same across
the brains. Recent work from [23, 37] and [39] suggest that extensions in this direction
would be both relatively straightforward and effective.

• Often, a partial matching of the vertices is known a priori, and we can modify FAQ to lever-
age these seeded vertices to match the remaining unseeded vertices [44].

• The most costly subroutine in FAQ is solving LAPs. Fortunately, the LAP is a linear optimi-
zation problem with linear constraints. As a result, a number of parallelized optimization
strategies could be implemented on this problem [45].

• Often, real data adjacency matrices have certain special properties, namely sparsity, which
makes faster LAP subroutines [29] and more efficient algorithms (such as “active set” algo-
rithms) readily available for further speed increases.

• In many graph settings, we have some prior information that could easily be incorporated
into the GM problem in the form of vertex attributes and features. For example, in brain
graphs we know the position of the vertex in the brain, the vertex’s cell type, etc. These could
be used to measure a “dissimilarity” between vertices and are easily incorporated into FAQ’s
objective function to better match the graphs.

• We are working to extend FAQ to match multiple graphs simultaneously.

5.3 Concluding Thoughts
In conclusion, this manuscript has presented the FAQ algorithm for approximately solving the
quadratic assignment problem. FAQ is theoretically justified, fast, effective, and easily general-
izable. Our algorithm achieves state-of-the-art matching performance and efficiency on a host
of benchmark QAP problems and connectome data sets. Yet, theO(n3) complexity remains
too slow to solve many problems of interest, and issues of scalability need be addressed. To fa-
cilitate further development and applications, all the code and data used in this manuscript is
available from the first author’s website, http://jovo.me. We have further incorporated FAQ (as
sgm.R) into the open-source R package, igraph, available for download at https://github.com/
igraph/xdata-igraph/. MATLAB code is also available at https://github.com/jovo/
FastApproximateQAP/tree/master/code/FAQ.
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