
 Open access Journal Article DOI:10.1109/TSP.2005.850378

Fast approximated power iteration subspace tracking — Source link

Roland Badeau, Bertrand David, Gael Richard

Institutions: Télécom ParisTech

Published on: 01 Aug 2005 - IEEE Transactions on Signal Processing (IEEE)

Topics: Power iteration, Krylov subspace, Generalized minimal residual method, Subspace topology and
Iterative method

Related papers:

 Projection approximation subspace tracking

 Fast orthonormal PAST algorithm

 Fast and Stable Subspace Tracking

 Fast subspace tracking and neural network learning by a novel information criterion

 A New Look at the Power Method for Fast Subspace Tracking

Share this paper:

View more about this paper here: https://typeset.io/papers/fast-approximated-power-iteration-subspace-tracking-
3akhd6qo5e

https://typeset.io/
https://www.doi.org/10.1109/TSP.2005.850378
https://typeset.io/papers/fast-approximated-power-iteration-subspace-tracking-3akhd6qo5e
https://typeset.io/authors/roland-badeau-2ovjb0kwg3
https://typeset.io/authors/bertrand-david-406bs125p1
https://typeset.io/authors/gael-richard-2b341yt73l
https://typeset.io/institutions/telecom-paristech-1m3vvikr
https://typeset.io/journals/ieee-transactions-on-signal-processing-ei2rx4on
https://typeset.io/topics/power-iteration-3uee6uyd
https://typeset.io/topics/krylov-subspace-14hb7f05
https://typeset.io/topics/generalized-minimal-residual-method-n5lrbjc9
https://typeset.io/topics/subspace-topology-f4wzzyg4
https://typeset.io/topics/iterative-method-u2i3yazt
https://typeset.io/papers/projection-approximation-subspace-tracking-o7o9n1m3u6
https://typeset.io/papers/fast-orthonormal-past-algorithm-1ayfsrc5v8
https://typeset.io/papers/fast-and-stable-subspace-tracking-375a7bm3ew
https://typeset.io/papers/fast-subspace-tracking-and-neural-network-learning-by-a-2j768nf2fs
https://typeset.io/papers/a-new-look-at-the-power-method-for-fast-subspace-tracking-lve8dzepik
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/fast-approximated-power-iteration-subspace-tracking-3akhd6qo5e
https://twitter.com/intent/tweet?text=Fast%20approximated%20power%20iteration%20subspace%20tracking&url=https://typeset.io/papers/fast-approximated-power-iteration-subspace-tracking-3akhd6qo5e
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/fast-approximated-power-iteration-subspace-tracking-3akhd6qo5e
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/fast-approximated-power-iteration-subspace-tracking-3akhd6qo5e
https://typeset.io/papers/fast-approximated-power-iteration-subspace-tracking-3akhd6qo5e

HAL Id: hal-00479772
https://hal-imt.archives-ouvertes.fr/hal-00479772

Submitted on 2 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Approximated Power Iteration Subspace Tracking
Roland Badeau, Bertrand David, Gael Richard

To cite this version:
Roland Badeau, Bertrand David, Gael Richard. Fast Approximated Power Iteration Subspace Track-
ing. IEEE Transactions on Signal Processing, Institute of Electrical and Electronics Engineers, 2005,
53 (8), pp.2931-2941. ฀10.1109/TSP.2005.850378฀. ฀hal-00479772฀

https://hal-imt.archives-ouvertes.fr/hal-00479772
https://hal.archives-ouvertes.fr

1

Fast Approximated Power Iteration

Subspace Tracking
Roland Badeau, Member, IEEE, Bertrand David, and Gaël Richard, Member, IEEE

Abstract— This paper introduces a fast implementation of the
power iteration method for subspace tracking, based on an
approximation less restrictive than the well known projection
approximation. This algorithm, referred to as the fast API
method, guarantees the orthonormality of the subspace weighting
matrix at each iteration. Moreover, it outperforms many subspace
trackers related to the power iteration method, such as PAST,
NIC, NP3 and OPAST, while having the same computational
complexity. The API method is designed for both exponential
windows and sliding windows. Our numerical simulations show
that sliding windows offer a faster tracking response to abrupt
signal variations.

Index Terms— Subspace tracking, projection approximation,
power iteration.

I. INTRODUCTION

T
HE interest in subspace-based methods stems from the

fact that they consist in splitting the observations into a

set of desired and a set of disturbing components, which can be

viewed in terms of signal and noise subspaces. These methods

have applications in numerous domains including the fields

of adaptive filtering, source localization, or parameter estima-

tion [1]. The estimation of the signal subspace is commonly

based on the traditional eigenvalue decomposition (EVD)

or singular value decomposition (SVD). However, the main

drawback of these decompositions is their inherent complexity.

Therefore, there is a real need for fast subspace tracking

techniques in the context of adaptive signal processing.

Due to this interest, a large number of approaches have

already been introduced. A reference method is I. Karasalo’s

algorithm [2], which involves the full SVD of a small matrix.

A fast tracking method based on Givens rotations (the FST

algorithm) is proposed in [3]. Other approaches consist in in-

terlacing a recursive update of the estimated correlation matrix

or the data matrix with one or a few steps of a standard SVD or

power iteration algorithm. This is the case of the Jacobi SVD

method [4], the transposed QR-iteration [5], the orthogonal

/ bi-orthogonal iteration [6], [7], and the power method [8].

Other matrix decompositions have also successfully been used

in subspace tracking (for example the rank-revealing QR

factorization [9], the rank-revealing URV decomposition [10],

and the Lankzos (bi)-diagonalization [11]). Other techniques

rely on the noise and signal subspace averaging method [12],

the maximum likelihood principle [13], the operator restriction

analysis [14], or the perturbation theory [15].

Roland Badeau, Bertrand David and Gaël Richard are with the Department
of Signal and Image Processing, Ecole Nationale Supérieure des Télécom-
munications (ENST), Paris, France. E-mail: [roland.badeau, bertrand.david,
gael.richard]@enst.fr.

The estimation of the signal subspace can also be viewed

as a constrained or unconstrained optimization problem [16]–

[21], for which the introduction of a projection approximation

hypothesis lead to fast subspace tracking methods (see e.g.

the PAST [22] and NIC [23] algorithms). In [8], it is shown

that these subspace trackers are closely linked to the classical

power iteration method [24]. Several implementations of this

method based on QR factorizations are proposed in [6], among

which the Loraf2 and Loraf3 algorithms. However, compared

to PAST and NIC, Loraf2 is more computationally demanding

and the performance of Loraf3 is degraded. Another fast im-

plementation of the power iteration method, the NP3 algorithm

which relies on rank-one matrix updates, is proposed in [8],

but our numerical simulations showed that this algorithm does

not converge in many situations. An orthonormal version of

the PAST algorithm, proposed in [25], can be seen as a fast

implementation of the power method and outperforms PAST,

NIC and NP3. Concurrently, the recent API method [26],

based on the power iteration method and on a new projection

approximation, has the same computational complexity as the

above mentioned algorithms but provides a better estimation

of the dominant subspace.

All these adaptive techniques are designed for exponential

windows. Indeed, this choice tends to smooth the variations

of the signal parameters, and thus allows a low-complexity

update at each time step. However, it is only suitable for

slowly changing signals. Conversely, a few subspace trackers

are based on sliding windows, which generally require more

computations, but offer a faster tracking response to sudden

signal changes [22], [27]–[30]. In particular, a sliding window

version of the API algorithm is proposed in [31].

This paper presents several fast implementations of the API

method. These algorithms present several advantages:

• they can be applied either on an infinite exponential

window or on a truncated window (e.g. a sliding window

which may have an exponential decrease),

• an orthonormal subspace basis is computed at each

time step, which is required for some subspace-based

estimation methods, such as MUSIC [32],

• they rely on a new projection approximation, less re-

strictive than the classical one, which leads to better

tracking results. In particular, it is shown that the PAST

and OPAST subspace trackers can be viewed as approx-

imations of the fast API method.

The paper is organized as follows. In section II, we in-

troduce the various window shapes applied to the data. In

section III, the classical power iteration method is reviewed,

then the projection approximation is discussed in section IV.

2

Our approximated power iteration (API) method is introduced

in section V, and a fast implementation of this algorithm is

proposed in section VI. In section VII, it is shown that both

PAST and OPAST can be seen as approximations of the fast

API algorithm. In section VIII, the performance of this method

is compared to that of several subspace trackers, among which

PAST and OPAST. Finally, the main conclusions of this paper

are summarized in section IX.

II. DATA WINDOWING

Let {x(t)}t∈Z be a sequence of n-dimensional data vec-

tors. We are interested in computing the dominant subspace

spanned by its correlation matrix. This matrix can be estimated

according to the nature of the data window.

A. Exponential window

The estimated n × n correlation matrix is defined as

Cxx(t) =

t∑

u=−∞
βt−u x(u)x(u)H

where 0 < β < 1 is the forgetting factor. It can be recursively

updated according to the following scheme:

Cxx(t) = β Cxx(t − 1) + x(t)x(t)H . (1)

B. Truncated window

The n × n correlation matrix Cxx(t) is estimated on a

window of length l ∈ N
∗:

Cxx(t) =

t∑

u=t−l+1

βt−u x(u)x(u)H . (2)

where 0 < β ≤ 1. The case β = 1 corresponds to a rectangular

(or sliding) window. This matrix can be recursively updated

according to the following scheme:

Cxx(t) = β Cxx(t− 1) + x(t)x(t)H − βlx(t− l)x(t− l)H .
(3)

C. Unified formalization

Both equations (1) and (3) can be written in the form

Cxx(t) = β Cxx(t − 1) + x(t)J x(t)H (4)

where x(t) and J are defined according to the window shape:

• in the exponential window case:

J = 1 (5)

x(t) = x(t) (6)

• in the truncated window case:

J =

[
1 0
0 −βl

]
(7)

x(t) =
[

x(t) x(t − l)
]
. (8)

Let p be the rank of the update involved in equation (4).

Since p = 1 in the exponential window case and p = 2 in the

truncated window case, p characterizes the window shape. In

particular, x(t) is a n × p matrix and J is a p × p matrix.

III. THE CLASSICAL POWER ITERATION METHOD

The power iteration method [8] tracks the dominant sub-

space1 of dimension r ≤ n spanned by the n × n matrix

Cxx(t). At each time step, a basis of this subspace is

computed, represented by an orthonormal matrix W (t) of

dimension n× r. The computation of W (t) consists of a data

compression step (9) and an orthonormalization step (10) of

the compressed matrix at each iteration:

Cxy(t) = Cxx(t)W (t − 1) (9)

W (t)R(t) = Cxy(t). (10)

where Cxy(t) can be considered as a n × r correlation

matrix between the n-dimensional data vectors x(t) and the

r-dimensional compressed data vectors

y(t) = W (t − 1)Hx(t). (11)

The orthonormalization step (10) involves a r × r matrix

R(t), such that R(t)H R(t) = Φ(t), where Φ(t) is the

r × r positive definite matrix Cxy(t)HCxy(t). Consequently,

R(t)H is a square root of Φ(t). In particular, R(t)H is equal

to the positive definite square root of Φ(t), right multiplied

by a unitary matrix2. For example, R(t) can be triangular [6],

or positive definite [8].

If Cxx(t) remains constant and if its first r eigenvalues are

strictly larger than the (n − r)th others, the power iteration

method converges globally and exponentially to the principal

subspace [8] [24, pp. 410-411]. Note that the multiplication in

step (9) involves n2r operations, and the orthonormalization

step (10) requires O(nr2) operations3. Because of its high

computational cost, this algorithm is not suitable for real-time

processing.

IV. THE PROJECTION APPROXIMATION

We are now looking for an approximation that will allow

us to reduce the complexity. Suppose that W (t − 1) exactly

spans the r-dimensional dominant subspace of Cxx(t). Then

equation (9) yields

Cxy(t) = W (t − 1)Cyy(t) (12)

where the matrix Cyy(t) , W (t − 1)HCxx(t)W (t − 1)
can be seen as the correlation matrix of the compressed data

1The r-dimensional dominant subspace of the positive semidefinite matrix
Cxx(t) is the subspace spanned by the r eigenvectors of Cxx(t) associated
to the r eigenvalues of highest magnitude (which are supposed to be strictly
greater than the n − r others).

2If T is a positive definite matrix, a square root of T is any matrix S of the

same dimension such that S SH = T . Such a matrix is denoted S = T
1
2 .

There is only one positive definite square root of T . The other square roots
are obtained by right multiplying this positive definite square root by any

unitary transform. The notation S
1
2 can denote any of them.

3In this paper, operations counts are expressed in terms of multiply
/ accumulate (MAC) operations, herein referred to as flops. Whenever a
specific matrix function is used, such as orthonormalization, inversion or
square rooting, only the order of the operations count is presented, since
the exact operations count depends on the way this function is implemented.
Nevertheless, r is supposed to be much lower than n, so that the dominant cost
of the power iteration method is that of the first step, whose exact operations
count is known (n2r).

3

vectors. In this case, W (t) and W (t−1) are two orthonormal

matrices spanning the range space of Cxy(t), thus

W (t) = W (t − 1)Θ(t) (13)

where Θ(t) , W (t − 1)HW (t) is a r × r orthonormal

matrix. Substituting equation (12) into equation (10) and left

multiplying by W (t)H yields the polar decomposition of

R(t)H :

R(t)H = Cyy(t)Θ(t) (14)

where Cyy(t) is the positive definite factor and Θ(t) is the

orthonormal factor. Now suppose that W (t−1) approximately

spans the dominant subspace of Cxx(t). Then equations (13)

and (14) become approximations:

W (t) ≃ W (t − 1)Θ(t) (15)

R(t)H ≃ Cyy(t)Θ(t) (16)

where the r × r matrix Θ(t) is nearly orthonormal.

Compared to equation (15), the classical projection approx-

imation [22] is equivalent to W (t) ≃ W (t − 1) at each

time step4. The validity of this approximation additionally

requires that Θ(t) is close to the r× r identity matrix (herein

denoted Ir). In this case, equation (16) shows that R(t)H

must be nearly positive definite5. Consequently, the choice of

the square root R(t)H of Φ(t) is restricted (e.g. R(t) can no

longer be upper triangular, as it was in [6]).

The NP3 implementation of the power method [8] is based

on this approximation, but this algorithm relies on a ma-

trix R(t) which deviates from the positive definite structure

constraint. Therefore, the classical projection approximation

does not stand, and this subspace tracker is not guaranteed to

converge.

Concurrently, the algorithms presented in section V do

not have to face this limitation, since they rely on the less

restrictive approximation (15). Also note that (15) is the best

approximation of W (t) in terms of mean square error, since

the solution to the minimization problem

arg min
Θ∈Cr×r

‖W (t) − W (t − 1)Θ‖
2
F

is Θ(t) = W (t− 1)HW (t) (where W (t− 1) is supposed to

be orthonormal).

V. APPROXIMATED POWER ITERATION

The complexity of the power iteration method can be

reduced by introducing approximation (15) at time t − 1 in

step (9). Then the n × r matrix Cxy(t) can be computed

recursively, as shown in section V-A, and factorization (10)

can be updated, as shown in section V-C. This fast update

requires the introduction of a r × r auxiliary matrix Z(t),
introduced in section V-B.

4In fact, the projection approximation in [22] is defined as W(t′)Hx(t) ≈
W(t − 1)Hx(t) , y(t) ∀t′ ≥ t. It was shown in [8, pp. 301] that this
approximation is equivalent to W(t) ≃ W(t − 1) at each time step.

5Conversely, if R(t)H is chosen close to the only positive definite square
root of Φ(t), the approximate polar decomposition (16) shows that Θ(t) ≃

Ir , so that equation (15) yields W(t) ≃ W(t − 1).

A. Recursion for the matrix Cxy(t)

It is shown in this section that the n× r matrix Cxy(t) can

be updated in the same way as the n × n matrix Cxx(t) in

equation (4):

Cxy(t) = β Cxy(t − 1)Θ(t − 1) + x(t)J ŷ(t)H . (17)

In the exponential window case, equation (17) involves a

rank-one update (x(t) and ŷ(t) are vectors and J is a scalar),

whereas in the truncated window case it involves a rank-two

update (x(t) and ŷ(t) are two-column matrices and J is a

2 × 2 matrix).

1) Truncated window: first, equation (2) can be written

Cxx(t) = X(t)D X(t)H (18)

where X(t) , [x(t − l + 1), x(t − l + 2), . . . , x(t)] is the

n × l data matrix and D is the l × l diagonal matrix

diag(βl−1, βl−2, . . . , β, 1) .

Substituting equation (18) into equation (9) yields

Cxy(t) = X(t)D Y (t)H (19)

where Y (t) , W (t − 1)HX(t) is the r × l compressed data

matrix. Now let us show recursions for matrices X(t) and

Y (t). The first one is straightforward:
[

x(t − l) X(t)
]

=
[

X(t − 1) x(t)
]
. (20)

Then left multiplying equation (20) by W (t − 1)H yields
[

v(t − l) Y (t)
]

=
[

W (t − 1)HX(t − 1) y(t)
]

(21)

where y(t), defined in equation (11), and

v(t − l) , W (t − 1)Hx(t − l) (22)

are r-dimensional compressed data vectors. Applying approx-

imation (15) at time t−1 to equation (21) yields the recursion[
v(t − l) Y (t)

]
≃

[
V̂ (t − 1) y(t)

]
, where V̂ (t − 1)

is the r × l compressed data matrix

V̂ (t − 1) , Θ(t − 1)HY (t − 1). (23)

From now on, the exact definition of Y (t) is therefore

replaced by

[
v̂(t − l) Y (t)

]
,

[
V̂ (t − 1) y(t)

]
(24)

where the r-dimensional vector v̂(t − l), defined by the first

column in the left side of equation (24), is an approximation of

the vector v(t − l). Equations (19), (20), (23) and (24) finally

yield

Cxy(t) = β Cxy(t − 1)Θ(t − 1)
+x(t)y(t)H − βl x(t − l) v̂(t − l)H (25)

This recursion can be seen as a particular case of equa-

tion (17), where J and x(t) are defined in equations (7) and (8)

and the r × p (with p = 2) matrix

ŷ(t) ,
[

y(t) v̂(t − l)
]

(26)

is an approximation of

y(t) , W (t − 1)Hx(t) =
[

y(t) v(t − l)
]
. (27)

4

2) Exponential window: substituting equation (1) into

equation (9) yields

Cxy(t) = β Cxx(t − 1)W (t − 1) + x(t)y(t)H . (28)

Applying the projection approximation (15) at time t − 1,

equation (28) can be replaced by the following recursion:

Cxy(t) = β Cxy(t − 1)Θ(t − 1) + x(t)y(t)H . (29)

This recursion can be seen as a particular case of equation (17),

where J and x(t) are defined in equations (5) and (6) and the

r × p (with p = 1) matrix ŷ(t) , y(t) is now equal to the

vector y(t) , W (t − 1)Hx(t) = y(t).

B. Recursion for the matrix Z(t)

Now, we aim at updating factorization (10) by means

of equation (17). This calculation requires the introduction

of an auxiliary matrix, denoted Z(t). Let S(t − 1) ,

(R(t − 1)Θ(t − 1))
H

and suppose that the r × r matrix

S(t − 1) is non-singular. Then let

Z(t − 1) , S(t − 1)−1. (30)

Proposition 5.1: The r × r matrix

S(t) , (R(t)Θ(t))
H

(31)

is non-singular if and only if the p × p matrix βJ−1 +
y(t)Hh(t) is non-singular, where

h(t) , Z(t − 1) ŷ(t). (32)

has dimension r × p. In this case, the r × r matrix

Z(t) , S(t)−1 (33)

satisfies the recursion

Z(t) =
1

β
Θ(t)H

(
Ir − g(t)y(t)H

)
Z(t − 1)Θ(t)−H (34)

where g(t) is the r × p matrix

g(t) , h(t)
(
βJ−1 + y(t)Hh(t)

)−1
. (35)

Proof:

Substituting equation (10) into equation (17) and left mul-

tiplying by W (t − 1)H leads to

Θ(t)R(t) = β S(t − 1)H + y(t)J ŷ(t)H . (36)

Next, the following matrix inversion lemma [33, pp. 18-19]

will be applied to invert the right member of this equality.

The interest of this approach is that the r× r matrix inversion

problem is converted into a smaller p × p matrix inversion

(with p = 1 or 2).

Lemma 5.2: Let A be a r×r non-singular complex matrix.

Consider the r× r matrix B = A + P J Q, where P , J and

Q have dimensions r × m, m × m and m × r, and J is

supposed to be non-singular. Then B is non-singular if and

only if J−1 + Q A−1 P is non-singular, and in this case

B−1 = A−1 − A−1 P
(
J−1 + Q A−1 P

)−1
Q A−1.

Lemma 5.2 applied to equation (36) shows that the r ×
r matrix Θ(t)R(t) is non-singular if and only if the p × p
matrix βJ−1 + y(t)Hh(t) is non-singular (which provides a

fast way of detecting the singularity of R(t) or Θ(t)). In the

non-singular case, lemma 5.2 leads to the equation

(Θ(t)R(t))
−1

=
1

β
Z(t − 1)H

(
Ir − y(t) g(t)H

)
.

Finally, left multiplying the complex conjugate transpose of

this last equation by Θ(t)H and right multiplying it by

Θ(t)−H yields recursion (34).

C. Recursion for the matrix W (t)

Next, proposition 5.3 introduces a fast update for the

subspace weighting matrix.

Proposition 5.3: If the p × p matrix βJ−1 + y(t)Hh(t) is

non-singular, W (t) satisfies the recursion

W (t) =
(
W (t − 1) + e(t) g(t)H

)
Θ(t) (37)

where e(t) is the n × p matrix

e(t) , x(t) − W (t − 1)y(t). (38)

Proof:

Substituting equation (10) into equation (17) and right

multiplying by Θ(t) shows that W (t) satisfies the recursion

W (t)S(t)H =
(
βW (t − 1)S(t − 1)H + x(t)J ŷ(t)H

)
Θ(t)

Substituting equations (36) and (38) into the above equation

yields

W (t)S(t)H = W (t − 1)Θ(t)S(t)H + e(t)J ŷ(t)H
Θ(t).

(39)

However, left multiplying (36) by g(t)H and replacing g(t)
by its definition in equation (35) leads to

g(t)H
Θ(t)R(t) =

(
βJ−1 + y(t)Hh(t)

)−H

((
βS(t − 1)h(t)

)H

+
(
y(t)Hh(t)

)H

J ŷ(t)H

)
.

(40)

Then equations (32) and (30) show that

(βS(t − 1)h(t))
H

= β ŷ(t)H = βJ−1 J ŷ(t)H . (41)

Substituting equation (41) into equation (40) yields

g(t)H
Θ(t)R(t) = J ŷ(t)H . (42)

Finally, substituting equation (42) into equation (39) and

right multiplying by S(t)−H = Z(t)H yields equation (37).

Note that if β J−1 +y(t)Hh(t) is singular, Z(t) and W (t)
can no longer be updated with equations (34) and (37). In

practice, we never encountered this rank deficiency case in

our numerical simulations6.

6A solution consists in computing W(t) and R(t) by means of a SVD
or a QR factorization of Cxy(t). Then Θ(t) = W(t − 1)HW(t) can be
deduced. Note that the whole processing requires O(nr2) operations; this
technique must be used while R(t) or Θ(t) remains singular. When both
R(t) and Θ(t) become non-singular again, then Z(t) can be computed, and
the algorithm can switch back to the fully adaptive processing.

5

TABLE I

EXPONENTIAL WINDOW API ALGORITHM

Initialization :
8

W (0) =

�
Ir

0(n−r)×r

�
, Z(0) = Ir

For each time step do2666666666666666666664
Input vector : x(t)
PAST main section Cost

y(t) = W (t − 1)Hx(t) (11) nr
h(t) = Z(t − 1) y(t) (32) r2

g(t) =
h(t)

β+y(t)H h(t)
(35) 2r

API main section

e(t) = x(t) − W (t − 1) y(t) (38) nr

Θ(t) =
�

Ir + ‖e(t)‖2g(t) g(t)H
�− 1

2 (43) n + O(r3)

Z(t) = 1
β

Θ(t)H
�

Ir − g(t) y(t)H
�

Z(t − 1)Θ(t)−H
(34) O(r3)

W (t) =
�

W (t − 1) + e(t) g(t)H
�

Θ(t) (37) nr2 + nr

Since W (t − 1) is orthonormal, e(t) is orthogonal to

W (t − 1). Moreover, the orthonormality of W (t), associated

to equation (37), yields

Θ(t)Θ(t)H =
(
Ir + g(t)

(
e(t)He(t)

)
g(t)H

)−1
. (43)

Therefore, Θ(t) is an inverse square root of the r×r positive

definite matrix Ir + g(t)
(
e(t)He(t)

)
g(t)H . The choice of

this inverse square root does not affect the subspace tracking

performance7.

The pseudo-code of the exponential window API algorithm

is presented in table I, and that of the truncated window API

algorithm (TW-API) is presented in table II. It can be noted

that the first section of API is exactly the same as that of the

PAST subspace tracker [22]; it requires only nr + r2 + O(r)
operations per time step, while the rest of the algorithm has a

nr2 + o(nr2) computational complexity. In the same way, the

first section of TW-API is similar to that of the sliding window

version of PAST [29]; it requires only 2nr + 2r2 + O(r),
while the rest of the algorithm has a (n + l)r2 + o(nr2)
computational complexity. Note that the implementations of

API and TW-API presented in tables I and II are of limited

interest, since a number of faster subspace trackers have

already been proposed in the literature, which have a O(nr)
complexity (among which [3], [22], [23], [25], [29], [34] are

illustrated in section VIII). A faster implementation of API

and TW-API is proposed in section VI.

7Let Θ
P (t) be the only positive definite inverse square root. Then Θ(t)

can be written in the form

Θ(t) = Θ
P (t) U(t) (44)

where U(t) is a r × r orthonormal matrix. Substituting equation (44) into
equation (37) yields

W(t) =
n�

W(t − 1) + e(t) g(t)H
�
Θ

P (t)
o

U(t).

It can be readily seen in this last equation that U(t) does not affect the
subspace spanned by W(t); it only affects the particular orthonormal basis
W(t) of this subspace. Consequently, the choice of a particular inverse square
root Θ(t) has no impact on the subspace tracking performance.

8The initial values W(0) and Z(0) have to be chosen suitably:

TABLE II

TRUNCATED WINDOW API (TW-API) ALGORITHM

Initialization :

W (0) =

�
Ir

0(n−r)×r

�
, Z(0) = Ir, X(0) = 0n×l, bV (0) = 0r×l

For each time step do2666666666666666666666666666666666664

Input vector : x(t)
Section similar to SW − PAST Cost�

x(t − l) X(t)
�

=
�

X(t − 1) x(t)
�

(20)

y(t) = W (t − 1)Hx(t) (11) nr� bv(t − l) bY (t)
�

=
� bV (t − 1) y(t)

�
(24)

v(t − l) = W (t − 1)Hx(t − l) (22) nr
x(t) =

�
x(t) x(t − l)

�
(8)by(t) =

�
y(t) bv(t − l)

�
(26)

y(t) =
�

y(t) v(t − l)
�

(27)

h(t) = Z(t − 1) by(t) (32) 2r2

g(t) = h(t)
�

β J−1 + y(t)Hh(t)
�−1

(35) 8r

TW − API main section

e(t) = x(t) − W (t − 1) y(t) (38) 2nr

Θ(t) =
�

Ir + g(t)
�

e(t)He(t)
�

g(t)H
�− 1

2 (43) 4n + O(r3)

Z(t) = 1
β

Θ(t)H
�

Ir − g(t) y(t)H
�

Z(t − 1)Θ(t)−H
(34) O(r3)

W (t) =
�

W (t − 1) + e(t) g(t)H
�

Θ(t) (37) nr2 + 2nrbV (t) = Θ(t)H bY (t) (23) lr2

VI. FAST API METHOD

In this section, a fast implementation of the API method is

proposed, based on a particular choice of the matrix Θ(t). It

is supposed that β J−1 + y(t)Hh(t) is non-singular, so that

Θ(t) is also non-singular. Below, the p × p identity matrix is

denoted Ip.

A. A particular solution to equation (43)

Let ε(t) be a square root of the p × p matrix e(t)He(t) :

ε(t) ε(t)H =
(
e(t)He(t)

)
. (45)

Substituting equation (45) into equation (43) and applying the

matrix inversion lemma shows that9

Θ(t)Θ(t)H = Ir − g(t) ε(t) ρ(t)−1ε(t)Hg(t)H (46)

where ρ(t) is the p × p positive definite matrix

ρ(t) = Ip + ε(t)H
(
g(t)Hg(t)

)
ε(t). (47)

Considering equation (46), we are looking for a special

solution of the form

Θ(t) = Ir − g(t) ε(t)σ(t)−1ε(t)Hg(t)H (48)

• W(0) should be a n × r orthonormal matrix,
• Z(0) should be a r × r positive definite matrix.

Both matrices can be calculated from an initial block of data or from arbitrary

initial data. The simplest way, however, is to set W(0) =

�
Ir

0(n−r)×r

�
and Z(0) = Ir . The choice of these initial values affects the transient
behavior but not the steady state performance of the algorithm.

9Lemma 5.2 is applied with A = Ir , P = g(t) ε(t), J = Ip and

Q = ε(t)Hg(t)H . In particular, the non-singularity of Θ(t) is equivalent to

the non-singularity of ρ(t).

6

where σ(t) is a p× p non-singular matrix. The interest of this

approach is that the r × r matrix square rooting problem in

equation (46) is converted into a smaller p × p matrix square

rooting. Indeed, substituting equation (48) into equation (46)

yields a sufficient condition :

σ(t)−1 + σ(t)−H + σ(t)−1
(
Ip − ρ(t)

)
σ(t)−H = ρ(t)−1.

Left multiplying the two members of this last equation by σ(t)
and right multiplying them by σ(t)H yields the equation10

(
σ(t) − ρ(t)

)
ρ(t)−1

(
σ(t) − ρ(t)

)H
= Ip

whose solution is

σ(t) = ρ(t) + ρ(t)
1
2

H

. (49)

Even if other choices would be possible, from now on we

suppose that the square root of ρ(t) which is involved in the

above equation is the only positive definite square root. This

condition guarantees that σ(t) is positive definite, so that Θ(t)
is hermitian11. Then define the p × p positive definite matrix

τ(t) = ε(t)σ(t)−1ε(t)H . (50)

Substituting equation (50) into equation (48) yields

Θ(t) = Ir − g(t) τ(t) g(t)H . (51)

B. Fast implementation of the particular solution

Based on the low-rank matrix update of Θ(t) in equa-

tion (51), it is shown below that the matrices Z(t), W (t)
and V̂ (t) can also be efficiently updated. Consider the p × p
matrix

η(t) = Ip −
(
g(t)Hg(t)

)
τ(t). (52)

Since Θ(t) is non-singular, the matrix inversion lemma shows

that η(t) is also non-singular12. Then substituting equation (51)

into equation (34) yields

Z(t) =
1

β

(
Z(t − 1) − g(t)h′(t)H + ǫ(t) g(t)H

)
(53)

where the r × p matrices h′(t) and ǫ(t) are defined by

y′(t) = y(t) η(t) + g(t) τ(t) (54)

h′(t) = Z(t − 1)Hy′(t) (55)

ǫ(t) =
(
Z(t − 1)g(t) − g(t)

(
h′(t)Hg(t)

))

(
τ(t) η(t)−1

)H
(56)

Then substituting equation (51) into equation (37) yields

W (t) = W (t − 1) + e′(t) g(t)H (57)

where e′(t) is the n × p matrix

e′(t) = e(t) η(t) − W (t − 1) g(t) τ(t). (58)

10Remember that ρ(t) is an hermitian matrix.
11More precisely, Θ(t) is positive definite. Indeed, equation (49) shows

that σ(t) and ρ(t) are simultaneously diagonalizable, and the eigenvalues of

σ(t) are strictly greater than those of ρ(t). Therefore, ρ(t)−1 − σ(t)−1 is
a positive definite matrix. Then subtracting equation (46) from equation (48)
shows that Θ(t) is positive definite.

12Lemma 5.2 is applied to equation (51), with A = Ir , P = g(t) τ(t),

J = Ip and Q = g(t)H .

However, substituting equations (38) and (54) into equa-

tion (58) yields

e′(t) = x(t) η(t) − W (t − 1)y′(t). (59)

Finally, substituting equation (51) into equation (23) yields

V̂ (t) = Y (t) − g(t)
(
g(t) τ(t)

)H
Y (t). (60)

The pseudo-code of the exponential window fast API al-

gorithm (FAPI) is presented in table III, and that of the

truncated window fast API algorithm (TW-FAPI) is presented

in table IV. The overall computational cost of FAPI is

n(3r + 2) + 5r2 + O(r) flops per iteration13 (whereas the

complexities of PAST [22] and OPAST [25] are respectively

3nr + 2r2 + O(r) and n(4r + 1) + 2r2 + O(r)). The overall

computational cost of TW-FAPI is n(6r + 8) + 4lr + O(r2)
flops per iteration14 (whereas the complexities of SW-PAST

and SW-OPAST [29] are respectively 5nr + 4r2 + O(r) and

n(15r + 28) + 12r2 + O(r)). Note that the presence of a 4lr
term in the complexity of TW-FAPI may make this algorithm

more computationally demanding in applications for which l
is much larger than n. However, in the context of frequency

estimation, it has been proved that optimal Cramer-Rao bounds

were obtained for 1
2n ≤ l ≤ 2n [35], and in section VIII-A,

TW-FAPI is tested with l = 3
2n.

TABLE III

EXPONENTIAL WINDOW FAST API (FAPI) ALGORITHM

Initialization (cf. table I)

For each time step do26666666666666666666664
Input vector : x(t)
PAST main section (cf. table I)
FAPI main section : Cost

ε2(t) = ‖x(t)‖2 − ‖y(t)‖2 (45) n + r

τ(t) =
ε2(t)

1+ε2(t)‖g(t)‖2+
√

1+ε2(t)‖g(t)‖2
(50) r

η(t) = 1 − τ(t) ‖g(t)‖2 (52) 1
y′(t) = η(t) y(t) + τ(t) g(t) (54) 2r

h′(t) = Z(t − 1)Hy′(t) (55) r2

ǫ(t) =
τ(t)
η(t)

�
Z(t − 1)g(t) −

�
h′(t)Hg(t)

�
g(t)

�
(56) r2 + 3r

Z(t) = 1
β

�
Z(t − 1) − g(t) h′(t)H + ǫ(t) g(t)H

�
(53) 2r2

e′(t) = η(t) x(t) − W (t − 1) y′(t) (59) nr + n

W (t) = W (t − 1) + e′(t) g(t)H (57) nr

VII. LINK WITH THE PAST AND OPAST ALGORITHMS

In this section, it is shown that the classical exponential

window PAST algorithm can be seen as a first order approx-

imation of the FAPI algorithm. Indeed, the error e(t) is the

component of x(t) that does not belong to the signal subspace

spanned by W (t − 1). Thus, if this subspace slowly varies

upon time, and if the Signal to Noise Ratio (SNR) is high,

e(t) ≃ 0. If the second order term ‖e(t)‖2 is disregarded in

13Note that this implementation of FAPI is faster than that proposed in [26],
whose global cost was n(4r + 2) + 5r2 + O(r).

14This implementation of TW-FAPI is also faster than that proposed in [31],
whose global cost was n(8r + 8) + 4lr + O(r2).

7

TABLE IV

TRUNCATED WINDOW FAST API (TW-FAPI) ALGORITHM

Initialization (cf. table II)

For each time step do2666666666666666666666666666666664
Section similar to SW − PAST (cf. table II)
TW − FAPI main section Cost

ε(t) =
�

x(t)Hx(t) − y(t)Hy(t)
� 1

2 (45) 4n + 4r

ρ(t) = Ip + ε(t)H
�

g(t)Hg(t)
�

ε(t) (47) 4r

τ(t) = ε(t)

�
ρ(t) + ρ(t)

1
2

H
�−1

ε(t)H (50) O(1)

η(t) = Ip −
�

g(t)Hg(t)
�

τ(t) (52) O(1)

y′(t) = y(t) η(t) + g(t) τ(t) (54) 8r

h′(t) = Z(t − 1)Hy′(t) (55) 2r2

ǫ(t) =
�

Z(t − 1)g(t) − g(t)
�

h′(t)Hg(t)
���

τ(t) η(t)−1
�H (56) 2r2 + 12r

Z(t) = 1
β

�
Z(t − 1) − g(t) h′(t)H + ǫ(t) g(t)H

�
(53) 4r2

e′(t) = x(t) η(t) − W (t − 1) y′(t) (59) 2nr + 4n

W (t) = W (t − 1) + e′(t) g(t)H (57) 2nrbV (t) = Y (t) − g(t)
�

g(t) τ(t)
�H

Y (t) (60) 4lr

table III, τ(t) = 0, η(t) = 1 and Θ(t) becomes the r × r
identity matrix. Then equations (57) and (53) become

W (t) = W (t − 1) + e(t) g(t)H (61)

Z(t) =
1

β

(
Z(t − 1) − g(t)h(t)H

)
(62)

(in particular, it can be recursively shown that Z(t) is always

hermitian). Consequently, this first order approximation of the

fast API method is an exact implementation of the classical

PAST subspace tracker [22], which only provides a nearly

orthonormal subspace weighting matrix. In other respects, a

thorough examination of the OPAST algorithm presented in

[25] shows that W (t) is updated as in equation (57) (which

guarantees the orthonormality, contrary to equation (61)).

However, Z(t) is updated as in equation (62). Consequently,

OPAST can be seen as an intermediary between PAST and

FAPI.

VIII. SIMULATION RESULTS

In this section, the performance of the subspace estimation

is analyzed in the context of frequency estimation, in terms

of the maximum principal angle between the true dominant

subspace of the correlation matrix Cxx(t) (obtained via an

exact eigenvalue decomposition), and the estimated dominant

subspace of the same correlation matrix (obtained with the

subspace tracker). This error criterion was initially proposed

by P. Comon and G.H. Golub as a measure of the distance

between equidimensional subspaces [24, pp. 603-604]). In

section VIII-A, the FAPI and TW-FAPI algorithms are com-

pared to other existing subspace trackers. In section VIII-B,

the behavior of the API method regarding the SNR and the

parameters n and r is investigated.

A. Comparison of FAPI and TW-FAPI with other existing

subspace trackers

In this section, the test signal is a sum of r = 4 complex

sinusoidal sources plus a complex white gaussian noise (the

SNR is 5.7 dB). The frequencies of the sinusoids vary ac-

cording to a jump scenario originally proposed by P. Strobach

in the context of Direction Of Arrival estimation [36]: their

values abruptly change at different time instants, between

which they remain constant. Their variations are represented

on Figure 1-a. This signal is processed in section VIII-A.1

by means of an exponential window whose forgetting factor

is β ≈ 0.99, and in section VIII-A.2 by means of a sliding

window of length l = 120. This parameters were chosen so

that the effective window length is the same in both cases, i.e.

β = 1
1−1/l . Section VIII-A.3 focuses on the orthonormality

of the subspace weighting matrix. The complexities of the

various subspace trackers illustrated in this section are given

in table V.

Algorithm Complexity (flops) Window Figure

FAPI n(3r + 2) + 5r2 + O(r)
PAST 3nr + 2r2 + O(r) exponential Fig. 1

NIC 4nr + 2r2 + O(r)
OPAST n(4r + 1) + 2r2 + O(r)
Karasalo nr2 + n(3r + 2) + O(r3)

FST n(6r + 2) + 12r2 + O(r)
Householder PAST n(4r + 1) + 2r2 + O(r) exponential Fig. 2

Loraf2 nr2 + n(3r + 2) + O(r3)
SP1 4nr2 + n(4r + 2) + O(r3)

TW-FAPI n(6r + 8) + 4lr + O(r2)
SW-PAST 5nr + 4r2 + O(r)
SW-NIC 6nr + 4r2 + O(r) sliding Fig. 3

SW-OPAST n(15r + 28) + 12r2 + O(r)

TABLE V

COMPARISON OF THE COMPLEXITIES

1) Exponential window case: figure 1-b shows the maxi-

mum principal angle error trajectory θFAPI(t), obtained with

the FAPI method with parameters n = 80 and β ≈ 0.99.

Then this result is compared to that obtained with the PAST

subspace tracker: figure 1-c shows the ratio in dB of the

trajectories obtained with FAPI and PAST, i.e.

20 log10

(
θFAPI(t)

θPAST(t)

)
.

At initialization, it can be noticed that FAPI converges faster

than PAST. Moreover, PAST does not provide an orthonormal

subspace weighting matrix. Figure 1-d shows the ratio in dB

of the trajectories obtained with FAPI and the NIC subspace

tracker15, which is a robust generalization of PAST [23]. It

can be seen that the subspace estimation error is always

smaller with FAPI. As PAST, NIC does not guarantee the

orthonormality of the subspace weighting matrix. Figure 1-

e shows the ratio of the trajectories obtained with FAPI and

OPAST. The two algorithms reach the same performance,

except at initialization, where FAPI converges faster. In fact,

the difference is much more distinct with the sliding window

versions of these algorithms (see section VIII-A.2).

15The learning step η is equal to 0.7.

8

500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

 (a)

F
re

q
u

e
n

c
ie

s
 (

H
z
)

500 1000 1500 2000 2500 3000 3500 4000
0

50

M
a

x
.

a
n

g
le

 (
d

e
g

) (b)

500 1000 1500 2000 2500 3000 3500 4000
−30

−20

−10

0

A
n

g
le

 r
a

ti
o

 (
d

B
)

 (c)

500 1000 1500 2000 2500 3000 3500 4000
−30

−20

−10

0

10

A
n

g
le

 r
a

ti
o

 (
d

B
)

 (d)

500 1000 1500 2000 2500 3000 3500 4000
−10

−5

0

Discrete time (samples)

A
n

g
le

 r
a

ti
o

 (
d

B
)

 (e)

Fig. 1. Subspace tracking based on an exponential window
(a) Normalized frequencies of the sinusoids
(b) Maximum principal angle trajectory obtained with FAPI
(c) Ratio of the trajectories obtained with FAPI and PAST
(d) Ratio of the trajectories obtained with FAPI and NIC
(e) Ratio of the trajectories obtained with FAPI and OPAST

In figure 2, the FAPI algorithm is compared to five other

well-known subspace trackers :

• I. Karasalo’s algorithm [2],

• the Fast Subspace Tracking (FST) algorithm [3],

• the novel PAST algorithm employing Householder trans-

formations, herein called Householder PAST [34],

• the Low-Rank Adaptive Filter (Loraf2) algorithm [7],

• and the Subspace Projection (SP1) algorithm [37].

Figure 2-a shows that the behaviors of FAPI and Karasalo’s

algorithm are very similar. However the dominant cost of

the latter is nr2 (see table V). Figure 2-b shows that FAPI

converges to the signal subspace much more precisely than

FST. Moreover, FST is more computationally demanding than

FAPI. Figure 2-c shows that FAPI and Householder PAST

reach the same performance, except at initialization, where

FAPI converges faster. Figure 2-d shows that the same remark

can be made about FAPI and Loraf2. Besides, the dominant

complexity of Loraf2 is nr2.

Among the various subspace trackers that we have tested,

SP1 is the only one which really outperformed FAPI (see

figure 2-e). However, table V shows that SP1 is the most

computationally demanding algorithm. In other respects, it

is only suitable for time series data analysis, and was only

designed for exponential windows.

2) Sliding window case: figure 3-a shows the maximum

principal angle error trajectory θTW−FAPI(t), obtained with

the TW-FAPI method with parameters β = 1 (which turns

500 1000 1500 2000 2500 3000 3500 4000
−2

0

2

A
n
g
le

 r
a
ti
o
 (

d
B

)

 (a)

500 1000 1500 2000 2500 3000 3500 4000

−40

−20

0

A
n
g
le

 r
a
ti
o
 (

d
B

)

 (b)

500 1000 1500 2000 2500 3000 3500 4000
−15

−10

−5

0

5

A
n
g
le

 r
a
ti
o
 (

d
B

)

 (c)

500 1000 1500 2000 2500 3000 3500 4000

−4

−2

0

A
n
g
le

 r
a
ti
o
 (

d
B

)

 (d)

500 1000 1500 2000 2500 3000 3500 4000

0

20

40

Discrete time (samples)

A
n
g
le

 r
a
ti
o
 (

d
B

)
 (e)

Fig. 2. Subspace tracking based on an exponential window
(a) Ratio of the trajectories obtained with FAPI and Karasalo
(b) Ratio of the trajectories obtained with FAPI and FST
(c) Ratio of the trajectories obtained with FAPI and Householder PAST
(d) Ratio of the trajectories obtained with FAPI and Loraf2
(e) Ratio of the trajectories obtained with FAPI and SP1

the truncated window into a sliding window), n = 80 and

l = 120. It can be noticed that this algorithm has a fast

convergence rate after each frequency jump. This result can be

compared to that of figure 1-b, obtained with the exponential

window FAPI method, for which the response to frequency

jumps is slower, because of the nature of the window which

tends to smooth the signal variations. Figure 3-b shows the

ratio in dB of the trajectories obtained with TW-FAPI and the

sliding window version of PAST, herein called SW-PAST [22],

[29]. It can be seen that TW-FAPI converges faster than SW-

PAST at initialization. Note that as PAST, SW-PAST does not

provide an orthonormal subspace weighting matrix. Figure 3-c

shows the ratio in dB of the trajectories obtained with TW-

FAPI and a sliding window version of the NIC algorithm,

herein called SW-NIC16. Finally, figure 3-d shows the ratio in

dB of the trajectories obtained with TW-FAPI and the sliding

window OPAST algorithm [29]. It can be noticed that the

maximum principal angle error trajectory obtained with TW-

FAPI is about 20 dB lower than those obtained with SW-NIC

and SW-OPAST in regions where the frequencies are constant.

3) Orthonormality error: the orthonormality of the sub-

space weighting matrix W (t) can be measured by means of

the following error criterion:

20 log10

(
‖W (t)HW (t) − Ir‖F

)
.

16SW-NIC is also implemented with η = 0.7.

9

500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

M
a
x
im

u
m

 a
n
g
le

 (
d
e
g
) (a)

500 1000 1500 2000 2500 3000 3500 4000

−40

−20

0

A
n
g
le

 r
a
ti
o
 (

d
B

)

 (b)

500 1000 1500 2000 2500 3000 3500 4000
−40

−20

0

A
n
g
le

 r
a
ti
o
 (

d
B

)

 (c)

500 1000 1500 2000 2500 3000 3500 4000
−30

−20

−10

0

10

A
n
g
le

 r
a
ti
o
 (

d
B

)

 (d)

Discrete time (samples)

Fig. 3. Subspace tracking based on a sliding window
(a) Maximum principal angle trajectory obtained with TW-FAPI
(b) Ratio of the trajectories obtained with TW-FAPI and SW-PAST
(c) Ratio of the trajectories obtained with TW-FAPI and SW-NIC
(d) Ratio of the trajectories obtained with TW-FAPI and SW-OPAST

Algorithms Orthonormality error

FAPI, TW-FAPI, OPAST, Householder PAST about -300 dB
Karasalo, FST, Loraf2 about -280 dB

SP1, SW-OPAST about -240 dB
PAST, NIC about -25 dB

SW-PAST, SW-NIC about -5 dB

TABLE VI

MAXIMUM ORTHONORMALITY ERROR

Table VI shows the maximum orthonormality error reached

by the above mentioned algorithms while tracking the test

signal variations. We observed that FAPI, TW-FAPI, OPAST

and Householder PAST outperformed all the other algorithms,

whereas PAST, NIC, and their sliding window versions do

not guarantee the orthonormality of the subspace weighting

matrix.

B. Behavior of the API method regarding the SNR and the

parameters n and r

In this section, the test signal is still a sum of r = 4
complex sinusoidal sources plus a complex white gaussian

noise. However, the frequencies of the sinusoids are constant,

equal to the initial values given in figure 1-a.

1) Influence of the SNR: in this section, the effect of the

SNR onto the subspace estimation is investigated. To this end,

the noise part of the test signal was synthesized so that the

SNR varies linearly from +30 dB to -30 dB (see figure 4-a).

Figure 4-b shows the maximum principal angle error trajec-

tory obtained with the FAPI method with parameters n = 80
and β ≈ 0.99. It can be seen that the performance of the

subspace estimation collapses beyond n ≃ 2600. Figure 4-

a shows that from this time instant the SNR is lower than

−10 dB. Figure 4-c shows the maximum principal angle error

trajectory obtained with the TW-FAPI method with parameters

β = 1, n = 80 and l = 120. Again, the performance of the

subspace estimation collapses beyond n ≃ 2600. Although

they are not illustrated here, we observed that the performance

of all the above mentioned subspace trackers similarly collapse

beyond the same SNR limit (−10 dB).

0 500 1000 1500 2000 2500 3000 3500 4000
−40

−20

0

20

40
(a)

S
N

R
 (

dB
)

0 500 1000 1500 2000 2500 3000 3500 4000
0

50

100

M
ax

im
um

 a
ng

le
 (

de
g)

(b)

0 500 1000 1500 2000 2500 3000 3500 4000
0

50

100

M
ax

im
um

 a
ng

le
 (

de
g)

(c)

Discrete time (samples)

Fig. 4. Influence of the Signal to Noise Ratio
(a) Signal to Noise Ratio in dB
(b) Maximum principal angle trajectory obtained with FAPI
(c) Maximum principal angle trajectory obtained with TW-FAPI

2) Influence of the ratio n/r: in this section, we focus on

the influence of the ratio n/r onto the subspace estimation.

The SNR is constant, equal to 5.7 dB.

Figure 5-a shows the mean of θFAPI(t), as a function of the

ratio n/r, for all n ∈ {r + 1, . . . , 80} (with β ≈ 0.99). It can

be seen that the subspace estimation becomes reliable as soon

as n/r ≥ 7. Figure 5-b shows the mean of θTW−FAPI(t), as

a function of the ratio n/r, for all n ∈ {r + 1, . . . , 80} (with

β = 1 and l = 120). Again, it can be seen that the subspace

estimation becomes reliable as soon as n/r ≥ 7. Although

they are not illustrated here, we observed that the same remark

is valid for all the above mentioned subspace trackers.

3) Tracking a subspace of wrong dimension: since the

dimension r of the signal subspace is unknown in many

applications, we investigate in this section the performance

of the FAPI and TW-FAPI algorithms when applied with a

wrong subspace dimension r. The SNR is constant, equal

to 5.7 dB. The performance of the subspace estimation is

analyzed in terms of the maximum principal angle between

the true 4-dimensional signal subspace and the estimated r-

dimensional subspace.

Figure 5-c shows the mean of θFAPI(t), as a function of r,

for all r ∈ {1, . . . , 20} (with parameters β ≈ 0.99 and n =
80). Similarly, figure 5-d shows the mean of θTW−FAPI(t), as a

function of r, for all r ∈ {1, . . . , 20} (with parameters l = 120
and n = 80). It can be seen that the subspace estimation is

reliable in all cases:

• if r = 4, the maximum principal angle is very low (as

expected),

• if r < 4, the maximum principal angle remains low,

which means that the estimated lower-dimensional sub-

space is nearly included in the true signal subspace,

10

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

M
e
a
n
 a

n
g
le

 (
d
e
g
)

Ratio n/r

(a)

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

M
e
a
n
 a

n
g
le

 (
d
e
g
)

Ratio n/r

(b)

2 4 6 8 10 12 14 16 18 20

0.2

0.4

0.6
(c)

M
e
a
n
 a

n
g
le

 (
d
e
g
)

Subspace dimension r

2 4 6 8 10 12 14 16 18 20

0.2

0.4

0.6
(d)

M
e
a
n
 a

n
g
le

 (
d
e
g
)

Subspace dimension r

Fig. 5. Influence of the parameters n and r
(a) Average max. angle obtained with FAPI as a function of n/r
(b) Average max. angle obtained with TW-FAPI as a function of n/r
(c) Average max. angle obtained with FAPI as a function of r
(d) Average max. angle obtained with TW-FAPI as a function of r

• is r > 4, the maximum principal angle is even lower

than in the case r = 4, which means that the true

signal subspace is nearly included in the estimated upper-

dimensional subspace. Moreover, it can be noticed that

the maximum principal angle decreases as the dimension

of the estimated subspace increases.

We can conclude that FAPI and TW-FAPI are robust to

erroneous subspace dimension r.

IX. CONCLUSIONS

In this paper, several implementations of the API algorithm

for subspace tracking were presented, based either on expo-

nential windows or on truncated windows. These algorithms

reach a linear complexity and guarantee the orthonormality

of the subspace weighting matrix at each time step. In the

context of frequency estimation, the method proves able to

track abrupt frequency variations robustly, and outperforms

many subspace trackers, both in terms of subspace estimation

and computational complexity. Finally, these subspace tracking

algorithms can be considered as the starting point of a real-

time frequency tracker, whose full implementation can involve

our adaptive version of the ESPRIT algorithm [38].

REFERENCES

[1] P. Comon and G. H. Golub, “Tracking a few extreme singular values
and vectors in signal processing,” in Proc. IEEE, vol. 78, Aug. 1990,
pp. 1327–1343.

[2] I. Karasalo, “Estimating the covariance matrix by signal subspace
averaging,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 34,
pp. 8–12, Feb. 1986.

[3] D. J. Rabideau, “Fast, rank adaptive subspace tracking and applications,”
IEEE Trans. Signal Processing, vol. 44, no. 9, pp. 2229–2244, Sept.
1996.

[4] M. Moonen, P. V. Dooren, and J. Vandewalle, “An SVD updating
algorithm for subspace tracking,” SIAM J. Matrix Ana. Appl., vol. 13,
no. 4, pp. 1015–1038, 1992.

[5] E. M. Dowling, L. P. Ammann, and R. D. DeGroat, “A TQR-iteration
based adaptive SVD for real time angle and frequency tracking,” IEEE

Trans. Signal Processing, vol. 42, no. 4, pp. 914–926, Apr. 1994.
[6] P. Strobach, “Low-rank adaptive filters,” IEEE Trans. Signal Processing,

vol. 44, no. 12, pp. 2932–2947, Dec. 1996.
[7] ——, “Bi-iteration SVD subspace tracking algorithms,” IEEE Trans.

Signal Processing, vol. 45, no. 5, pp. 1222–1240, May 1997.
[8] Y. Hua, Y. Xiang, T. Chen, K. Abed-Meraim, and Y. Miao, “A new

look at the power method for fast subspace tracking,” Digital Signal

Processing, Oct. 1999.
[9] C. H. Bischof and G. M. Shroff, “On updating signal subspaces,” IEEE

Trans. Signal Processing, vol. 40, pp. 96–105, 1992.
[10] G. W. Stewart, “An updating algorithm for subspace tracking,” IEEE

Trans. Signal Processing, vol. 40, pp. 1535–1541, June 1992.
[11] G. Xu, H. Zha, G. H. Golub, and T. Kailath, “Fast algorithms for

updating signal subspaces,” IEEE Trans. Circuits Syst., vol. 41, no. 8,
pp. 537–549, Aug. 1994.

[12] R. D. DeGroat, “Noniterative subspace tracking,” IEEE Trans. Signal

Processing, vol. 40, no. 3, pp. 571–577, Mar. 1992.
[13] T. Chonavel, B. Champagne, and C. Riou, “Fast adaptive eigenvalue

decomposition: a maximum likelihood approach,” Signal processing,
vol. 83, no. 2, pp. 307–324, Feb. 2003.

[14] C. S. MacInnes, “Fast, accurate subspace tracking using operator re-
striction analysis,” in Proc. of IEEE Int. Conf. on Acoustic, Speech and

Signal Processing, 1998, pp. 1357–1360.
[15] B. Champagne, “SVD-updating via constrained perturbations with ap-

plication to subspace tracking,” Signals, Systems and Computers, vol. 2,
pp. 1379–1385, 1996.

[16] E. Oja, “Neural networks, principal components and subspaces,” Int.

journal of neural systems, vol. 1, no. 1, pp. 61–68, 1989.
[17] L. Xu, “Least mean square error reconstruction principle for selg-

organizing neural nets,” Neural Networks, vol. 6, pp. 627–648, 1993.
[18] T. Chen and S. Amari, “Unified stabilization approach to principal and

minor components extraction algorithms,” Neural Networks, vol. 14,
no. 10, pp. 1377–1387, 2001.

[19] S. Y. Kung, K. I. Diamantaras, and J. S. Taur, “Adaptive principal
component extraction (apex) and applications,” IEEE Trans. Signal

Processing, vol. 43, no. 1, pp. 1202–1217, Jan. 1995.
[20] G. Mathew and V. U. Reddy, “Adaptive estimation of eigensubspace,”

IEEE Trans. Signal Processing, vol. 43, no. 2, pp. 401–411, Feb. 1995.
[21] Z. Fu and E. M. Dowling, “Conjugate gradient eigenstructure tracking

for adaptive spectral estimation,” IEEE Trans. Signal Processing, vol. 43,
no. 5, pp. 1151–1160, May 1995.

[22] B. Yang, “Projection Approximation Subspace Tracking,” IEEE Trans.

Signal Processing, vol. 44, no. 1, pp. 95–107, Jan. 1995.
[23] Y. Miao and Y. Hua, “Fast subspace tracking and neural network learning

by a novel information criterion,” IEEE Trans. Signal Processing,
vol. 46, no. 7, pp. 1967–1979, July 1998.

[24] G. H. Golub and C. F. V. Loan, Matrix computations, 3rd ed. Baltimore
and London: The Johns Hopkins University Press, 1996.

[25] K. Abed-Meraim, A. Chkeif, and Y. Hua, “Fast orthonormal PAST
algorithm,” IEEE Signal Proc. Letters, vol. 7, no. 3, pp. 60–62, Mar.
2000.

[26] R. Badeau, G. Richard, and B. David, “Approximated power iterations
for fast subspace tracking,” in Proc. of 7th Int. Symp. on Signal Proc.

and its Applications, vol. 2, Paris, France, July 2003, pp. 583–586.
[27] P. Strobach, “Square hankel SVD subspace tracking algorithms,” Signal

Processing, vol. 57, no. 1, pp. 1–18, Feb. 1997.
[28] E. C. Real, D. W. Tufts, and J. W. Cooley, “Two algorithms for fast

approximate subspace tracking,” IEEE Trans. Signal Processing, vol. 47,
no. 7, pp. 1936–1945, July 1999.

[29] R. Badeau, K. Abed-Meraim, G. Richard, and B. David, “Sliding
Window Orthonormal PAST Algorithm,” in Proc. of IEEE Int. Conf.

on Acoustic, Speech and Signal Processing, vol. 5, Apr. 2003, pp. 261–
264.

[30] R. Badeau, G. Richard, and B. David, “Sliding window adaptive SVD
algorithms,” IEEE Trans. Signal Processing, vol. 52, no. 1, pp. 1–10,
Jan. 2004.

[31] ——, “Suivi d’espace dominant par la méthode des puissances itérées,”
in Proc. of 19ème colloque GRETSI sur le traitement du signal et des

images, vol. 1, Sept. 2003, pp. 137–140.
[32] R. O. Schmidt, “A signal subspace approach to multiple emitter location

and spectral estimation,” Ph.D. dissertation, Stanford University, Nov.
1981.

11

[33] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge: Cambridge
University Press, 1985.

[34] S. C. Douglas, “Numerically-robust adaptive subspace tracking using
Householder transformations,” in Proc. of IEEE Sensor Array and

Multichannel Signal Proc. Workshop, 2000, pp. 499 –503.
[35] Y. Hua and T. K. Sarkar, “Matrix pencil method for estimating parame-

ters of exponentially damped/undamped sinusoids in noise,” IEEE Trans.

Acoust., Speech, Signal Processing, vol. 38, no. 5, pp. 814–824, May
1990.

[36] P. Strobach, “Fast recursive subspace adaptive ESPRIT algorithms,”
IEEE Trans. Signal Processing, vol. 46, no. 9, pp. 2413–2430, Sept.
1998.

[37] C. E. Davila, “Efficient, high performance, subspace tracking for time-
domain data,” IEEE Trans. Signal Processing, vol. 48, no. 12, pp. 3307–
3315, Dec. 2000.

[38] R. Badeau, G. Richard, and B. David, “Adaptive ESPRIT algorithm
based on the PAST subspace tracker,” in Proc. of IEEE ICASSP’03,
vol. 6, Apr. 2003, pp. 229–232.

