SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NY 14853-7501

TECHNICAL REPORT NO. 999

February, 1992

Fast Approximation Algorithms
for Fractional Packing and Covering Problems

By

Serge A. Plotkin!, David B. Shmoys?, Eva Tardos®

1Department of Computer Science, Stanford University, Stanford, CA. Research supported by NSF Research
Initiation Award CCR-900-8226, by U.S. Army Research Office Grant DAAL-03-91-G-0102, by ONR Contract
N00014-88-K-0166, and by a grant from Mitsubishi Corporation.

23chool of Operations Research, Cornell University, Ithaca NY. Research partially supported by an NSF PYI1
award CCR-89-96272 with matching support from UPS, and Sun Microsystems, and by the National Science
Foundation, the Air Force Office of Scientific Research, and the Office of Naval Research, through NSF grant
DMS-8920550.

38chool of Operations Research, Cornell University, Ithaca NY. Research supported in part by a Packard
Fellowship, an NSF PYI award, a Sloan Fellowship, and by the National Science Foundation, the Air Force
Office of Scientific Research, and the Office of Naval Research, through NSF grant DM5-8920550.

Abstract

This paper presents fast algorithms that find approximate solutions for a general class
of problems, which we call fractional packing and covering problems. The only previously
known algorithms for solving these problems are based on general linear programming tech-
niques. The techniques developed in this paper greatly outperform the general methods
in many applications, and are extensions of a method previously applied to find approxi-
mate solutions to multicommodity flow problems. Our algorithm is a Lagrangean relaxation
technique; an important aspect of our results is that we obtain a theoretical analysis of the
running time of a Lagrangean relaxation-based algorithm.

We give several applications of our algorithms. The new approach yields several orders of
magnitude of improvement over the best previously known running times for algorithms for
the scheduling of unrelated parallel machines in both the preemptive and the non-preemptive
models, for the job shop problem, for the cutting-stock problem, for the network embedding
problem, and for the minimum-cost multicommodity flow problem.

1 Introduction

We consider the following general type of problem: given a convex set P C R" and a set of m
inequalities Az < b, decide if there exists a point z € P that satisfies Az < b. We assume that
we have a fast subroutine to minimize a non-negative cost function over P. A fractional packing
problem is the special case of this problem when P is in the positive orthant and A > 0. The
intuition for this name is that if P is a polytope, then each z € P can be written as a convex
combination of vertices of P; we are attempting to fractionally pack (or combine) vertices of P
subject to the “capacity” constraints Az < b.

A wide variety of problems can be expressed as fractional packing problems. Consider the
following formulation of deciding if the maximum flow from s to ¢ in an m-edge graph G is at
least f: let the polytope P C R™ be the convex combination of incidence vectors of (s,t)-paths,
scaled so that each such vertex is itself a flow of value f; the edge capacity constraints are given
by Az < b, and so A is the m x m identity matrix; the required subroutine for P is a shortest-
path algorithm. In words, we view the maximum flow problem as packing (s, ¢)-paths subject to
capacity constraints. We can similarly formulate the multicommodity flow problem, by setting
P = P! x ... x P¥ where P! is the polytope of all feasible flows of commodity ¢, and Az < b
describes the joint capacity constraints. In Section 6, we shall discuss the following further
applications: the Held & Karp lower bound for the traveling salesman problem [11] (packing
1-trees subject to degree-2 and cost constraints); scheduling unrelated parallel machines in
both the preemptive and non-preemptive models, as well as scheduling job shops (packing jobs
subject to machine load constraints); embedding graphs with small dilation and congestion
(packing short paths subject to capacity constraints); and the minimum-cost multicommodity
flow problem (packing paths subject to capacity and budget constraints).

Fractional covering problems are another important case of this framework: in this case, P
and A are as above, but the constraints are Az > b, and we have a maximization routine for
P. The cutting-stock problem is an example of a covering problem: paper is produced in wide
rolls, called raws, and then subdivided into several different widths of narrower ones, called
finals; there is a specified demand for the number of rolls of each final width, and the aim is
to cover that demand using as few raws as possible. Gilmore & Gomory proposed a natural
integer programming formulation of this problem and studied methods to solve it as well as its
linear relaxation [5, 6]. This linear relaxation is also the key ingredient of the fully polynomial
approximation scheme for the bin-packing problem that is due to Karmarkar & Karp [13]. We
also consider problems with simultaneous packing and covering constraints.

In this paper we focus on obtaining approximate solutions for these problems. For an
error parameter € > 0, a point 2 € P is an e-approximate solution for the packing problem
if Az < (14 €)b. A point z € P is an e-approximate solution for the covering problem if
Az > (1 = €)b. The running time of each of our algorithms depends polynomially on €1, and
the width of the set P relative to Az < b, as defined by p = max; max,¢ep a;z/b;, where a;z < b;
is the ith row of Az < b. Significantly, the running time does not depend explicitly on n, and
hence it can be applied when n is exponentially large, assuming that there exists a polynomial
subroutine to optimize cz over P, where ¢ = y*A (and ¢ denotes transpose).

In many applications, there will also exist a more efficient randomized variant of our algo-
rithm. When analyzing one of these algorithms, we shall estimate only the expected running
time. The primary reason for this is that since the running time of any randomized algorithm
exceeds twice its expectation with probability at most 1/2, if we make k independent trials
of the algorithm, allowing twice the expectation for each trial, then the probability that none
of these trials completes the computation is at most 2-%. Thus, by increasing the running
time by a logarithmic factor, we can always convert the statement about expectation to one
that holds with high probability. In fact, for some of our applications, the stronger statement
can be made with no degradation in the bound. Furthermore, the improved efficiency of these
randomized algorithms can be obtained while maintaining the same worst-case running time as
the deterministic version.

All of the problems in our framework are known to be solvable in polynomial time (without
relaxing the right-hand-sides). Consider the problem of packing the vertices of a polytope
P subject to the constraints Az < b. We can apply the ellipsoid method to solve the dual
problem, which has a constraint for every vertex of P, since the separation subroutine for the
dual problem can be solved with the optimization subroutine for P. The problem can be solved
more efficiently by the algorithm of Vaidya [25]; it obtains the optimal value in O(mL) calls
to an optimization subroutine for P plus O(mM(m)L) additional time; L and M(m) denote
the binary size of the problem and the time needed to invert m by m matrices, respectively.
Alternatively, one can apply the other linear programming algorithm of Vaidya [25] for problems
where the polytope P can be described with few variables. Furthermore, if the problem has an
appropriate network structure then the ideas of Kapoor and Vaidya [12] can be used to speed
up the matrix inversions involved.

The algorithm in [25] obtains an optimal dual solution to a fractional packing or covering
problem, but no primal solution. One can use ideas of Karmarkar & Karp [13] to obtain a
primal solution as well. If Vaidya’s algorithm uses T calls to the separation subroutine for the
dual linear program to find an approximate dual solution, then Karmarkar & Karp obtain an
approximate primal solution deterministically by approximately solving O(T + m?log(T/m))
linear programs, or by using randomization solving only O(mlog(T/m)) linear programs, each
with m variables and T inequalities. We can use Vaidya’s algorithm [26] to solve these linear
programs.

The parameter L in the bound of either linear programming algorithm of Vaidya depends
on the quality of the starting solution; for example, in [26], it depends on how close the point is
to the central path. In some applications, such as the bipartite matching problem, it is possible
to find a starting solution with L = log(ne~!), which is, roughly speaking, the number of bits
of accuracy required [9]. Unfortunately, we do not know of comparable results for any of our
applications. For two of our applications, the bin-packing problem and the Held-Karp bound,
such results would yield algorithms with running times that clearly improve on the algorithms
based on the approach presented here.

Our algorithm outperforms Vaidya’s algorithm if € is large (e.g., a constant), p is small
relative to m, or the optimization subroutine for P is faster than matrix inversion. In many
cases, p is not sufficiently small (even exponential), so in Section 5 we give techniques that often

Application Deterministic Time Speedup Randomized Time Speedup
Preemptive scheduling » 2 . af2.5 AT1.5 . “(N/2.5 Af2.5
of N jobs on M machines O'(MN%) (M N) O*(MN) (N> M)
Nonpreemptive scheduling . ar2 N . N
of N jobs on M machines O*(M*N) (V) O*(MN) 2*(MN)
Min-cost K-commodity flow .12 Ag2 . Ag.5 15 . 2 o Ar.5 25
in M-edge N-node graph O*(K*M?) Q*(M°NK'®) O*(KM?) Q* (M NK?*?)
Cutting-stock with . N . .
o d’ihs e fals 0*(M?) Q' (M2 M(M)) 0" (M?) Q* (MM(M))
Job shop scheduling of N R 2 3 . 8.5 4
p-operation jobs on M machines O*((NuM)* + (Np)) " (N°°u) - -
Embedding an N-node bounded
degree graph into a bounded O*(N*1) 1*(N*a) O*(N?1) Q*(N°a)
degree graph with flux a.

Figure 1: Summary of the performance of the described algorithms

reduce p. Figure 1 summarizes the comparison of our algorithm to Vaidya’s for our applications,
giving the speedup over his algorithms [25, 26] when we assume that € > 0 is any constant, and
ignore polylogarithmic factors. A function f(n) is said to be Q*(g(n)) if there exists a constant
¢ such that f(n)log®n > Q(g(n)); we define O* analogously.

Our approach extends a method previously applied to find approximate solutions to multi-
commodity flow problems, first by Shahrokhi & Matula [23], and later by Klein, Plotkin, Stein
& Tardos [15] and Leighton, Makedon, Plotkin, Stein, Tardos & Tragoudas [18]. Recently,
extensions of this method to other applications were found independently by Grigoriadis &
Khachiyan [10].

An important theoretical aspect of our results is their connection to Lagrangean relaxation.
The main idea of our algorithm is as follows. We maintain a point z € P that does not satisfy
Az < b, and repeatedly solve an optimization problem over P to find a direction in which
the violation of the inequalities can be decreased. To do this, we define a “penalty” y on
the Tows of Az < b. Rows with a;z large relative to b; get a large penalty, other rows get
smaller penalties. We relax the Az < b constraints, and instead solve the Lagrangean relaxed
problem min(yAZ : £ € P). The idea is that a large penalty tends to imply that the resulting
point & improves the corresponding inequality. We then set z := (1 — ¢)z + of, where o is
a suitably small number, and repeat. These ideas are often used to obtain empirically good
algorithms for solving linear programs; however, unlike previous methods, we give a rule for
adjusting the penalties for which a theoretical analysis proves a very favorable performance
in many applications. Lagrangean relaxation has been recognized as an important tool for
combinatorial optimization problems since the work of Held & Karp on the traveling salesman
problem [11]; in our discussion of this application (in Section 6) we examine the relationship
between our algorithm and the traditional approach.

As in [15], our algorithms can also be modified to generate integral approximate solutions
and thus yield theorems relating the linear and fractional optima along the lines of Raghavan &

Thompson [22] and give alternative deterministic algorithms to obtain the results of Raghavan
[21]. The modified algorithm is, in some cases, more efficient than the original algorithm, due
to the fact that it terminates as soon as it can no longer improve the current solution while
maintaining integrality. We will discuss this integer version of the packing algorithm at the
end of Section 2, and use the algorithm for the job-shop and network embedding problems in
Section 6. One could derive analogous integer approximation theorems for both the covering
problem and for problems in the more general form considered in Section 4. However, due to
the lack of applications we do not include the resulting theorems.

For simplicity of presentation, throughout the paper we shall use a model of computation
that allows the use of exact arithmetic on real numbers and provides exponentiation as a single
step. In [18], it has been shown that the special case of the algorithm for the multicommodity
flow problem can be implemented in the RAM model without increasing the running time.
Analogously, we can use approximate exponentiation and a version of the algorithm that relies
only on a subroutine to find a nearly optimal solution over the polytope P, and hence avoid the
need for exponentiation as a step. However, in order to convert the results to the RAM model,
we need to perform further rounding; we must also limit the size of the numbers throughout
the computation. It is easy to limit the numbers by a polynomial in the input length, similar
to the size of the numbers used in exact linear programming algorithms. However, we do not
know how to find an e-approximate solution using polylogarithmic precision for the general case
of the problems considered.

2 The Fractional Packing Problem

The fractional packing problem is defined as follows:

PackiNG: 37z € P such that Az < b, where A is an m X n nonnegative matrix, b > 0,
and P is a convex set in the positive orthant of R™.

We shall use a; to denote the ith row of A and b; to denote the ith coordinate of 5. We
shall assume that we have a fast subroutine to solve the following optimization problem for the
given convex set P and matrix A:

Given an m-dimensional vector ¥ > 0, find # € P such that

c& = min(ez : ¢ € P), where ¢ = y'A. (1)

For a given error parameter € > 0, a vector z € P such that Az < (1 + ¢)b is an e
approzimate solution to the PACKING problem. In contrast, a vector z € P such that Az < b is
called an eract solution. An e-relazed decision procedure either finds an e-approximate solution
or concludes that no exact solution exists.

The running time of our relaxed decision procedure depends on the width of P relative to
Az < b, which is defined by

_ az
p = maxmax - 2)

In general, p might be large, even superpolynomial in the size of the problem. We shall discuss
techniques to reduce the width in Section 5.

Relaxed Optimality. Consider the following optimization version of the PACKING problem:
min() : Az < Ab and z € P), (3)

and let A* denote its optimal value. For each z € P, there is a corresponding minimum value
X such that Az < Ab. We shall use the notation (z,A) to denote that A is the minimum value
corresponding to z. A solution (z,)) is e-optimalif z € P and A < (1+€¢)A*. If (z,A) is an
e-optimal solution with A > 1+ ¢, then we can conclude that no exact solution to the PACKING
problem exists. On the other hand, if (z,)) is an e-optimal solution with A < 1+¢, then z is
an e-approximate solution to the PACKING problem.

Linear programming duality gives a characterization of the optimal solution for the opti-
mization version. Let y > 0, y € R™ denote a dual solution, and let Cp(y) denote the minimum
cost cz for any z € P where ¢ = y'A. The following inequalities hold for any feasible solution
(z,A) and dual solution y:

Ay'b > y* Az > Cp(y). (4)

Observe that both ytb and Cp(y) are independent of z and A. Hence, for any dual solution
y, A* > Cp(y)/y*b. The goal of our algorithm is to find either an e-approximate solution z,
or an e-optimal solution (z,)) such that A > 1 + . In the latter case we can conclude that
no exact solution to the PACKING problem exists. The e-optimality of a solution (z,A) will be
implied by a dual solution y such that (1 + €)Cp(y)/y'b > A. Since A > 1 +¢, it follows that
Cp(y)/ytb > 1; hence, A* > 1 and no exact solution to the PACKING problem exists. Linear
programming duality implies that there exists a dual solution y* for which Cp(y*)/y*'b = A*.
Hence, for optimal (z*, A*) and y*, all three terms in (4) are equal.

Consider an error parameter € > 0, a point z € P satisfying Az < Ab, and a dual solution
y. We define the following relazed optimality conditions:
(P1) (1 - hyib < ytAa;
(P2) ytAz — Cp(y) < e(y* Az + Ay'b).

Lemma 2.1 If (z,)\) and y are feasible primal and dual solutions that satisfy the relaxed optimality
conditions P1 and P2 and € < 1/6, then (z,) is 6e-optimal.

Proof: From P1 and P2 we have that
Cp(y) > (1-e)y'Az — edyd > (1 — €)% Ay'b — edyld > (1 — 3€)Ay'd.

Hence, A < (1 - 3¢)"1Cp(y)/(y'b) < (1 —3&)~1A* < (1 +6€)A*. 1}

The Algorithm. The core of the algorithm is the procedure IMPROVE-PACKING, which takes
as input a point z € P and an error parameter € > 0. Given z, it computes Ag, the minimum A
such that Az < Ab is currently satisfied. IMPROVE-PACKING produces a new feasible solution
(z,A) such that z is 6e-optimal or A < Ag/2. It uses a dual solution y defined as a function of
z, where y; = —l—e"‘“"/ bi: we call this choice of y the dual solution corresponding to x. We will
choose a so that the rela.xed optimality condition P1 is satisfied for (z,A) and its corresponding
dual solution. Thus, if the current solutions (z,\) and y satisfy P2, then X is sufficiently close
to optimal, and IMPROVE-PACKING terminates. Otherwise, we find a point & € P that attains
the minimum Cp(y), and modify z by setting z « (1 — o)z + o%. Although a single update of
z might increase its corresponding A, we will show that a sequence of such updates gradually
reduces A.

Lemma 2.2 If a > 2A~1e~!In(2me=1), then any feasible solution (z,) and its corresponding
dual solution y satisfy P1.

Proof: For this proof, it is useful to introduce a localized version of P1:
(P1) Foreach i =1,...,m, (1 - €/2)Ab; < a;z or yib; < & yth.

Let I = {i:(1 —¢/2)Ab; < a;z}. Condition P1 implies P1, since

1 €
Aytb prad /\E?an +Azy, S 1 Zyta'x_*.AZ l—f/zytAID'*"-iAytb,
iel i34 3¢I

and therefore (1 — €)Ay?h < (1 — €/2)?\y'b < ytAxz.

Next we have to show that the hypothesis of the lemma implies that P1 is satisfied. Notice
that ytb = °; €*%%/%_ By the minimality property of A we have that ytb > e**. Consider any
row ¢ for which a;z < (1 — €/2)Ab;. This implies that y;b; < e(1=¢/2)2X and so y;b;/(y?b) <
e~«@M2? < ¢/(2m). Hence, P1 is satisfied. |

At the beginning of IMPROVE-PACKING (see Figure 2), a is set to 425 ¢! In(2me~1); hence,
the relaxed optimality condition P1 is satisfied throughout the execution of the procedure. The
following lemma shows that moving the right amount towards a minimum-cost point & results
in a significant decrease in the potential function ® = yb = ¥, e*®i#/bi,

Lemma 2.3 Consider a point 2 € P and an error parameter 0 < ¢ < 1 such that z and its
corresponding dual solution y have potential function value ® and do not satisfy P2. Let £ € P

IMPROVE-PACKING(z, €)

Ao « max; a;z/b;; o — 4)\516”1 In(2me™1); o — -4—(5;5.

While max; a;z/b; > Ao/2 and z and y do not satisfy P2
For each i = 1,...,m: set y; — Lexa:=/bi,
Find a min-cost pomt & € P for éosts c=y A
Update z — (1 — o)z + 0%.

Return z.

Figure 2: Procedure IMPROVE-PACKING.

attain the minimum Cp(y). Assume that o < ;5. Define a new solution by & = (1 - o)z + 0%,

and let & denote the potential function value for % and its corresponding dual solution §. Then
O — P > aoerd.

Proof: By the definition of p, Az < pb and A% < pb. This implies that aola;z — a;%|/b; <
¢/4 < 1/4. Using the second-order Taylor theorem, we see that if |§] < €/4 < 1/4 then, for all
z, €18 < e + §e® + §|6le”. Setting § = ao(aif — a;z)/b;, we see that

G < w+t _1_a0'(a,:c — a;z) goaiz/bi ieaala,‘a"; - aimleaa,'x/b.'

- b; b; bi 2b;

< ¥+ aa};—.(a; —a;z)y; + eaa (a Z+ a;z)y;.

Using this inequality to bound the change in the potential function, we get

 J) Z(y, - §i)b; > ao Z(a,x - 4;8)y; — o= Z(a,m + a;Z)y;

= aa(ytAa: — ytAF) - aai(ytAx + y'A%) > ao(ytA:v — Cp(y)) — acey' Az.
The fact that P2 is not satisfied implies that the decrease in @ is at least aoceA®. |

During IMPROVE-PACKING, 0 is set equal to -&%5, which implies that the decrease in the
potential function due to a single iteration is Q(%ﬁ@). Observe that throughout the execution

of IMPROVE-PACKING we have ¢2%/2 < & < me®*o. If the input solution is O(¢)-optimal, then
we have the tighter bound, e*(1+0() ™0 < & < me>to. Together with the previous lemma,
this can be used to bound the number of iterations in a single call to IMPROVE-PACKING.

Theorem 2.4 The procedure IMPROVE-PACKING terminates after O(e~3A5' plog(me™!)) iter-
ations. If Ao is O(¢)-optimal, then IMPROVE-PACKING terminates after O(e~2Xo™" plog(me™'))
iterations.

We shall use the procedure IMPROVE-PACKING repeatedly to find an €g-approximate solution
for any given eg > 0. We first find a l-approximate solution, thereby solving the problem for

€ > 1, and then show how to use this solution to obtain an €p-approximate solution for any
smaller value of 5. Set € = 1/6, and call IMPROVE-PACKING with an arbitrarily chosen solution
z € P; repeatedly call this subroutine with the output of the previous call until the resulting
solution (z,A) is 6e-optimal or A < 1 + 6e. If, at termination, A < 14 6e = 2, then z is a
1-approximate solution. Otherwise, A > 2 and z is l-optimal, and hence no exact solution
exists. The first part of Theorem 2.4 implies that the number of iterations during such a call to
IMPROVE-PACKING with input (z,))is O(A~!plogm). Since this bound is proportional to A~!
and it at least doubles with every call, the number of iterations during the last call dominates
the total in all of the calls, and hence O(plogm) iterations suffice overall.

If o < 1, then we continue with the following e-scaling technique. The rest of the computa-
tion is divided into scaling phases. In each phase, we set € «— ¢/2, and call IMPROVE-PACKING
once, using the previous output as the input. Before continuing to the next phase, the algo-
rithm checks if the current output (z, A) satisfies certain termination conditions. If z is an
€g-approximate solution, then the algorithm outputs z and stops; otherwise, if A > 1 + 6¢, the
algorithm claims that no exact solution exists, and stops. First observe that if the algorithm
starts a new phase, the previous output (z,A) has A < 1+ 6¢ < 2, and this is the new input. As
a result, for each e-scaling phase, the output is an exact solution or is 6e-optimal. Hence, if the
output of a phase (z,A) has A > 1, then z is 6e-optimal; if A > 1 + 6¢, then the algorithm has
proven that no exact solution exists. Furthermore, if no such proof is found by the point when
€ < €/6, the output (z,A) has A < 1+ 6e < 1+ €; = is an €p-approximate solution. Finally,
note that for each phase, the input is a 12¢-optimal solution with respect to the new value of €.
The second part of Theorem 2.4 implies that the number of iterations needed to convert this
solution into a 6e-optimal one is bounded by O(e~2plog(me=1)). Since the number of iterations
during each scaling phase is proportional to the current value of €~2 and this value doubles each
phase, the bound for the last scaling phase dominates the total for all scaling phases.

An iteration of IMPROVE-PACKING consists of computing the dual vector y and finding the
point # € P that minimizes the cost cz, where ¢ = y*!A. Assuming that exponentiation is
a single step, the time required to compute y is O(m) plus the time needed to compute (or
maintain) Az for the current point z.

Theorem 2.5 For 0 < € < 1, repeated calls to IMPROVE-PACKING can be used so that the
algorithm either finds an e-approximate solution for the fractional packing problem or else proves
that no exact solution exists; the algorithm uses O(e=2plog(me~1)) calls to the subroutine (1) for
P and A, plus the time to compute Az for the current iterate = between consecutive calls.

Notice that the running time does not depend explicitly on n, the dimension of P. This
makes it possible to apply the algorithm to problems defined with an exponential number of
variables, assuming we have a polynomial-time subroutine to compute a point z € P of cost
Cp(y) given any positive y, and that we can compute Az for the current iterate z in polynomial
time.

Randomized Version. In some cases, the bound in Theorem 2.5 can be improved using
randomization. This approach was introduced by Klein, Plotkin, Stein, & Tardos [15] in the

context of multicommodity flow; we shall present other applications in Section 6.

Let us assume that the polytope P can be written as a product of polytopes of smaller
dimension, i.e., P = P1 x-.-x Pk where the coordinates of each vector z can be partitioned
into (z1,...,z*) and z € P if and only if ¢ € P, £ =1,...k. The inequalities Az < b can
then be written as 3" Az < b, and we shall let af denote the ith row of A i =1,...,m,
¢ =1,...,k. Let p! denote the width of P relative to Alzt < b, £ = 1,...,k. Clearly,
p = Y¢p’. A subroutine to compute Cp(y) for P consists of k subroutines, where the fth
subroutine minimizes czf subject to z¢ € P for costs of the form ¢ = ytAY. Randomization
speeds up the algorithm by roughly a factor of k if pt = p for each ¢, or the k subroutines have
the same time bound.

This assumption is satisfied, for example, in the multicommodity flow problem considered
n [18]. One way to define the multicommodity flow problem as a packing problem is to let
P be the polytope of all feasible flows satisfying the £th demand and the capacity constraints
z! < u, and let the matrix Az < b describe the joint capacity constraints 3, z¢ < u. For this
problem we get that p® = 1 for every £. We shall present other applications in Section 6.

The idea of the more efficient algorithm is as follows. To find a minimum-cost point Z in
P, IMPROVE-PACKING calculates k£ minimum-cost points it e Pt ¢ =1,...,k. Instead, we
will choose £ at random with a probability that depends on pt (as described below), compute a
single minimum-cost point #¢, and consider perturbing the current solution using this #¢. The
perturbation is done only if it leads to a decrease in ®. In order to check if P2 is satisfied
by the current solution, it would be necessary to compute Cp(y). This is no longer done each
iteration; instead, this condition is checked with probability 1 /k. This particular method of
randomizing is an extension of an idea that Goldberg [7] has used for the multicommodity flow
problem, and was also independently discovered by Grigoriadis & Khachiyan [10].

The key to the randomized version of our algorithm is the following lemma. The proof of
this lemma is analogous to the proof of Lemma 2.3.

Lemma 2.6 Consider a point (z!,...,2%) € P! x --- x P¥, with corresponding dual solution y
and potential function value ®, and an error parameter ¢, 0 < € < 1. Let 2° be a point in P?® that
minimizes the cost c*z*, where ¢ = ytA®, s = 1,...,k, and assume that o* < min{¢/(4p°a),1}.
Define a new point by changing only z°, where z° — (1 —0°)z° + 0°2°. If & denotes the potential
function value of the new solution, then @ — & > ao®((1 — €)y*A*z® — y*A°3°).

In this lemma, we have restricted ® < 1 to ensure that the new point is in P; to get the
maximum improvement, the algorithm uses 0* = min{1,¢/(4ap®)}. Since the algorithm changes
z only when the update would decrease the potential function, the decrease in the potential
function associated with updating z, is ao®A, where A, = max{((1 — €)yA%z® — y*4°%°),0}.
Let § = {s:4ap® < €} and define p’ = ¥ 45 p°. The probability B(s) with which we pick an
index s is defined as follows:

10

ﬂ(s):{ {7;; forsg §

é'IlsT forse S

Using Lemma 2.6, we get the following theorem:

Theorem 2.7 For 0 < ¢ < 1, repeated calls to the randomized version of IMPROVE-PACKING
can be used so that the algorithm either finds an e-approximate solution for the fractional packing
problem defined by a polytope P = P! x ... x P* and inequalities 5°, Az¢ < b, or else proves
that no exact solution exists; the algorithm is expected to take O(e~2plog(me=1) + klog(pe~1))
iterations, each of which makes one call to the subroutine (1) for Pt and A, for a single value of
£, £ € {1,...,k}, plus the time to compute 3, A’z! for the current iterate (z1,...,z*) between
consecutive calls.

Proof: We first analyze a single call to the randomized variant of IMPROVE-PACKING, and show
that it is expected to terminate within O(e=3pAg!log(me=1) + e¢1k) iterations. There are two
types of iterations: those where P2 is satisfied, and those where it isn’t. We bound these sepa-
rately. In the former case, since the algorithm checks, with probability 1/k, whether P2 is satis-
fied, and if so, the algorithm terminates, then we expect that O(k) of these iterations will suffice
to detect that P2 is satisfied, and terminate. In the latter case, we will show the expected de-
crease of the potential function ® during one iteration is at least min{e2)\/(8p),In(2me=1)/k}®.
Since P2 is not satisfied, we have that 3", A; > eA®, where ao®A, is the decrease in ® asso-
ciated with updating z,. Using this fact and applying Lemma 2.6, we see that the expected
decrease in ® is

Z ao®AB(s)

I

2 @

3¢S

min {8 2k}ZA mm{8 2k}e/\<1>

Since a > 2A~1e~!In(2me~1), the claimed bound on the expected decrease of @ follows.

4p3a 2p 3+Z2|S|

v

We use a result due to Karp [14] to analyze the number of iterations used by the randomized
version of IMPROVE-PACKING. Let é3 denote the ratio of upper and lower bounds on the
potential function ® during a single execution of IMPROVE-PACKING. Each iteration of the
algorithm when P2 is not satisfied is expected to decrease the potential function to p®, where
p=1-min{e2A/(8p),In(2me=1)/k}; let b = 1/p. The potential function never increases. Let
the random variable T denote the number of iterations of the algorithm when P2 is not satisfied.
Karp proved a general result which implies that

Prob(T > log, e +w + 1) < poipllogs de 415, (5)

To bound the expected number of iterations, we estimate), Prob(T > j); since p < 1, (5)
implies that this expectation is O(log; 6¢). Note that 5 < me>*/2 and in the case when the

11

input is O(e)-optimal, dg < me<@o . Hence we see that the randomized version of IMPROVE-
PACKING is expected to terminate in O(e~2pa+e=1k) = O(e~3pAg " log(me~!)+e~1k) iterations,
and is an €1 factor faster if the input is O(€)-optimal.

We use this randomized version of IMPROVE-PACKING repeatedly to obtain an €p-approximate
solution in exactly the same way as in the deterministic case. First weset ¢ =1 /6, and then we
use e-scaling. The expected number of iterations in total, is the sum of the expectations over
all calls to IMPROVE-PACKING. The expected number of iterations in each call to IMPROVE-
PACKING with € = 1/6 is O(pA5'logm + k), and each call during e-scaling is expected to have
O(e~2plog(me=1) + k) iterations. For both of these bounds, the first term is identical to the
bound for the deterministic case. There are at most logp calls to IMPROVE-PACKING with
¢ =1/6, and log ez calls during e-scaling, and hence there are O(eg 2plog(meg!) + log(peg k)
iterations expected in total.

To complete the proof, we must also observe that the routine to check P2 is expected to be
called in only an O(1/k) fraction of the iterations. This implies the theorem. |l

In fact, it is straightforward to bound the expected number of calls to optimize over each
Pt ¢ = 1,....k, by O(e2ptlog(me=1) + log(pe~!)). Let T* denote the time required for
the minimization over P{. Assume that the minimization over P, used by the deterministic
algorithm, takes time T = 3°,T‘. Notice that if we have, in addition, that Tt = T/k for
each £ = 1,...,k, or p! = p for each £ = 1,...,k, then the time required for running the
subroutines in the randomized version is expected to be a factor of k less than was required in
the deterministic version.

If T = 5, T¢, then we can combine the deterministic and the randomized algorithms in a
natural way. By running one iteration of the deterministic algorithm after every k iterations of
the randomized one, we obtain an algorithm that simultaneously has the expected performance
of Theorem 2.7 and the worst-case performance of Theorem 2.5, except that it will need to
compute Az (for the current solution z) k times more often than is required by Theorem 2.5.
Finally, in the introduction, we mentioned that results about expectation could be converted
into results that hold with high probability by repeatedly running the algorithm for twice as
long as its expected running time bound. In fact, the structure of our algorithm makes this
“restarting” unnecessary, since the final solution obtained by IMPROV E-PACKING is at least as
good as the initial solution. Thus, all of our results can be extended to yield running time
bounds that hold with high probability, without changing the algorithm.

Relaxed Versions. It is not hard to show that our relaxed decision procedure for the packing
problem could also use a subroutine that finds a point in P of cost not much more than the
minimum, and this gives a bound on the number of iterations of the same order of magnitude
as the original version.

Theorem 2.8 If the optimization subroutine (1) used in each iteration of IMPROVE-PACKING is
replaced by an algorithm that finds a point € P such that y*AZ < (1+¢€/2)Cp(y) + (e/2)Aytd
for any given y > 0, then the resulting procedure yields a relaxed decision procedure for the packing

12

problem; furthermore, in either the deterministic or the randomized implementations, the number
of iterations can be bounded exactly as in Theorems 2.5 and 2.7, respectively.

Proof: It is easy to prove that the analog of Lemma 2.3 remains valid, using o < ¢/(8ap). The
only change in the proof is to use the second-order Taylor theorem with |§] < €/8 < 1/8, in order
to bound the second-order error term for e*+5 by €|§|e®/4; this yields that the improvement in
the potential function is at least (¢/2}co0A®. Lemma 2.6 can be modified similarly. Since this
improvement is of the same order, the rest of the proof follows directly from these lemmas. 1

In some applications, there is no efficient optimization subroutine known for the particular
polytope P, as in the case when this problem is NP-hard. However, Theorem 2.8 shows that it
suffices to have a fully polynomial approximation scheme for the problem.

Another use of this approximation is to convert our results to the RAM model of computa-
tion. In this paper we have focused on a model that allows exact arithmetic and assumes that
exponentiation can be performed in a single step. As was done in [18] for the multicommodity
flow problem, we can use approximate exponentiation to compute an approximate dual solution
7 in O(mlog(mpe=1)) time per iteration. This dual has the property that if we use ¢ = §*4
in the optimization routine, then the order of the number of iterations is the same as in the
stronger model. This still does not suffice to convert the results to the RAM model, since we
must also bound the precision needed for the computation. It is easy to limit the length of
the numbers by a polynomial in the input length, similar to the length of the numbers used in
exact linear programming algorithms. However, it might be possible to find an e-approximate
solution using decreased precision, as was done in [18] for the multicommodity flow problem.
We leave this as an open problem.

In the application to the minimum-cost multicommodity flow problem, even approximate
optimization over P will be too time consuming, and we will use a further relaxed subrou-
tine. In order to be able to use this relaxed subroutine, we must adapt the algorithm to solve
a relaxed version of the packing problem itself. The relazed packing problem is defined as follows:

RELAXED PACKING: Given € > 0, an m X n nonnegative matrix A, b > 0, and convex sets
P and P in the positive orthant such that P C P, find z € P such that Az < (14 €)b, or show
that Az € P such that Az <b. '

The modified algorithm uses the following subroutine:

Given a dual solution v, find Z € P such that

y' A% < min(y'Az 1z € P). (6)

13

It is easy to adapt both the algorithms and the proofs for the relaxed problem using this
subroutine. For example, it is necessary to change only the second relaxed optimality condition,
which becomes:

(P2) ytAz — y*AZ < €(y' Az + Ay'h),

where (z,) and y denote the current solution in P and its corresponding dual, and # denotes
the solution returned by subroutine (6). Furthermore, o is determined by p, the width of P
with respect to Az < b. We shall state the resulting theorem for the case when P and P arein
the product form such that P = P! x.--x Pk, P = Pl x---x PF and P* C Ptfort=1,...,k.

Theorem 2.9 The relaxed packing problem can be solved by a randomized algorithm that is
expected to use a total of O(e~2plog(me=1) + klog(pe~1)) calls to any of the subroutines (6) for
Pt Pt and Alzt < b, £ =1,...,k, or by a deterministic algorithm that uses O(¢=2plog(me™1))
calls for P¢, Pt and Alz? < b, foreach £ = 1,...,k, plus the time to compute 3, Afz?, £ = 1,...,k,
for the current iterate (z1,...,z*) between consecutive calls.

Integer Packing. In some cases, a modified version of the packing algorithm can also be
used to find near-optimal solutions to the related integer packing problem. This approach
is a generalization of the approach used in [15] to obtain integer solutions to the uniform
multicommodity flow problem. In Section 6, we will apply this algorithm to the job-shop
scheduling problem and the network embedding problem.

To simplify notation, we outline the modification to IMPROVE-PACKING to find integer
solutions for the case when P is not in product form. If the input solution z is given explicitly
as a convex combination of points z° € P returned by the subroutine, z = 3~, v*z?, then each
iterate produced by the algorithm is maintained as such a convex combination. Furthermore,
if the values v, for the input are all integer multiples of the value of o for this call to the
algorithm, then this property will also be maintained throughout its execution.

The original version of the packing algorithm updates z by setting it equal to (1-0o)z+o0%,
where # € P is the point returned by the subroutine. Even if both z and o are integral the
new point (1 — o)z + o might not be. The modified algorithm computes yt Az?® for every point
z° in the convex combination. It selects the point ¢ with maximum y*Az?, and updates z to
z + o(% — z79). Since the current iterate is represented as a convex combination where each v*
is an integer multiple of o, the updated point is in P; furthermore, the updated point can be
similarly represented. To bound the number of iterations, we again use the potential function
&, and the same calculation as in Lemma 2.3 shows that the decrease in @ during one iteration
is at least aa(1 — €)ytAz? — Cp(y). Since y*Az? > y* Az by the choice of g, it follows that this
decrease is at least ageA®; thus we get an identical bound for the number of iterations for this
modified version of the algorithm. The disadvantage of this version is that we need more time
per iteration. In addition to the call to the subroutine, we must find the current solution z7
with maximum y?Az9.

14

We state the resulting theorem for the version of IMPROVE-PACKING for packing problems in
the product form P = P! x---x P¥ and inequalities 3", A*z® < b. The algorithm maintains each
2zt € P! as a convex combination of points in P! returned by the subroutine with coefficients
that are integer multiples of the current value of. We further modify the deterministic version
in order to maintain o as large as possible: in each iteration, we will update only one z‘,
deterministically choosing £ to maximize ao‘A,; the analysis of the randomized algorithm is
based on the fact that the expected decrease of ® is the expectation of aofA,, and so by
choosing the maximum, we guarantee as least as good an improvement in ®. Furthermore, in
contrast to the randomized version, we still check if P2 holds each iteration, and so there is no
need to count iterations when P2 is satisfied, but this is not detected.

Theorem 2.10 Forany ¢, 0 < € < 1, given an input solution (z1,...,2¥) € P! X .- x P¥, where
each z! is represented as a convex combination of solutions returned by the subroutine (1) for P* and
A?, and the coefficients are integer multiples of the current step size o/, £ = 1,...,k, the modified
version of IMPROVE-PACKING finds a similarly represented solution to the PACKING problem which
is 6e-optimal, or else the corresponding value of A has been reduced by a factor of 2. The randomized
version of the algorithm is expected to use a total of O(Ag'e~3plog(me=!) + ke~1) calls to any
of the subroutines (1) for Pf and A%, ¢ = 1,...,k; the deterministic version of the algorithm uses
O(M5te3plog(me=1)+ke 1) calls to the subroutine (1) for Pf and A?, foreach £ = 1,...,k. If the
initial solution is O(¢€)-optimal, then the number of calls for both the deterministic and randomized
versions is a factor of ¢~ smaller.

We use this result to obtain an integer packing theorem. For simplicity of notation, we shall
state the result in terms of p = max, p?, instead of the individual pt values. We shall assume
that there is a parameter d such that each coordinate of any point returned by the subroutine
is an integer multiple of d. If each ¢*® is an integer multiple of 1/d, then the current solution
is integral. We will set 0® equal to the minimum of 1 and the maximum value 27/d that is at

€

most =, where r is an integer. The algorithm will work by repeatedly calling the modified

aps?

version of IMPROVE-PACKING, and will terminate as soon as ﬁ;ﬁ < %. The main outline of the
algorithm is the same as above. First set ¢ = 1/6, and repeatedly call the modified version of
IMPROVE-PACKING until a 6e-optimal solution has been found. Then we begin the e-scaling
phase, and continue until o° becomes too small, where s is such that p* = p. Unlike the previous
algorithms, this algorithm continues even if it has been shown that there does not exist z € P
such that Az < b. This algorithm finds an integer point in P, but it might only satisfy a greatly
relaxed version of the packing constraints. The following theorem gives a bound on the quality
of the solution delivered by this algorithm. The theorem is an extension of a result in [15] for
the multicommodity flow problem with uniform capacities. The existence of an integer solution
under similar assumptions has been proven by Raghavan [21]. However, Raghavan constructs
the integer solution using linear programming.

Theorem 2.11 Let A’ = max(A*,(p/d)logm). There exists an integral solution to ", A‘z® < \b
with z¢ € P¢and X < A*+0(y/N(p/d) log(mkd)). Repeated calls to the randomized integer version
of IMPROVE-PACKING find such a solution (Z, A) with an expected total of O(dp/p+ plog(m)/A+

15

klog(dp/p)) calls to any of the subroutines (1) for P¢ and A%, £=1,...,k. A deterministic version
of the algorithm uses O(dp/p + plog(m)/A + klog(dp/p)) calls to each of the k subroutines.

Proof: We first analyze the number of iterations of the deterministic algorithm given above,
using Theorem 2.10 in a way similar to the analysis of the algorithm for the fractional packing
problem. Let (Z,) denote the solution output by the algorithm. First we compute the number
of iterations when € = 1/6. The first term of the bound in Theorem 2.10 depends on A~1, which
doubles with each call to IMPROVE-PACKING, and so its total contribution can be bounded by
its value for the final call with e = 1/6. Since the value of A changes by at most a factor of 2
during e-scaling, this term contributes a total of O(plog(m)/) iterations to the overall bound.
The contribution of the second term is k times the number of times that IMPROVE-PACKING
is called with ¢ = 1/6; this yields a term of O(klog(p/})) in the overall bound. To bound
the number of iterations during e-scaling, we first bound the value of € at termination. Focus
on the call to IMPROVE-PACKING for which o® < 1/d, where s is such that p° = p. Recall
that A* < XA < 2A* throughout e-scaling. Since o® = O(e?A/ (plog(me=1))), it suffices to have
¢ = O(y/plog(mkd)/(A*d)), in order that o* < 1/d. The total contribution of the first term of
the bound in Theorem 2.10 throughout e-scaling can again be bounded by its value for the final
call to IMPROVE-PACKING, which is O(pd/p). The total contribution of the second term can
be bounded by O(kloge~!) = O(klog(Ad/p)). This yields the claimed bound. The analysis of
the randomized version is identical.

Next consider the quality of the solution found. The algorithm can terminate due to reducing
0% below 1/d either while ¢ = 1/6, or during the e-scaling. Suppose that the former option
occurs. We know that o° > ¢/(8ap®) = Q(A/(plogm)). This implies that A = O((p/d)log m),
and this is within the claimed bound. Next assume that e < 1/6 when o° becomes less than
1/d. Since A* < X < 2A* and ¢° = O(¢/(ap’)), we see that o° = O(e2)*/(plog(me™1))) in
this case. This implies that ¢ = O(+/plog(me=1)/(d ")), which is O(y/plog(mkd)/(dA*)). The
output, which is obtained at the end of the previous scaling phase, is O(¢€)-optimal. Therefore,
X meets the claimed bound. |}

3 The Fractional Covering Problem

The fractional covering problem is defined as follows:

COVERING: 37z € P such that Az > b, where A is a nonnegative m X n matrix, b >0,
and P is a convex set in the positive orthant of R™.

In this section, we shall describe a relaxed decision procedure for the fractional covering
problem whose running time depends on the width p of P relative to Az > b; as in the previous
section, the width is defined max; max.¢p a;z/b;.

We shall assume that we are given a fast subroutine to solve the following optimization

16

problem for P and A:

Given an m-dimensional vector y > 0, find £ € P such that

¢ = min(cz : z € P), where ¢ = y*A. (7

For a given error parameter € > 0, an e-approzimate solution to the COVERING problem is
a vector z € P such that Az > (1 — €)b; an ezact solution is a vector ¢ € P such that Az > b.

Relaxed Optimality. Consider the following optimization version of the COVERING problem:
max(A : Az > Ab and z € P), (8)

and let A* denote its optimal value. For each z € P there is a corresponding maximum value
A such that Az > Ab. We shall use the notation (z, A) to denote that A is the maximum value
corresponding to z. A solution (z,) is e-optimal if z € P and A > (1 — €)A*.

The method to solve this problem is analogous to the one used for the fractional packing
problem. Let y > 0, y € R™ denote a dual solution, and let C¢(y) denote the maximum value
of cz for any £ € P where ¢ = y*A. Let (z,)) denote a feasible solution, and consider the
following chain of inequalities:

Ay'b < y* Az < Ce(v)- ©)
Observe that for any dual solution y, the value C¢(y)/y'b is an upper bound on A*. We will
use the following two relaxed optimality conditions.

(C1) (14 e)Ay'd > y* Az
(€2) Ce(y) - y* Az < €(Ce(y) + y'b).

Note that the last term in P2 is A times the last term in C2. This is done to improve the
running times. Due to this difference in the definition we cannot claim that a pair (z,) and

y satisfying condition C1 and C2 are e-optimal unless A is close to 1. We have the following
lemma instead.

Lemma 3.1 Suppose that (z,)) and y are feasible primal and dual solutions that satisfy the
relaxed optimality conditions C1 and C2. If A < 1 — 3¢, then there does not exist an exact solution
to the fractional covering problem. If A > 1 — 3¢, then z is 3e-optimal.

Proof: C1 and C2 imply that
Ce(y) < (1—o7'(y'Az +ey'd) < (1 -)7 ((L+ €A+ e)y'd.

17

IMPROVE-COVER(Z, €)

Ag — min; a;z/b;; o — 4/\516“1 In(4me~1); 0 — 4-3-‘;.

While min; a;z/b; < 2X and z and y do not satisfy C2
Foreachi=1,...,m: set y; «— g—‘_e‘““"‘”/b‘.
Find a maximum-cost point Z € P for costs ¢ = y* A.
Update z «— (1 — o)z + 0Z.

Return z.

Figure 3: Procedure IMPROVE-COVER.

Consider the case when A > 1 — 3e. For any dual solution y, A* < Cc(y)/(y'b). This implies
that

A Ce(y) (1+e)A+e 1+ € 1
— < < < < .
X = Ayth T Ml-e€¢ T 1l-€ (1—-€)(l-3¢) T 1-3e

On the other hand, if A <1 — 3¢, we have

yth 1—c¢

Hence, in this case, there is no exact solution to the fractional covering problem.

The Algorithm. The heart of the covering algorithm is the procedure IMPROV E-COVER (see
Figure 3), which is the covering analog of the procedure IMPROVE-PACKING. It uses a dual
solution y defined as a function of z, where y; = ,—};e“"“"x/ b for some parameter a; y is the
dual solution corresponding to z. Throughout the procedure, the current solution (z,A) and
its corresponding dual solution y will satisfy C1. If C2 is also satisfied, then we can either
conclude that no feasible solution exists, or that A is sufficiently close to optimality, and we can
terminate. Otherwise, we find the point & € P that attains the maximum Cec(y), and we modify
z by moving a small amount towards . This will decrease the potential function ® = y‘b, and

gradually increase A.

The following lemma is similar to Lemma 2.2.

Lemma 3.2 If a > 2A~1e~!In(4me!) and 0 < ¢ < 1, then any feasible solution (z,A) and its
corresponding dual solution y satisfy C1.

Proof: For this proof, it is useful to introduce a localized version of C1.
(C1) Foreach i=1,...,m, (1+ €/2)Ab; > a;x or a;zy; < z—fm-/\ytb.

Note that C1 implies that

a;zy; < (14 €/2)Ayb; + 577-1/\3/%'

18

Summing up over all i, we see that C1 implies C1.

Next we show that the hypothesis of the lemma implies that C1 is satisfied. Notice that
ytb = ¥, e~2%i=/b%_ By the maximality property of A, we have that y'b is at least e~**. Consider
any row 1 for which (1 + €/2)Ab; < a;z and let A\; = a;z/b;. This implies that A; > (1 + €/2)A.
If az > 1, then ze~%* is a monotonically nonincreasing function of z. Since, by definition of «,
we have \;a > Aa > 1, we get that

a;Ty; (aiz/b;)e~oai=/bi ye=o < (14 €/2)Ae—22(1+¢/2)

&
yth ytb yth e—ai ’

— 2\ —aed/2 o
(14+€/2)Xe < 5

Next we prove that for an appropriately chosen o, the new solution significantly reduces the
potential function ® = ytb = T, e~aiz/bi,

Lemma 3.3 Consider a point 2 € P and an error parameter ¢, 0 < ¢ < 1, such that = and its
corresponding dual solution y have potential function value ® and do not satisfy C2. Let £ € P
attain the maximum Cc(y). Assume that 0 < ;5. Define a new solution by ¢ = (1-o0)z+ 0%,

and let ® denote the potential function value for # and its corresponding dual solution §. Then
b — > cacd.

Proof: By the definition of p, Az < pb and A% < pb. This implies that aola;z — a;E|/b; <
€¢/4 < 1/4. Using the second-order Taylor theorem we see that if |6] < €/4 < 1/4, then, for all
z, e*+® < e + be” + £|6|e”. Setting § = ao(a;x — a;E)/b;, we see that

. 1 ao(a;z — a;%) o/ 1eaolaz — a;F| b
< = —oa; T by el 1 t —aa;z/b;
oS wtE Ty ¢ YT
1 - 1 y
< ¥ +ao(air — ;)Y + eao—(a;iz + a;%)y;.
b,‘ Qbi

Using this inequality to bound the change in the potential function, we get

®-90 = Z(y; - 9;)b; > ac Z(aif: - @)Y — aa% Z(a,-i: + a;z)y;
= ao(y Az - y'Az) - ao%(ytA:i + y'Az)
= ao(Ce(y) - y*Ag) - a0 (Ce(y) + y*Az) 2 ao(Ce(y) - v* Az) - aoeCe(y).

Since C2 is not satisfied, the decrease in ® is at least ace®. |

Next we show that the chosen value of « is large enough to guarantee that condition C1 is
always satisfied during the execution of IMPROVE-COVER.

Lemma 3.4 If 0 < € < 1, then throughout the execution of IMPROVE-COVER, the current
solution (z,A) has A > 3A¢/4.

19

Proof: The value of the potential function ® does not increase during the execution of IMPROVE-
CovER. Initially, ® < me~>%, and for any current solution (z,), ® > e~2*, Therefore

)\0 - A S i—lnm S 6/\0/4 S A0/4

This implies that A > 3Ao/4.

Since we set a = 4¢-1\51log(me™1), Lemma 3.2 implies that C1is satisfied throughout the
execution of IMPROVE-COVER. Since o is set equal to 3%, the decrease in the potential function

due to a single iteration is Q(EEQ). Observe that during a single call to IMPROVE-COVER we
have e~20% < & < me—>%0, If the initial solution is 6e-optimal for € < 1/12, then we have the
tighter bound, e~(1+126% < e~o(1-69~ o < $ < me~**, This, together with Lemma 3.3,
can be used to bound the number of iterations in a single call to IMPROVE-COVER.

Theorem 3.5 The procedure IMPROVE-COVER terminates in O(¢~3plog(me~1)) iterations. If
the initial solution is 6e-optimal for € < 1/12, then IMPROVE-PACKING terminates in O(e~?plog(me1))
iterations.

We use the procedure IMPROVE-COVER repeatedly to find an €o-approximate solution. Be-
fore this, we must specify how to obtain an initial solution of sufficient quality, which is some-
what more involved than for the packing analog (where any initial solution in P suffices). For
each i = 1,...,m, we find z; € P that maximizes a;z; this takes m calls to the subroutine. If
there exists an i such that maz(a;z : ¢ € P) < b;, then we can conclude that no exact solution
for the COVERING problem exists. Otherwise, we take (1/m)3"; z; as the initial solution, for
which the corresponding value of A is at least 1/m.

Lemma 3.6 With m calls to the subroutine (7) for P and A, we can either find a solution z € P
satisfying Az > (1/m)b, or conclude that there does not exist an exact solution to the COVERING
problem.

The basic approach to using IMPROVE-COVER to obtain an €o-approximate solution closely
parallels the packing algorithm. First set ¢ =1 /6 and start with the point z € P given by the
previous lemma; this is a solution (z,A) with A > 1/m. Between consecutive calls to IMPROVE-
COVER, we increase Ao by at least a factor of 2, and so within logm iterations, IMPROVE-COVER
must output an exact solution or else find feasible primal and dual solutions (z,) and y that
satisfy C1 and C2. Suppose the latter occurs. If A <1-3e= 1/2, then the algorithm concludes
that no exact solution exists (by Lemma 3.1); otherwise, A > 1/2 and z is 1 /2-optimal. If
€0 > 1/2 then the algorithm outputs z and stops; otherwise, we proceed to e-scaling. Each
scaling phase decreases € by a factor of 2, and then makes a single call to IMPROVE-COVER.
The algorithm checks if the resulting solution (z,A) is an €o-approximate solution, and if so,
outputs z and stops. Otherwise, it checks if A <1 -3¢, and if so, claims that no exact solution
exists and stops. If neither termination criterion is satisfied, the algorithm proceeds to the next
phase. The input to each scaling phase has A > 1 — 3¢ > 1/2, and so the output is either an

20

exact solution, or else satisfies the relaxed optimality conditions. Note that the output must
be 3e-optimal in the only case when further phases are needed. Hence, each call to IMPROVE-
CovVER has an input that is a 6e-optimal solution with the new ¢ < 1/12. Furthermore, the
algorithm is guaranteed to stop by the point when ¢ < ¢3/3. IMPROVE-COVER uses O(plogm)
iterations for each of the O(log m) iterations with € = 1/6, and the number of iterations during
e-scaling is dominated by the the number of iterations during the final call to IMPROVE-COVER,
which implies the following theorem.

Theorem 3.7 For 0 < € < 1, repeated calls to IMPROVE-COVER can be used so that the
algorithm either finds an e-approximate solution for the fractional covering problem, or proves that no
exact solution exists; the algorithm uses O(m+plog? m+¢=2plog(me~1)) calls to the subroutine (7)
for P and A, plus the time to compute Az for the current iterate z between consecutive calls.

Randomized Version. As was true for the fraction packing problem, we can use random-
ization to speed up the fractional covering algorithm if the polytope is in product form. Sup-
pose that P = P! x --. x P¥ and the inequalities, when written to reflect this structure, are
S Afzt > b. In this case, a subroutine (7) to compute C¢(y) for P and A consists of a call
to each of k subroutines: subroutine (7) for P¢ and A¢, £ = 1,...,k. Instead of calling all &
subroutines each iteration, the randomized algorithm will make a call to the subroutine (7) for
P* and A* for a single value s € {1,...,k}. The choice of s is made at random, according to
a probability distribution that we will describe below, independently of choices made in other
iterations. A tentative modification of the current iterate (z!,...,z*) is made, where only the
coordinate z° is updated. If this change causes the potential function to decrease, then it is
really made; otherwise, the current iterate is unchanged by this iteration. Since C¢(y) is not
computed each iteration, we cannot check if C2 is satisfied; instead, in each iteration, with
probability 1/k, the algorithm does the additional work needed to check this condition.

Let pf denote the width of P¢ subject to A%z > b, £ = 1,...,k. As in the case of the
PACKING problem, randomization speeds up the algorithm by roughly a factor of k if p! = p? =
.«- = pF, or the k subroutines have the same time bound. The key to the randomized version
of our algorithm is the following lemma, which is analogous to Lemma 2.6.

Lemma 3.8 Consider a point (z!,...,z%) € P! x ... x P* with corresponding dual solution y
and potential function value ®, and an error parameter ¢, 0 < ¢ < 1. Let #° be a point in P? that
maximizes the cost c°z?, where ¢® = y*A%, s = 1,...,k, and assume that o° < min{e/(4p°a),1}.
Define a new point by changing only z°, where z° — (1 - 0%)2® + 0°%°. If & denotes the potential
function value of the new solution, then ® — & > ao®((1 — €)yt A°%* — ytA®z?).

Since the algorithm updates « only when @ decreases, the change in ® associated with
updating z, is aoc®A,, where A; = max{((1 — ¢)y*A4°Z° — y*A*z°),0}. We have restricted
o® < 1 to ensure that the new point is in P; to get the maximum improvement, the algorithm
sets ot = min{1, ¢/(4ap’)}. Let § = {s: 4ap® < ¢} and define p’ = 3" 45 p°. The probability
((s) with which we pick an index s is defined as follows:

21

2 forsg S
— 207
ﬁ(s)-—{ﬂ%‘ forse §

Using Lemma 3.8 instead of Lemma 3.3, we get the following theorem:

Theorem 3.9 For 0 < € < 1, repeated calls the randomized version of IMPROVE-COVER can
be used so that the algorithm either finds an e-optimal solution for the fractional covering problem
defined by the polytope P = Pl x --. X P* and inequalities 3", A’z® > b, or else proves that no
exact solution exists; it is expected to use a total of O(mk +plog?m+kloge! +¢2 plog(me1))
calls to any of the subroutines (7) for P! and A, £ = 1,...,k, plus the time to compute }_, Algt
between consecutive calls.

Proof: We find an initial solution using Lemma 3.6. This requires m calls to the subroutine (7)
for each P! and A%, £ = 1,...,k. Hence, we can assume that our initial solution (z,A) has
A>1/m.

Next we analyze a single call to the randomized variant of IMPROV E-COVER, in a way
completely analogous to the analysis of the randomized version of IM PROVE-PACKING. There
are two types of iterations: those where C2 is satisfied, and those where it isn’t. We separately
bound the expected number of each of these. For the former, since C2 is checked with probability
1/k in each iteration, there are O(k) of these iterations expected before the algorithm detects
that C2 is satisfied, and terminates. In the latter case, we shall show that the expected decrease
of & during each iteration is Q{min{e?/p, A\~1log(me~1)/k}®. Since C2is not satisfied, 3 , A, 2
¢®, where ag®A, is the decrease in ® associated with updating z,. Using this fact and applying
Lemma 3.8, we see that the expected decrease in @ is

s e p a
ac®A,B(s) = o e TA Y e A
; (s) sng;; dpsa 2p' 25;9 2|S|

k
) € «) € a
— — > s .
mm{Sp’2k}sE=1 Ay > mm{gp,zk}e@

Since a = Q(e~1A~1log(me~1)), we get the claimed decrease in ®.

v

To analyze the number of iterations, we once again apply the result of Karp [14]. This implies
that the randomized version of IMPROVE-COVER is expected to terminate in O(pe~3log(me1)+
ke=1)o) iterations, and is a factor of €~ faster if the initial solution is 6e-optimal for € < 1/12.

We use this randomized version of IMPROVE-COVER repeatedly to find an €-approximate
solution in exactly the same way as in the deterministic case. First we set € =1 /6, and then
use e-scaling. The contribution of terms that depend on Ag or ¢~1 can be bounded by their
value for calls in which these parameters are largest. For the remaining terms, we need only
observe that there are O(logm) calls to IMPROVE-COVER with € = 1/6, and O(log €g!) calls
during e-scaling. To complete the proof, we note that condition C2 is expected to be checked
in an O(1/k) fraction of the iterations. 1§

22

Relaxed Version. It is not hard to see that a subroutine that finds a point in P of cost not
much less than the maximum can be used in the algorithm, and gives a bound on the number
of iterations of the same order of magnitude.

Theorem 3.10 If the optimization subroutine (7) used in each iteration of IMPROVE-COVER is
replaced by an algorithm that finds a point # € P such that y* A% > (1 —¢€/2)Cc(y) — (¢/2)Aytb for
any given y > 0, then the resulting procedure yields a relaxed decision procedure for the fractional
covering problem; furthermore, in either the deterministic or the randomized implementations, the
number of iterations can be bounded exactly as before, in Theorems 3.7 and 3.9, respectively.

Proof: It is easy to prove that the analogs of Lemmas 3.3 and 3.8 remain valid. The rest of
the proof follows from these lemmas. |

In some of our applications, the optimization over P required by the original version of the

algorithm is difficult or even NP-hard. However, if there is a fast fully polynomial approximation

scheme for the problem, then Theorem 3.10 allows us to use the approximation algorithm
instead.

4 The General Problem

Consider the class of problems in the following form:

GENERAL: 37z € P such that Az < b, where A is an arbitrary m X n matrix, b is an
arbitrary vector, and P is a convex set in R"™.

We shall assume that we are given a fast subroutine to solve the following optimization
problem for P and A:

Given an m-dimensional vector y > 0, find a point & € P such that:

ci = min(cz : € P) where ¢ = y'A. (10)

Given an error parameter € > 0 and a positive vector d, we shall say that a point z € P is
an e-approzimate solution if Az < b+ ed; an eract solution is a point z € P such that Az <b.

The running time of the relaxed decision procedure for this problem depends on the width p of
P relative to Ax < b and d, which is defined in this case by

= maxmax——————-—-—-la'.z-bi]
p= i z€EP d;)

23

This formulation of the problem is quite general. We shall also be interested in a special
case of this problem, where the constraints can be viewed as simultaneous packing and covering
constraints.

SIMULTANEOUS PACKING AND COVERING: 37z € P such that Az < b, and Az > b where A and A
are m x n and (m — 1) X n nonnegative matrices, b > 0 and b > 0, and P is a convex set in the positive
orthant of R".

In other words, this is the special case where the coefficients of each row of Az < b are
cither all positive (a packing constraint) or all negative (a covering constraint). Furthermore,
given this interpretation it is natural to define d as d; = |b;], fore=1,...,m.

To simplify notation for this special case, we will let a;z < b; denote the ith row of Az < b
and let a;z > b; denote the ith row of Az > b. Then, for a given error parameter €, 0 < € < 1,
an e-approzimate solution is a vector ¢ € P such that Az < (1 + €)b and Az > (1 - €)b.
In the next section we will give tec}miques to reduce the width p, which for this problem is
max,ep max{max; a;z/b;, max; a;z/b;}.

Relaxed Optimality. Consider the following optimization version of the GENERAL problem:
min() : Az < b+ Ad and z € P), (11)

and let A* denote its optimal value. There exists an exact solution to the GENERAL problem
if * < 0. For each z € P, there is a corresponding minimum value X such that Az < b+ Ad.
We shall use the notation (z, A) to denote that A is the minimum value corresponding to z. A
solution (z,) with € P is an e-approximate solution ifA<e

The algorithm for this problem is similar to the packing and covering algorithms discussed
in the previous two sections. Let y > 0, y € R™ denote a dual solution, and let Cg(y) denote
the minimum Cg(y) = min(y*Az — y'b : 2 € P). Let (z,)) denote a feasible solution, let y
denote a dual solution and consider the following chain of inequalities:

Ayld > ytAz — y'b > Cg(y). (12)

It follows that for any dual solution y, A* > Cg(y)/y'd. Notice that if there exists an exact
solution to the GENERAL problem, then Cg(y) < 0 for each dual solution y. The relaxed
optimality conditions for this problem are defined as follows:

(G1) Ay'd < 4y*(Az - b)
(G2) y(Az —b) — Cg(y) < (A/5)y"d.

24

IMPROVE-GENERAL(Z, €)

Xo — maxi(a;z — b;)/di; o« — 4Xg In(6mpAgt); o — -2—4%‘2;5.

While max;(a;z — b;}/d; > Ao/2 and z and y do not satisfy G2
Foreachi=1,...,m: set y; — dl‘_e“(“‘”“b*’)/d‘.
Find a minimum-cost point ¥ € P for costs ¢ = y* A.
Update £ — (1 — o)z + 0Z.

Return z.

Figure 4: Procedure IMPROVE-GENERAL.

The relaxation in G2 seems weaker than in the case of the packing or covering problems, since
neither Cg(y) nor y* Az is included on the right-hand side. However, Cg(y) < 0 whenever there
exists an exact solution, and yAz is not known to be positive. The following lemma is the
analog to Lemma 3.1.

Lemma 4.1 Suppose that (z,)) and y # 0 are feasible primal and dual solutions that satisfy the
relaxed optimality conditions G1 and G2, and A > 0. Then there does not exist an exact solution
to the GENERAL problem.

Proof: Conditions G1 and G2 imply that
Md 2 5(s(Az - b) - Cg(y) > 20y'd - 5Co(y),

which implies that
1
> —Ay'd.
Co(y) 2 5529

The assumptions that d > 0 and y # 0 imply that y'd > 0. Since A > 0,

and hence there does not exist an exact solution. |}

The Algorithm. The heart of the algorithm is procedure IMPROVE-GENERAL (see Figure 4),
which is the analog of procedures IMPROVE-PACKING and IMPROVE-COVER. For each z, let
y be the dual solution corresponding to z, where y; = a%e"(""x‘b")/d‘ for some choice of the
parameter a. Condition G1 will be satisfied throughout the procedure. If the current solution
(z,)A) has A < ¢, then z is an e-approximate solution. If A > €, and G2 is satisfied as well, then,
by Lemma 4.1, we can conclude that there does not exist an exact solution. Otherwise, we
use the point # € P that attains the minimum Cg(y) to modify z by moving a small amount
towards Z. This decreases the potential function ® = y'd, and gradually decreases A.

We first prove that if « is sufficiently large, then G1 is satisfied.

25

Lemma 4.2 If a > 2A~!1In(6mpA=1), then any feasible solution (z, A) and its corresponding dual
solution y satisfy G1.

Proof: Consider the following localized version of G1:
(G1) for each i = 1,...,m, 2(a;z — b;) > Ad; or y;d; < Ay*d/(6mp).

We first show that 1 implies G1. Let I denote the set of indices such that 2(a;z — b;) > Ad;.
Then, using A < p, we see that

Mid = AN wdi + A yidi <2 (aiw — bi)yi + Y Ay'd/(6mp)

i€l igl i€l igl
< 2y (Az —b)+2)_ yilaiz — bi| + Ay'd/6 = 2y*(Az - b) + 2y y;d;kl—i—:‘-il—?ﬁi—l- + Ay'd/6
igl gl *
< 2y'(Az - b) +2p) yidi + Ay'd/6 < 2y'(Az - b) + (1 /2)Aytd.
igl

Hence, condition G1 implies that Ay'd < 4y*(Az - b).

Next we show that our choice of a implies that G1 is satisfied. Consider any row ¢ such that
Ad; > 2(a;z — b;). By the definition of y;, we have that y;d; < €22, Also, by the minimality
property of A, ytd > e**. Therefore,

yid = 6mp’

We prove next that for an appropriate choice of o, updating the solution significantly reduces
the potential function ® = y'd =_; ec(aiz=bi)/di

Lemma 4.3 Consider a point z € P and an error parameter ¢, 0 < € < 1, such that (z,A) and
its corresponding dual solution y have potential function value ® and do not satisfy G2. Let £ € P
attain the minimum Cg(y). Assume that ¢ < E’l—p—;. Define a new solution £ = (1 — o)z + 0%,

and let & denote the potential function value for £ and its corresponding dual solution j. Then
- & = Qaoc)d).

Proof: By the definition of p, we have that A < p, as well as |a;z—b;|/d; < p and |a;2~b;|/di < p,
i=1,...,m. Hence, o < 1/(24ap), and this implies that ac|aiz — a;Z|/d; = ao|(a;z - b;) -
(a;& — b;)|/d; < 1/12. Using the second-order Taylor theorem, we see that if |6] < 1/2, then,
for all z, e*+5 < eF + e + 62e®. Setting § = ao(a;& — a;z)/d;, we see that

i < wi+ }_Maa(a;i _ aim)ea(aez-bi)/di + iaz(f?[aiit _ aix|2ea(air~bs)/di

d; d; d; &2

IA

1, . a?e? 2
Y + aa—(;((a;a: — b,‘) — (a,'m — b,‘))y,‘ -+ ——d?—l(a,-x — b,‘) — (a;:c - b,)l Yi.

26

We use this inequality to bound the change in the potential function:

-0 = Z(?li — 9i)d;

d*
t

> oo Z((aix - b)) = (a;F — b;))y; — a*o? Z l(a;z — b;) — (a:& — b;)|? s

= ao(y'(Az — b) — Cg(y)) — 4a2a?p?y'd > ao(/\/5 — 4a0p?)®.
Since o < A/(24ap?), we see that the decrease in ® is Q(Aac®). |

During IMPROVE-GENERAL, o is set equal to iﬁlﬁf’ and so the decrease in the potential

2
function due to a single iteration is Q(%@). Observe that during a single call to IMPROVE-

GENERAL we have e*/2 < & < me®**, This, together with the previous lemma, can be used
to bound the number of iterations in a single call to IMPROVE-GENERAL.

Theorem 4.4 The procedure IMPROVE-GENERAL terminates in O(p?A5%log(mpAg?)) itera-
tions.

We use the procedure IMPROVE-GENERAL repeatedly to find an e-approximate solution. We
start by calling IMPROVE-GENERAL with any point in P and let (z, A) denote its output. We
checkif A < ¢, and if so output the e-approximate solution z, and stop. If A > ¢ and condition G2
is satisfied, then we conclude that there does not exist a solution and stop. If neither termination
condition is satisfied, then this process is repeated, where the new input to IMPROVE-GENERAL
is its previous output. Note that if the output (z,)) of any call to IMPROVE-GENERAL does
not satisfy G2, then the value A must have decreased by at least a factor of 2. By observing
that the number of iterations during the last call to IMPROVE-GENERAL dominates the total
number of iterations, we obtain the following theorem.

Theorem 4.5 For any ¢, 0 < € < 1, repeated calls to IMPROVE-GENERAL yields an algorithm
that finds an e-approximate solution to the GENERAL problem or proves that no exact solution
exists; the algorithm uses O(p2e~2 log(mpe~1)) calls to the subroutine (10) for P and A, plus the
time to compute Az for the current iterate z between consecutive calls.

Randomized Version. As was true for the fraction packing and covering problems, we can
use randomization to speed up the algorithm for the general problem if the polytope is in
product form. Suppose that P = P! x - -x P* and the inequalities, when written to reflect this
structure, are 3" A‘z? < b. Let p¢ be the width of P? relative to Azt <bandd,f=1,...,k. If
pl = p? = ... = p® = p, then we can speed up the algorithm by roughly a factor of k. The idea
of the improved version is analogous to the randomized versions of the packing and covering
algorithms.

A subroutine to compute Cg(y) for P consists of calls to k subroutines: subroutine (10) for
Pt and A, € = 1,...,k. In each iteration, the modified IMPROVE-GENERAL randomly picks

27

an index s € {1,...,k}, calls subroutine (10) for P* and A°, and uses the solution computed
by this call to compute a tentative update for z*, whereas all other components of the current
iterate z are unchanged. We update z* only if this results in a decrease in ®. Since G2 is not
computed by this subroutine call, in each iteration, with probability 1/k, the algorithm does
the additional work needed to check if G2 is satisfied.

The key to the improved version of our algorithm is the following lemma, which is analogous
to Lemmas 2.6 and 3.8.

Lemma 4.6 Consider a point (z!,...,2%) € P! x ... x P* with corresponding dual solution
y and potential function value ®, and an error parameter ¢, 0 < ¢ < 1. Let £* be a point
in P* that minimizes the cost c®z®, where ¢ = y'A®, s = 1,...,k, and assume that o° <
min{A/(24ap®p),1}. Let the new solution be defined by changing only z* where z° «— (1 —
0%)z® + 0°%°. If & denotes the potential function value of the new solution, then & — $ =
Q(ao.s(ytAszs - ytAsis) - 402(03)2(p3)2ytd).

Since the algorithm updates z only when ® decreases, the change in ® associated with up-
dating z, is @o®A,, where A, = max{(y*A°z® — y* A°%*) — 4a0*(p°®)*y'd, 0}. We have restricted
0% < 1 to ensure that the new point is in P; to get the maximum improvement, the algorithm
sets 0° = min{)\/(24ap®p),1}. Let § = {s: 24ap®p < A} and p’ = J ;45 p°. The probability
B(s) with which we pick an index s is defined as follows:

p*
B(s) = —2—5, fors¢ S
K| forse S

The following theorem is analogous to Theorems 2.7 and 3.9.

Theorem 4.7 For 0 < € < 1, repeated calls the randomized version of IMPROVE-GENERAL can
be used so that the algorithm either finds an e-optimal solution for the general problem defined by
the polytope P = Pl x ---x P¥ and inequalities 3, Afzt < b and tolerance vector d, or else proves
that no exact solution exists; it is expected to use a total of O(p%e~2log(pme=1) + klog(pe~))
calls to any of the subroutines (10) for P¢ and A, £ = 1,...,k, plus the time to compute 3_, Afz‘
between consecutive calls.

Proof: The proof of this theorem is analogous to the proofs of the randomized algorithm
analyzed above. We first consider one call to IMPROVE-GENERAL. Once again, there are
two types of iterations: those where G2 is satisfied, and those where it isn’t. To bound the
expected number of the first type, we note that we terminate after each such iteration with
probability 1/k, and hence we expect that O(k) suffice. For the second type, we first give a lower
bound on the expected decrease of the potential function ®. Recall that ao®A, is the decrease
in ® associated with updating z,. Furthermore, since 0° < A/(24ap®p), 3" ac®(p®)? < A/24.
Applying this along with the fact that G2 is not satisfied, we have that) A; > AD/5 —

28

4P /24 = A®/30. Hence, we get that the expected decrease in @ is

A p° a
)SURE VNS B
sgs 2Aoptp 20 er IR

min{ A a}f:A > '{—’\ “})‘Q
48p2 2k [& T = N\ 48p2 2k [30

Z ao’A,fB(s)

v

Once again, we use the result of Karp [14] to analyze the running time. The above bound
on the expected decrease in ® implies that the randomized version of IMPROVE-GENERAL is
expected to terminate after O(p?A52log(pmAg?) + k) iterations. The number of times we call
the modified IMPROVE-GENERAL is bounded by O(log(pe!)). The overall time bound follows
from the fact that Ag decreases by a factor of 2 each time we invoke the procedure, as well
as the fact that the routine to check G2 is expected to be called in a O(1/k) fraction of the
iterations. |

5 Decreasing the width p

The running times of our algorithms are proportional to the width p. In this section we
present techniques that transform the original problem into an equivalent one, while reducing
the width. Each of the techniques assumes the existence of a particular fast subroutine related
to optimization over P; different subroutines might be available in different applications.

Relaxation of Integer Programming. In some cases, the primary interest in solving a
particular fractional packing problem is to obtain a lower bound on an integer program of the
form: minimize cz subject to A’z < &’ and z € P, where the constraints constitute an integer
packing problem and ¢ > 0. As a result, we wish to decide if there exists a fractional solution
¢ € P that satisfies packing constraints Az < b, that consist of A’z < b’ and cz < by, for some
value byg. We shall give a technique to reduce the width of fractional packing problems that
arise in this way.

The assumptions that A > 0 and P is in the nonnegative orthant imply that any integer
solution must satisfy z; = 0 whenever there exists an index ¢ such that a;; > b;. Hence, instead
of using P, we can tighten the fractional relaxation, and use P = {z:2 € P, z; =0if j € J},
where J = {j : 3¢ such that a;; > b;}. The width p of P relative to Az < b is bounded by
¢ = maxyep)_; zj. For example, if the variables of the integer program are restricted to be 0
or 1, we get { < n.

Theorem 5.1 Forany ¢, 0 < ¢ < 1, there is an e-relaxed decision procedure to solve a fractional
packing problem that is derived from an integer packing problem in O(e~2(log(me~!)) calls to the
subroutine that finds a minimum-cost point in the restricted polytope P, plus the time to compute
the value of the left-hand side of the packing constraints for the current iterate after each update.

fz<1lforallz & P, then { < n.

29

If P is a direct product of convex sets, then so is P, and hence the same technique can be
applied for speeding up the randomized version of the packing algorithm as well.

Restricting P¢. The next technique can be applied for some packing problems where P
is a product of convex sets in smaller dimension. The idea is to define the same packing
problem using a different polytope that has a smaller width. This technique can be applied for
multicommodity flow problems (to obtain the formulation used in [18]) and for the preemptive
machine scheduling problem, which will be discussed in the next section.

Consider a packing problem defined by the convex set P = P1x-.-x P¥_ and the inequalities
T, Atz < b. It is easy to see that the convex set P = P! x --- x P¥, where P* = {zf € P*:
Afzt < b}, £=1,...,k, and the same inequalities define the same fractional packing problem,
and has p < k. It is possible that one of the polytopes, P¢, £ = 1,...,k, is empty, and if so,
the optimization routine for P¢ will detect this, and thereby prove that there does not exist an
exact solution to the original problem.

Theorem 5.2 For any ¢, 0 < € < 1, there is an e-relaxed decision procedure to solve a fractional
packing problem defined by P = P! x --- x P*¥ and 3, A%z < b that is expected to use a
total of O(e=2klog(me=1) + klogk) calls to a subroutine that finds a minimum-cost point in Pt,
£=1,...,k, and a deterministic version that uses O(e~2k? log(me~1)) such calls, plus the time to
compute the value of the left-hand side of the packing constraints for the current iterate after each
update.

Recall that the multicommodity flow problem can be defined with P¢ being the dominant
of the convex combinations of all paths from the source of commodity £ to its sink. In this
case, optimization over P‘ is a shortest path computation, but the parameter p defined by
the problem can be arbitrarily high. The above technique imposes capacity constraints on the
flows of individual commodities (since a flow is a convex combinations of paths). The resulting
equivalent formulation has p < k, but the required subroutine is the more time consuming
minimum-cost flow computation.

Decomposition for Packing Problems. Consider the packing problem defined by a poly-
tope P and inequalities Az < b. We introduce a decomposition technique that defines a related
problem with decreased width by replacing P and A by an equivalent problem in the product
form. This decomposition can be used in cases where P is a polytope and we are given a sub-
routine that is more sophisticated than an optimization routine for P; the details of this routine
will be given below. This technique will be used to solve the minimum-cost multicommodity
flow problem in the next section.

For simplicity of presentation, we shall initially work with fractional packing problems where
the polytope is a simplex. This is, in fact, without loss of generality, since each packing problem
is equivalent to a problem in this form. To see this, let vy, ..., v, denote a list of the vertices of
P. Fach point z € P can be written as a convex combination of the vertices of P: z = }_; ;v;,
where 3.6 = 1land & 20, j=1,...,s. fwelet §, 7 =1,...,s, be the variables of the
transformed problem, then this yields a problem in which the polytope is a simplex, possibly

30

with exponentially many variables; the packing constraints are now represented as H{ < b,
where H = (hi;) and hi; = a;v;. Observe that this change of coordinates does not change
the width. In order to apply the packing algorithm to the transformed problem, we need a
subroutine that finds j such that the jth coordinate of the vector y*H is minimum. Substituting
the definition of H, this means that we need a subroutine that finds a vertex v; of P that has
minimum cost cv; where ¢ = y*A.

Now we show how to obtain an equivalent problem for which the width is roughly half of its
original value p. In order to facilitate recursion, we will assume that the simplex is defined by
S = {(€1,€2,---,&) : & =d, & > 0,5 =1,...,s} for some d. We introduce two copies of each
variable §;: EJI- and &}. If we let J 1 = {j:3i such that h;;d > 2mb;}, then the new polytope is
S1x 8’ where §' = (1/2)S = {€: ;& = d/2,6 > 0} and S' = {1 : £' € &, £} = 0if j € J'}.
The new system of packing inequalities is H¢! + HE < b. Note that the width of §’ relative to
HE < bis p/2; for any &' € S,

ST k&l < Y (2mbi/d)E} < (2mbifd)y € < mby, i=1,...,m,
J

JgJt J
and hence the width of S relative to H{! < b is at most m.

If we apply the same transformation to §’, after k¥ = [logp] applications we obtain a
fractional packing problem where the polytope is a product of k+1 polytopes, S x---xX § kxS,
and a set of inequalities of the form S, H¢6 + HE' < b, where §' = 2-kS,and St = {¢¢: ¢l €
2745, ¢h=0ifj € J¢} where J¢ = {j : 3i such that h;d > 2¢mb;}. Since, for any £° € Se,

Zh,-jgf < Z(2‘mb,~/d)§f < (2%mb;/d)Y &< mby, i=1,...,m,
7

igJt J

the width of S¢ relative to HE! < b is at most m, £ = 1,...,k. Furthermore, the following
lemma implies that the new problem is equivalent to the original one.

Lemma 5.3 If the fractional packing problem defined by S and H{ < b has an exact solution,
then so does the problem defined by S x -+ x §¥ x §' and 3, HE! + HE' < b. Forany e > 0,
any e-approximate solution to the latter problem can be used to find an e-approximate solution to
the former.

Proof: We first note that if (¢1,...,£%,¢') is an e-approximate solution to the transformed
problem, then £ = 3, £¢ + ¢ is an e-approximate solution to the original problem.

Now assume that we have an exact solution £ to the original problem. We will show that
this implies the existence of an exact solution of the transformed problem, and in fact, give an
algorithm to construct such a solution, given the solution for the original problem. Initially, set
¢ =¢and €£=0,¢=1,...,k. The algorithm consists of k phases. In phase ¢, £ = 1,. .k,
¥, & decreases by df2t, and 3; Ef increases by the same amount. All other variables are
unchanged. Hence, the resulting solution (£!,€2,...,¢%,£) is such that &4 € 2748, 6 =1,...,k,
and & € 27FS = §’. We will perform each phase to ensure that, in fact, each &oe S
L=1,... k.

31

In phase ¢, £ = 1,...,k, while ;& > d/2¢, find j ¢ J* with £; > 0, and simultaneously
increase {f and decrease &) by the same amount. This maintains that 3, H 4+ HE <b. If
we continue until 37, &) = d/2¢, this ensures that the resulting solution £t ¢ §t We claim
that we can always continue while 3, &% > d/2¢. Assume, for a contradiction, that for the
current solution (£',...,¢%,¢'), we have 3 ¢! > d/2t, and j € J* whenever £, > 0. Hence,
for each j such that & > 0, we have a row i(j) that contains a large coefficient in the jth
column: h;(;); > 2¢mb;(;)/d. Furthermore, df28 < ¥ € = i 2jii()=i §5- Choose such that
Y sii()=i £ > d/(2'm), and consider row i of -, H{®* + H{' < b. We get that

2tmb;
Zzhij'f; + Z’%’jf;' > Y hiEi> —Z}—— > &> b
s 2 J

Ju(g)=i ji(g)=1

which contradicts 3", HE* + HE' <b. 1

Having obtained this decomposition, we would like to express these polytopes and these
constraints in terms of the original coordinates; we also would like to express the optimization
subroutine (1) for §% and H in terms of a different, more intricate, subroutine for P and A. For
the former, we can restate the decomposed problem as P! x --- X P¥ x P’ subject to the system
of inequalities Y, Az? + Az’ < b, where P’ = 2=%P and P* = {zf: 2! = ; Ehvj, €t € s,
£=1,...,k. In other words, a point in P* is 2~¢ times a convex combination of vertices v; of
P, each of which satisfies Av; < 2¢mb. Thus, in these terms, the basic decomposition lemma
can be restated in the following way.

Lemma 5.4 If the fractional packing problem defined by P and Az < b has an exact solution,
then so does the transformed problem defined by P! x ... x P¥ x P' and 3", Az® + Az’ < b, where
k < [logp]. For any € > 0, any e-approximate solution to the latter problem can be used to find
an c-approximate solution to the former.

In order to apply the packing algorithms in Theorem 2.5 and Theorem 2.7 to the transformed
problem, we need subroutines that, given a dual solution y, find a point z* € P’ that minimizes
the cost cfz!, where ¢! = y*A, £ =1,..., k. There is a vertex of P¢ that attains this minimum;
the vertices of P¢ are those vertices v; of P that satisfy Av; < 2¢mb. Hence, it is sufficient to
have the following subroutine with v = 2‘m:

Given a constant v and a dual solution y, find a vertex Z € P such that:

AT < wvb, and (13)
y'AF = min(y'Az : z a vertex of P s.t. Ax <vb).

Observe that there need not be a feasible solution to this further constrained optimization
problem: if this is detected, however, then Lemma 5.4 implies that there does not exist an exact
solution to the original packing problem. Since each polytope P¢ has width at most m with
respect to Az < b, we have the following theorem:

Theorem 5.5 For any ¢, 0 < € < 1, there is a randomized e-relaxed decision procedure for the
fractional packing problem that is expected to use O(e~2m log plog(me~1) + log ploglog p) calls
to the subroutine (13), and a deterministic version that uses O(e~2mlog? plog(me~1)) calls, plus
the time to compute the value of the left-hand side of the packing constraints for the current iterate
after each update.

Observe that in order to obtain a decomposition where each subproblem has width at most
m, it would suffice to take the above decomposition with k& = log(p/m). This implies an
improved version of the theorem with log p replaced by log(p/m). However, in our applications
of this theorem, p will be large relative to m, and so that this improvement will not be relevant.

Subroutine (13) is, in some sense, similar to optimization over P, which is required by
Theorem 5.2, and was discussed in the previous subsection. However, if the packing problem
is not in the product form, then optimization over P solves the original problem, whereas (13)
does not. Instead of finding a minimum-cost point in P that satisfies Az < vb, subroutine
(13) finds a minimum-cost verter of P that satisfies the same condition. Even if an instance is
feasible, all vertices of P might violate Az < b, and hence we cannot directly use subroutine
(13) with v = 1 to solve the packing problem.

In the case of the minimum-cost multicommodity flow problem, the vertices of the polytopes
defining the individual commodities are paths, and subroutine (13) for a commodity finds a
shortest path in an appropriate subgraph of the original graph (induced by edges with relatively
large capacity and relatively small cost). On the other hand, optimization over the polytope
P? used in Theorem 5.2 is a minimum-cost flow computation.

Taking advantage of the fact that we are only interested in approximate solutions, we can
improve the previous theorem by replacing logp by loge~!. Consider the packing problem
defined by the inequalities 3", Az¢ < b and the convex set P! x ---x P¥ with k = [log(3¢™1)]
and P{, ¢ =1,...,k, as defined above.

Lemma 5.6 Let 0 < ¢ < 1. If the fractional packing problem defined by P and Ar < b has an
exact solution, then so does the transformed problem defined by P! x --- x P* and 3, Az® < b,
where k = [log 3¢~!]. An ¢/3-approximate solution to the transformed problem can be used to find
an e-approximate solution to the original problem.

Proof: By Lemma 5.4, if there is an exact solution to the original problem then there is an
exact solution to P! x --- x P¥ x P'. By ignoring the component of this solution for P/, we
obtain an exact solution for the transformed problem of this lemma.

Now assume that we have an ¢/3-approximate solution (z!,...,z*) to the transformed

problem. We claim that z = 1_%_,‘ Szt is an e-approximate solution for the transformed

problem. Observe that z € P and

1 1
—5 1+)b < (m)(1+§)b§(1+e)b. |

1
Az = Azt <

33

Theorem 5.7 Forany ¢, 0 < € < 1, there exists a randomized e-relaxed decision procedure for the
fractional packing problem that is expected to use O(e~?mloge™! log(me=1)) calls to the subroutine
(13), and by a deterministic version that uses O(e~2mlog? e~1log(me~1)) calls, plus the time to
compute the value of the left-hand side of the packing constraints for the current iterate after each
update.

Subroutine (13) will not be available for the minimum-cost multicommodity flow problem.
Instead, we will have the following relaxed subroutine, for some parameters v; > 1,i=1,...,m.

Given a constant v and a dual solution vy, find a vertex Z € P such that:
Az < wvb, and (14)
y'AZ < min(y' Az : z a vertex of P with a;z < Zb; ¥i).
%

Subroutine (13) is the special case of (14) when v; =1,2=1,...,m.

In order to use subroutine (14) in place of (13) and still obtain a similar time bound, we
need a generalized decomposition instead of the one in Lemmas 5.4 or 5.7. For simplicity of
presentation we shall again focus initially on a fractional packing problem given by a simplex
§={€:% ;¢ =d,£ > 0}, and packing constraints HE<b.

Let T = ¥;7i, K¢ = {j : 3i such that hy;d > 24(T'/7;)b;}, and St = {£ : £ € 2-ts, éf =
0if j € K¢,¢=1,...,k,and §' = 2-kS_ It is not hard to show that Lemma 5.3 still holds
under these more general definitions. The proof of this lemma is trivially adapted: we merely
replace J¢ by K*, and substitute I'/y; for m; in particular, the choice of row 7 in the proof by
contradiction is made so that it satisfies 3 ;.= & > (d/ 29)(yi/T). The width of §* relative
to H&E < b can now be bounded by T'.

In terms of the original coordinates, this decomposition yields a polytope @ = Ql x -+ x
QF x @', and a system of inequalities 3", Az’ + Az’ < b, where @' = 2=kp and Q¢ = {z¢: ¢ =
v ;68 € §, £ =1,..., k. In other words, a point in Q! is 2~ times a convex combination
of vertices v; of P, each of which satisfies a;v; < 2Tb; [yi, 1= 1,...,m.

Lemma 5.8 If the fraction packing problem defined by P and Az < b has a solution, then so does
the transformed problem defined by Q! x ---x Q¥ x Q' and §_, Azt + Az’ < b. Forany € >0, an
c-approximate solution to the latter problem can be used to find an e-approximate solution to the
former.

If we were to apply Theorem 2.5 to solve the transformed problem, we need subroutines
that find minimum-cost points in the polytopes Q¢, £ = 1,...,k, where the cost vector ¢ = ytA.
Instead, we will formulate a relaxed packing problem, and apply Theorem 2.9; to do this, we
must first define the polytopes Q¢ D Q¢, £ = 1,...,k, on which this relaxation is based. Define
Q% £=1,...,k, to be the polytope formed by taking the convex hull of all vertices v; of P that

34

satisfy Av; < 2(Th, and rescaling by 2=, Q0 = Q1 x - - x Q¥ x Q. Since v; > 1,i=1,...,m, it
is clear that Q¢ C Qf, £ = 1,..., k. Finally, note that subroutine (14) serves the role required
by subroutine (6) for Theorem 2.9: it produces a vertex of Q¢ with cost no more than the
cost of a minimum-cost vertex in Q¢. Hence, we can use Theorem 2.9 to produce a point
& =(81,...,2%,2') € Q such that 3", A%4? + Az’ < (1 + €)b, or else to determine that there is
no solution z € @ such that 3, Azf + Az’ < b. In the latter case, we can conclude that the
original problem does not have an exact solution. Otherwise, since Q¢ C 2-tP, £ = 1,...,k,
and Q' = 2% P, if the algorithm returns a solution & € Q, then z = 3,4+ z’ is in P, and is
an e-approximate solution to the original problem. Since the width of each Q¢, £ = 1,...,k, is
at most I', we obtain the following theorem.

Theorem 5.9 For any ¢, 0 < € < 1, there is a randomized e-relaxed decision procedure for the
fractional packing problem that is expected to use O(¢~2T log plog(me~1) +log plog(T log p)) calls
to the subroutine (14), and a deterministic version that uses O(¢~2T log? plog(me™!)) calls, plus
the time to compute the value of the left-hand side of the packing constraints for the current iterate
after each update.

An analogous result can be proved where the log p terms in this theorem are replaced by
loge~!, by using the convex sets Q! x --- x QF and Q! x --- x Q¥ with k = [log(3¢™1)] as
suggested by Lemma 5.6.

Theorem 5.10 For any ¢, 0 < ¢ < 1, there is a randomized e-relaxed decision procedure for the
fractional packing problem that is expected to use O(e~2I'log e~ log(me~1)) calls to the subroutine
(14), and a deterministic version that uses a factor of loge~! more calls, plus the time to compute
the value of the left-hand side of the packing constraints for the current iterate after each update.

Analogous results can be proved if the convex set P is already in product form, P =
P! x ... x P¥. We use the decomposition technique to replace each set Pf, £ = 1,...,k, by
a product of O(loge~1) sets. Consequently, this approach assumes that the subroutine (14) is
available for each P! and Afzf < b,£=1,...,k. We get the following theorem.

Theorem 5.11 For any ¢, 0 < ¢ < 1, there is a randomized ¢-relaxed decision procedure for the
fractional packing problem defined by P = Pl x ... x P* and 3, A’z® < b, that is expected to use
O(e=2kT log e log(me=1)+klog klog e~1) calls to the subroutine (14) for any of P and A‘z? < b,
¢ =1,...,k, and a deterministic version that uses a total of O(¢~2k?T log? ¢~! log(me~1)) such
calls, plus the time to compute the value of the left-hand side of the packing constraints for the
current iterate after each update.

Decomposition for Covering Problems. We present a decomposition technique for the
covering problem, which is analogous to the technique used for the packing problem. The
subroutine required for this approach is given by (15). This technique will be used by our
algorithm for the cutting-stock problem, as described in Section 6.

35

Consider the covering problem defined by the polytope P and the inequalities Az > b. For
simplicity of presentation, we shall again assume that the problem was converted into the form
HE> b, £ €S, where S is the simplex: § = {£:375,§ =d,§2 0} for some d. As before,
this reformulation does not change the width.

We first show how to obtain an equivalent problem for which the width is roughly half of its
original value p. We introduce two copies of each §;: {_} and £. The new polytope is Sl x S,
where §' = §! = (1/2)S. The new set of inequalities is H'¢' + HE' > b where H! = (b}
and h}j is h;j if hijd < 2mb;, and 0 otherwise. Note that the width of S’ relative to HE > b is
p' = p/2, and, since Y°; hl;&} < ¥°;(2mb;/d)€} < mbi, i = 1,...,m, the width of S! relative to
HY >bis pt <m.

If we apply the same transformation to S, after k = [log p] applications we obtain an
equivalent covering problem with a polytope which is a product of k + 1 polytopes, S x --- x
Sk S’ and a system of inequalities of the form ¥, H¢¢+ HE' > b,where §' = 2-kg, 8§t =2-tS,
HY = (hY), and kY is hy; if hijd < 2°mb;, and 0 otherwise. For each of these subproblems, the
width is at most m.

We shall give a slightly generalized version of the covering analog of Lemma 5.3. In this
section, we shall use this lemma with A = 1. The more general version with A <1 will be used
in the cutting-stock application.

Lemma 5.12 Let A < 1. If there exists £ € S such that HE > Ab, then there exists (£1,82,... €5, ¢
€ S x 52 % ---x S’ such that 3, H¢¢¢ + HE > Ab. For any € > 0, an e-approximate solution to
the latter problem can be used to find an e-approximate solution to the former.

Proof: We first note that if (£!,£2,...,£) is an e-approximate solution to the transformed
problem, then £ = 37, €% + ¢ is an e-approximate solution to the original problem.

Now assume that we have a solution £ € S such that HE > Ab. We claim that any such
¢ corresponds to an exact solution of the transformed problem, and we will give an algorithm
that does this conversion. Initially, set & = £ and £/ =0, £ = 1,...,k. The algorithm consists
of k phases. In phase ¢, £ = 1,...,k, 5, decreases by d/2% and }; ff increases by the same
amount. All other variables are unchanged. Hence, the resulting solution (£,£2,.. L ER € s
such that ££ € S¢, €=1,...,k,and & € 275§ = 5.

We will perform each phase so that the covering constraints remain satisfied. In phase £,
£=1,...,k,while 3~ & > d/2¢, find j with £} > 0such that for each i with 3, h3€5+h; & = Ab;,
we have that hfj = hi;. Simultaneously increase Ef and decrease £} by the same amount,
so that ", H*¢* + HE' > Ab is maintained. We claim that we can always continue while
> d/2t. Let (£1,.. ., &% €' be the current solution, and assume, for a contradiction, that
for each ¢! > 0, we can select a row i(7) such that hf(j)j # hi(j); and 32, hf(j)§3+h,-(j)§’ = Ab;(j-

By the definition of the matrix H, we have that h;;); > 2‘mb;(;)/d. Furthermore, since
d/28 < Y& = i Vjii()=i £}, there exists an index ¢ such that 3 ;.j)=i & > d/(2¢m). Since

36

¢ = i(j) for some j,

£ .
Mi= S e+ Skt 2 T b > T Y &> b
s g J

Jia(j)=t Ji(d)=i

This implies that A > 1, which is a contradiction. |}

In order to apply the covering algorithm in Theorem 3.7 or Theorem 3.9 to solve the trans-
formed problem, we need a subroutine that finds a vertex v; of (27¢)P such that ¥, y,'hfj is
maximum. By the definition of H, hfj = a;v; if a;v; < 2¢mb;, and 0 otherwise, and hence the
required subroutine is as follows:

Given a constant v and a dual solution y, find a vertex Z € P such that:

E via;# = max(Z yiaix : z a vertex of P), (15)
iel(v,%) iel{v,z)

where I(v,z) = {i : a;z < vb;}.

Theorem 5.13 For any ¢, 0 < € < 1, there is a randomized ¢-relaxed decision procedure for the
fractional covering problem that is expected to use O(mlogp (log? m + e¢~2log(me=1))) calls to
the subroutine (15), and a deterministic version that uses a factor of log p more calls, plus the time
to compute the value of the left-hand side of the covering constraints for the current iterate after
each update.

Analogous results can be proved if the convex set P is in product form, P = P! x ... x Pk,
Assuming that the subroutine (15) is available for each P¢ and Afx > b, £ = 1,...,k, we use
the same technique to replace the set P¢ by a product of 1+ [log p] sets. We get the following
theorem.

Theorem 5.14 For any ¢, 0 < € < 1, there is a randomized ¢-relaxed decision procedure for the
fractional covering problem defined by P = P! x ... x P* and 3", Afz? > b that is expected to
use a total of O(mklogp (log® m + 2 log(me=1))) calls to any of the subroutines (15) for P* and
A* > b, £ =1,...,k and a deterministic version that uses a factor of klog p more calls, plus the
time to compute the value of the left-hand side of the covering constraints for the current iterate
after each update.

Decomposition for Simultaneous Packing and Covering. A combination of the tech-
niques used to derive Theorems 5.5 and 5.13 can be used to obtain an analogous version for
problems with simultaneous packing and covering constraints. The subroutine that we will use
is given by (16).

37

For simplicity of presentation, we shall again reformulate the problem so that the polytope
is the simplex: § = {£: ;& =d,§ 2> 0} for some d. Let HE < b and HE > b denote the
packing and covering constraints in the converted form.

The polytope for the equivalent problem constructed by the decomposition technique is a
product of k + 1 simplices §1 x - -- x §* x §" where k = [log p]. If we let J* = {j : 3i s.t. hijd >
2¢mb;}, then the simplices are S5’ = 27%S and §* = (et ¢t e2ts, =015 € J4,
¢=1,...,s. The packing and covering constraints are 3, HE!+ HE' < band 3, HUEL+ HE > b,
where A = (fzfj) and ﬁfj is hi; if hi;d < 2¢mb;, and 0 otherwise. The proof that this is an
equivalent formulation is nearly identical to the separate proofs of the decomposition for packing
and for covering. The only difference is that in the proof by contradiction, for each 5;- > 0, we
identify either a packing inequality ¢ such that h;;d > 2tmb;, or else we identify a tight covering
inequality ¢ such that ﬁ;jd > 2¢mb;; by averaging over all inequalities, we identify one that
provides the contradiction. The width of each subproblem resulting from the decomposition
is at most m. The optimization subroutine over S¢, required for our algorithm, is as follows:
among thoses indices j such that h;;d < 2¢mb;, i = 1,...,m — 1, find one that minimizes
S vilhi; — izfj). Converting back to the original coordinates z, the required subroutine is the
following, with v = 2¢m:

Given a constant v and a dual solution (y, §), find a vertex & € P such that:

A% < vb, and (16)

Y AZ — E §ia;# = min(y' Az — Z §ig;z : = a vertex of P such that Az < vb),
i€l(v,&) i€l(v,z)

where I(v,z) = {i : @iz < vb;}.

Theorem 5.15 For any ¢, 0 < ¢ < 1, there is a randomized e-relaxed decision procedure for the
general problem that is expected to use O(m?(log? p)e~2log(e~!mlogp)) calls to the subroutine
(16), and a deterministic version that uses a factor of logp more calls, plus the time to compute
the value of the left-hand side of the covering constraints for the current iterate after each update.

An analogous results can be proved if the convex set P is in product form, P = Plx...x Pk,
assuming that the subroutine (16) is available for P¢ and the corresponding inequalities, for
each £ =1,...,k.

6 Applications

In this section, we will show how to apply the techniques presented in the previous four sections
to a variety of linear programs related to packing and covering problems. For an optimization
problem, an e-approximation algorithm delivers a solution of value within a factor of (1 + €) of
optimal in polynomial time. Although we will focus on e-approximation algorithms for fixed

38

¢, this is only to simplify the discussion of running times. In each of the applications except
for the Held-Karp bound and the bin-packing problem, we obtain a significant speedup over
previously known algorithms. When we cite bounds based on Vaidya’s algorithm [25] for the
dual problem, then this algorithm is used in conjunction with the techniques of Karmarkar &
Karp [13] to obtain a primal solution.

Scheduling unrelated parallel machines: with and without preemption. Suppose
that there are N jobs and M machines, and each job must be scheduled on exactly one of
the machines. For simplicity of notation, assume that N > M. Job j takes p;; time units
when processed by machine i. The length of a schedule is the maximum total processing time
assigned to run on one machine; the objective is to minimize the schedule length. This problem,
often denoted R||Cax, is N P-complete, and in fact, Lenstra, Shmoys, & Tardos showed that
there does not exist an e-approximation algorithm with € < 1/2 unless P = NP. Lenstra,
Shmoys, & Tardos [20] also gave a l-approximation algorithm for it, based on a 1-relaxed

decision procedure. If there exists a schedule of length T, then the following linear program
has a feasible solution:

N
Zpij-"«'ij < T’ 7'=1’ 7M, (17)
1
M
inj = L, j5=1...,,N; (18)
=1
zi; = 0ifp; >T,e=1,....M, j=1,...,N, (19)
zi; > 0ifp; <T,i=1,...,.M,j=1,...,N. (20)

Lenstra, Shmoys, & Tardos showed that any vertex of this polytope can be rounded to a
schedule of length 27". We shall call z > 0 an assignment if it satisfies (18). Let the length of an
assignment z be the minimum value T such that it is a feasible solution to this linear program.

To apply Theorem 2.5, we let P be defined by the constraints (18-20). It is easy to see that
p < N: forany z € P, z;; > 0 implies that p;; < T, and so Zﬁ\f__l pijzi; < NT for each machine
i=1,..., M. Each dual variable y; corresponds to one of the machine load constraints (17), and
the coefficient of z;; in the aggregated objective function y* Az is y;p;;. Since P = P!x.--x PN,
where each P/ is a simplex, we can minimize this objective function by separately optimizing
over each P?. For a given PJ, this is done by computing the minimum modified processing time
Y;pij, where the minimization is restricted to those machines for which p;; < T. This approach
is quite similar to the ascent method that Van de Velde [27] used to solve this linear program;
he also used a Lagrangean method that, in each iteration, constructs a schedule by assigning
each job to its fastest machine with respect to the modified processing times, but uses a much
simpler rule to update the dual variables .

Each iteration takes O(MN) time and p < N. Hence, for any fixed ¢ > 0 we can find
an assignment Z of length at most (1 4 €)T in O(M N?%log M) time, if one of length T exists.

39

However, in order to apply the rounding procedure to produce a schedule, & must first be
converted to a vertex of the polytope.

We can represent any assignment z as a weighted bipartite graph G = (V4, V3, E), where
V1 and V; correspond to machines and jobs, respectively, and (¢,7) € F if and only if z;; > 0.
If z is a vertex, then each connected component of the corresponding graph is either a tree or
a tree plus one additional edge; we call such a graph a pseudoforest. The rounding procedure
of Lenstra, Shmoys, & Tardos can be applied to any assignment represented by a pseudoforest,
and takes O(M + N) time. We will give a procedure which, given any assignment of length T
represented by G = (V;, V,, E), converts it in O(|E|M) time into another assignment of length
at most T that is represented by a forest. Since |E| < M N, the time to preprocess z for
rounding is dominated by the time taken to find Z.

Lemma 6.1 Let Z be an assignment represented by the graph G = (V3, V3, E). Then can be
converted in O(|E|M) time into another assignment & of no greater length, where & is represented
by a forest.

Proof: To show that the assignment Z can be easily converted to one represented by a forest
without increasing its length, first consider the case when a connected component of G is a cycle.
Let eq,..., ez, denote the edges of the cycle. It is always possible to obtain another assignment
of the same length, either by increasing the coordinate of Z for each edge ey;, i = 1,...,7 and
decreasing those for ey;_1, ¢ = 1,...,7, or vice versa. If e; and e;4; meet at a node in V3 (a
job node), then the perturbations have the same magnitude; if they meet at a node in V1, the
perturbations are linearly related based on machine load constraint for that machine node. By
choosing the largest such perturbation for which the non-negativity constraints are satisfied, at
least one of these coordinates of Z is forced to 0, and so this connected component has been
transformed into a forest.

To generalize this to a procedure that converts an arbitrary assignment into one represented
by a forest, we perform a modified depth-first search of G: when a cycle is found by detecting
a back edge, this perturbation is computed for that cycle, and the search is restarted; when the
search detects that an edge does not belong to any cycle in G (because the search from one of
its endpoints has been exhausted and is retracing its path towards the root) the edge is deleted
to avoid repeatedly searching that part of the graph, and the coordinate of Z for this edge is
fixed to its current value.

Consider the time that it takes to find the next cycle, and divide it into two parts: time
spent searching edges that are deleted due to the fact that they are not contained in any cycle,
and time spent searching the cycle as well as the path from the root to the cycle in the depth-
first search tree. Since the depth of tree is at most 2M, the time spent for the latter in one
search is O(M); since at least one edge is deleted in each search (by the perturbation), the total
time for this is O(| E|M). On the other hand, the time spent searching edges that are deleted in
this phase of the search is O(1) per edge, and hence is clearly O(|E|), in total for the algorithm.
Finally, the time spent computing the correct perturbation is O(M) per perturbation, and
hence O(|E|M) in total. @

40

By applying Theorem 2.5, we obtain a deterministic (2 + ¢)-relaxed decision procedure for
R||Cmax that runs in O(M N2log M) time. Recall that P = P! x --- x PN, and we can also
take advantage of this structure using randomization. Observe that p? < 1, 7 = 1,...,N,
and we can optimize over P/ in O(M) time; we can also compute the updated values Az in
O(M) time. Applying Theorem 2.7, we get a randomized algorithm that takes O(N log N)
iterations, each of which takes O(M) time. Furthermore, the solution Z is expected to have
O(N log N) positive components, since at most one is added at each iteration, and so it can
be preprocessed for rounding in O(M Nlog N) time. This gives a randomized analogue that
runs in O(M N log N) expected time. To convert either relaxed decision procedure into an
approximation algorithm, we use bisection search to find the best length T'. Since the schedule
in which each job is assigned to the machine on which it runs fastest is within a factor of M of
the optimum, O(log M) iterations of this search suffice.

Although it is most natural to formulate the linear program for R||Cmax as a packing
problem, a faster deterministic algorithm can be obtained by using a covering formulation. Let
S, i; 21,5 =1,...,N be the covering constraints; let P = P! x P x ---x PM, where

P = {(zi1y-..,TiN) : Zpij(l),‘j <T;zi;=0,ifp;; >T, and 0 < z;; < 1, otherwise.}
J

In this case, optimizing over P is merely solving a fractional knapsack problem with N pieces,
which can be solved in O(N) time using a linear-time median finding algorithm. As a conse-
quence, each iteration again takes O(M N) time, but for this formulation, p = M. We will not
apply Theorem 3.7 directly, but instead give a simple way to compute an initial solution with
A = 1/M. If £ is the 0-1 solution in which each job is assigned to the machine on which it
runs fastest, then £/M is such a solution: if # ¢ P then there is no feasible solution, since this
implies that the minimum total load of the jobs is greater than the machines’ total capacity. As
a result, the N calls (one per covering constraint) to the subroutine to optimize over P are not
needed to construct an initial solution. Given an e-optimal solution Z, it can be converted to a
feasible solution to our original linear program by rescaling the variables for each job so that
they sum to exactly 1; as a result, the machine load constraints will be satisfied with right-hand

side set to T'//(1 — €). By Lemma 6.1, this solution can be converted into one represented by a
forest in O(M?N) time.

Theorem 6.2 For any fixed r > 1, there is a deterministic r-approximation algorithm for R||Crmax
that runs in O(M2N log? N log M) time, and a randomized analog than runs in O(M N log M log N)
expected time.

The fastest previously known algorithm for solving this problem is the FAT-PATH generalized
flow algorithm of Goldberg, Plotkin, and Tardos [8]. In order to convert the packing problem
defined by (17-20) into a generalized flow problem, we construct a bipartite graph with nodes
representing jobs and machines and introduce an edge from machine node 7 to job node j with
gain 1/p;; if pi; < T. There is a source which is connected to all the machine nodes with edges
of gain Ppax = max{p;;} and capacity T, and the job nodes are connected to a sink with edges
of unit gain and unit capacity. A generalized flow in this network that results in an excess of

41

N at the source corresponds to a solution of the packing problem. On the other hand, if the
maximum excess that can be generated at the source is below N, the original packing problem
is infeasible, i.e., the current value of T is too small.

The running time of the FAT-PATH algorithm given in [8] is O(m?n? log nlog? B), where
n,m, and B are the number of nodes, edges, and the maximum integer used to represent gains or
capacities, respectively. In our case, we have O(N) nodes, O(M N) edges, and the maximum in-
teger used to represent gains and capacities is bounded by O(N Prax), Where Ppax = max{pi;}.
It is possible to show that the FAT-PATH algorithm is significantly faster for our specific case
as compared to the general case. First, it is sufficient to compute an approximate solution.
Also, the maximum length of the cycle in our graph is O(M). Finally, in order to eliminate
dependence on Ppay, we can round p;; and T so that they will be represented by O(log N)-bit
integers. The running time of the resulting algorithm is O(M2N24+ M>N log? N)log N), which
is worse than the running times of our deterministic and randomized algorithms by an Q*(N)
and Q*(M N) factors, respectively.

In a related model, we consider schedules with preemptions: a job may be started on
one machine, interrupted, and then continued later on another. Lawler & Labetoulle [17]
showed that an optimal preemptive schedule for this problem, R|pmtn|Cmax, can be found by
minimizing T subject to

N
Zp,'jx,'j < T,i=1,...,M, (21)
i=1
M
ZPijxij < T)jzlv"wNv (22)
=1
M
STz o= L, j=1,..,N, (23)
i=1
g > 0,i=1,...,M,j=1,...,N. (24)

We can again use a weighted bipartite graph G to represent the assignments satisfying (23)-(24);
the length of an assignment z is the minimum value T such that z and T satisfy (21)-(24). If
the weights are represented as integers over a common denominator, then this can be viewed as
compactly represented multigraph, where the numerator of the weight of each edge specifies its
multiplicity. An optimal edge coloring of this multigraph for the optimal solution to (21)-(24)
gives an optimal schedule, where the matching of jobs and machines given by each color class
represents a fragment of the schedule. If we use relatively few distinct matchings, then we
introduce few preemptions, and it can be shown that O(N) matchings suffice [17].

In order to apply our relaxed decision procedure, we shall do a bisection search for the
minimum value of T for which we find an e-approximate solution. We will have deterministic
and randomized variants for performing one iteration, which apply, respectively, Theorems 2.5
and 2.7 to the constraints of the linear program (21)-(24) for a particular target 7. As in the

42

previous packing formulation, the system Az < b is given by (21), and let

M M
P’ = {27 :Zp,‘j.’v,‘j <T, Ez,-j =1,2;20,i=1,...,M}.
i=1 =1

It is easy to see that p/ < 1. To optimize over P7, note that this is the dual of a 2-variable
linear program with M constraints, and, in fact, it is a fractional multiple-choice knapsack
problem with M variables. Dyer [1] has shown that this problem can be solved in O(M) time.
For the deterministic version, when P = P! x --- x PN we have p < N. To optimize over
P, we solve N disjoint multiple-choice knapsack problems, each with M variables, in O(M N)
time. Similarly, each iteration of the randomized variant can be implemented in O(M) time.

Given an assignment Z of length T represented by a weighted graph G = (V4,V3, E), we
must still compute a schedule. If we are interested in computing a schedule that completes in
exactly time T, then it takes O(|E|(|E|+ M)) time to compute such a schedule [17]. However,
since Z is itself only approximately optimal, there is little point to computing the best schedule
corresponding to Z: we can more efficiently compute a somewhat longer schedule.

Given G, we compute rescaled values p;; = (pi;Zij) - (Q/T), where the value of @ will be
specified below. As a result, the rescaled total load on each machine and total processing time
of each job is at most . Round these rescaled times by forming the multigraph G, where
each ij € E occurs with multiplicity [p;;]. Thus, the maximum degree A of this graph is at
most @ + N. Using an algorithm of Gabow [4], we can color this graph in O(M Alog A) time
with 2M°€ A1 colors. By choosing @ = 2/ — N, where | = [log,(N + Ne~1)], it follows that
A < 28 = O(N/¢). Each matching given by a color class corresponds to a fragment of the
schedule of length T'/Q. The total length of this schedule is at most

2'T NT N
[log, A1 K — . & = .
28 8T/Q < o T+2’—N‘T+N+Ne—1-—NT (14T

Theorem 6.3 For any constant € > 0, there are deterministic and randomized e-approximation
algorithms for R|pmin|Ciax that run in O(M N2%log? M) ::me and O(M N log M log N) expected
time, respectively.

The previous best algorithm is obtained by using the linear programming algorithm of
Vaidya [26]. Our running time marks an Q*(M?°N!®) improvement over this algorithm for
the deterministic algorithm, and an Q*((M N)?-5) improvement for the randomized algorithm.

Job shop scheduling. In the job shop scheduling problem, there are N jobs to be sched-
uled on a collection of M machines; each job j consists of a specified sequence of operations,
01j,032j,...,0,;, where O;; must be processed on a particular machine m;; for p;; time units
without interruption; the operations of each job must be processed in the given order, and each
machine can process at most one operation at a time; the aim is to schedule the jobs so as to
minimize the time by which all jobs are completed. Let ppax denote max; ; p;;, the maximum
processing time of any operation, let Ppax denote max; y_; pi;, the maximum total processing

43

time of any job, and finally, let Ilmax denote max; 3, k. xj=i Pki> the maximum total processing
time assigned to a machine.

Shmoys, Stein, & Wein [24] give a randomized O(log?(M + p))-approximation algorithm
for this problem and a deterministic variant that uses the randomized rounding technique of
Raghavan & Thompson [22] and its deterministic analogue due to Raghavan [21]. The over-
whelming computational bottleneck of the deterministic algorithm is the solution of a certain
fractional packing problem.

The algorithms work by first performing a preprocessing phase that reduces the problem
to the following special case in O(M?u2N?) time: N = O(M?p?), pmax = O(Np), Ilmax =
O((Np)?), and Ppax = O(Np?). We shall use N to denote min{N, M?u3}. For each job,
the randomized algorithm selects, uniformly and independently, an initial delay in the range
{1,2,...,T}, where T = Ila;. A straightforward counting argument proves that if each job
is scheduled to be processed continuously with its first operation starting at the chosen delay,
then, with high probability, this assignment has placed O(log(M + 1)) jobs on any machine, at
any time. The remainder of the algorithm carefully slows down this attempted schedule by an
O(log(M + (1) 10g Pmax) factor in order to produce a schedule in which each machine is assigned
to process at most one job at a time.

This algorithm can be made deterministic by formulating the problem of choosing initial
delays so that each machine is always assigned O(log(M + 1)) jobs as an integer packing
problem, and then applying the techniques of Raghavan & Thompson [22] and Raghavan [21]
to approximately solve this packing problem. The computational bottleneck of this procedure is
solving the fractional relaxation of the integer packing problem. The variables for the fractional
packing problem are z;q, for each job j = 1,..., N and each possible delay d = 1,...,T; the
polytope is P = P! x --- X PN, where P7 is a T-dimensional unit simplex, where each vertex
corresponds to a particular delay selected for job j,= 1,...,N. There are M(Ppax +T) =
M(Pax + Imax) = O(M N?u?) packing constraints: for each machine and each time unit, we
wish to ensure that the particular selection of initial delays results in O(log(M + p)) jobs on
that machine at that time.

One way in which our results can be applied to this problem is to use our algorithm to
solve the fractional packing problem, and then apply the algorithm of Raghavan to round this
fractional solution to an integer one. However, we can obtain a simpler and more efficient
solution by applying the integer packing algorithm of Theorem 2.11, which directly produces
an integer solution of sufficient quality.

In the worst case, all N jobs can be assigned to the same machine at a particular time,
and hence the parameters of the packing problem are p = O(1/log(M + 1)) (since the right-
hand sides are O(log(M + p))), p = Np, k = N, m = O(MN?u?), and d = 1. Since the
random selection of delays yields a feasible integer packing with high probability, A* = 0(1).
By Theorem 2.11, we can find an integral solution to the above packing problem with A = O(1)
in O(N log(M + u)) iterations of this algorithm.

It remains to show how to implement a single iteration of the integral packing algorithm.
Until the algorithm terminates, each ol =1,j=1,...,N; any decrease in any o’ causes the

44

algorithm to terminate. As a consequence, the algorithm maintains a solution (zy,...,zxN) such
that each z; is a vertex of P7, j = 1,..., N. In each iteration, only one of these components is
changed. This change involves only two variables: for one job j, its assigned delay is changed
from one value to another. If we change one variable z;4, then this affects at most Pax dual
variables y;;, corresponding to the time units ¢ € (d,d + Pmax — 1) since z;4 corresponds to
processing job j starting at time d. This change in Ppax dual variables affects the costs c;igr for
at most 2Ppax delays, d' € (d Prax, @+ Ppax — 1), for each j' = 1,..., N. However, given the
updated cost cjig for a job j', we can update ¢jig4q in O(p) time. Therefore, the time required
to update all of the costs after the change in 2 primal variables is O(N g Pmax) = O(N2p?). For
each job j, j = 1,..., N, we must select the delay of minimum cost, and then update the job
for which this represents the maximum improvement. To efficiently select the minimum cost
variable z;q, for each j = 1,..., N, we maintain a heap for each job j, j = 1,..., N, which
contains the costs ¢jq, d =1,...,T.

Lemma 6.4 One iteration of the integer version of IMPROVE-PACKING can be implemented in
O(N?uBlog(M +)) time.

Applying Theorem 2.11 and the results of Shmoys, Stein, and Wein, we get the following.

Theorem 6.5 A job shop schedule with maximum completion time that is a factor O(log?(M +p))
more than optimal can be found deterministically in O(M?2u2N?2 + N3u%log?(M + p)) time.

The fastest previously known algorithm is obtained by using the linear programming al-
gorithm of Vaidya [26], which solves the fractional packing problem in O(N%-u7log(M + p))
time. Then one can apply the techniques of Raghavan and Thompson [22] and Raghavan [21] to
round to an integer solution. Our algorithm marks a very large improvement over this running
time.

Network embeddings. Let G = (V, Eg) and H = (V, Eg) denote two constant-degree graphs
on the same set of N nodes. We define the fluz of G by a = min{6(S)/|S|:$ C V,|S| < N/2},
where 6(S) denotes the number of edges in Eg leaving S, i.e., one endpoint is in § and the
other is in V — §. An embedding of H in G is defined by specifying a path in G from i to j
for each edge ij € Ey. The dilation of the embedding is the maximum number of edges on
one of the paths used, and the congestion is the maximum number of paths that contain the
same edge in G. Leighton and Rao [19] gave an algorithm to embed H in G with dilation and
congestion both O(l&X & NY. If H is an expander, and hence each subset S of at most N/2 nodes
has Q(]S]) edges leaving it in H, then every embedding of H in G must have congestion Q).

The computational bottleneck of the Leighton-Rao algorithm is finding an approximately
optimal dual solution to a certain fractional packing problem that directly corresponds to the
problem of routing the edges of H. To search for an appropriate choice of L, we repeatedly
double the candidate value; our algorithm that attempts to embed H into G' with congestion
and dilation I has running time proportional to L, and hence the time for the final value of L
will dominate the total. Leighton and Rao [19] show that when L = ©(=£= 16N then there exists

45

an embedding with dilation and congestion at most L. The variables of the packing problem
are as follows: for each edge ij € Ep, there is a variable for each path in G from to j of
length at most L. The polytope P is a product of simplices, one simplex for each edge ij € Ey,
which ensures that one path connecting i and j is selected. There is a packing constraint for
each edge ij € Eg, which ensures that ¢j is not contained in more than L of the paths selected.
An integer solution to this packing problem is an embedding of H in G with congestion and
dilation at most L.

We will apply Theorem 2.11 to obtain an approximately optimal integral solution. The
width p = 1/L for this problem, d = 1; k is the number of edges in H, which is O(N);and m is
the number of edges in G, which is also O(N). Leighton and Rao proved that if an appropriate
L= O(l‘iﬁy—) is used then A* = O(1). The assumption that G has bounded degree implies
that & = O(1), and therefore X’ in the theorem is O(1). Theorem 2.11 implies that an integral
solution to the packing problem with A = O(1) can be obtained in O(N log N) iterations of the
packing algorithm.

To implement one iteration, we need the following subroutine. Given nonnegative costs on
the edges of G, and an edge 7j € Eg, we must select a minimum-cost path from ¢ to j consisting
of at most L edges. In the randomized version of IMPROVE-PACKING, we pick an edge of H
at random; in the deterministic version, such a path has to be selected for each edge of H. A
minimum-cost path from i to j consisting of at most L edges, can be found in O(N L) time
using dynamic programming, since G has O(N) edges.

Theorem 6.6 For any two constant-degree graphs, H and G, on the same set of nodes, an
embedding of the edges of H into the edges of G with congestion and dilation O(l—"-i—N-) can be
found by a randomized algorithm in O(N?1log? N) expected time, or in a factor of N more time
deterministically.

This running time marks a major improvement over the best previously known time that
is obtained by using Vaidya’s algorithm [25]. To obtain the dual solution, Vaidya’s algorithm
has O(N?log N) iterations, each of which consists of inverting an O(N) by O(N) matrix, plus
O(N?L) time for the deterministic version of the above subroutine; since L = 0(19%1\-7-), the
total time is O(N?log N(N22EN 1 AM(N))). When used in conjunction with the techniques of
Karmarkar & Karp to produce a primal solution, this appears to yield an algorithm that runs
in O(N7log® N) time, and a randomized analog that is a factor of IV faster.

The Held-Karp bound for the TSP with triangle inequality. One of the most useful
ways to obtain a lower bound on the length of the optimum tour for the traveling salesman
problem was proposed by Held & Karp [11], and is based on the idea of Lagrangean relaxation.
We shall assume that an instance of the Traveling Salesman Problem (TSP) is given by a
symmetric N x N cost matrix C = (c;;) that satisfies the triangle inequality, i.e., ¢ij + ¢jk >
cik, Vi, j, k, and has minimum tour length T'SP(C). A I-tree consists of 2 edges incident to node
1, and a spanning treeon {2, ..., N}. Since every tour is a 1-tree, the cost of the minimum 1-tree
is at most T'S P(C); furthermore, it can be computed by a minimum spanning tree computation.
Fach node ¢ is then given a price p; and reduced costs &;; = ¢i; + pi + p; are formed; if v is

46

the cost of a minimum 1-tree with respect to the reduced costs, then v — 23" ; p; < TSP(C).
The Held-Karp bound is attained by choosing the vector p to maximize this lower bound. Held
& Karp gave a subgradient optimization method to find such a p by iteratively computing the
minimum 1-tree T' with respect to the current reduced costs, and then adjusting p by taking a
step proportional to d; — 2, where d; is the degree of node ¢ in T'.

It is possible to formulate the Held-Karp bound as a linear program where the variables are
the prices (plus one additional variable v), and there is one constraint for each possible 1-tree:
maximize v subject to the constraint that the reduced cost of each 1-tree is at least v. We shall
instead focus on the dual of this linear program. Let T},...,T, be a complete enumeration of
all 1-trees, let d;; denote the degree of node ¢ in T}, and let c; denote the total cost of T; (with

respect to the original costs C). If z; denotes the variable corresponding to T;, then we can
formulate this dual as follows:

minimize Zijj subject to
j

Zd,’jxj < 2, i=1,...,N, (25)
7=1
Zm_,- =1, z; 20, j=1,...,s. (26)
J=1

We apply Theorem 2.5 by using a bisection search for the minimum feasible cost K, so that
there is feasible solution to the fractional packing problem, where P is defined by (26), Az <b
is given by (25) and 3 7_; ¢;z; < K. The bisection search can be initialized with lower and
upper bounds of ¢min and 2¢yin, respectively, where cmin = minj c;.

Lemma 6.7 The width p of the above formulation of the Held-Karp bound is at most V.

Proof: We can assume that K > cpin. By the triangle inequality, each entry in C is at most
the cost of the minimum 1-tree, ¢min. This implies that ¢;/cx < N, for each 5,k =1,...,s, and
so foreach z € P, 3, cjz; < N K; furthermore, for each 1-tree, the degree of each node is less
than NV, and hence, 3~; d;;z; < N. |

To minimize a linear objective over P, we choose the 1-tree with minimum objective coeffi-
cient. If z € R denotes the dual variable for 3_ ¢;z; < K and y € RV denotes the vector of dual
variables for (25), then the objective coefficient of z;, in the corresponding optimization over
P,is cjz+ Zf\;l d;jyi. This implies that the minimum 1-tree found in this iteration is precisely
the 1-tree found by minimizing with respect to the reduced costs ¢ with p = y/z, which was
used in each iteration of the Held-Karp subgradient optimization method. Of course, we use a
rather different rule to compute the new vector p for the next iteration. Using the minimum
spanning tree algorithm of Fredman & Tarjan [3], we get the following result.

Lemma 6.8 The subroutine required by the packing algorithm in Theorem 2.5 for this problem
can be implemented in O(N?) time.

47

The bisection search produces a value K and a solution Z € P that satisfies Az < (1 +€)b
with K = K, whereas for K < K/(1+ ¢), there does not exist £ € P of cost K that satisfies
(25). However, this does not imply that K is within a factor of (1+¢) of the optimum Held-Karp
bound; it is possible that any z € P that satisfies (25) has a much larger cost. However, we
have the following lemma.

Lemma 6.9 For any point & € P of cost at most K such that Yidijzi < (14+€2,i=1,...,N,
we can find, in O(N?) time, a point z € P that satisfies (25) and has cost at most K(1+42Ne).

Proof: We construct z by carefully perturbing #. We start by setting z = Z. The current
solution is a convex combination of 1-trees. We will maintain the property that z is a convex
combination of multi- I-trees, where a multi-1-tree is a spanning tree on nodes {2,...,n} and any
two edges incident to node 1, which might be two copies of the same edge. Let di(z) = ¥_; dijz;.
If z does not satisfy (25), then there must exist a node k with d¢(z) > 2. By an averaging
argument, we see that in this case there is at least one node j with d;j(z) < 2. So we have
partitioned the nodes into three sets, S¢, S, and S5, depending on whether a node ¢ has di(z)
less than, equal to, or greater than 2, respectively. We construct a multi-1-tree T} as follows:
form a spanning tree on S, add a cycle through node j € S¢ and all nodes in S=, as well as an
edge from each node in S5 to node j. Observe that T; has dje = 1 if and only if di(z) > 2, and
d;e = 2 for each node i with d;(z) = 2. We use T} to perturb z; let Z denote the incidence vector
of Ty. We set z = (1 — o)z + 0% where o is chosen to be such that d;(z) < (1+€—0/2)2,for
each i = 1,..., N, and the number of points with d;(z) = 2 is increased. This can be achieved
by setting
di(z) -2

min ———.
idi(2)#2 di(z) — die
We repeat this procedure until there are no more points with dj(z) > 2 left, and hence the
resulting solution satisfies (25). Since each iteration increases the number of points with di(z) =
2, the procedure terminates after at most N iterations, and takes O(N 2) time.

o =

Now consider the cost of the resulting solution. If the point & € P has cost at most K, then
there must exist a 1-tree of cost at most K, and therefore, by the triangle inequality, ¢; < N K,
for each j = 1,...,s. Each perturbation with corresponding value o ensures that max; di(z)
decreases by o. Since a total decrease of at most 2¢ is needed to ensure that the resulting
solution satisfies (25), the values of o for all of the perturbations sum to at most 2¢. Therefore,
these perturbations have increased the cost by at most 2eN K. Finally, it is not hard to show
that there must exist a solution that is a convex combination of 1-trees of no greater cost, by
showing that z can be interpreted as a feasible solution to the subtour elimination polytope,
which is an alternative formulation of the Held-Karp bound. 1§

If we use € = ¢u/(2N), we obtain the Held-Karp bound within a factor of 1 + €o. Un-
fortunately, this implies that the algorithm might run for O(N3log V) iterations, where each
iteration takes O(N2) time. In contrast, Vaidya’s algorithm [25] takes O(N2M(N)log N) time.

The cutting-stock problem. In the cutting-stock problem, we wish to subdivide a minimum
number of raws of width W, in order to satisfy a demand d; for finals of width w;, 1 = 1,..., M.

48

This can be formulated as an integer program with a variable z; for each feasible pattern for
subdividing a single raw; that is, a pattern is an vector a! € NM such that 3; a;w; < W, and
a; <di,i=1,...,M. Let (a1;,...,amj)}, 7 = 1,..., N, be alist of all patterns. Then we wish
to minimize }; z; subject to

N
Za;jszd,-, i=1,..., M, (27)
J=1

and z; > 0, integer, j = 1,..., N. Although we want an integer solution, the linear relaxation
of this formulation has been extremely useful in practical applications; furthermore, there are
applications in which patterns may be used fractionally [2]. Also, finding an approximate solu-
tion to this linear relaxation is the key ingredient of Karmarkar & Karp’s [13] fully polynomial
approximation scheme for the bin-packing problem.

Given a possible number of raws r, we try to find ¢ € P = {z; : }:ﬁvzl T; =71, Tj >
0, j = 1,..., N} that satisfies (27). Since the width p can only be bounded by r, we will
use the decomposition result, and so we need subroutine (15) for this application. Consider a
vertex z of P, where zx = r and z; = 0, j # k. The profit of this kth pattern is Y ((yir)ai :
i such that a;; < vd;/r); each final of width w; that is used in this pattern has a profit of y;r,
unless more than vd;/r finals of width w; are used, in which case none of those finals has any
profit. For each pattern a, any vector b such that b < a is also a pattern, and so we can find
the optimal vertex of P among those patterns j for which a;; < vd;/r, i = 1,..., M. Hence,
subroutine (15) is equivalent to solving the following knapsack problem: there are M types of
pieces, such that type i has weight w; and has profit y;r and the total knapsack has capacity
W; at most vd;/r pieces of type i can be used, and we wish to fill our knapsack as profitably
as possible. Although this is N P-hard, recall that by Theorem 3.10 an ¢/2-approximation
algorithm would suffice for our purposes. Lawler [16] gave efficient approximation algorithms
for the M-piece ordinary knapsack problem that run in O(Me=2) and O(M loge™! +¢~*) time.
Next we adapt both algorithms for the above version of the knapsack problem, where instead
of M different pieces, we have M different types of pieces.

Lawler’s e-approximation algorithm for the knapsack problem is roughly as follows. First
compute the optimum value P, of the linear programming relaxation of the knapsack problem.
Lawler shows that Py < P* < 2P,, where P* denotes the optimum integer knapsack value.
Next the algorithm considers large pieces with profit at least T = €Pp/2. By rounding the
profits and then using dynamic programming, it compiles a list of O(e~?) candidate solutions
using just these large pieces. Next it augments each of these candidate solutions with a subset
of the remaining small pieces using a greedy algorithm, and selects the best among the resulting
solutions.

We shall briefly describe a modification of Lawler’s algorithm that can be applied to the
version of the knapsack problem with a specified number of copies of each type of piece. We
first solve the linear programming relaxation; even with multiple copies, this can be done in
O(M) time using median finding within a divide-and-conquer strategy. The only part of the
algorithm that is non-trivial to adapt to problems with multiple copies of pieces is the rounding

49

and dynamic programming. We first round the profits of the large pieces as follows: for an item
with profit p; € (2¢T,2¢*1T], we let the rounded profit ¢; = E!,’i?TQ‘ ,where K = €T'/2 = 2Py /4.

This rounding guarantees that there are at most 2Py/K = O(e~?) distinct values for the total
rounded profit of any knapsack solution.

If (C, P) and (C', P') represent the unused capacity and total profit for two knapsack so-
lutions z and z’, respectively, then z dominates z' if C > C’ and P > P'. The dynamic
programming algorithm finds the set of all undominated solutions. The algorithm works in M
stages; after stage j, it has found the set of undominated solutions using pieces of only the first
j types of pieces. Stage j can be implemented to run in time proportional to the the multiplicity
of piece type j times number of different rounded total profits. Therefore, the time required
for the dynamic programming can be estimated as the total number of large pieces (counting
multiplicities) times the number of possible rounded total profits. Lawler observed that after
rounding, one can use median finding to discard all but O(e~?) large pieces in O(M) time. To
see this, note that at most 2!~‘e~1 pieces of profit more than 2T can be used in any solution
of total profit at most 2Py; hence, for each rounded profit value in the interval [2T, 24+1T7], we
need keep only the 21-%¢~1 pieces of least weight. Since there are O(e~!) distinct rounded prof-
its in this interval there are ¥, 21~%~2 = O(¢~?) large pieces needed in total. As in Lawler’s
algorithm, these pieces can be selected in O(M) time.

As a consequence, the dynamic programming algorithm produces O(e?) solutions using
just the large pieces, and the algorithm automatically arranges them in increasing order of
unused knapsack capacity. Lawler has shown that these solutions can all be augmented to
include a greedily selected extension of small pieces in (M loge~!) time, using median finding
(see section 6 in [16]). This algorithm can also be used for problems with multiple items. The
resulting implementation of the subroutine runs in O(M loge™! + €~*) time.

In order to obtain the O(Me~2) bound, we have to further modify Lawler’s algorithm,
using another technique that was introduced in [16] in a somewhat different context. We can
assume without loss of generality that the multiplicity of each of the large pieces is at most
O(e1). Next we construct an instance of the ordinary knapsack problem that is equivalent
to this instance with multiplicities; the new instance has fewer pieces in total, by replacing
a piece of weight w;, profit p; and multiplicity m; by [log m;] items, with weights and profits
[wi, pi], [2wi, 2p5]), - - - [2kw;, 2%p;] and [(m;—2%)w;, (m;—2¥)p;] where k = [log m;]. Since we can
simulate selecting any number of copies of type i that is at most m; by choosing an appropriate
subset of the new pieces, we get the following lemma.

Lemma 6.10 The resulting instance of the ordinary knapsack problem with O(M log €1) pieces
is equivalent to the instance of the knapsack problem of the large pieces.

Next we round the resulting pieces as was done above. Notice that although there are O(M log e
pieces, no profit interval (2¢T,2¢41T] has more than M items. We will run the dynamic pro-
gramming starting with the items whose profits fall in the top interval. These items were
rounded more roughly. The number of different rounded profits possible using items with prof-
its at least 2¢T is at most P*/(2¢K). Therefore, the dynamic programming for items with

50

profits in the interval (2¢T,2¢+1T] can be implemented in O(M P*/(2°K)) time, and the time
spent on the last interval, which is O(M P*/K) = O(Me~?), dominates the total time for the
computation.

Theorem 6.11 An c-approximation algorithm that is analogous to the optimization subroutine
(15) can be implemented in O(min{Me=2, Mloge™! + ¢~*}) time.

The covering algorithm of Theorem 3.7 starts by finding an initial solution with A > 1/m.
For the cutting-stock problem, it is easy to provide an initial solution with A > 1/2. For final
i of width w;, consider the pattern](z) that consists of |W/w;] finals of type ¢, i =1,..., M.
Set z},y = d; i/ IW/w;] for each i = 1,..., M, and set each other component z; = 0. Let
r' = 3; z. Since each selected pattern is at least half used for finals, r* > 7//2. Hence, we can
1mt1a.hze the bisection search for the minimum number of raws with r' and r//2 as upper and
lower bounds, respectively. For any candidate number of raws r, the vector zo = (r/r')z’ serves
as an initial solution with A > 1/2 to the covering problem formulated for the cutting-stock
problem. However, we are using the decomposition technique, so we must provide an initial
solution to the transformed version of the covering problem. Since A = r/r' < 1, the algorithm
used to prove Lemma 5.12 finds a solution of identical quality for the transformed problem
Pl x ...x P¥ x P'. The initial solution z’ satisfies each covering constraint with equality, and
all patterns used consist of a single type of final. Therefore,; each phase of this algorithm can
be implemented to run in O(M) time. Since k = logr, we obtain a solution for the transformed
problem in O(M logr) time. Since we have an initial solution with A > 1/2, we no longer need
the log M calls to IMPROVE-COVER with € = 1/6, and can start with e-scaling; this improves
the running time in Theorem 5.13 by deleting the log? m term in the parenthesis.

We apply this improved version of Theorem 5.13 and Theorem 6.11 to obtain the following
result. For simplicity, we state the resulting bound using the O(Me~2) bound for the knapsack
problem with multiple copies.

Theorem 6.12 For any € > 0, there is a randomized e-approximation algorithm for the fractional
cutting-stock problem that is expected to run in O(M?2e~*log(e~'M)logr*loge™!) time, and a
deterministic analog that takes a factor of log 7* more time.

It is not too hard to notice that by somewhat modifying the covering algorithm used we can
eliminate the need for the bisection search for the required number of raws; this improves the
running time by a loge~! factor.

The best previously known algorithm is obtained by using Vaidya’s algorithm [25] to solve
the linear programming dual of the problem, and then use the techniques of Karmarkar &
Karp and the algorithm of Vaidya [26] to obtain a primal solution. The resulting deterministic
algorithm runs in O*(M*M(M)+ M3¢?) time. A randomized version runs in O*(M>M(M)+
M3¢=2) time. As for our algorithm, these bounds use the O(M¢~?) bound for the approximation
algorithm. For fixed ¢, our algorithm is a significant improvement over Vaidya’s algorithm.

51

The integer version of the cutting-stock problem is equivalent to the bin-packing problem,
which is usually stated in terms of pieces of specified sizes that are to be packed into the
minimum number of bins. Karmarkar & Karp [13] gave a fully polynomial approximation
scheme for the bin-packing problem which uses an algorithm (based on the ellipsoid method)
for the fractional cutting-stock problem. Our algorithm can be used to replace the ellipsoid
method in this application to yield the fastest known deterministic algorithm for this problem.

Karmarkar & Karp give a fully polynomial approximation scheme for the bin-packing prob-
lem that, for an instance with N pieces and optimum value r*, delivers a solution that uses

(14€)r*+0(€~?) bins. In fact, the additive term in the performance guarantee can be improved
to O(e~!log(e1)).

We can assume without loss of generality that the size W of the bins is 1. Given a bin-
packing instance I, let opt(I) denote the minimum number of bins required for this instance,
and let size(I) denote the sum of the piece sizes. Clearly, size(I) < opt(I). The Karmarkar &
Karp algorithm first deletes any piece of size at most ¢/2. Let I’ denote the resulting instance.
These small pieces can be added back to a packing of the remaining pieces, arbitrarily filling
up the bins without effecting the performance guarantee (by Lemma 3 in [13]).

Next the algorithm uses grouping of pieces to have a small number of distinct piece sizes.
Karmarkar & Karp use linear grouping for one version of the algorithm, but they use ge-
ometric grouping for a more sophisticated version. An improved guarantee (where the ad-
ditive error term is O(e~1loge~1)) is obtained by using geometric grouping with parameter
k = size(I)e/log(2¢1). This grouping yields a rounded instance J which satisfies opt(J) £
opt(I) < opt(J) + klog2¢! (by Lemma 5 in [13]). The Karmarkar & Karp algorithm approx-
imately solves the fractional cutting-stock problem corresponding to instance J to obtain a
vertex z, which is converted to the integer solution [z]. The number of additional bins intro-
duced by this rounding is at most the number of non-zeros in z; since z is a vertex, this is at
most the number of different piece sizes. It is not hard to show that M, the number of different
piece sizes in the rounded instance is at most (2/k)size(I) + [log2¢~!] (by Lemma 5 in [13]).
The choice of k implies that M = O(e~loge~1). Therefore, the total number of bins used is
at most opt(I) + M + klog2¢~'=(1 + €)opt(I) + O(e tloge™1).

The geometric grouping can be constructed in O(N log M) time. We use Theorem 6.12 to
solve the resulting cutting stock problem. Karmarkar & Karp find a vertex of the covering
problem. Instead, we will find a solution consisting of at most M non-zeros. The random-
ized version of the algorithm increases the number of non-zeros by at most 1 every iteration.
Therefore, the final number of zeros is at most O(Me~2log(e"1M))log N). By implementing
the randomized version deterministically (choosing the best commodity every iteration, rather
than a random one) we obtain the same bound on the number of non-zeros also for the deter-
ministic version. Given a solution with more than M non-zeros, the number of non-zeros can be
decreased by one using matrix inversion without affecting the quality of the solution. Therefore,
in O(MM(M)e2log(e='M))log N) =O(¢~®log* e~!log N) time we can find a solution with
at most M non-zeros.

We combine the bound given above for M, and Theorems 6.12 and 6.11. Observe that, for

52

any constant ¢, O(N log e~14¢6 log* e~1log® N) can be bounded by O(N log e~ +€° logitee—1).

Theorem 6.13 There is a randomized fully polynomial approximation scheme for the bin-packing
problem that, for an instance with N pieces and optimum value r*, delivers a solution that uses
(14 €)r* + O(e~tlog €1) bins in O(N loge~! + e~%log® e~1) time, a deterministic analog runs in
O(Nloge=! + e®logfe1) time.

Our cutting stock algorithm was a significant improvement over the best previously know al-
gorithm when M is large relative to e~!. However, in this application M = O(etloge™?).
Using the algorithms of Vaidya [26, 25] to solve the fractional cutting stock problems, as men-
tioned after Theorem 6.12, and plugging in M = O(e 'loge™!) gives a deterministic algo-
rithm that runs in O*(Nloge~! 4+ e*M(M)) time, and a randomized version that runs in
O*(Nloge™! + =3 M(M)) time. Thus, our deterministic algorithm improves on the determin-
istic implementation of Vaidya’s algorithm.

Minimum-cost multicommodity flow. The input for the minimum-cost multicommodity
flow problem consists of an N-node, M-edge directed graph G = (V, E), a non-negative cost
c(e) and a non-negative capacity u(e) for each edge e € E, and source-sink pairs s;,t; € |4
with a non-negative demand d;, j = 1,..., K, that specify the K commodities. For notational
convenience we assume that the graph G is connected and has no parallel edges.

For each commodity j, we have a function f;(e) > 0, that specifies the flow of that com-
modity on each edge e € E, j = 1,..., K. The total flow function is then f(e) = %; fi(e), for
each e € E. The conservation constraints ensure that

> fiwo) - Z fi(vw) = 0 for each v ¢ {s;,t;},7=1,..., K. (28)

wiwveEE wivw€E

We require also that

Z fi(vw) - Z fi(wv) = d; for v = s;. (29)

wivweE wwveEE

We say that a multicommodity flow f in G is feasible if f(e) < u(e) for each edge € € E. The
cost of a flow fis Y .cc(e)f(e) and the objective is to find a feasible flow of minimum cost.

To apply our relaxed decision procedure, we once again use bisection search for the minimum
feasible cost B. We define P by (28), (29), and the constraint f;(e) > 0, for each commodity
j =1,...,K and each edge e € E; this is in the product form P! x --- X PX_ where P’
denotes these constraints on commodity j = 1,..., K. Let Az < b be given by the feasibility
constraints, as well as the budget constraint 3. c(e)f(e) < B.

We shall use the decomposition technique of Theorem 5.11. To do so, we first specify v; for
each inequality in Az < b, and then show how to compute subroutine (14) for each Pi. For
each edge e € E, let 7(e) = 1 (corresponding to the inequality f(e) < u(e)) and let v = N
(corresponding to the budget constraint), so that I = M + N = O(M).

53

Lemma 6.14 Subroutine (14) can be implemented in O(M + N log N) time for each Pl j=
1,..., K.

Proof: Each vertex of P corresponds to an (s;,t;) path with d; units of flow of commodity j
along it. For each e € E, let y(e) denote the dual variable for its capacity constraint, and let 2
denote the dual variable for the budget constraint. Given y, z and v, we must find an (s;,¢;)
path @ such that

u(e) > dj/v for each e € Q, and Z c(e) < vB/d;, (30)
e€Q

and for which,

Z y(e) + zc(e) < z y(e) + zc(e), forall @ € Q,
e€Q e€Q

where Q is the set of (s;,t;) paths @ such that u(e) > d;/v for each e € @, and }_.¢q cle) <
(v/N)B/d;. Observe that all paths in Q are contained in the subgraph of edges e that satisfy
u(e) > d;/v and ¢(e) < (v/N)B/d;; furthermore, each (s;,¢;) path in this subgraph satisfies
(30). Therefore, by computing the shortest (sj,t;) path with respect to the modified costs
y(e) + zc(e) in this subgraph, we find a suitable path Q. This takes O(M + N log N) time. |

We use our relaxed decision procedure within a bisection search for the appropriate choice
for the budget B, which can be at most C = 3", c(e)u(e). By applying Theorem 5.11, we obtain
the following result; note that an e-optimal flow may exceed the optimum cost and the capacity
constraints by a (1 + ¢) factor.

Theorem 6.15 For any fixed € > 0, there exists a deterministic algorithm for the minimum-
cost multicommodity flow problem that finds an e-optimal flow and runs in O(K*M1logN (M +
Nlog N)log C) time, and a randomized analog that runs in O(KMlog N (M + Nlog N)logC)

time.

The best previously known algorithm is due to Vaidya [26]. For the randomized version, our
algorithm is an Q*(M N K?2®) factor faster than Vaidya’s.

Acknowledgments

We are grateful to Andrew Goldberg and Cliff Stein for many helpful discussions. In particular,
we would like to thank CLff for allowing us to include his observation that an integer version
of the packing algorithm could be applied to the job-shop scheduling problem.

54

References

[1] M. E. Dyer. An O(n) algorithm for the multiple-choice knapsack linear program. Mathe-
matical Programming, 29:57-63, 1984.

[2] K. Eisemann. The trim problem. Management Science, 3:279-284, 1957.

[3] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. J. Assoc. Comput. Mach., 34:596-615, 1987.

[4] H. N. Gabow. Using Euler partitions to edge-color bipartite multi-graphs. Int. J. Comput.
Inform. Sci., 5:345-355, 1976.

[5] P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock
problem. Operations Research, 9:839-859, 1961.

[6] P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock
problem — Part II. Operations Research, 11:863-888, 1963.

[7] A. V. Goldberg. A natural randomization strategy for multicommodity flow and related
algorithms. Unpublished manuscript, 1991.

[8] A.V. Goldberg, S. A. Plotkin, and E. Tardos. Combinatorial algorithms for the generalized
flow problem. Mathematics of Operations Research, 16:351-381, 1990.

[9] A. V. Goldberg, S. A. Plotkin, D. B. Shmoys, and E. Tardos. Interior point methods for fast
parallel algorithms for bipartite matching and related problems. SIAM J. on Computing,
to appear.

[10] M. D. Grigoriadis and L. G. Khachiyan. Fast approximation schemes for convex programs
with many blocks and coupling constraints. Technical Report DCS-TR-273, Rutgers Uni-
versity, New Brunswick, NJ, 1991.

[11] M. Held and R. M. Karp. The traveling-salesman problem and minimum cost spanning
trees. Operations Research, 18:1138-1162, 1970.

[12] S. Kapoor and P. M. Vaidya. Fast algorithms for convex quadratic programming and
multicommodity flows. In Proceedings of the 18nd Annual ACM Symposium on Theory of
Computing, pages 147-159, 1986.

[13] N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-dimensional
bin-packing problem. In Proceedings of the 23rd Annual IEEE Symposium on Foundations
of Computer Science, pages 206-213, 1982.

[14] R. M. Karp. Probabilistic recurrence relations. In Proceedings of the 23rd Annual ACM
Symposium on the Theory of Computing, pages 190-197, 1991.

[15] P. Klein, S. A. Plotkin, C. Stein, and E. Tardos. Faster approximation algorithms for the
unit capacity concurrent flow problem with applications to routing and finding sparse cuts.
Technical Report 961, School of Operations Research and Industrial Engineering, Cornell

55

University, 1991. A preliminary version of this paper appeared in Proceedings of the 22nd
Annual ACM Symposium on Theory of Computing, pages 310-321, 1990.

(16] E. L. Lawler. Fast approximation algorithms for knapsack problems. Mathematics of
Operations Research, 4:339-356, 1979.

[17] E. L. Lawler and J. Labetoulle. On preemptive scheduling on unrelated parallel processors
by linear programming. J. Assoc. Comput. Mach., 25:612-619, 1978.

[18] T. Leighton, F. Makedon, S. Plotkin, C. Stein, E. Tardos, and S. Tragoudas. Fast approx-
imation algorithms for multicommodity flow problems. In Proceedings of the 23rd Annual
ACM Symposium on the Theory of Computing, pages 101-111, 1991.

[19] T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform multi-
commodity flow problems with applications to approximation algorithms. In Proceedings
of the 29th Annual Symposium on Foundations of Computer Science, pages 422-431, 1988.

[20] J. K. Lenstra, D. B. Shmoys, and E. Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programming, A, 24:259-272, 1990.

[21] P. Raghavan. Probabilistic construction of deterministic algorithms: approximating pack-
ing integer programs. J. Comput. System Sciences, 37:130-143, 1988.

[22] P. Raghavan and C. D. Thompson. Randomized rounding: a technique for provably good
algorithms and algorithmic proofs. Combinatorica, 7:365-374, 1987.

[23] F. Shahrokhi and D. W. Matula. The maximum concurrent flow problem. J. Assoc.
Comput. Mach., 37:318-334, 1990.

[24] D. B. Shmoys, C. Stein and J. Wein. Improved approximation algorithms for shop schedul-
ing problems. In Proceedings of the Second Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 148-157, 1991.

[25] P. M. Vaidya. A new algorithm for minimizing convex functions over convex sets. In
Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer Science,
pages 338-343, 1989.

[26] P. M. Vaidya. Speeding up linear programming using fast matrix multiplication. In Pro-
ceedings of the 30th Annual IEEE Symposium on Foundations of Computer Science, pages
332-337, 1989.

[27] S. L. van de Velde. Machine scheduling and Lagrangian relaxation. Doctoral thesis, Centre
for Mathematics and Computer Science, Amsterdam, 1991.

	TR000999-1.pdf
	TR000999-2.pdf

