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Abstract

Spectral clusteringrefers to a flexible class of clustering procedures that can produce high-quality clus-
terings on small data sets but which has limited applicability to large-scale problems due to its computa-
tional complexity ofO(n3), with n the number of data points. We extend the range of spectral clustering by
developing a general framework for fast approximate spectral clustering in which a distortion-minimizing
local transformation is first applied to the data. This framework is based on a theoretical analysis that pro-
vides a statistical characterization of the effect of localdistortion on the mis-clustering rate. We develop
two concrete instances of our general framework, one based on localk-means clustering (KASP) and one
based on random projection trees (RASP). Extensive experiments show that these algorithms can achieve
significant speedups with little degradation in clusteringaccuracy. Specifically, our algorithms outperform
k-means by a large margin in terms of accuracy, and run severaltimes faster than approximate spectral clus-
tering based on the Nyström method, with comparable accuracy and significantly smaller memory footprint.
Remarkably, our algorithms make it possible for a single machine to spectral cluster data sets with a million
observations within several minutes.

1 Introduction

Clustering is a problem of primary importance in data mining, statistical machine learning and scientific
discovery. An enormous variety of methods have been developed over the past several decades to solve clus-
tering problems [15, 20]. A relatively recent area of focus has beenspectral clustering, a class of methods
based on eigendecompositions of affinity, dissimilarity orkernel matrices [21, 29, 33]. Whereas many clus-
tering methods are strongly tied to Euclidean geometry, making explicit or implicit assumptions that clusters
form convex regions in Euclidean space, spectral methods are more flexible, capturing a wider range of ge-
ometries. They often yield superior empirical performancewhen compared to competing algorithms such
ask-means, and they have been successfully deployed in numerous applications in areas such as computer
vision, bioinformatics, and robotics. Moreover, there is asubstantial theoretical literature supporting spectral
clustering [21, 37].

Despite these virtues, spectral clustering is not widely viewed as a competitor to classical algorithms
such as hierarchical clustering andk-means for large-scale data mining problems. The reason is easy to state
– given a data set consisting ofn data points, spectral clustering algorithms form ann × n affinity matrix
and compute eigenvectors of this matrix, an operation that has a computational complexity ofO(n3). For
applications withn on the order of thousands, spectral clustering methods begin to become infeasible, and
problems withn in the millions are entirely out of reach.

In this paper we focus on developing fast approximate algorithms for spectral clustering. Our approach
is not fundamentally new. As in many other situations in datamining in which a computational bottleneck
is involved, we aim to find an effective preprocessor that reduces the size of the data structure that is input
to that bottleneck (see, e.g., [26, 28]). There are many options that can be considered for this preprocessing
step. One option is to perform various forms of subsampling of the data, selecting data points at random or
according to some form of stratification procedure. Anotheroption is to replace the original data set with
a small number of points (i.e., “representatives”) that aimto capture relevant structure. Another approach
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that is specifically available in the spectral clustering setting is to exploit the literature on low-rank matrix
approximations. This last approach has been particularly prominent in the literature; in particular, several
researchers have proposed using the Nyström method for rank reduction [9, 38, 11]. While it is useful
to define such preprocessors, simply possessing a knob that can adjust computational complexity does not
constitute a solution to the problem of fast spectral clustering. What is needed is an explicit connection
between the amount of data reduction that is achieved by a preprocessor and the subsequent effect on the
clustering. Indeed, the motivation for using spectral methods is that they can provide a high-quality clustering,
and if that high-quality clustering is destroyed by a preprocessor then we should consider other preprocessors
(or abandon spectral clustering entirely). In particular,it is not satisfactory to simply reduce the rank of an
affinity matrix so that an eigendecomposition can be performed in a desired time frame, unless we have an
understanding of the effect of this rank reduction on the clustering.

In this paper we propose a general framework for fast spectral clustering and conduct an end-to-end
theoretical analysis for our method. In the spirit of rate-distortion theory, our analysis yields a relationship
between an appropriately defined notion of distortion at theinput and some notion of clustering accuracy at
the output. This analysis allows us to argue that the goal of apreprocessor should be to minimize distortion;
by minimizing distortion we minimize the effect of data reduction on spectral clustering.

To obtain a practical spectral clustering methodology, we thus make use of preprocessors that minimize
distortion. In the current paper we provide two examples of such preprocessors. The first is classicalk-
means, used in this context as a local data reduction step. The second is the Random Projection tree (RP
tree) of [8]. In either case, the overall approximate spectral clustering algorithm takes the following form:
(1) coarsen the affinity graph by using the preprocessor to collapse neighboring data points into a set of local
“representative points,” (2) run a spectral clustering algorithm on the set of representative points, and (3)
assign cluster memberships to the original data points based on those of the representative points.

Our theoretical analysis is a perturbation analysis, similar in spirit to those of [21] and [29] but different
in detail given our focus on practical error bounds. It is also worth noting that this analysis has applications
beyond the design of fast approximations to spectral clustering. In particular, as discussed by [19], our
perturbation analysis can be used for developing distributed versions of spectral clustering and for analyzing
robustness to noise.

The remainder of the paper is organized as follows. We begin with a brief overview of spectral clustering
in Section 2, and summarize the related work in Section 3. In Section 4 we describe our framework for
fast approximate spectral clustering and discuss two implementations of this framework – “KASP,” which
is based onk-means, and “RASP,” which is based on RP trees. We evaluate our algorithms in Section 5,
by comparing both KASP and RASP with Nyström approximationandk-means. We present our theoretical
analysis in Section 6. In particular, in that section, we provide a bound for the mis-clustering rate that depends
linearly on the amount of perturbation to the original data.We then turn to an analysis of the performance of
our approximate algorithms in Section 7. Finally, we conclude in Section 8.

2 Spectral clustering

Given a set ofn data pointsx1, . . . ,xn, with eachxi ∈ R
d, we define anaffinity graphG = (V, E) as an

undirected graph in which theith vertex corresponds to the data pointxi. For each edge(i, j) ∈ E, we
associate a weightaij that encodes the affinity (or similarity) of the data pointsxi andxj . We refer to the
matrixA = (aij)

n
i,j=1 of affinities as theaffinity matrix.

The goal of spectral clustering is to partition the data intom disjoint classes such that eachxi belongs
to one and only one class. Different spectral clustering algorithms formalize this partitioning problem in
different ways [33, 27, 29, 39]. In the current paper we adoptthenormalized cuts(Ncut) formulation [33].1

DefineW (V1, V2) =
∑

i∈V1,j∈V2
aij for two (possibly overlapping) subsetsV1 andV2 of V . Let V =

1We use Ncut only for concreteness; our methodology applies immediately to other spectral clustering formulations.
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Algorithm 1 SpectralClustering(x1, . . . ,xn)

Input : n data points{xi}n
i=1,xi ∈ R

d

Output : BipartitionS andS̄ of the input data

1. Compute the affinity matrixA with elements:

aij = exp
(

− ‖xi−xj‖
2

2σ2

)

, i, j = 1, . . . , n

2. Compute the diagonal degree matrix D with elements:
di =

∑n
j=1 aij

3. Compute the normalized Laplacian matrix:
L = D− 1

2 (D − A)D− 1

2

4. Find the second eigenvectorv2 of L
5. Obtain the two partitions usingv2:

S = {i : (v2)i > 0}, S̄ = {i : (v2)i ≤ 0}

(V1, . . . , Vm) denote a partition ofV , and consider the following optimization criterion:

Ncut =

m
∑

j=1

W (Vj , V ) − W (Vj , Vj)

W (Vj , V )
. (1)

In this equation, the numerator in thejth term is equal to the sum of the affinities on edges leaving the subset
Vj and the denominator is equal to the total degree of the subsetVj . Minimizing the sum of such terms thus
aims at finding a partition in which edges with large affinities tend to stay within the individual subsetsVj

and in which the sizes of theVj are balanced.
The optimization problem in (1) is intractable and spectralclustering is based on a standard relaxation

procedure that transforms the problem into a tractable eigenvector problem. In particular, the relaxation for
Ncut is based on rewriting (1) as a normalized quadratic forminvolving indicator vectors. These indicator
vectors are then replaced with real-valued vectors, resulting in a generalized eigenvector problem that can be
summarized conveniently in terms of the (normalized) graphLaplacianL of A defined as follows:

L = D− 1

2 (D − A)D− 1

2 = I − D− 1

2 AD− 1

2 = I − L0, (2)

whereD = diag(d1, ..., dn) with di =
∑n

j=1 aij , i = 1, . . . , n, and where the final equality definesL0.
Ncut is based on the eigenvectors of this normalized graph Laplacian. The classical Ncut algorithm

focuses on the simplest case of a binary partition [33], and defines multiway partitions via a recursive invoca-
tion of the procedure for binary partitions. In the case of a binary partition, it suffices to compute the second
eigenvector of the Laplacian (i.e., the eigenvector with the second smallest eigenvalue). The components of
this vector are thresholded to define the class memberships of the data points. Although spectral clustering
algorithms that work directly with multiway partitions exist [4, 39], in the current paper we will focus on the
classical recursive Ncut algorithm. We assume that the number of clusters is given a priori and we run the
recursion until the desired number of clusters is reached. See Algorithm 1 for a specific example of a spectral
bipartitioning algorithm where a Gaussian kernel is used todefine the pairwise affinities.

3 Related Work

An influential line of work in graph partitioning approachesthe partitioning problem by reducing the size of
the graph by collapsing vertices and edges, partitioning the smaller graph, and then uncoarsening to construct
a partition for the original graph [17, 23]. Our work is similar in spirit to this multiscale approach; we provide
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rigorous theoretical analysis for a particular kind of coarsening and uncoarsening methodology. More gener-
ally, our work is related to a tradition in the data mining community of using data preprocessing techniques
to overcome computational bottlenecks in mining large-scale data. Examples include [28], who proposed a
nonparametric data reduction scheme based on multiscale density estimation, and [5], who proposed a fast
algorithm to extract small “core-sets” from the input data,based on which(1 + ǫ)-approximation algorithms
for thek-center clustering have been developed.

Our work is also related to the literature on kernel-based learning, which has focused principally on
rank reduction methods as a way to attempt to scale to large data sets. Rank reduction refers to a large
class of methods in numerical linear algebra in which a matrix is replaced with a low-rank approximation.
These methods have been widely adopted, particularly in thecontext of approximations for the support vector
machine (SVM) [9, 38, 10, 34]. The affinity matrix of spectralclustering is a natural target for rank reduction.
In particular, [11] have used the Nyström approximation, which samples columns of the affinity matrix and
approximates the full matrix by using correlations betweenthe sampled columns and the remaining columns.
A variety of sampling procedures can be considered. [38] useuniform sampling without replacement, and
[11] use a similar strategy in applying the Nyström method to image segmentation. A drawback of these
procedures is that they do not incorporate any information about the affinity matrix in choosing columns to
sample; moreover, they do not come with performance guarantees.

[9] replace the uniform sampling step with a judiciously chosen sampling scheme in which columns of
the Gram matrix are sampled with probability proportional to their norms. While this yields a rigorous bound
on the approximation error of Gram matrix, this method may need to select a large number of columns to
achieve a small approximation error. It is shown that with probability at least1 − δ

||G − G̃k||F ≤ ||G − Gk||F + ǫ

n
∑

i=1

G2
ii, (3)

whereGk is the best rank-k approximation toG. This yields a rigorous bound for approximation of the
Gram matrix. However, as the number of sampled columnsn from G is on the order ofO

(

log(1
δ ) · 1

ǫ4

)

,
the algorithm has a computational complexity on the order ofO((log(1

δ )/ǫ4)3). The right hand side of (3)
indicates that a very smallǫ might be required in order to obtain a small approximation error, such that
the number of rows to be selected will be large. For example, when the Gaussian kernel is used, the term
∑n

i=1 G2
ii may grow on the order ofO(n). Thus the number of columns sampled is expected to beO(n).

As an example of this scaling, Fig. 1 plots the growth of1
n

∑n
i=1 G2

ii with data sets generated from a two-
component Gaussian mixture,1

2N(µ, Σ) + 1
2N(−µ, Σ), with µ = (1, 1) andΣ = [1, 0.5; 0.5, 1], whereG

is the Laplacian matrix of the pairwise affinity matrix for the data.
Although the Nyström method reduces the rank of the kernel matrix, its working memory requirement

can be very high. For example, a data set of size 100,000 may require more than6GB of memory while a
data set of size 1,000,000 may require more than17GB of memory. Another issue with the Nyström method
is that in data sets that are unbalanced the number of observations selected by the sampling procedure from
the small clusters may be small (if not zero), which can causesmall clusters to be missed and may potentially
lead to problems with numerical stability.

4 Fast spectral clustering

In this section we present our algorithmic framework for fast spectral clustering. Our approach reposes on
the theoretical analysis of spectral clustering that we present in Section 6. In that section we establish a
quantitative relationship between the mis-clustering rate at the output of a spectral clustering algorithm and
the distortion in the input. This motivates our interest in algorithms that invoke a distortion-minimizing
transformation on the original data before performing spectral clustering.

Our algorithm consists of a data preprocessing step and the spectral clustering step. In the current section
we present two different ways of achieving the first step: oneis based onk-means and the other is based
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Figure 1: The growth of1n
∑n

i=1 G2
ii for data generated from the Gaussian mixture1

2N(µ, Σ)+ 1
2N(−µ, Σ)

with µ = (1, 1) andΣ = [1, 0.5; 0.5, 1].

Symbol Meaning

m Number of clusters for partitioning input data
n, d Size and dimension of input data

xi, x̃i Input data pointi and its perturbed version
y1, . . . ,yk k representative points

ǫ, ǫi Perturbation error
ρ Mis-clustering rate

G, G̃ Distribution of input data and its perturbed version
A, Ã Affinity matrix and its perturbed version
L, L̃ Laplacian matrix and its perturbed version

L0, L0

A, L0

B Shorthand forD−

1

2 AD−

1

2 , with varying affinity matrix
di Sum of rowi of affinity matrix

λ2, λB,v2,uB The second eigenvalue and eigenvector of Laplacian matrix
g, g0 Eigengap of Laplacian matrix

Table 1: Notation.

on random projection trees. We have chosen these two approaches because of their favorable computational
properties and the simplicity of their implementation. Table 1 summarizes our notation.

4.1 Fast spectral clustering withk-means

Vector quantization is the problem of choosing a set of representative points that best represent a data set in
the sense of minimizing a distortion measure [13]. When the distortion measure is squared error, the most
commonly used algorithm for vector quantization isk-means, which has both theoretical support and the
virtue of simplicity. Thek-means algorithm employs an iterative procedure. At each iteration, the algorithm
assign each data point to the nearest centroid, and recalculates the cluster centroids. The procedure stops
when the total sum of squared error stabilizes.

The use that we make ofk-means is as a preprocessor for spectral clustering. In particular, we propose a
“k-means-based approximate spectral clustering” (KASP) algorithm that has the form in Algorithm 2.

The computational complexity of step 1,k-means, isO(knt), wheret is the number of iterations2. Given

2There also exist approximatek-means algorithms (e.g., the(1 + ǫ) k-means in [24]) with a running time ofO(nt).
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Algorithm 2 KASP (x1, . . . ,xn, k)

Input : n data points{xi}n
i=1, number of representative pointsk

Output : m-way partition of the input data

1. Performk-means withk clusters onx1, . . . ,xn to:
a) Compute the cluster centroidsy1, . . . ,yk as thek representative points.
b) Build a correspondence table to associate eachxi with the nearest cluster centroidyj .

2. Run a spectral clustering algorithm ony1, . . . ,yk to obtain anm-way cluster membership
for each ofyi.

3. Recover the cluster membership for eachxi by looking up the cluster membership
of the corresponding centroidyj in the correspondence table.

that the complexity of step 2 isO(k3) and the complexity of step 3 isO(n), the overall computational
complexity of KASP isO(k3) + O(knt). In the evaluation section we compare KASP to the alternative of
simply runningk-means on the entire data set.

4.2 Fast spectral clustering with RP trees

RP trees are an alternative tok-means in which a distortion-reducing transformation is obtained via random
projections [8]. An RP tree gives a partition of the data space, with the center of the mass in each cell
of the partition used as the representative for the data points in that cell. RP trees are based onk-d trees,
which are spatial data structures that partition a data space by recursively splitting along one coordinate at
a time [2]. Rather than splitting along coordinate directions, RP tree splits are made according to randomly
chosen directions. All points in the current cell are projected along the random direction and the cell is then
split. While classicalk-d trees scale poorly with dimensionality of the data space due to the restriction to
axis-parallel splits, RP trees more readily adapt to the intrinsic dimensionality of the data.

Using the RP tree as a local distortion-minimizing transformation, we obtain the “RP-tree-based approx-
imate spectral clustering” (RASP) algorithm by replacing step 1 in Algorithm 2 with:

• Build anh-level random projection tree onx1, . . . ,xn; compute the centers of massy1, . . . ,yk of the
data points in the leaf cells as thek representative points.

The total computational cost of this method isO(k3)+O(hn), where theO(hn) term arises from the cost of
building theh-level random projection tree.

5 Evaluation

Before turning to our theoretical analysis of KASP and RASP,we present a comparative empirical evaluation
of these algorithms. We have conducted experiments with data sets of various sizes taken from the UCI
machine learning repository [3]; an overview is given by Table 2.

The original USCI (US Census Income) data set has 299,285 instances with 41 features. We excluded in-
stances that contain missing items, and removed features #26, #27, #28 and #30, as they have too many miss-
ing instances. We were left with 285,799 instances with37 features, with all categorical variables converted
to integers. The Poker Hand data set consists of10 classes with a total of 1,000,000 instances. However,
the original data set is extremely unbalanced – there are6 classes which together comprise less than1% of
the total number of instances. We merged small classes together while leaving the large classes untouched.
We obtained3 final classes which correspond to about50.12%, 42.25% and7.63% of the total number of
instances, respectively. We normalized the Connect-4 and USCI data sets so that all features have mean 0
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Data set # Features # instances # classes
Medium size
ImageSeg 19 2,100 7
Musk 166 6,598 2
penDigits 16 10,992 10
mGamma 10 19,020 2
Large size
Connect-4 42 67,557 3
USCI 37 285,779 2
Poker Hand 10 1,000,000 3

Table 2: UCI data sets used in our experiments.

and standard deviation 1. For spectral clustering, we set kernel bandwidths via a cross-validatory search in
the range[0, 200] (with step size0.1) for each data set.

Spectral algorithms have not previously been studied on data sets as large as one million data points; the
largest experiment that we are aware of for spectral algorithms involves the MNIST data set, which consists of
60,000 handwritten digits. In particular, [14] reported experiments using this data set, where a total running
time of about 30 hours was required when using a fast iterative algorithm.

5.1 Evaluation metrics

We used two quantities to assess the clustering performance: the running time and the clustering accuracy as
measured by using the true class labels associated with eachof the data sets. Our experiments were performed
on a Linux machine with 2.2 GHz CPU with 32 GB main memory. The running time was taken as the elapsed
time (wall clock time) for clustering. Clustering accuracywas computed by counting the fraction of labels
given by a clustering algorithm that agree with the true labels. This requires a search over permutations of
the classes. Letz = {1, . . . , k} denote the set of class labels, andθ(·) andf(·) denote the true label and the
label given by the clustering algorithm of a data point, respectively. Formally, the clustering accuracyβ is
defined as

β(f) = max
τ∈Πz

{

1

n

n
∑

i=1

I{τ (f(xi)) = θ(xi)}
}

, (4)

whereI is the indicator function andΠz is the set of all permutations onz. When the number of classes is
large, computing(4) exactly becomes infeasible. In that case we sampled from thesetΠz and computed the
best match over the sample as an estimate ofβ. In particular, in our experiments, we exhaustively enumerated
Πz if k ≤ 7 and otherwise sampled10, 000 instances fromΠz.

5.2 Competing algorithms

We compare the performance of KASP and RASP with two competing algorithms:k-means clustering and
Nyström approximation based spectral clustering (referred to simply as Nyström henceforth) as implemented
in [11]. Unless other specified, all algorithms were implemented in R code.

The existing work on spectral clustering has focused principally on rank reduction methods as a way
to scale to large-size data. We thus compare KASP and RASP algorithms to the rank reduction approach,
focusing on the Nyström approximation. The idea of Nyström is to sparsify the Laplacian matrix by random
sampling and then to take advantage of the fact that eigendecomposition is usually much faster on a sparse
matrix. There are several variants available for Nyström-based spectral clustering, and we choose the Matlab
implementation due to Fowlkes et al. [11].
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KM-2 KM-1 KM-1 KM-1 BF BF BF
(20, 200) (20, 1000) (50, 200) (0.1) (0.05) (0.01)

ImageSeg 50.98 51.15 50.27 48.23 42.00 43.07 47.03
1 1 1 1 1 1 1

Musk 54.02 53.99 53.99 53.99 53.99 53.99 54.01
1 6 7 13 8 2 1

penDigits 51.61 52.85 52.72 51.90 51.85 51.88 51.86
1 3 5 7 3 1 1

mGamma 64.91 64.91 64.91 64.91 64.91 64.91 64.91
1 4 4 5 5 2 1

Table 3: Evaluation ofk-means on medium-size data sets with different initialization methods. Numbers
right below the initialization methods are parameters:(nrst, nit) for KM-1 andα for BF. Each result cell
contains two numbers: the top one is clustering accuracy andthe bottom one is the running time in second.
All results are averaged over100 runs.

The performance ofk-means can vary significantly depending on the initialization method. Recently a
variety of approaches have been proposed for the initialization of k-means [22, 1, 31, 25, 6]. We chose to
study three initialization methods, based on their documented favorable performance [6, 30, 31, 25], as well
as their relatively straightforward implementation: the Hartigan-Wong algorithm (KM-1) [16], the sampling-
based two-stage algorithm (KM-2) (i.e., the Matlab implementation ofk-means with the “cluster” option),
and the Bradley and Fayyad algorithm (BF) [6]. In reporting aresult fork-means results we report the highest
level of accuracy attained across these three algorithms for each data set.

KM-1 is simply the R function kmeans() with option “Hartigan-Wong.” This function has two parameters,
nrst andnit, which denote the number of restarts and the maximal number of iterations during each run,
respectively. We ran KM-1 with(nrst, nit) = (20, 200), (50, 200), (20, 1000), respectively.

KM-2 consists of two stages ofk-means. The idea is to runk-means in the first stage on a subset of
the data to obtain good initial centroids so that substantially fewer iterations are required fork-means in the
second stage. In the first stage, we sample10% (5% for the Poker Hand dataset) of the data uniformly at
random, and runk-means withk clusters. In the second stage, we runk-means with thek cluster centers
obtained in the first stage as initial centroids. The parameters fork-means were chosen to be(nrst, nit) =
(20, 200) for the first stage and(nrst, nit) = (1, 200) for the second stage.

BF consists of three stages ofk-means. In the first stage, BF runsk-means several times (we used 10
runs) on randomly selected subsets, using, say, a fractionα of the entire data set. The output centroids from
all individual runs constitutes a new data set, on which the second stagek-means runs. The centroids so
obtained are used as the initial cluster centers for the third stage ofk-means. In our experiment, we fixed
the parameters(nrst, nit) = (20, 200) for the first and second stages and(nrst, nit) = (1, 100) for the third
stage, while varyingα ∈ {0.01, 0.05, 0.1}.

The above are the standard settings for our first set of experiments. See below for discussion of an
additional set of experiments in which the running time ofk-means was matched to that of KASP.

5.3 Evaluation results

Medium-size data.We first evaluatedk-means using different initialization methods and parameter config-
urations on the four medium-size data sets. The complete result is shown in Table 3, from which we choose
the best result across allk-means experiments to compare with our method.

Table 4 shows the performance comparison forK-means, Nyström and our KASP method on the medium-
size data sets. We run KASP with KM-2 for data preprocessing using different data reduction ratiosγ, where
γ is the ratio of the size of original data set to the reduced data set. As expected, we see thatk-means runs
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K-means Nyström γ = 1 γ = 4 γ = 8
ImageSeg 51.15 51.10 54.76 58.95 53.66

1 4 200 11 8
0.03 0.13 0.47 0.06 0.04

Musk 54.02 84.45 84.97 83.18 84.31
1 386 3884 567 162

0.07 0.42 3.2 0.32 0.17
penDigits 52.85 54.40 51.63 53.36 53.02

3 593 14188 381 132
0.04 1.0 7.7 0.73 0.22

mGamma 64.91 70.97 68.60 70.61 70.36
1 2510 71863 1116 272

0.05 3.4 22.0 1.6 0.52

Table 4: Evaluation ofk-means, Nyström and KASP on medium-size data sets. Each cell contains three
numbers: the clustering accuracy, the running time in seconds, and the amount of memory used in units of
GB. The parameterγ denotes the data reduction ratio for KASP; for Nyström sampling the data reduction
ratio is fixed atγ = 8.

KM-2 KM-1 KM-1 KM-1 BF BF BF
(200,20) (1000,20) (200,50) (0.1) (0.05) (0.01)

Connect-4 49.63 49.04 48.34 49.68 51.56 53.52 65.33
6 69 184 146 78 19 3

USCI 63.47 63.48 63.47 63.47 63.47 63.47 63.47
26 169 465 310 187 44 11

Poker Hand 35.55 35.64 35.58 35.52 35.57 35.56 35.56
44 524 1612 1126 331 243 35

Table 5: Evaluation ofk-means on large-size data sets with different initialization methods. Numbers right
below the initialization methods are parameters:(nrst, nit) for KM-1 andα for BF. Each result cell contains
two numbers: the top one is clustering accuracy and the bottom one is the running time in second. All results
are averaged over100 runs.

the fastest among the three methods; KASP runs faster and requires less working memory than Nyström
when both of them use the same data reduction ratio (γ = 8). In terms of accuracy, KASP and Nyström
are comparable with each other, and both are better thank-means, particularly on the data sets Musk and
mGamma. From Table 4 we also see that the running time and working memory required by KASP decrease
substantially as the data reduction ratioγ increases, while incurring little loss in clustering accuracy. In fact,
we see that sometimes clustering accuracy increases when weuse the reduced data. (This is presumably due
to the regularizing effect of the pre-grouping, where neighboring observations are forced into the same final
clusters.)

Large-size data. We now turn to the three large-size data sets. We first evaluatedk-means with different
initialization methods and parameter configurations, and report the result in Table 5.

We present the results for the KASP algorithm in Table 6, where we note that we have used relatively large
data reduction ratiosγ due to the infeasibility of running spectral clustering on the original data. For each
data set, we observe that when we increase the data reductionratio γ, there is little degradation in clustering
accuracy while both computation time and working memory decrease substantially.

In our experiments on RASP, we used the C++ implementation ofNakul Verma to build the RP tree [8]
and used this as input to our spectral clustering algorithm (implemented in R). We varied the tree depth and

9



γ = 20 γ = 50 γ = 100 γ = 200
Connect-4 65.70 65.69 65.70 65.69

628 138 71 51
1.6 0.35 0.28 0.20

γ = 100 γ = 200 γ = 300 γ = 500
USCI 94.04 93.97 94.03 94.03

796 661 554 282
1.2 0.92 0.91 0.90

γ = 500 γ = 1000 γ = 2000 γ = 3000
Poker Hand 50.03 50.01 50.01 49.84

2500 1410 510 310
0.77 0.56 0.50 0.44

Table 6: Evaluation of KASP on the three large-size data setswith different data reduction ratios. The values
in each cell denote the data reduction ratio (γ), the clustering accuracy, the running time and the memory
usage.

required that each leaf node in the tree contains at least50 data points. The running time of RASP consists of
three parts – the construction of the tree, spectral clustering on the reduced set, and the cluster membership
recovery. The results for RASP are shown in Table 7. Here we again see that accuracy does not decrease over
this range of data reduction values. Comparing Table 7 and Table 6, we see that RASP is roughly comparable
to KASP in terms of both speed and accuracy.3

In Table 8 we compare our methods (using the largest values ofthe reduction ratio) tok-means, again
using different initialization methods and parameter configurations fork-means and reporting the best result
as the third column of the table. We again see the significant improvement in terms of accuracy overk-means
for two of the data sets. We also compared to Nyström, where the memory requirements of Nyström forced
us to restrict our experiments to only the largest values of the data reduction ratios studied for KASP and
RASP. We see that KASP and Nyström have comparable clustering accuracy. As for the running time, we
see from Table 8 that KASP (and RASP) are 3-5 times faster thanNyström. (Note also that KASP and RASP
were implemented in R and Nyström runs in Matlab; the slowness of R relative to Matlab suggests that we
are underestimating the difference.) Another difficulty with Nyström is the memory requirement, which is
of orderO(n2). The actual memory usages were approximately4GB, 12GB and17GB, respectively, for the
three large data sets, while the working memory required by KASP was less than1GB.

Given the large size of these data sets we are not able to assess the loss in clustering accuracy due to
data reduction in KASP and RASP relative to the original dataset (because we are unable to run spectral
clustering on the original data). Instead, to provide a rough upper bound, we treat the clustering problem as a
classification problem and present results from a state-of-the-art classification algorithm, the Random Forests
(RF) algorithm [7]. These results suggest that the data reduction in KASP and RASP have not seriously
degraded the clustering accuracy.

We also performed a further comparison ofk-means and our methods in which we increased the number
of restarts and iterations fork-means so that the running time matches that of KASP on the large data sets.
For these experiments we used the BF implementation ofk-means, and report the results in Table 9. Our
results show that the longer runs ofk-means did not yield significant improvements in accuracy tothe results
we have reported here;k-means continued to fall significantly short of KASP and Nyström on USCI and
Poker Hand.

3 Due to the random nature of RASP during the tree constructionstage, we are not able to match the data reduction
ratio in RASP to that of KASP. Hence only a rough comparison ispossible between KASP and RASP.
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γ = 144 γ = 136 γ = 207
Connect-4 65.72 63.27 63.95

107 78 67
0.14 0.14 0.13

γ = 170 γ = 267 γ = 516
USCI 92.99 93.66 92.09

1229 922 418
0.79 0.70 0.67

γ = 509 γ = 977 γ = 3906
Poker hand 50.11 50.03 49.70

1440 710 215
0.91 0.67 0.45

Table 7: Evaluation of RASP on the three large-size data setswith different data reduction ratios. The values
in each cell denote the data reduction ratio (γ), the clustering accuracy, the running time and the memory
usage.

RF K-means Nyström KASP RASP
Connect-4 75.00 65.33 65.82 65.69 63.95

3 181 51 67
0.19 4.0 0.20 0.13

USCI 95.27 63.47 93.88 94.03 92.09
11 1603 282 418

0.65 12.0 0.90 0.67
Poker Hand 60.63 35.56 50.24 49.84 49.70

35 1047 310 215
0.42 17.0 0.44 0.45

Table 8: Comparison of Random Forests (RF) classification,k-means, Nyström, KASP and RASP on the
three large data sets. For RF classification, we set the training set sizes to be 7557, 28578 and 25010, and the
test set sizes to be 60000, 257201, and 1000000, respectively.

6 Perturbation analysis for spectral clustering

In this section we present a theoretical analysis of the effect on spectral clustering of a perturbation to the
original data. Section 7 shows how this analysis applies to the specific examples of KASP and RASP. It is
worth noting that our analysis is a general one, applicable to a variety of applications of spectral clustering. In
particular, perturbations arise when the original data aretruncated, compressed, filtered, quantized or distorted
in some way. These degradations may be unavoidable consequences of a noisy channel, or they may arise
from design decisions reflecting resource constraints, computational efficiency or privacy considerations.

Data perturbation can be modeled in several different ways,including contaminated distribution mod-
els [36], measurement error models [12] and mixture modeling. We choose to work with an additive noise
model, due to its simplicity and its proven value in a number of problem areas such as data filtering, quanti-
zation and compression.

We assume that the original datax1, . . . ,xn are independently and identically distributed (i.i.d.) accord-
ing to a probability distributionG, and we treat data perturbation as adding a noise componentǫi to xi:

x̃i = xi + ǫi, (5)

for eachi = 1, . . . , n, and we denote the distribution ofx̃ by G̃. To make the analysis tractable, we further
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Stage 1 Stage 2 Stage 3 Running time Accuracy
Connect-4 (1000, 2000) (100, 1000) (1, 1000) 40 65.68

USCI (2000, 1000) (100, 200) (1, 1000) 248 63.47
Pokerhand (400, 1000) (100, 200) (1, 1000) 280 35.55

Table 9: Evaluation ofk-means with long running time. Results are obtained with theBradley and Fayyad
(BF) implementation of 3 stages ofk-means, and are averaged over 100 runs. We fixedα = 0.01, and used
the pairs of number in the parenthesis for(nrst, nit) in each stage.

assume that: (1)ǫi is independent ofxi, which is a good approximation for many real applications [13]; (2)
theǫi are i.i.d. according to a symmetric distribution with mean zero and bounded support; (3) the variance
of ǫi is small relative to that of the original data, a natural assumption in our setting in which we control the
nature of the data transformation.

We aim to investigate the impact on the clustering performance of the perturbation. Specifically, we wish
to assess the difference between the clustering obtained onthe originalx1, . . . ,xn and that obtained on the
perturbed datãx1, . . . , x̃n. We quantify this difference by themis-clustering rate, which is defined as

ρ =
1

n

n
∑

i=1

I{Ii 6= Ĩi}, (6)

whereI is the indicator function,I = (I1, . . . , In) being a vector indicating the cluster membership for
x1, . . . ,xn, andĨ = (Ĩ1, . . . , Ĩn) for x̃1, . . . , x̃n.

Our approach to quantifying (i.e., upper bounding) the mis-clustering rateρ consists of two components:
(1) a bound that relatesρ to the perturbation of the eigenvector used in spectral clustering (see Section 6.1);
(2) a perturbation bound on the matrix norm of the Laplacian in terms of the amount of data perturbation (see
Section 6.2).

6.1 Mis-clustering rate via the2
nd eigenvector

Let Ã and L̃ denote the affinity matrix and the Laplacian matrix, respectively, on the perturbed data. We
wish to bound the mis-clustering rateρ in terms of the magnitude of the perturbationǫ = x̃ − x. In our
early work we derived such a bound for two-class clustering problems [19]. The bound is expressed in terms
of the perturbation of the second eigenvector of the Laplacian matrix. We begin by summarizing this result.
Lettingv2 andṽ2 denote the unit-length second eigenvectors ofL andL̃, respectively, we can bound the mis-
clustering rate of a spectral bipartitioning algorithm (a spectral clustering algorithm that forms two classes)
as follows.

Theorem 1([19]). Under the assumptions discussed in [19], the mis-clustering rateρ of a spectral biparti-
tioning algorithm on the perturbed data satisfies

ρ ≤ ‖ṽ2 − v2‖2. (7)

There are two limitations to this result that need to be overcome to be able to use the result in our design
of a fast spectral clustering algorithm. First, the bound needs to be extended to the multiway clustering
problem. We achieve that by considering recursive bipartitionings. Second, we need to estimate the amount of
perturbation to the second eigenvector of the Laplacian matrix. In [19] this was done by assuming availability
of the perturbed data, an assumption which is reasonable forapplications that involve resource constraints in
a distributed computing environment, but which is not appropriate here. We instead approach this problem
via a model-based statistical analysis, to be discussed in Section 6.2. That analysis allows us to bound the
perturbation of the Laplacian matrix expressed in terms of aFrobenius norm. To connect that analysis to
Theorem 1, we make use of the following standard lemma.
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Lemma 2 ([35]). Let g denote the eigengap between the second and the third eigenvalues ofL. Then the
following holds:

‖ṽ2 − v2‖ ≤ 1

g
‖L̃ − L|| + O

(

‖L̃ − L||2
)

.

With these links in the chain of the argument in place, we turnto a discussion of these two remaining
problems, that of dealing with multiway clusterings and that of bounding the norm of the perturbation of the
Laplacian matrix.

Our approach to obtaining theoretical bounds for multiway spectral clustering is a relatively simple one
that is based on recursive bipartitioning. Although it may be possible to obtain a direct perturbation bound of
the form of Theorem 1 for the multiway case, the problem is challenging, and in our current work we have
opted for a simple approach.

Theorem 3. Assume that: 1) the assumptions of Theorem 1 hold throughoutthe recursive invocation of
the Ncut algorithm, 2) the smallest eigengapg0 along the recursion is bounded away from zero, and 3) the
Frobenius norm of the perturbation on Laplacian matrices along the recursion is bounded byc||L̃−L||2F for
some constantc ≥ 1. Then the mis-clustering rate for anm-way spectral clustering solution can be bounded
by (ignoring the higher order term on the right hand side):

ρ ≤ m

g2
0

· c||L̃ − L||2F .

This theorem provides an upper bound onρ via the perturbation of the Laplacian matrix.

Proof. Let the sequence of Frobenius norms of the perturbation on the Laplacian matrices and the eigengaps
along the recursion of Ncut be denoted byLi andgi, respectively, fori = 1, . . . , m − 1. By definition,
g0 = min{gi : i = 1, . . . , m − 1}. Let n1, . . . , nm denote the size of clusters returned from the Ncut
algorithm, andr1, . . . , rm−1 denote the number of mis-clustered instances within each cluster (at the last
step of Ncut, assume that all errors go to the(m − 1)th cluster). Then, by repeatedly applying Theorem 1
and Lemma 2, we get (ignoring the high-order terms on the right-hand side of Lemma 2):

r1 ≤ n · L2
1

g2
1

, and ri ≤ (n − ni−1) ·
L2

i

g2
i

, i = 2, . . . , m − 1.

Thus the final error rateρ can be bounded by

ρ =
1

n

m−1
∑

i=1

ri ≤
1

n

(

n · L2
1

g2
1

+

m−1
∑

i=2

(n − ni−1) ·
L2

i

g2
i

)

≤ 1

n

(

n · ||L̃ − L||2F
g2
0

+

m−1
∑

i=2

(n − ni−1) ·
c||L̃ − L||2F

g2
0

)

≤ m · c||L̃ − L||2F
g2
0

.

6.2 Perturbation on Laplacian matrix

In this section, we develop a bound for the Frobenius norm of the perturbation on the Laplacian matrix. Let
Ã = A + Λ andD̃ = D + ∆. Based on a Taylor expansion, we have the following approximation for
‖L̃ − L‖F .

Lemma 4. If ǫ is small compared (element-wise) toA in the sense that||∆D−1||2 = o(1), then

L̃ − L = −D− 1

2 ΛD− 1

2 −
(

1

2
+ o(1)

)

[

D− 1

2 AD− 3

2 ∆ − ∆D− 3

2 AD− 1

2

]

.
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Moreover, using standard properties of the matrix Frobenius norm [35], this yields the following inequality
for the norms:

||L̃ − L||F ≤ ||D− 1

2 ΛD− 1

2 ||F + (1 + o(1))||∆D− 3

2 AD− 1

2 ||F . (8)

In the remainder of this section we use this inequality to work out perturbation bounds using Taylor series
expansions for||D− 1

2 ΛD− 1

2 ||F and||∆D− 3

2 AD− 1

2 ||F .
At this stage of our argument we need to introduce a statistical model for the original data. Specifically,

we need to introduce a model for data that fall into two clusters. To obtain a tractable analysis, we model
distributionG as a two-component mixture model:

G = (1 − π) · G1 + π · G2, (9)

whereπ ∈ {0, 1} with P(π = 1) = η. The effect of data perturbation is to transform this model into a new
mixture model specified bỹG = (1 − π) · G̃1 + π · G̃2, whereG̃1 andG̃2 are obtained through Eq. (5).

The perturbation to the affinity betweenxi andxj is given by

δij = exp

(

−‖xi + ǫi − xj − ǫj‖2

2σ2

)

− exp

(

−‖xi − xj‖2

2σ2

)

.

We can simplifyδij by a Taylor expansion of the functionf(x) = exp
(

− ‖a+x‖2

2σ2

)

aroundx = 0:

δij =
(xi − xj)

T (ǫi − ǫj)

σ2
· exp

(

−‖xi − xj‖2

2σ2

)

+ Rij . (10)

For the univariate case, the remainder term satisfies|Rij | ≤ Rmax.(ǫi − ǫj)
2 for some universal constant

Rmax, since|f ′′| is uniformly bounded. A similar result holds for multivariate case. Based on this result, we
are then able to prove the following Lemma (see the Appendix for details):

Lemma 5. Assuming that: 1)x1, ...,xn ∈ R
d are generated i.i.d. from(9) such thatinf1≤i≤n di/n > c0

holds in probability for some constantc0 > 0, 2) the distribution of the components ofǫ is symmetric about
zero with bounded support, and 3)||∆D−1||2 = o(1), then

||D− 1

2 ΛD− 1

2 ||2F ≤p c1σ
(2)
ǫ + c2σ

(4)
ǫ , (11)

||∆D− 3

2 AD− 1

2 ||2F ≤p c3σ
(2)
ǫ + c4σ

(4)
ǫ . (12)

for some universal constantsc1, c2, c3, c4 as n → ∞, whereσ
(2)
ǫ and σ

(4)
ǫ denote the second and fourth

moments of‖ǫ‖, respectively, and “≤p” indicates that inequality holds in probability.

Combining Eqs. (8), (11) and (12), we have the following theorem for the perturbation bound on the
Laplacian matrix.

Theorem 6. Assuming that: 1)x1, ...,xn ∈ R
d are generated i.i.d. from(9) such thatinf1≤i≤n di/n > c0

holds in probability for some constantc0 > 0, 2) the distribution of components inǫ is symmetric about0
with bounded support, and 3)||∆D−1||2 = o(1), then

||L̃ − L||2F ≤p c1σ
(2)
ǫ + c2σ

(4)
ǫ

for some universal constantsc1 andc2 asn → ∞, whereσ(2)
ǫ andσ

(4)
ǫ denote the second and fourth moments

of ‖ǫ‖, respectively, and “≤p” indicates that inequality holds in probability.

The result of Theorem 6 holds when there are more than two clusters. By combining Theorems 3 and 6,
we have obtained a perturbation bound for the mis-clustering rate under suitable conditions.
Remarks. i) The fourth moment is often negligible compared to the second moment. In such cases the main
source of perturbation in the matrix norm comes from the second moment ofǫ. ii) We assumeǫ1, ..., ǫn i.i.d.
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Figure 2: Scatter plot ofdi/n for 2000 observations generated i.i.d. from the Gaussian mixture
1
2N(−(0.3, ..., 0.3)T , Σ10×10) + 1

2N((0.3, ..., 0.3)T , Σ10×10). The matrixΣ10×10 has all diagonals1 and
other entries generated i.i.d. uniform from[0, 0.5] subject to symmetry.

for simplicity; Theorem 6 remains true when theǫi are resulted from KASP and RASP by a similar proof. iii)
The assumption thatdi/n’s are bounded away from zero is a technical assumption that substantially simplifies
our proof. We believe that the theorem holds more generally.Figure 2 is the scatter plot ofdi/n’s for data
generated from a Gaussian mixture, which suggests that it isreasonable to assume that thedi/n are bounded
away from zero.

7 Analysis of KASP and RASP

In this section we show how the analysis described in the previous section can be applied to KASP and RASP.
In this analysis the noise component models the difference between the original data and their corresponding
representative points. With eitherk-means or RP tree preprocessing, the variance of perturbation on original
data can be made small according to Theorem 9 and Theorem 11, which satisfies the requirement of the
model.

In the rest of this section, we first present a set ofembedding lemmas, which establish the connection
between the cluster membership of the representative points and those of the original data. We then present a
performance analysis for KASP and RASP.

7.1 The embedding lemmas

LetS denote the set of representative data points (with repetitions) that correspond to each original data point:

S = {y1, . . . ,y1,y2, . . . ,y2, . . . ,yk, . . . ,yk}, (13)

with repetition counts (i.e., the number of points sharing the same representative point) denoted byr1, r2, . . . , rk

such that
∑k

i=1 ri = n. Let S1 = {y1,y2, . . . ,yk} denote the set of unique representative points. We show
that the second eigenvector of the Laplacian matrix corresponding to the data setS can be computed from
that ofS1. Since the Laplacian matrix of setS1 can be made much smaller than that of setS, a significant
reduction in computational cost can be achieved.
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Lemma 7. Let v2 denote the second eigenvector of the Laplacian matrix corresponding to the data setS.
Thenv2 can be written in the following form:

v2 = [v1, . . . , v1, v2, . . . , v2, . . . , vk, . . . , vk]T , (14)

where the number of repetitions of eachvi is exactlyri.

Proof. It is sufficient to considerL0
A in the Laplacian matrixLA (defined in Eq. (2)) for the data setS with

the first two data points being the same, i.e.,S = {y1,y1,y2, . . . ,yk}. It is easy to see that the affinity
matrix of the data setS is given byA = [a1,a1,a2, . . . ,ak], which yieldsL0

A = [b1,b1,b2, . . . ,bk], where
the first two rows and two columns are the same in both matrices. Lettingv2 = [v1, v2, . . . , vk+1]

T , then we
have

{

b11v1 + b11v2 + b12v3 + · · · + b1kvk+1 = (1 − λ2)v1

b11v1 + b11v2 + b12v3 + · · · + b1kvk+1 = (1 − λ2)v2
,

which impliesv1 = v2.

Lemma 8. Let thek × k matrixB have the form

B = [r1 · a1, r2 · a2, . . . , rk · ak],

where matrix[a1,a2, . . . ,ak] is the affinity matrix computed fromS1, the set of unique representative points.
LetλB anduB = [u1, u2, . . . , uk]T be the second eigenvalue and eigenvector of the Laplacian matrix of B,
respectively. Then the following equality holds (up to scaling):

v1 = u1, v2 = u2, . . . , vk = uk, (15)

where thevi are the components ofv2 in Eq.(14).

Proof. It is sufficient to considerL0
B in the Laplacian matrixLB. Clearly,L0

B has the formL0
B = [r1b1, r2b2, . . . , rkbk].

Thus, for eachi = 1, . . . , k, it is true that

r1bi1u1 + r2bi2u2 + · · · + rkbikuk = (1 − λB)ui. (16)

By Lemma 7 the second eigenvector ofLA satisfies

bi1v1 + · · · + bi1v1 + bi2v2 + · · · + bi2v2 + · · · + bikvk + · · · + bikvk = (1 − λ2)xi,

for eachi = 1, . . . , k, which after re-arrangement becomes

r1bi1v1 + r2bi2v2 + · · · + rkbikvk = (1 − λ2)vi. (17)

Since both (16) and (17) solve the same system of linear equations and both correspond to the second
eigenvalue, we must havevi = ui (up to scaling) fori = 1, . . . , k.

Remark. Empirically we find thatr1, . . . , rk are not very different in data sets preprocessed by KASP and
RASP, so in practice we do not perform the scaling; i.e., we set all r1, . . . , rk in the matrixB equal to1.

Based on Lemma 7 and Lemma 8, the second eigenvector of then×n Laplacian matrixLA corresponding
to the large data setS = [y1, , . . . ,y1,y2, . . . ,y2, . . . ,yk, . . . ,yk] can be exactly computed from a reduced
k × k Laplacian matrixLB, after proper scaling. In the case thatk ≪ n (which usually occurs in practice),
a substantial computational speedup can be achieved (as demonstrated in Section 5). The remaining issue is
how to approximate the original data set{x1,x2, . . . ,xn} (with small distortion) using the reduced represen-
tative data set{y1,y2, . . . ,yk}. With this achieved, Theorem 6 then ensures that the resulting mis-clustering
rate will be small, and will tend to zero in probability. In the remainder of this section, we show that the dis-
tortion can be made small if the representative points are computed byk-means or by the RP tree quantization
method.
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7.2 Numerical example of the embedding lemmas

As an illustration of the idea of embedding lemmas, we provide here a simple example with three unique
data points,x1 = [−1, 0]T , x2 = [2, 0]T , x3 = [0, 3]T ∈ R

2. Let S = {x1,x1,x2,x2,x3,x3,x3} and
S1 = {x1,x2,x3}. Using a Gaussian kernel with bandwidthσ =

√
3, we obtain the following matrices for

data setS:

A =





















1.00 1.00
1.00 1.00

0.22 0.22
0.22 0.22

0.19 0.19 0.19
0.19 0.19 0.19

0.22 0.22
0.22 0.22

1.00 1.00
1.00 1.00

0.11 0.11 0.11
0.11 0.11 0.11

0.19 0.19
0.19 0.19
0.19 0.19

0.11 0.11
0.11 0.11
0.11 0.11

1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00





















L0
A =





















0.33 0.33
0.33 0.33

0.08 0.08
0.08 0.08

0.06 0.06 0.06
0.06 0.06 0.06

0.08 0.08
0.08 0.08

0.36 0.36
0.36 0.36

0.04 0.04 0.04
0.04 0.04 0.04

0.06 0.06
0.06 0.06
0.06 0.06

0.04 0.04
0.04 0.04
0.04 0.04

0.28 0.28 0.28
0.28 0.28 0.28
0.28 0.28 0.28





















and the eigenvector of interest is given by

v2 = [−0.194 − 0.194 − 0.475 − 0.475 0.397 0.397 0.397]. (18)

The affinity matrix for data setS1 is given by

[a1,a2,a3] =





1.00 0.22 0.19
0.22 1.00 0.11
0.19 0.11 1.00



 .

The matrixB (cf. Lemma 8) andL0
B are given by

B =





2 × 1.00 2 × 0.22 3 × 0.19
2 × 0.22 2 × 1.00 3 × 0.11
2 × 0.19 2 × 0.11 3 × 1.00



 ,

L0
B =





2 × 0.33 2 × 0.08 3 × 0.06
2 × 0.08 2 × 0.36 3 × 0.04
2 × 0.06 2 × 0.04 3 × 0.28



 ,

and the eigenvector of interest is given by

uB = [−0.299 − 0.732 0.612].

By scaling by the factor0.649, u2 becomes

uB = [−0.194 − 0.475 0.397]. (19)

ComparingA with B, L0
A with L0

B, and (18) with (19), we verify the claims stated in Lemma 7 andLemma 8
as well as in their proofs.
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7.3 Performance analysis for KASP

Existing work from vector quantization [40, 13] allows us tocharacterize precisely the amount of distortion
when the representative points are computed byk-means clustering if the probability distribution of the
original data is given.

Let a quantizerQ be defined asQ : R
d 7→ {y1, . . . ,yk} for yi ∈ R

d. Forx generated from a random
source inR

d, let the distortion ofQ be defined asD(Q) = E‖x − Q(x)‖s, which is the mean square error
for s = 2. Let R(Q) = log2 k denote the rate of the quantizer. Define the distortion-ratefunctionδ(R) as

δ(R) = inf
Q: R(Q)≤R

D(Q).

Then δ(R) can be characterized in terms of the source density ofG and constantsd, s by the following
theorem.

Theorem 9([40]). Letf be the density function forG (defined in Eq.(9)) in R
d. Then, for large ratesR, the

distortion-rate function of fixed-rate quantization has the following form:

δd(R) ∼= bs,d · ||f ||d/(d+s) · k−s/d,

where∼= means the ratio of the two quantities tends to 1,bs,d is a constant depending ons andd, and

||f ||d/(d+s) =

(
∫

fd/(d+s)(x)dx

)(d+s)/d

.

Thus, by Theorems 3 and 6, we arrive at the following characterization of the mis-clustering rate of KASP.

Theorem 10. Let the data be generated from a distribution with densityf . Let the assumptions for Theorem 3
and Theorem 6 hold. Then the mis-clustering rateρ can be computed as:

ρ = c · b2,d · ||f ||d/(d+2) · k−2/d + O
(

k−4/d
)

, (20)

wherec is a constant determined by the number of clusters, the variance of the original data, the bandwidth
of the Gaussian kernel and the eigengap of Laplacian matrix (or minimal eigengap of the Laplacian of all
affinity matrices used in Ncut).

7.4 Performance analysis for RASP

We now briefly discuss the case of RASP, where the distortion-minimizing transformation is given by an RP
tree instead of byk-means. By combining our perturbation analysis for spectral clustering with quantization
results from [8], we obtain an analysis for RASP. Define the average diameter of input dataX = {x1, . . . ,xn}
as [8]

∆2
A(X) =

1

|X |2
∑

x,y∈X

||x − y||2.

It is clear that ifu(X) is the center of mass for the data setX , then∆2
A(X) = 2

|X|

∑

x∈X ||x − u(X)||2. A

setX ⊂ R
d is said to have local covariance dimension(d′, ǫ, r) if its restriction to any ball of radiusr has a

covariance matrix whose largestd′ eigenvalues satisfy

σ2
1 + · · · + σ2

d′ ≥ (1 − ǫ) · (σ2
1 + · · · + σ2

d).

The quantization error of the RP tree is characterized in terms of the local covariance dimension as follows.
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Theorem 11 ([8]). Suppose an RP tree is built using data setX ⊂ R
d, then there exist constants0 <

c1, c2 < 1 with the following property. Consider any cellC of radiusr such thatX ∩C has local covariance
dimension(d′, ǫ, r) with ǫ < c1. Pick a pointx ∈ X ∩ C at random, and letC′ be the cell that containsx at
the next level down. Then

E[∆2
A(X ∩ C′)] ≤

(

1 − c2

d′

)

∆2
A(X ∩ C),

where the expectation is taken over the randomization in splitting C and the choice ofx ∈ X ∩ C.

Theorem 11 shows that the vector quantization error of RP tree behaves ase−O(h/d′) with h the depth of the
tree andd′ the intrinsic dimension of the data. Thus the quantization error can be made small as the tree depth
grows, and a result similar to Theorem 10 holds for RASP.

8 Conclusion

We have proposed a general framework and presented two fast algorithms for approximate spectral clustering.
Our algorithms leveragek-means and RP tree methods to pre-group neighboring points and produce a set of
reduced representative points for spectral clustering. These algorithms significantly reduce the expense of the
matrix computation in spectral clustering, while retaining good control on the clustering accuracy. Evaluation
on a set of real data sets shows that a significant speedup for spectral clustering can be achieved with little
degradation in clustering accuracy. Remarkably, our approximate algorithms enable a single machine to
perform spectral clustering for a large dataset – the Poker Hand dataset – which consists of one million
instances.

We also presented a theoretical analysis of our approximatespectral clustering algorithms using statisti-
cal perturbation theory. Our perturbation bound reveals that the mis-clustering rate is closely related to the
amount of data perturbation – one can make the mis-clustering rate small by reducing the amount of pertur-
bation. We show that the mis-clustering rate converges to zero as the number of representative points grows.
These results provide a theoretical foundation for our algorithms and also have potentially wider applicability.
In particular, a natural direction to pursue in future work is the use of other local data reduction methods (e.g.,
data squashing and condensation methods) for preprocessing; we believe that our bounds can be extended to
these methods. We also plan to explore other methods for assigning clustering membership to the original
data according to the membership of the representative databased on local optimization and edge-swapping
methods.
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9 Appendix

In this Appendix we provide more detailed analysis and proofs that are omitted in the main body of the paper.

9.1 Proof of Lemma 4

We have

L(Ã) − L(A) = D− 1

2 AD− 1

2 − (I + ∆D−1)−
1

2 D− 1

2 (A + Λ)D− 1

2 (I + ∆D−1)−
1

2 .

Since||∆D−1||2 = o(1), a Taylor expansion tof(X) = (I + X)−
1

2 aroundX = 0n×n yields

(I + ∆D−1)−
1

2 = I − 1

2
∆D−1 + O((∆D−1)2).
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It follows that

L(Ã) − L(A) = −D− 1

2 ΛD− 1

2 − 1

2
D− 1

2 (A + Λ)D− 3

2 ∆ − 1

2
∆D− 3

2 (A + Λ)D− 1

2

+D− 1

2 (A + Λ)D− 1

2 O((∆D−1)2)

= −D− 1

2 ΛD− 1

2 −
(

1

2
+ o(1)

)

[

D− 1

2 AD− 3

2 ∆ − ∆D− 3

2 AD− 1

2

]

.

9.2 Proof of Lemma 5

Theorem 6 is implied by Lemma 5, the proof of which we present here. The proof involves an application of
the theory of U-statistics. We provide a detailed proof for the univariate case while only stating the results
for the multivariate case. Before we proceed, we present thedefinition and a classical result on U-statistics.

Definition [32]. Let x1, ...,xn be i.i.d. drawn from some probability distributionP. A U-statistic is
defined as

Un = U(x1, ...,xn) =
1
(

n
m

)

∑

(i1,...,im)∈Πm

h(xi1 , ...,xim
),

whereh is a symmetric kernel andΠm is the set of allm-subsets of{1, ..., n}. Let θ , EPh(x1, ...,xm).
The following due to Hoeffding [18] is used in our proof.

Lemma 12([18]). Leth(x1, ...,xm) be a symmetric kernel. IfEP|h| < ∞, then

Un →a.s. θ.

Univariate case. For univariate variablesx1, ..., xn generated i.i.d. from (9), letdi/n > c0 > 0 for some
universal constantc0 for i = 1, ..., n. Then we have

||D− 1

2 ΛD− 1

2 ||2F =

n
∑

i=1

n
∑

j=1

ǫ2ij
didj

≤p
1

c2
0n

2

n
∑

i=1

n
∑

j=1

δ2
ij

=
1

c2
0n

2

n
∑

i=1

n
∑

j=1

c

[

(xi − xj)
2

σ4
exp

(

− (xi − xj)
2

σ2

)

(ǫi − ǫj)
2 + R2

ij

]

≤ 1

c2
0n

2

n
∑

i=1

n
∑

j=1

(ǫi − ǫj)
2 +

1

c2
0n

2

n
∑

i=1

n
∑

j=1

R2
max(ǫi − ǫj)

4

= I51 + I52.

For U-statistics with symmetric kernelh = (ǫ1−ǫ2)
2 andh = (ǫ1−ǫ2)

4, we can easily show thatEP|h| < ∞
if the ǫi have bounded fourth moments. Note that our quantity differsfrom the U-statistic by a scaling constant
that tends to1 (it is known as aV-statistic). By Lemma 12, we have

I51 →a.s. c1σ
(2)
ǫ , I52 →a.s. c2σ

(4)
ǫ ,

whereσ
(2)
ǫ andσ

(4)
ǫ denote the second and fourth moments ofǫ, respectively. Thus we have shown that

||D− 1

2 ΛD− 1

2 ||2F ≤p c1σ
(2)
ǫ + c2σ

(4)
ǫ ,

for some universal constantc1 andc2 asn → ∞.
We have

||∆D− 3

2 AD− 1

2 ||2F =

n
∑

i=1

n
∑

j=1

a2
ij

d3
i dj

ǫ2i. ≤p
1

c4
0n

4

n
∑

i=1

n
∑

j=1

ǫ2i. =
1

c4
0n

3

n
∑

i=1

ǫ2i.,
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whereǫi. is defined as and bounded by

ǫ2i. =

[

n
∑

k=1

(

(xi − xk)

σ2
exp

(

− (xi − xk)2

2σ2

)

(ǫi − ǫk) + Rik

)

]2

≤ n

n
∑

k=1

[

c(ǫi − ǫk)2 + R2
max(ǫi − ǫk)4

]

.

Thus, using the same set of U-statistics, we get

||∆D− 3

2 AD− 1

2 ||2F ≤p
1

c4
0n

2

n
∑

i=1

n
∑

k=1

[

c(ǫi − ǫk)2 + R2
max(ǫi − ǫk)4

]

≤a.s. c3σ
(2)
ǫ + c4σ

(4)
ǫ .

Multivariate case. For multivariate variables, we assume that the second and fourth moments of the noise on
thekth components are given byσ(2)

kǫ andσ
(4)
kǫ , respectively. Then similar to the univariate case, we havethe

following result for the multivariate case for Lemma 5. If the assumptions of Lemma 5 hold, then asn → ∞,

||D− 1

2 ΛD− 1

2 ||2F ≤p

d
∑

k=1

(

ckσ
(2)
kǫ + c′kσ

(4)
kǫ

)

+
d
∑

i6=j=1

cij

(

σ
(2)
iǫ σ

(2)
jǫ

)
1

2

= c1σ
(2)
ǫ + c2σ

(4)
ǫ ,

||∆D− 3

2 AD− 1

2 ||2F ≤p

d
∑

k=1

(

ckσ(2)
ǫ + c′kσ

(4)
kǫ

)

+

d
∑

i6=j=1

cij

(

σ
(4)
iǫ σ

(4)
jǫ

)
1

2

= c3σ
(2)
ǫ + c4σ

(4)
ǫ ,

whereσ
(2)
ǫ andσ

(4)
ǫ denote the second and fourth moments of‖ǫ‖, respectively.
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