
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Fast Approximation Algorithms for Graph Partitioning Using Spectral and Semidefinite-
Programming Techniques

Permalink
https://escholarship.org/uc/item/2z90d0qn

Author
Orecchia, Lorenzo

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2z90d0qn
https://escholarship.org
http://www.cdlib.org/

Fast Approximation Algorithms for Graph Partitioning Using Spectral and
Semidefinite-Programming Techniques

by

Lorenzo Orecchia

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Satish Rao, Chair
Professor David Aldous

Professor Umesh V. Vazirani

Spring 2011

Fast Approximation Algorithms for Graph Partitioning Using Spectral and
Semidefinite-Programming Techniques

Copyright 2011
by

Lorenzo Orecchia

1

Abstract

Fast Approximation Algorithms for Graph Partitioning Using Spectral and
Semidefinite-Programming Techniques

by

Lorenzo Orecchia

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Satish Rao, Chair

Graph-partitioning problems are a central topic of research in the study of approximation
algorithms. They are of interest to both theoreticians, for their far-reaching connections to
different areas of mathematics, and to practitioners, as algorithms for graph partitioning can
be used as fundamental building blocks in many applications, such as image segmentation
and clustering. While many theoretical approximation algorithms exist for graph partition-
ing, they often rely on multicommodity-flow computations that run in quadratic time in
the worst case and are too time-consuming for the massive graphs that are prevalent in
today’s applications. In this dissertation, we study the design of approximation algorithms
that yield strong approximation guarantees, while running in subquadratic time and relying
on computational procedures that are often fast in practice. The results that we describe
encompass two different approaches to the construction of such fast algorithms.

Our first result exploits the Cut-Matching game of Khandekar, Rao and Vazirani [41], an el-
egant framework for designing graph-partitioning algorithms that rely on single-commodity,
rather than multicommodity, maximum flow. Within this framework, we give two novel algo-
rithms that achieve an O(log n)-approximation for the problem of finding the cut of minimum
expansion in the instance graph. The running time of these algorithms is Õ(m+n3/2) and is
dominated by a polylogarithmic number of single-commodity maximum-flow computations.
Moreover, we give the first analysis of the limitations of the Cut-Matching game by showing
that, for the minimum-expansion problem, no approximation better than Ω(

√
log n) can be

obtained within this framework.

Our second result is a spectral method for the problem of finding the balanced cut of min-
imum conductance in a graph. In its design, we abandon the use of flow computations, in
favor of spectral methods that give the algorithm a nearly-linear running time. At the same
time, we can show that this algorithm achieves the asymptotically optimal approximation

2

ratio for spectral methods, settling an open question in the seminal work of Spielman and
Teng [64] on spectral algorithms. Moreover, our algorithm has applications to the compu-
tation of graph decompositions, the solution of systems of linear equations and sparsification.

In both results, our approach to graph partitioning consists of a combination of spectral
and semidefinite-programming techniques. A crucial ingredient in our algorithmic design is
the use of random walks that, by hedging among many eigenvectors in the graph spectrum,
capture the existence of low-conductance cuts better than single eigenvectors. The analysis
of our methods is particularly simple, as it relies on a semidefinite programming formulation
of the graph partitioning problem of choice. Indeed, we can describe our algorithms as
primal-dual methods for solving a semidefinite program and show that certain random walks
arise naturally from this approach. In this pursuit, we make use of the powerful Matrix
Multiplicative Weight Update method of Arora and Kale [11], which helps us to formalize
the connections between random walks, semidefinite programming and hedging, the common
themes of our algorithms.

i

To my parents

Ai miei genitori

ii

Contents

1 Introduction 1
1.0.1 Background . 2
1.0.2 Fast Algorithms for Graph Partitioning 3

1.1 Summary of Results . 4
1.1.1 Techniques . 4
1.1.2 The Cut-Matching Game and Fast Algorithms for Graph Partitioning 5
1.1.3 Fast Spectral Algorithms for Balanced Separator 7

1.2 Organization . 8
1.3 Bibliographic Notes . 9

2 Notation, Definitions and Basic Inequalities 10
2.1 Notation and Basic Facts . 10
2.2 Basic Definitions . 11

2.2.1 Graph-Partitoning Problems . 11
2.2.2 Spectral Gap and Cheeger’s Inequality 12
2.2.3 Spectral and Flow Embeddings . 13
2.2.4 Matrix Exponentiation . 13
2.2.5 Heat-Kernel Random Walk . 14

2.3 Basic Inequalities . 14
2.3.1 Scalar Inequalities . 14
2.3.2 Matrix Inequalities . 15

3 The Matrix Multiplicative Weight Update Method 17
3.1 MWU Basics . 18
3.2 The Vector MWU Algorithm . 19
3.3 The Matrix MWU Algorithm . 22

3.3.1 A More General Formulation of the Matrix MWU Algorithm 25
3.4 Solving SDPs by the Matrix MWU algorithm 27

iii

4 The Cut-Matching Game and Fast Algorithms for Graph Partitioning 30
4.1 The Cut-Matching Game . 30
4.2 Construction of Cut Strategies . 34

4.2.1 Using Random Walks . 34
4.2.2 Potential Analysis . 37

4.3 The Random Walks . 38
4.3.1 The Random Walk for CKRV . 38
4.3.2 The Random Walk for CEXP . 39
4.3.3 The Random Walk for CNAT . 40

4.4 Analyzing the Potential Reduction . 43
4.4.1 Algorithmic Template . 44

4.5 Completing the Analysis . 44
4.5.1 The CKRV Strategy . 44
4.5.2 The CEXP Strategy . 47
4.5.3 The CNAT Strategy . 49

4.6 Matrix MWU Interpretation . 51
4.7 Lower Bounds for the Cut-Matching Game 53

4.7.1 Proof Idea . 53
4.7.2 Main Lemma . 53
4.7.3 Preliminaries . 54
4.7.4 Proof of Theorem 4.1.6 . 54
4.7.5 Proof of Lemma 4.7.4 . 56

4.8 Related Work . 59

5 Fast Spectral Algorithms for Balanced Separator and Graph Decomposi-
tion 61

5.0.1 Our Result . 62
5.0.2 Application to Graph Decomposition. 63
5.0.3 Our Techniques . 63

5.1 Algorithm Statement and Main Theorems 65
5.1.1 Notation and Basic Facts . 65
5.1.2 SDP Formulation . 66
5.1.3 Primal-Dual Framework . 68

5.2 Oracle and Proof of the Main Theorem . 71
5.3 Proof of Theorem on Oracle . 74

5.3.1 Preliminaries . 74
5.3.2 Proof of Theorem 5.2.1 . 74

5.4 Random Walk Interpretation . 76
5.5 Other Proofs . 79

5.5.1 Proof of Basic Lemmata . 79
5.5.2 Projection Rounding . 79

iv

Bibliography 85

A Omitted Proofs 91
A.1 Projection Lemma . 91
A.2 Proof of Lemma 5.1.10 . 92

v

Acknowledgments

This dissertation owes a great deal to the mentorship I have received from three people during
my time at Berkeley. First and foremost, I thank my advisor, Satish Rao, who has supported
me through good and bad times, shaped my research in graph partitioning and given me
confidence when I needed it. His remarkable intuition, perspective and commitment to our
area of research inspire me, and scare me, every day. Secondly, Umesh Vazirani has been
a source of invaluable advice at all times in my years as a graduate student. His guidance,
delivered in modern day sutras, taught me a lot about research and about all things in life.
Finally, Nisheeth Vishnoi has been a very close colleague and friend. He has taught me a
lot, inspired me to work in approximation algorithms and given me great support in every
way.

I also thank all my fellow graduate students in the Theory group for their friendship and
for maintaining a serene and happy atmosphere in the group, even through the hardship and
rigor of graduate school. I want to acknowledge in particular Alexandre Stauffer, who made
me feel back at home by discussing soccer at every possible break, and Anindya De, for the
fun and engaging conversations about life, India and, more importantly, cricket.

My friends, close and far, have been a continuous source of support through my graduate
career. I thank all of them. In particular, Bruno Benedetti and Simone Gambini have always
helped me in many ways, including keeping my confidence up and carrying boxes around in
one of my many moves.

My parents Luisa and Carlo and my brother Giulio have always been there for me and
have shaped my passion for mathematics and combinatorial reasoning. No words can express
my gratefulness for their love and support. This dissertation is dedicated to my mother,
who taught me what it meant to prove something mathematically, and to my father, who
explained to me the applications of combinatorics to soccer leagues at the right time of my
life.

In my time at Berkeley, I have also been lucky enough to acquire a new family who has
shown incredibly generous support of me. Thank you, Elaine and Richard. And I want to
give a special acknowledgment to Becca, who has been a friend and a sister to me, and has
always made me feel very appreciated.

Finally, I thank my wife Sam. Without her, not only this dissertation, but all the beauty
in my life today, would not have been possible.

1

Chapter 1

Introduction

Graph-partitioning problems are a central topic of research in the study of approximation
algorithms. They are of interest to theoretical computer scientists for their far-reaching
connections to spectral graph theory [21], metric embeddings [52] and the mixing of Markov
chains [33]. Moreover, graph-partitioning problems have received particular attention in
complexity theory, as settling their approximability is a fundamental open question in this
field. But graph partitioning is also important for many practitioners, as algorithms for these
problems are often fundamental primitives in other tasks, such as image segmentation [60],
clustering [36] and social-network analysis [51]. In today’s applications, the input to these
problems tend to consist of very large graphs, such as VLSI circuits or web-data graphs,
that require algorithms running in time as close to linear as possible while preserving a
good approximation ratio. The main object of this dissertation is the study of such fast
approximation algorithms for graph partitioning.

Graph-partitioning problems can be generically defined as a family of NP-hard problems
in which we are asked to partition the vertex set of a graph into two components such that
few edges are going across the cut and the two components are both large. This is often
achieved by optimizing a ratio of the number of edges cut and the “size” of the smaller side
of the partition. Changing the notion of “size” yields different graph-partitioning problems.

In this dissertation, we will focus on the two main graph-partitioning objectives, expan-
sion and conductance, but our techniques extend to other versions of graph partitioning.
Given an undirected unweighted graph G = (V,E), the expansion of a cut S ⊆ V, is defined
as

α(S)
def
=

|E(S, S)|
min{|S|, |S|}

.

The conductance of S is

φ(S)
def
=

|E(S, S)|
min{vol(S), vol(S)}

,

where vol(S) denotes the volume of S, i.e. the sum of the degrees of vertices in S. Then,
the Expansion problem is that of finding the cut of G of minimum expansion α(G). In the

2

case of conductance, we will be interested in the Balanced Separator problem, which
asks us to find the cut of G of minimum conductance that contains at least some constant
fraction of the volume of the graph. Besides being a theoretically rich problem, Balanced
Separator is of great practical importance, as it plays a crucial role in the design of divide-
and-conquer algorithms [61], where the balance constraint is used to ensure that the depth
of the recursion tree is at most logarithmic.

1.0.1 Background

Any approximation algorithm for a graph partitioning problem, e.g. Expansion, must
exhibit a certificate that lower-bounds the expansion of all the exponentially-many cuts
in the instance graph G. Different approaches to create such a succinct lower bound yield
different approximation algorithms. Classically, two main techniques have been employed in
this pursuit for graph partitioning: spectral and flow methods.

The spectral method is based on the realization that the graph cuts approximately de-
termine the mixing of random walks over the graph, with sparse, low-expansion cuts causing
slow mixing [21]. Alon and Milman [2] formalized this intuition showing that, in a d-regular
graph √

2 · gap(G) ≥ α(G)

d
≥ gap(G), (1.1)

where gap(G) is the spectral gap [21] of G, defined in Chapter 2, a measure of the speed
of mixing of random walks in the graph G. gap(G) can be computed by finding the slowest
mixing eigenvector of the graph Laplacian. Alon and Milman also show that a sweep cut
of this eigenvector has expansion at most d ·

√
2 · gap(G), yielding a pseudo-approximation

algorithm for Expansion. This algorithm achieves a good approximation ratio on graphs
of large expansion, but can be very far from optimal in graphs of low expansion. Indeed, its
approximation ratio can be as bad as Ω(

√
m)1 [30].

The flow-based algorithm of Leighton and Rao [49] certifies expansion by routing a scaled
copy of the complete graph KV in G, i.e. by showing that a multicommodity flow with
demands corresponding to the edges of KV can be routed concurrently in G with minimum
congestion c. This implies that

α(G) ≥ α(KV)

c
,

as the capacity of each cut in G must be able to support the capacity of the demands KV .
Conversely, if the algorithm is not able to route the flow with congestion c, it finds a cut S
with

α(S) ≤ O(log n) · α(KV)

c
.

1We use the conventional notation n
def
= |V | and m

def
= |E| for an instance graph G = (V,E).

3

This yields a O(log n)-approximation algorithm for Expansion. The algorithm of Leighton
and Rao can also be stated as solving and rounding a natural linear-programming relaxation
of the Expansion problem.

The spectral and flow paradigms were combined by Arora, Rao and Vazirani in their
seminal paper [12], which gave a O(

√
log n)-approximation algorithm for Expansion. The

authors used a semidefinite program (SDP) to relax the Expansion problem and intro-
duced the concept of expander flows to certify expansion. This consists of combining the
spectral and flow lower bounds as follows: we first embed a graph H into G with minimum
conductance c and then lower-bound the expansion of H using the spectral method. Note
that this kind of certificate is more general than that of Leighton and Rao and hence yields
tighter bounds on expansion. Arora et al. [12] followed the expander-flow paradigm by de-
scribing a O(

√
log n)-approximation algorithm that routes a regular expander in G using

multicommodity maximum-flow operations.
We now consider the running times of these algorithms. The spectral algorithm of Alon

and Milman runs in nearly-linear-time2 O(m/
√

gap(G)), if we use Lanczos method to compute
the necessary eigenvector [29]. However, the more advanced algorithms of Leighton and Rao
and Arora et al., with their superior approximation guarantees, were only known to run in
quadratic time Õ(n2) [8], because of the use of multicommodity maximum-flow computations.
This bottleneck has pushed many practitioners towards spectral methods and advanced
heuristics, such as Metis [37], which perform well in many cases, but have no guarantee on
their worst-case behavior.

1.0.2 Fast Algorithms for Graph Partitioning

Khandekar, Rao and Vazirani (KRV) [41] were the first to address this problem by using the
expander-flow idea to route a simpler graph than a general regular expander. Their algorithm
iteratively constructs an union of perfect matchings H that can be routed in G with small
congestion and such that α(H) is large. Even though they do not directly use a spectral
lower bound on the expansion of α(H), their methods to achieve a lower bound on α(H) are
inherently spectral and in the spirit of the expander-flow paradigm. The main advantage
of this algorithm is that, as it is routing a simpler, more restrictive kind of graph, it only
needs to run a polylogarithmic number of single-commodity maximum-flow operations to
achieve a O(log2 n)-approximation. As single-commodity maxflows can be computed in time
Õ(m3/2) by the Goldberg-Rao algorithm [28], the algorithm of KRV [41] runs in time Õ(m3/2),
improving on the quadratic running time of the other algorithms achieving polylogarithmic
approximation ratios.

In this paper, KRV also implicitly define the Cut-Matching game, a powerful framework
to obtain fast approximation algorithms for Expansion and other graph-partitioning prob-

2Following Spielman and Teng [64], we denote by nearly-linear time a time that is almost linear in the
number of edges, with a possible inverse polynomial dependence on the conductance of the graph.

4

lems using single-commodity maxflows. This framework will be the main object of our study
in Chapter 4. We contribute in two ways to the study of the Cut-Matching game: first, we
use it to construct improved algorithms for Expansion that achieve an approximation ratio
of O(log n) in time Õ(m3/2); secondly, we show a lower bound of Ω(

√
log n) on the approxi-

mation ratio achievable within the framework. This line of work was recently advanced by
Sherman [59], who described a O(

√
log n)-approximation algorithm for Expansion, outside

of the Cut-Matching-game framework, that only uses O(nε) single-commodity-maxflow com-
putations. This research direction has been very fruitful in obtaining strong approximation
algorithms running in essentially single-commodity-maxflow time, but, for some applications,
even a running time of Õ(m3/2) can be excessive and a nearly-linear-time algorithm is highly
desirable.

While the algorithm of Alon and Milman already achieves nearly-linear time to approx-
imate conductance and expansion of regular graphs, no such algorithm was known for the
important variant of Balanced Separator until the fundamental work of Spielman and
Teng [66, 67, 65, 64]. Their sequence of papers gives nearly-linear time algorithms to solve
systems of linear equations involving Laplacian matrices and to construct high-quality spec-
tral sparsifiers and makes use of a nearly-linear-time approximation algorithm for Bal-
anced Separator as an important primitive. However, their algorithm fails to achieve the
asymptotic quadratic approximation ratio of Equation 1.0.1, which is optimal for spectral
algorithms, and opens the question of whether such ratio can be obtained in nearly-linear
time [62]. Our work in Chapter 5 resolves this standing open-question positively by con-
structing an algorithm BalCut that meets these bounds. Our algorithm can be substituted
for the original Spielman and Teng’s algorithm in the application to the solution of systems of
linear equations and sparsification, yielding polylogarithmic improvements in running time.

1.1 Summary of Results

This dissertation will present our results in two areas: Chapter 4 contains our work on
the Cut-Matching game, including our improved algorithms and lower bound argument.
Chapter 5 deals with our novel algorithm for the Balanced Separator problem. In the
rest of this Introduction, we discuss our techniques and give a more precise sketch of our
results and their significance.

1.1.1 Techniques

The two results in this dissertation share a common approach and a common set of tech-
niques: in both cases, we construct algorithms that leverage the power and speed of random
walks to find sparse cuts, yet we do not rely on classical theorems about the convergence of
random walks, such as the lemmata of Lovasz and Simonovits [53]. Instead, our analysis is
often a simple consequence of our SDP formulations of the problem, combined with other

5

SDP-based ideas. Indeed, this SDP angle seems to allow us to construct and handle advanced
spectral algorithms that capture the behavior of sophisticated walks over the graph, without
having to design such walks in an ad-hoc manner, as is done in local-random-walk methods.

A major role in this approach is played by Multiplicative Weight Update methods [11],
a technique to which we dedicate Chapter 3. Multiplicative Weight Updates are a class of
methods developed in online learning and game theory to analyze and exploit the effectiveness
of hedging over multiple strategies in a repeated game. Despite their simplicity, these updates
are capable of efficiently capturing the power of strong duality and have many applications in
Theoretical Computer Science [10, 11], both as an algorithmic tool and as a proof strategy.
In our work, Multiplicative Weight Updates come into play in solving SDP formulations
of graph-partitioning problems, where they provide a framework for designing efficient and
robust primal-dual schemes that rapidly converge to approximately optimal solutions. These
methods allow us to formalize the connections among SDPs for graph partitioning problems,
random walks and the concept of hedging, which is a common thread in our algorithms. We
further discuss this link in Section 4.3, where we show how random walks arise naturally in
the Cut-Matching game as a way of designing a robust potential function that captures the
expansion of many cuts. We also describe in detail the relation between SDPs and random
walks for our Balanced Separator algorithm in Section 5.4.

A general novel theme of this dissertation is the use of semidefinite programming ideas
to construct very efficient algorithms. Originally, the use of SDP programs was confined
to the design of the most theoretical approximation algorithms, which served as proofs of
polynomial-time approximability rather than procedures expected to run on real hardware.
The application of SDP ideas to the construction of fast approximation algorithms was made
possible by the discovery of efficient primal-dual schemes, based on Multiplicative Weight
Updates, to approximately solve SDP programs, due to Arora and Kale [11]. This dissertation
is a contribution to this exciting new area of research.

1.1.2 The Cut-Matching Game and Fast Algorithms for Graph
Partitioning

The expander-flow formalism of Arora et al. [12] provides a new way of certifying expansion,
by constructing a flow routing of a scaled expander in the instance graph. However, the
first algorithms designed to use this idea [12, 8, 11] require multicommodity maximum-
concurrent-flow operations that constitute a quadratic bottleneck in the running time. To
obtain faster algorithms, researchers investigated the following question: is it possible to
use single-commodity maximum-flow computations to route a sufficiently good expander or
find a cut in the instance graph? More generally, can we design approximation algorithms
for Expansion and other graph partitioning problems, while only using a small number of
single-commodity maxflows?

KRV [41] were the first to answer this question positively by giving a O(log2 n) ap-

6

proximation algorithm for Expansion that only uses polylogarithmic maxflow calls. More
importantly, KRV not only gave an algorithm, but also a framework to design approximation
algorithms for graph partitioning using single-commodity maxflows. This system is based
on the elegant abstraction of the Cut-Matching game and allows us to separate the flow and
spectral part of the algorithm, restricting the problem to a simple game of spectral flavor.

The Cut-Matching game is a multiround game between a cut player and a matching
player: at each interaction the cut player gives a bisection and the matching returns a perfect
bipartite matching across the bisection. The goal of the cut player is to ensure that the union
of the matchings quickly achieves as high expansion as possible, while the matching player
tries to keep the expansion of the graph small for a large number of iterations. Following
the reduction of KRV, a cut-player strategy achieving large expansion in a small number of
iterations can be turned into an algorithm achieving a good approximation ratio using only
a small number of maxflow computations.

In Chapter 4, we present a number of original results on the Cut-Matching game and its
application to graph partitioning. Our main results are the following:

• We give two new cut-player strategies, yielding O(log n)-approximation algorithms for
Expansion that run in time Õ(m+n3/2) . These strategies are presented in Section 4.2.

• We give the first lower bound argument for the Cut-Matching game, implying that no
algorithm designed within this framework can achieve an approximation better than
Ω(
√

log n) for Expansion. This appears in Section 4.7.

In the process of describing these results, we introduce two slightly different versions of
the Cut-Matching game: in the first, as in KRV, the cut player is asked to lower-bound the
expansion of the final graph. In the second, more restrictive version, the cut player must
lower-bound the spectral gap of the graph instead. The spectral version of the game is of
independent interest and helps us to better understand the power and limitations of the
different strategies. For instance, while this version of the game is more challenging for the
cut player than that based on expansion, we show that both our cut strategies and that
of KRV yield comparable results under this stricter definition. Moreover, a tighter lower
bound of O(logn/log logn) on the approximation achievable by any cut strategy was given by
Sherman [59] for the spectral version of the game.

In the construction of our cut strategies, we emphasize the connection between strategies
and random walks, formalizing why random walks arise naturally in the context of the Cut-
Matching game as a means of “hedging” between many cuts at once. This is discussed in
Section 4.3. Moreover, we pursue the relation between Cut-Matchning game and hedging
further, by showing that it is possible to apply the Multiplicative Weight Updates framework
of Chapter 3 to give a very simple proof of the performance of one of our cut strategies.

From a lower-bound perspective, we expose the limitation of the original Cut-Matching-
game framework by providing an Ω(

√
log n) lower bound on the approximation ratio achiev-

able by any cut strategy. It is interesting that this is exactly the approximation ratio achieved

7

by Arora et al. [12]. By contrast, the best lower bound known for the approach of [12] is
Ω(log log n), as proved in Devanur et al. [23] via an involved and technical argument. This
suggests that the cut-matching game provides an attractive, concrete framework in which
to study the complexity of finding sparse cuts. The proof of the lower bound relies on the
following combinatorial statement that is related to the iso-perimetric inequality for the hy-
percube: given a bisection of the vertices of the d-dimensional hypercube, there is always a
pairing of vertices between the two sides such that the average Hamming distance between
paired vertices is at most O(

√
d).

1.1.3 Fast Spectral Algorithms for Balanced Separator

The simplest algorithm for Balanced Separator is the recursive spectral algorithm [36].
To test whether an instance graph G contains a balanced cut of conductance less than γ, this
algorithm recursively applies the spectral algorithm of Alon and Milman: at each iteration,
it test whether G has spectral gap larger than γ. If this is not the case, it finds a cut S
of conductance O(

√
γ) and removes it from G together with all its adjacent edges. The

algorithm then recurses on the residual graph. These recursive calls stop when the union of
the cuts removed becomes balanced, in which case it forms a balanced cut of conductance
O(
√
γ), or when the residual graph is found to have spectral gap at least γ, certifying that

no balanced cut of the required conductance exists. As every iteration may only remove
O(1) volume and the eigenvector computation takes Ω(m) time, this algorithm may have
quadratic running time.

The algorithm of Spielman and Teng [66] runs in time Õ(m/poly(γ)) and outputs a balanced
cut of conductance O(

√
γ · polylog(n)), if there exists a balanced cut of conductance less

than γ. This improves the running time of the basic recursive algorithm for Balanced
Separator, while only losing a polylogarithmic factor in approximation. This algorithm is
also spectral in nature and uses, as main subroutine, local random walks that run in time
proportional to the volume of any sparse cut they find, so bypassing the obstacle encountered
by the recursive algorithm. The idea of Spielman and Teng has been refined by Andersen,
Chung and Lang [4] and Andersen and Peres [5], who gave nearly-linear time algorithms
capable of outputting balanced cuts of conductance O(

√
γ · log(n)). These local methods

are based on truncated random walks on the input graph and careful aggregation of the
information obtained from these walks.

The question of whether the additional polylog(n)-factor in the approximation ratio is
necessary has been an object of study since the work of Spielman and Teng. Our research
settles this question by giving a spectral algorithm BalCut for Balanced Separator
that runs in time Õ(m/γ) and outputs a balanced cut of conductance O(

√
γ). BalCut is

the first spectral algorithm to achieve this approximation ratio, which is asymptotically
optimal for spectral methods [30], in nearly-linear time. Moreover, our algorithm shares
some additional properties with that of Spielman and Teng [66], which make it applicable
in the algorithms for the solution of systems of linear equations and sparsification [67, 65],

8

yielding polylogarithmic improvements in running time.
In the design of BalCut, we depart from the local-random-walk paradigm of Spielman

and Teng and consider instead a natural SDP-relaxation for the Balanced Separator
problem, which BalCut solves approximately using the primal-dual method of Arora et
al. [11] and a novel separation oracle. However, BalCut also has an appealing interpretation
based on random walks, which we describe in Section 5.4.

As we saw in our description of the recursive approach to Balanced Separator, un-
balanced cuts of low conductance are the main obstacles to finding a sparse balanced cut, as
they are picked out by the spectral algorithm and do not yield much progress when removed.
The problem with the recursive approach is that the O(n) slowest-mixing eigenvectors of the
graph may be all well-correlated with unbalanced cuts of low conductance, so that the al-
gorithm may have to compute each of these O(n) eigenvectors without finding a balanced
cut. Intuitively, BalCut overcomes this problem by considering a distribution over eigen-
vectors at every iteration, rather than a single eigenvector. This distribution is represented
as a vector embedding of the vertices, and can also be seen as a candidate solution for an
SDP formulation of Balanced Separator. The sweep cut over the eigenvector, which
is the rounding used by the spectral algorithm of Alon and Milman and also by Spielman
and Teng, is replaced by a sweep cut over the radius of the vectors in the embedding (see
Figure 1.1). This allows BalCut to capture many unbalanced cuts of low conductance at
once and allows us to bound the number of iterations by O(logn/γ).

Moreover, at any iteration, rather than removing the unbalanced cut found, BalCut
penalizes it by modifying the graph so that it is unlikely, but still possible, for a similar
cut to turn up again in future iterations. Hence, in both its cut-finding and cut-eliminating
procedures, BalCut tends to “hedge its bets” more than the greedy recursive spectral
method. This hedging, which ultimately allows BalCut to achieve its faster running time,
is implicit in the primal-dual framework of Arora and Kale[11].

1.2 Organization

Chapter 2 introduces basic notation and simple inequalities that will be useful in our proofs.
We recommend using this chapter for reference and approaching this dissertation starting at
Chapter 3, which presents the Multiplicative Weight Update methods and derives a simple
extension of the primal-dual scheme of Arora and Kale [11] to approximately solve SDP
programs. Our main original contributions are shown in Chapter 4, which deals with the
Cut-Matching game, and Chapter 5, where we describe the algorithm BalCut for the
Balanced Separator problem.

9

S1

S2

v1

v2

r

Figure 1.1: Schematic representation of the speed-up introduced by BalCut when the in-
stance graph contains many unbalanced cuts of low conductance. Let v1 and v2 be the two
slowest-mixing eigenvectors of G. Assume that their minimum-conductance sweep cuts S1

and S2 are unbalanced cuts of conductance less than γ. If we use the recursive spectral
algorithm, two iterations could be required to remove S1 and S2. However, BalCut consid-
ers a multidimensional embedding containing contributions from multiple eigenvectors and
performs a radial sweep cut. This allows S1 and S2 to be removed in a single iteration.

1.3 Bibliographic Notes

The two results in Chapter 4 appeared as a single paper [56] in the Proceedings of the
40th ACM Symposium on Theory of Computing in 2008 and are joint work with Leonard
J. Schulman, Umesh V. Vazirani and Nisheeth K. Vishnoi. The result of Chapter 5, which
is joint work with Nisheeth K. Vishnoi, was published in the Proceedings of the 22nd Annual
ACM-SIAM Symposium on Discrete Algorithms in 2011.

10

Chapter 2

Notation, Definitions and Basic
Inequalities

In this chapter, we describe our notational conventions, formally introduce important
definitions and state and prove some simple inequalities that are necessary for our proofs.

2.1 Notation and Basic Facts

Notation for special sets We let [m] denote the set of integers 1, . . . ,m and let ∆n =
{x ∈ Rn : x ≥ 0 and

∑
xi = 0} be the n-dimensional simplex.

Graphs. All graphs in this dissertation are assumed to be undirected. An unweighted
graph G = (V,E) is defined by its vertex set V and edge set E, while the description of a
weighted graph G = (V,E, ω) includes an additional weight vector ω ∈ RV×V , with support
contained in E. The weight of edge e ∈ E is ωe. In this dissertation, all weighted graphs have
non-negative weight vector. When not explicitly defined, E(G) will denote the edge set of a
graph G.

Graph matrices. For an undirected graph G = (V,E), let A(G) denote the adjacency
matrix of G and D(G) the diagonal matrix of degrees of H. The (combinatorial) Laplacian

of G is defined as L(G)
def
= D(G)− A(G). Note that for all x ∈ RV ,

xTL(G)x =
∑

{i,j}∈EG

(xi − xj)2.

Finally, W (G) denotes the probability transition matrix of the natural random walk over G,
which is defined as

W (G)
def
= A(G)D(G)−1.

11

This is the random walk that, given a starting vertex, picks one of its adjacent edges uniformly
at random and transitions to the other end of that edge. When we are dealing with a single
instance graph G, we will use the short forms D and L to denote D(G) and L(G) respectively.

Vector and matrix notation. We will be mostly working within a vector space Rn. We
will denote by I the identity matrix over this space. For a symmetric matrix M, we will use
M � 0 to indicate that M is positive semi-definite and M � 0 to denote that it is positive
definite. The expression A � B is equivalent to A− B � 0. For two matrices A,B of equal

dimensions, let A •B def
= Tr(ATB) =

∑
ij Aij ·Bij. For a matrix D � 0, define ∆D as the set

of matrices X � 0 with D •X = 1. If X ∈ ∆I , we call X a density matrix.
Real symmetric matrices will be play a major role in this dissertation. Hence, for a

symmetric matrix A ∈ Rn×n, we use the following notation: the eigenvalues of A are denoted
as λ1(A) ≤ λ2(A) ≤ . . . ≤ λn(A). λmin(A) will be used as an alternative notation for λ1(A).
We will also deal with generalized eigenvalues. For symmetric matrices A,B ∈ Rn×n with
B � 0, λi,B(A) will stand for the ith smallest eigenvalue of A with respect to B, i.e.

λi,B(A) = λi(B
−1/2AB−

1/2).

Finally, for a matrix A, we also indicate by tA the time necessary to compute the matrix-
vector multiplications Au for any vector u.

2.2 Basic Definitions

2.2.1 Graph-Partitoning Problems

The main graph-partitioning objectives that we will be considering are expansion and con-
ductance. For a graph G = (V,E), the expansion of a cut S ⊆ V, is defined as

α(S)
def
=

|E(S, S)|
min{|S|, |S|}

.

Let vertex i ∈ V have degree di in G and define the volume of a cut S ⊆ V, as

vol(S) =
∑
i∈V

di.

Then, the conductance of S ⊆ V is

φ(S)
def
=

|E(S, S)|
min{vol(S), vol(S)}

,

12

We also introduce notation for the minimum expansion and minimum conductance of any
cut in G.

α(G) = min
S⊆V

α(S),

φ(G) = min
S⊆V

φ(S).

In some cases, we want to restrict our attention to cuts of large volume. A cut S ⊆ V is
b-balanced if

vol(S) ≥ b · vol(V).

We can now introduce the two main problems we address in this dissertation.

Definition 2.2.1. The Expansion problem on input G = (V,E) is the problem of finding
the cut S ⊆ V of minimum expansion in G.

Definition 2.2.2. The Balanced Separator problem on inputG = (V,E) and a constant
parameter b ∈ (0, 1/2] is the problem of finding the b-balanced cut S ⊆ V of minimum
conductance in G.

While all our instance graphs will be unweighted and undirected, for our analysis we will
sometimes need to extend the concepts of conductance and expansion to weighted graphs.
This is done by replacing the cardinality of the edges cut with their weight at the numerator.
The denominator is unchanged for expansion, while for conductance the degree of each vertex
is now the sum of the weight of the edges adjacent to it. Similarly, for a weighted graph
H = (V,E(H), ω) the laplacian L(H) is the defined as the matrix for which, for all x ∈ RV

xTL(H)x =
∑

{i,j}∈E(H)

ωij(xi − xj)2.

2.2.2 Spectral Gap and Cheeger’s Inequality

The spectral gap of a graph G is defined as

gap(G)
def
= min

xTD(G)1=0

xTL(G)x

xTD(G)x
= λ2,D(L(G)).

Cheeger’s Inequality [21] relates the conductance of G to its spectral gap.

Lemma 2.2.3 (Cheeger’s Inequality).

φ(G)2

2
≤ gap(G) ≤ φ(G).

We recommend the book [21] for an in-depth treatment of the spectral gap and its
connection to other graph properties.

13

2.2.3 Spectral and Flow Embeddings

An embedding (or routing) of a graph G = (V,E(G)) into a graph G = (V,E(H)) enables
us to compare the cut and spectral properties of G and H. An embedding of G into H is a
solution to the concurrent-multicommodity-flow problem on H with demands equal to the
edges of G, i.e. a way of routing the edges of G as flow paths into H. The embedding has
congestion c if the congestion established by the concurrent multicommodity flow on every
edge of H is at most c. Moreover, we say that the embedding has dilation ` if the edges of
G are routed using flow paths in H of length at most `. Denote by αG(S) and αH(S) the
expansion of a cut S ⊆ V in G and H respectively.

Lemma 2.2.4. [21] If there exists an embedding of G into H with congestion c and dilation
`, then

c · ` · L(H) � L(G)

and, for all cuts S ⊆ V,
c · αH(S) ≥ αG(S).

In particular, this means that c · α(H) ≥ α(G).

2.2.4 Matrix Exponentiation

For a symmetric matrix A ∈ Rn×n, the matrix exponential is defined as

eA
def
=

∞∑
i=0

Ai

i!
.

Accordingly, for a scalar b > 0, we define

bA
def
= elog(b)·A.

Notice that, by considering the eigenvector decomposition of A, we obtain the following
relationship between the eigenvalues of A and that of its exponential. For all i ∈ [n],

λie
A = eλi(A).

The following special matrices, related to the exponential, play an important role in the
algorithms of this dissertation.

Definition 2.2.5. Let ε ≥ 0. For matrices A ∈ Rn×n, B ∈ Rn×n and for a projection matrix
Π ∈ Rn×n, we let

Eε(A)
def
=

(1− ε)A

I • A
,

Eε,B,Π(A)
def
=
B−1/2(1− ε)B−

1/2AB−
1/2
B−1/2

Π • (1− ε)B−1/2AB−1/2

14

Notice that these special matrices are defined so that

Tr(Eε(A)) = 1

and (
B

1/2ΠB
1/2
)
• Eε,B,Π(A) = 1.

Because of this normalization, we have the following fact.

Fact 2.2.6. Let N = B1/2ΠB1/2. For α ∈ R,

Eε,B,Π(A+ αN) = Eε,B,Π(A)

.

2.2.5 Heat-Kernel Random Walk

The heat-kernel random walk on a graph G with rate t is the random walk defined by the
following probability-transition matrix

P (t) = e−t(I−W (G)) = e−t·L(G)D(G)−1

.

Notice that this can be seen as the random walk corresponding to applying the natural
random walk for a number of steps which is Poisson-distributed with rate t as

e−t(I−W (G)) = e−t ·
∞∑
i=0

ti

i!
·W (G)i.

2.3 Basic Inequalities

2.3.1 Scalar Inequalities

Lemma 2.3.1. For ε ∈ (0, 1) and x ∈ [0, 1],

(1− ε)x ≤ (1− εx).

Proof. The inequality follows from the convexity of (1− ε)x.

Lemma 2.3.2. For x ∈ (0, 1/2), the following inequalities hold

log(1− x) ≤ −x, log(1− x) ≥ −x− x2.

Proof. These are consequences of the Taylor expansion of log(1− x).

15

2.3.2 Matrix Inequalities

The following are standard matrix inequalities involving real symmetric matrices. Their
proof, when not included, can be found in the textbooks [29] and [15].

Lemma 2.3.3. For a symmetric matrix A ∈ Rn×n such that ρI � A � 0, we have

e−A �
(
I − (1− e−ρ)

ρ
A

)
.

Proof. Consider each eigenspace of A separately and notice that, for x ∈ [0, ρ],

e−x ≤
(

1− (1− e−ρ)x
ρ

)
as functions on the left-hand side and right-hand side have the same value at x = 0 and
x = ρ, but the former is convex and the latter is linear.

Lemma 2.3.4. For a symmetric matrix M ∈ Rn×n, such that I �M � 0 and a real number
ε ∈ (0, 1), we have

(1− ε)M � I − εM.

Proof. This is a straightforward consequence of Lemma 2.3.3 with A = − log(1− ε)M.

The next two facts state basic properties of the trace function.

Fact 2.3.5 ([15]). For matrices A,B ∈ Rn×n,

Tr(AB) = Tr(BA).

Fact 2.3.6. Given symmetric matrices A,B,C ∈ Rn×n such that A � 0 and B � C,

Tr(AB) ≥ Tr(AC).

Proof. As A � 0, we can write A = A1/2A1/2, where A1/2 � 0. Then, by Fact 2.3.5,

Tr(AB) = Tr(A
1/2BA

1/2) =
n∑
i=1

(A
1/2ei)

TB(A
1/2ei) ≥ Tr(A

1/2CA
1/2) = Tr(AC),

where the last inequality follows as B � C.

The remaining inequalities are rearrangement inequalities for symmetric matrices under
trace. They will play a fundamental role in Chapter 4.

Fact 2.3.7 ([15]). Let X ∈ Rn×n. Then for any positive integer k,

Tr
(
X2k

)
≤ Tr

(
(XXT)2k−1

)
.

16

Lemma 2.3.8 (Golden-Thompson Inequality [15]). Let X, Y ∈ Rn×n be symmetric matrices.
Then,

Tr
(
eX+Y

)
≤ Tr

(
eXeY

)
.

Theorem 2.3.9. Let X, Y ∈ Rn×n be symmetric matrices. Then for any positive integer k,

Tr
[
(XYX)2k

]
≤ Tr

[
X2kY 2kX2k

]
.

Proof. The proof is by induction on k. The base case is when k = 0, in which case the
equality is trivial. Hence, we may assume by the induction hypothesis that the inequality is

true for k − 1 (≥ 0), and we prove it for k. It follows from Fact 2.3.5 that Tr
[
(XYX)2k

]
=

Tr
[
(X2Y)

2k
]
. This, by Fact 2.3.7 is at most

Tr
[(
X2Y (X2Y)T

)2k−1
]

= Tr
[(
X2Y 2X2

)2k−1
]
.

The last equality follows from the fact that X, Y are symmetric. Hence, by the induction
hypothesis on X2Y 2X2 we conclude that

Tr
[(
X2Y 2X2

)2k−1
]
≤ Tr

[
(X2)2k−1

(Y 2)2k−1

(X2)2k−1
]

= Tr
[
X2kY 2kX2k

]
.

This completes the proof of the theorem.

17

Chapter 3

The Matrix Multiplicative Weight
Update Method

The Multiplicative Weights Update (MWU) method is a powerful, yet simple, technique
that has been rediscovered and applied in many fields of Mathematics and Computer Science,
including Game Theory, Machine Learning and Combinatorial Optimization. In a generic
setting for this method, we consider an iterative process, in which at every round t an agent
chooses a strategy p in a decision set D and obtains an associated penalty `(t)(p) ∈ [0, 1]. The
goal of the agent is to repeatedly pick strategies such that, over a large number of iterations,
his total loss is not far from the loss incurred by the best fixed strategy in D. Notice that the
loss functions `(1), . . . , `(t), . . . are arbitrary and the agent may have no information about
them in advance, except for the fact that they lie in the unit interval. In this scenario, the
agent cannot achieve the goal of improving or matching the loss suffered by the best fixed
strategy, but it can ensure its total loss is not much larger. This is just what the MWU
method does.

The MWU method achieves its performance guarantee by maintaining weights on the
strategies and picking the next strategies at random based on these weights. Once the loss
function is revealed, the agent updates each weight by multiplying by a factor depending on
the loss incurred by that strategy. This reweights the distribution and places more weight
on the strategies that have received less loss so far. Intuitively, this allows the agent’s loss
to closely track the loss of these “good” strategies and do not perform much worse than the
best of them.

The MWU idea is a cornerstone component in many important algorithms: in Machine
Learning, it lies at the heart of many boosting procedures, such as AdaBoost [25], and is a
major tool in online learning and optimization [46]; in Game Theory, MWU-style algorithms
were proposed as early as the 1950s by Von Neumann and other researchers [17, 16], to
compute equilibria in zero-sum games. Finally, in the study of algorithms, the MWU method
has been applied to design fast approximate solvers for convex optimization programs [6,
11, 40], with particular success for flow [27, 24, 20] and cut problems [11], and has also

18

contributed to important developments in the study of Quantum Computation [32]. Today,
the MWU method is recognized as a fundamental technique in the design of algorithms.
We recommend the survey paper [10] and the theses of Rohit Khandekar [40] and Satyen
Kale [34] for the reader interested in an unified development of the MWU method and an
in-depth treatment of his many applications.

In this dissertation, we will use the MWU method to construct fast algorithms for graph
partitioning problems and we will be mostly interested in the application of Matrix MWU [11]
to solving certain SDPs associated with these problems. In this chapter, we provide the
background for understanding the application of the MWU method in our work. The chapter
is based on the treatment of MWU methods in the survey [10], in the textbook [18] and in
the work of Arora and Kale [11]. Our presentation includes some minor novel extensions,
found in Section 3.3.1 and Section 3.4, and is adapted to better integrate with the proofs of
our results in the following chapters.

We start by describing the simplest MWU algorithm, the Vector MWU algorithm, and
proceed to generalize it to the Matrix MWU. Finally, we demonstrate the application of
Matrix MWU to approximately solving SDPs due to Arora and Kale [11] and extend it to
the case of SDPs that are normalized by a possibly singular normalization matrix.

3.1 MWU Basics

We start by providing a more formal description of the generic setup for the MWU method
and of its objective. In this setting, at every round t, the agent chooses a decision p(t) from a
convex decision space D. Following this choice, the adversary reveals a convex loss function
`(t) : D → [0, 1].

In many regression problems, the loss functions {`(t)} are produced by some stationary
stochastic process, so that a notion of risk for the algorithm can be derived. In this context,
different algorithms can be compared in terms of risk minimization. However, here we
are interested in the case where the sequence {`(t)} is completely arbitrary, and possibly
adversarial to the algorithm. As the absence of an underlying stochastic process eliminates
the possibility of using risk as a performance benchmark, we need to redefine our objective.
For this purpose, we define a class of reference agents F , or “experts”. Each expert e proposes
a strategy f

(t)
e ∈ D at time t. The total loss of the forecasting algorithm is then compared

with the total loss of the best fixed expert in F over the number T of rounds played. The
difference in loss is known as the regret of the forecasting algorithm and is denoted R(T) :

R(T) def
=

T∑
t=1

`(t)
(
p(t)
)
−min

e∈F
`(t)
(
f (t)
e

)
.

The MWU method allows us to construct agents achieving a small regret. In particular,
in many cases of interest, algorithms based on the MWU method achieve a regret that grows

19

sublinearly with respect to T, i.e. R(T) = o(T). Algorithms based on the MWU method
mantain a distribution over experts that they use to make their next prediction. Their key
feature is the following: at every iteration the weights of the distribution are updated in
a multiplicative fashion as a function of the experts’ losses in the previous iteration. The
update shifts the mass of the distribution towards the experts that are faring best and ensures
that the loss of the algorithm will resemble their loss in the upcoming iterations.

3.2 The Vector MWU Algorithm

Our first example of MWU algorithm deals with the following simple scenario: we have n
experts and every expert i ∈ [n] has a fixed prediction f

(t)
i = ei ∈ Rn for all t throughout

the game. D is just the set of distributions over the predictions of the experts, i.e. the
n-dimensional simplex ∆n. To define the loss function at time t, we first fix the loss `(t)(ei) ∈
[0, 1] incurred by each expert i at time t. Then, the loss of prediction p(t) at time t is just

`(t)
(
p(t)
) def

=
n∑
i=1

pti`
(t)(ei). (3.1)

In words, the loss of the algorithm is the expected loss of the distribution over experts that
the algorithm chooses.

Finally, we can describe our first instance of a MWU algorithm, the Vector MWU algo-
rithm. At every iteration t, the algorithm keeps a vector w(t) ∈ Rn of positive weights over
the experts. During the initialization, we set w(1) = ~1. At every iteration t, the vector w(t)

is used to produce the current prediction by rescaling its entries by the normalization factor

W (t) def
=
∑n

i=1w
(t)
i :

p(t) def
=

∑n
i=1w

(t)
i ei

W (t)
=

w(t)

W (t)
∈ ∆n. (3.2)

Once the loss function `(t) is revealed, the weights are updated as follows for each i ∈ [n]:

w
(t+1)
i = w

(t)
i · (1− ε)`

(t)(ei), (3.3)

where ε ∈ (0, 1) is a parameter of the algorithm, known as the learning rate. The rationale
behind the update is clear: experts that incurred little loss in the last iteration do not have
their weight decreased significantly, while experts that suffered a large loss have their weight
greatly reduced and become less influential in the next choice of action. The learning rate
regulates the speed at which the algorithm adjusts the distribution in response to the loss
function. A larger learning rate yields a more sensitive agent, while a small learning rate
produces a more conservative agent, one that is slower in shifting the distribution from one
set of experts to another.

20

Unraveling the definition of the update, we find that

w
(T+1)
i = (1− ε)

∑T
t=1 `

(t)(ei). (3.4)

This expression highlights how the weight of each expert has an inverse exponential depen-
dence on the current cumulative loss of each expert. This view will facilitate the generaliza-
tion of the MWU method to the matrix case in Section 3.3.

Now, we can turn to the analysis of the Vector MWU algorithm. At every iteration t, we
track the progress of the algorithm by the potential function

∑n
i=1 w

(t+1)
i . The next lemma

shows how the potential function establishes a relation between the loss of the algorithm
and that of the best expert. This analysis will be a blueprint for the analysis of bounds for
more complex versions of the MWU algorithm.

Lemma 3.2.1. For t ∈ [T], T ≥ 1, let `(t) be a loss function with `(t)(ei) ∈ [0, 1] for all
i ∈ [n]. For p ∈ ∆n, let `(t)(p) be defined as in Equation 3.1. Also, let p(t) and w(t) be defined
as in Equations 3.2 and 3.3, with learning rate ε ∈ (0, 1). Then, the following inequality holds
for any expert i ∈ [n] :

(1− ε)
∑T
t=1 `

(t)(ei) ≤ n ·
T∏
t=1

(
1− ε · `(t)

(
p(t)
))
. (3.5)

Proof. Let W (t) =
∑n

i=1w
(t)
i . We first relate this potential function to the performance of

any expert i. For i ∈ [n] and any T ≥ 1, we have:

W T+1 ≥ w
(T+1)
i = (1− ε)

∑T
t=1 `

(t)(ei). (3.6)

On the other hand, we can also relate the potential function to the performance of the
algorithm:

W (T+1) =
n∑
i=1

w
(T+1)
i =

n∑
i=1

w
(T)
i · (1− ε)`

(t)(ei).

By Lemma 2.3.1:

W (T+1) ≤
n∑
i=1

w
(T)
i · (1− ε · `(t)(ei)) = W (T) ·

(
1− ε · `(t)

(
p(t)
))
.

By iterating this argument, we obtain that the potential decreases multiplicatively with the
loss of the algorithm:

W (T+1) ≤ W (1) ·
T∏
t=1

(
1− ε · `(t)

(
p(t)
))
. (3.7)

As W (1) = n, combining Equation 3.7 with Equation 3.6 yields the required inequality.

21

Lemma 3.2.1 already establishes a relation between the loss of the algorithm and that of
the best expert. However, this relation is often too complex to work with. The next theorem
gives a simplified, albeit looser, form of this bound, and one which is most useful in practice
and that can be readily related to regret. Notice that this requires ε ∈ (0, 1/2).

Theorem 3.2.2. For t ∈ [T], T ≥ 1, let `(t) be a loss function with `(t)(ei) ∈ [0, 1] for all
i ∈ [n]. For p ∈ ∆n, let `(t)(p) be defined as in Equation 3.1. Also, let p(t) and w(t) be defined
as in Equations 3.2 and 3.3, with learning rate ε ∈ (0, 1/2). Then, the following inequality
holds for any expert i ∈ [n] :

T∑
t=1

`(t)
(
p(t)
)
≤ log n

ε
+ (1 + ε)

T∑
t=1

`(t)(ei)

Proof. Consider the inequality guaranteed by Lemma 3.2.1. Taking logarithms and rear-
ranging, we have, for all i :

−
T∑
t=1

log
(
1− ε · `(t)

(
p(t)
))
≤ log(1/1−ε) ·

T∑
t=1

`(t)(ei) + log n. (3.8)

By Lemma 2.3.2,

− log
(
1− ε · `(t)

(
p(t)
))
≥ −ε · `(t)

(
p(t)
)
, (3.9)

log(1/1−ε) ≤ ε+ ε2. (3.10)

Substituting these bounds in Equation 3.8 and dividing by ε yields the desired result.

At this point, notice the dependence of Theorem 3.2.2 on the learning rate ε. For larger
more aggressive settings of ε, the algorithm pays a smaller fixed penalty of logn/ε, but can
suffer a larger relative penalty with respect to the best expert. Intuitively, this is the case
as the algorithm quickly shifts to the best current experts, but is susceptible to incur larger
losses if the loss functions penalize these experts the most. Contrarily, a smaller ε corresponds
to an algorithm shifting its distribution more slowly and paying a larger fixed cost, while
achieving a better bound in the second term.

As a consequence of Theorem 3.2.2, setting ε =
√

logn/T yields a sublinear bound on the
regret R(T) :

RT =
log n

ε
+ ε ·

T∑
t=1

`(t)(ei) ≤
log n

ε
+ εT ≤ 2

√
T log n.

Lower bounds on regret have been given in different contexts and show that the regret
achieved by the Vector MWU algorithm is essentially tight against arbitrary losses. These
lowerbounds are often based on a randomized setting of the losses. The intuition is that,
if in every round the loss of each expert is distributed as an independent Bernoulli variable

22

with success probability 1/2, the total loss of the algorithm in T iteration will be close to
T/2, while, by lowerbounds on the tail of the binomial distribution, with non-zero probability
there will be experts achieving O(

√
T log n) loss less than the expected value. See the survey

of Arora, Hazan and Kale [10] for a more formal development of this argument.

3.3 The Matrix MWU Algorithm

In this subsection, we generalize the MWU method to handle density matrices, rather than
probability distributions. At the same time loss matrices replace the loss vectors defining
an arbitrary loss for each expert. More precisely, we operate in the vector space Rn. We
let {e1, · · · en} be the standard orthonormal basis for Rn and associate an expert with each
vector on the n-dimensional complex unit sphere Sn−1. This is equivalent to generalizing
from a set of experts corresponding to the standard basis {e1, . . . , en} to all combinations
of the form

∑n
i=1 xiei, where x ∈ Sn−1. At every iteration t, a loss function is presented by

defining losses

`(t)
(
b

(t)
1

)
, . . . , `(t)

(
b(t)
n

)
∈ [0, 1]

for a basis of orthonormal vectors
{
b

(t)
1 , . . . , b

(t)
n

}
of Rn. The loss of a general expert x is then

derived from its representation in this basis:

`(t)(x)
def
=

n∑
i=1

`(t)
(
b

(t)
i

)
(xT b

(t)
i)2.

If we let let L(t) ∈ Rn×n be the symmetric matrix with eigenvalues `(t)
(
b

(t)
1

)
, . . . , `(t)

(
b

(t)
n

)
and eigenvectors

{
b

(t)
1 , . . . , b

(t)
n

}
, we have:

`(t)(x) = xTL(t)x.

Hence, the loss function is a quadratic function with values in the unit interval and is
completely determined by the matrix L(t), which we call the loss matrix at time t.

The set D of actions available to the algorithm is once again the set of probability
distributions over the set of experts F. As in the discrete case, the loss of an action is just
the expectation of the loss under the corresponding distribution. Formally, if the distribution
corresponding to the strategy played at time t is D(t), the algorithm suffers loss:

E
v←D(t)

[vTL(t)v] = L(t) • E
v←D(t)

[vvT] = L(t) • σ(t),

where σ(t) is the second moment matrix of the distribution D(t). Note that σ(t) is a density
matrix, i.e. σ(t) • I = 1, and that every density matrix is the second moment matrix of a

23

distribution over the unit sphere. Because the loss incurred by D(t) is completely captured
by the density matrix σ(t), we identify each strategy in D with such a density matrix and
denote by σ(t) the density matrix chosen by the algorithm at time t. Henceforth, we then
simply consider D = ∆I .

The goal of the algorithm is to minimize its total loss relative to the loss of the best fixed
expert. But, in this context, the loss of the best fixed expert is just the minimum eigenvalue
of
∑T

t=1 L
(t) as

λmin

(
T∑
t=1

L(t)

)
= min

x∈Sn−1
xT

(
T∑
t=1

L(t)

)
x.

This eigenvalue interpretation will be particularly useful in the application of the Matrix
MWU method to graph partitioning in Chapter 4.

Now we are ready to discuss how to update σ(t) at every round. As σ(t) is a density
matrix, we just need to specify its eigenvectors and corresponding eigenvalues, which must
form a probability distribution. The key idea in the update is again that of establishing an
inverse exponential dependence between the weight of an expert and its current total loss,
as in Equation 3.7. To do so, we consider the matrix

∑t−1
s=1 L

(s), representing the current

cumulative loss, and denote by {c(t)
1 , . . . , c

(t)
n } its eigenvectors. We then associated to each of

these vectors a weight w
(s)
i as in Equation 3.7:

w
(t)
i

def
= (1− ε)

∑t−1
s=1 `

(t)(cti) = (1− ε)(cti)
T
(
∑t−1
s=1 L

(s))c(t)i .

This setting of weights is described more succinctly by the weight matrix W (t), where

W (t) def
= (1− ε)

∑t−1
s=1 L

(s)

(3.11)

and {w(t)
i } is the set of eigenvalues of W (t). For a review of matrix exponentiation, see

Section 2.2.4. Finally, σ(t) is taken to be the properly normalized copy of W (t),

σ(t) =
W (t)

Tr(W (t))
= Eε

(
t−1∑
s=1

L(s)

)
(3.12)

recalling the definition of Eε in Section 2.2.4. W (1) is initialized to the identity matrix, so
that σ(1) = Eε(0).

Notice that if the loss matrices are diagonal, then the matrix update of Equation 3.12,
reduces to the Vector MWU update, as we always only consider the standard basis. The
next theorem shows that the same bound achieved for the Vector MWU in Theorem 3.2.2
holds in the matrix setting. The proof follows the same line, starting with the analysis of a
potential function equal to the sum of the weights, i.e. Tr(W (t)). The only additional idea
needed is the following: a shift in the eigenbasis of the loss matrix with respect to the current
density matrix only helps the algorithm, as it drives the potential function even lower. This
is captured by the Golden-Thompson Inequality in Lemma 2.3.8.

24

Lemma 3.3.1. For t ∈ [T], T ≥ 1, let L(t) be a loss matrix with 0 � L(t) � I. Let σ(t)

and W (t) be defined as in Equations 3.7 and 3.11, with learning rate ε ∈ (0, 1). Then, the
following inequality holds

(1− ε)λmin(
∑T
t=1 L

(t)) ≤ n ·
T∏
t=1

(
1− ε · L(t) • σ(t)

)
.

Proof. As in the vector case, the right potential to consider is the sum of the weights, i.e.
Tr(W (t). On one hand,

Tr(W (T+1)) ≥ (1− ε)λmin(
∑T
t=1 L

(t)). (3.13)

On the other hand, by the Golden-Thompson Inequality (Lemma 2.3.8):

Tr(W (T+1)) = Tr
(

(1− ε)
∑T
t=1 L

(t)
)
≤ Tr

(
(1− ε)

∑T−1
t=1 L(t)

(1− ε)L(T)
)

=

Tr
(
W (T)

)
Tr
(

(1− ε)L(T)

σ(T)
)
.

As 0 � L(T) � I, by Lemma 2.3.4 and Fact 2.3.6:

Tr
(
W (T+1)

)
≤ Tr

(
W (T)

)
Tr
(

(1− ε)L(T)

σ(T)
)
≤ Tr

(
W (T)

)
Tr
(
(I − εL(T))σ(T)

)
=

Tr
(
W (T)

) (
1− εL(T) • σ(T)

)
.

Applying the same argument recursively, we obtain:

Tr(W (T+1)) ≤ Tr(W (1))
T−1∏
t=1

(
1− ε · L(t) • σ(t)

)
. (3.14)

Combining Equation 3.13 and Equation 3.14, and noticing that Tr(W (1)) = n, completes the
proof.

Assuming ε ∈ (0, 1/2), we can now obtain exactly the same bound as in Theorem 3.2.2.

Theorem 3.3.2. For t ∈ [T], T ≥ 1, let L(t) ∈ Rn×n be a loss matrix with 0 � L(t) � I. Let
σ(t) and W (t) be defined as in Equations 3.7 and 3.11, with learning rate ε ∈ (0, 1/2). Then,
the following inequality holds

T∑
t=1

L(t) • σ(t) ≤ log n

ε
+ (1 + ε) · λmin

(
T∑
t=1

L(t)

)
.

25

Proof. Taking logs and rearranging:

−
T∑
t=1

log
(
1− ε · L(t) • σ(t)

)
≤ log(1/1−ε) · λmin

(
T∑
t=1

L(t)

)
+ log n. (3.15)

By Lemma 2.3.2,

− log
(
1− ε · `(t)

(
p(t)
))
≥ −ε · `(t)

(
p(t)
)
, (3.16)

log(1/1−ε) ≤ ε+ ε2. (3.17)

Substituting these bounds in Equation 3.15 and dividing by ε yields the desired result.

The Matrix MWU algorithm was introduced as a generalization of the Vector MWU algo-
rithm by Tsuda, Rätsch and Warmuth [46], Warmuth and Kuzmin [71] and independently
by Arora and Kale [11] in the context of Combinatorial Optimization. The Matrix MWU
algorithm has been applied in many contexts in Theoretical Computer Science [11, 32]. In
this dissertation, it will play a fundamental role in our construction of fast algorithms for
graph partitioning.

3.3.1 A More General Formulation of the Matrix MWU Algorithm

In this subsection, we prove a generalized version of Theorem 3.3.2 that allows us to deal
with different normalization conditions. This result is an extension of work of Steurer [68]
and Arora et al. [11] to semidefinite positive matrices, including possibly singular ones. The
purpose of the result is that of describing a variant of the Matrix MWU algorithm for which
the decision space is the set ∆N for a choice of N � 0, different from the identity and possibly
singular.

The following theorem shows that a modified form of the Matrix MWU update of Equa-
tion 3.12 achieves a regret bound similar to that of Theorem 3.3.2. The modified update is
based on a decomposition of N as

N = D
1/2ΠD

1/2,

where Π is a projection and D � 0 is any full-rank matrix that satisfies the equality. It is easy
to see that such a decomposition always exists by considering the eigenvector decomposition
of N. However, different decompositions have different properties and some may yield a
matrix D which is computationally easier. This is why we state the following theorem in
this degree of generality. We will be applying in Chapter 5 to a specific decomposition
different from the obvious one, but simpler for our algorithmic purposes.

Theorem 3.3.3. Let N ∈ Rm×m be a symmetric matrix of rank n with N � 0. Assume that
N can be decomposed as

N = D
1/2ΠD

1/2,

26

where Π ∈ Rm×m is a projection matrix of rank n and D ∈ Rm×m with D � 0. Let ε ∈ (0, 1/2)
and let

{
Y (t) ∈ Rm×m} be a sequence of loss matrices such that −`N � Y (t) � ρN, where

ρ ≥ ` ≥ 0, for all t. Define the update

X(t) = Eε,D,Π

(
1

2ρ

t−1∑
s=1

Y (s)

)
∈ ∆N .

Then, for any T ≥ 1, we have

T∑
t=1

Y (t) •X(t) ≤ 2ρ log n

ε
+ Tε`+ (1 + ε) · λmin,N

(
T∑
t=1

Y (t)

)
Proof. Consider the loss matrices

L(t) =
D−1/2Y (t)D−1/2 + ` · Π

2ρ
∈ Rm×m,

and notice that
0 � L(t) � Π

We will apply Theorem 3.3.2 to the loss functions {L(t)} in the vector space corresponding
to the n-dimensional subspace of Rm described by Π. To do so, we let

σ(t) = Eε,I,Π

(
t−1∑
s=1

L(s)

)
and notice that, by Fact 2.2.6, X(t) = D−1/2σ(t)D−1/2. We can now verify that the update
X(t) is in ∆D, as required, as

N •X(t) = Tr(ND−
1/2σ(t)D−

1/2) = Π • σ(t) = 1.

Consider the restriction of σ(t) to the n-dimensional subspace described by Π and notice
that, on this subspace, it is exactly equal to the update defined by Equation 3.12. Hence,
by Theorem 3.3.2, we have

T∑
t=1

(
D−1/2Y (t)D−1/2 + ` · Π

2ρ

)
• σ(t) ≤ log n

ε
+ (1 + ε) · λmin,Π

(
T∑
t=1

D−1/2Y (t)D−1/2 + ` · Π
2ρ

)
.

Using the fact that Π • σ(t) = 1 and rearranging:

T∑
t=1

(
D−

1/2Y (t)D−
1/2
)
• σ(t) ≤ 2ρ log n

ε
+ Tε`+ (1 + ε) · λmin,Π

(
T∑
t=1

D−
1/2Y (t)D−

1/2

)
.

Finally, by Fact 2.3.5,

Y t •X(t) = Tr(Y (t)D−
1/2σ(t)D−

1/2) = Tr(D−
1/2Y (t)D−

1/2σ(t)) =
(
D−

1/2Y (t)D−
1/2
)
• σ(t).

and by the definition of generalized eigenvector, we obtain the required result.

27

3.4 Solving SDPs by the Matrix MWU algorithm

In this subsection, we briefly explore the application of the Matrix MWU algorithm to the
approximate solution of SDP problems. This direction was pioneered by Arora et al. [11].
This result is a minor extension of their framework that can be applied to slightly more
general SDP problems.

We consider a generic SDP optimization problem on the variable X ∈ Rm×m. We isolate
a particular constraint, N •X = 1, in the primal SDP to act as a normalization constraint.

PRIMAL : min C •X
∀i ∈ [m], Ai •X ≥ bi

N •X = 1

X � 0

DUAL : max
m∑
i=1

βibi + α

C −
m∑
i=1

βiAi − αN � 0

α ∈ R, β ∈ Rm, β ≥ 0

Note that most SDP problems of interest can be formulated in this way. In particular, the
constraint A •X ≥ b can be expressed as (A− bN) •X ≥ 0. Moreover, it is always possible
to obtain a normalization constraint by properly scaling the desired feasible solutions.

We apply binary search to the objective value of the primal to reduce from optimization to
feasibility and focus on solving the following feasibility problem psdp(γ) and a dual program
dsdp(γ).

psdp(γ) : C •X < γ

∀i ∈ [m], Ai •X ≥ bi

N •X = 1

X � 0

dsdp(γ) :
m∑
i=1

βibi + α ≥ γ

C −
m∑
i=1

βiAi − αN � 0

α ∈ R, β ∈ Rm, β ≥ 0

The following is a simple consequence of weak SDP duality [58].

Fact 3.4.1. If dsdp(γ) has a feasible solution, psdp(γ) has no feasible solution.

In the rest of this subsection, we are going to make frequent use of the constraints in the
dsdp(γ) program. Hence, we define the following short-hand notation:

V (α, β)
def
=

m∑
i=1

βibi + α,

M(α, β)
def
= C −

m∑
i=1

βiAi − αN.

28

Definition 3.4.2. An (`, ρ)-oracle for psdp(γ) is an algorithm that on input X ∈ ∆N , either
fails or outputs (α, β) with α ∈ R, β ∈ Rm, β ≥ 0 satisfying

V (α, β) ≥ γ, (3.18)

M(α, β) •X ≥ 0, (3.19)

−`N �M(α, β) � ρN (3.20)

Fact 3.4.3. If an (`, ρ)-oracle for psdp(γ) does not fail on input X ∈ ∆N , X is infeasible
for psdp(γ).

Proof. Suppose X were feasible and let (α, β) be the output of the oracle. Then,

M(α, β) •X = C •X −
m∑
i=1

βiAi •X − αN •X < γ −
m∑
i=1

βibi − α = γ − V (α, β) < 0.

This contradicts the definition of an (`, ρ)-oracle. Hence, X must be infeasible.

An oracle returns information about the way in which the input candidate solution is
infeasible in the coefficents α, β. The Matrix MWU algorithm will exploit this feedback to
iteratively produce new candidate solutions. More formally, we will consider the Matrix
MWU setting in which, at every iteration t, the algorithm must produce a candidate solution
X(t) ∈ ∆N . Then, X(t) is fed to a (`, ρ)-oracle for psdp(γ). If the oracle does not fail, we
let (α(t), β(t)) be its output and set the loss matrix at time t to M(α(t), β(t) and continue
the repeated game. At every iteration, the MWU algorithm will incorporate the oracle’s
feedback to try and produce a feasible primal solution. The following theorem shows that, if
the oracle does not fail for a sufficiently large number of iterations, it is possible to read off
a near-feasible dual solution in the form of a feasible solution to dsdp(γ − δ) for small δ. By
Fact 3.4.1, this implies that psdp(γ − δ) is infeasible and that the optimization program has
objective value at least γ−δ. As in the previous section, we assume we have a decomposition
of N � 0, as N = D1/2ΠD1/2, where D � 0 and Π is a projection matrix.

Theorem 3.4.4. Let ORACLE be a (`, ρ)-oracle for psdp(γ) and let δ > 0. Assume that N
can be decomposed as

N = D
1/2ΠD

1/2,

where Π ∈ Rm×m is a projection matrix of rank n and D ∈ Rm×m with D � 0. Let ε =
min{1/2, δ/2`}. For t ≥ 1, let

X(t) = Eε,D,Π

(
1

2ρ

t−1∑
s=1

Y (t)

)
,

29

where Y (t) = M(α(t), β(t)) and (α(t), β(t)) is the output of ORACLE on input X(t). Suppose
that such output exists, i.e. ORACLE does not fail, for T rounds where

T = O

(
ρ log n

δε

)
≤ max

{
O

(
ρ log n

δ

)
, O

(
ρ ` log n

δ2

)}
and define ᾱ

def
= 1/T

∑T
t=1 α

(t), β̄
def
= 1/T

∑T
t=1 β

(t). Then (ᾱ − δ, β̄) is a feasible solution for
dsdp(γ − δ).

Proof. Apply Theorem 3.3.3 to obtain that after T rounds:

T∑
t=1

M(α(t), β(t)) •X(t) ≤ 2ρ log n

ε
+ Tε`+ (1 + ε) · λmin,N

(
T∑
t=1

M(α(t), β(t))

)
.

As ORACLE is a (`, ρ)-oracle, for all t, we have M(α(t), β(t)) •X(t) ≥ 0. Hence,

(1 + ε) · λmin,N

(
T∑
t=1

M(α(t), β(t))

)
≥ −2ρ log n

ε
− Tε`.

Dividing by (1 + ε)T,

λmin,N

(
M(ᾱ, β̄)

)
≥ − 2ρ log n

(1 + ε)εT
− ε

1 + ε
` ≥ −2ρ log n

εT
− ε`.

For T = 4ρ logn/δε and ε ≤ δ/2`, we have

ε` ≤ δ

2
,

2ρ log n

εT
≤ δ

2
.

These bounds yield
λmin,N

(
M(ᾱ, β̄)

)
≥ −δ,

which implies

M(ᾱ− δ, β̄) = C −
m∑
i=1

β̄iAi − (ᾱ− δ)N � 0. (3.21)

Moreover, by Definition 3.4.2, V (ᾱ, β̄) = 1/T
∑T

t=1 V (α(t), β(t)) ≥ γ. Hence,

V (ᾱ− δ, β̄) = −δ + V (ᾱ, β̄) ≥ γ − δ. (3.22)

Equations 3.21 and 3.22 imply that (ᾱ− δ, β̄) is feasible for dsdp(γ − δ).

This theorem generalizes the result of Arora et al. [11] by allowing us to apply the primal-
dual framework with a possibly singular normalization matrix N.

30

Chapter 4

The Cut-Matching Game and Fast
Algorithms for Graph Partitioning

In the first part of this chapter, we review the definition of the Cut-Matching game, its
connection to graph partitioning and the work of Khandekar, Rao and Vazirani (KRV) [41].
Then, we present our two new strategies and compare them to that of KRV, focusing on how
each strategy arises from a random-walk process over the current graph and highlighting the
connections between cut strategies, random walks and the Matrix MWU algorithm. In the
second part, we prove our lower-bound result for the Cut-Matching game based on expansion
and relate it to Sherman’s result on the spectral version of the game.

4.1 The Cut-Matching Game

An instance of the Cut-Matching Game (G(n), f(n), g(n)) is defined by a multiround game
G(n) between players C, the cut player, and M, the matching player, and by positive func-
tions f(n) and g(n). The cut player is identified with the strategy C it uses and the matching
player with its strategy M. The game starts with an empty weighted graph G1 on vertex
set V , where V = [n] for even n ∈ Z. Let Gt = (V,Et, ωt) be the resulting weighted graph
after t−1 rounds of the game. In each round t ≥ 1, first the cut player C chooses a bisection
(St, St) of [n]. This choice may depend on the actions of the players in the previous rounds
and, in particular, on Gt. The matching player picks then a perfect matching Mt across the
bisection (St, St). The action of the matching player may also depend on the actions of the
players in the previous rounds and also on (St, St). The graph Mt is then added to the graph

Gt to obtain graph Gt+1. Thus Gt+1
def
= Gt + Mt, where the sum denotes edgewise addition

of the weights. The weights of Mt are assumed to be one on each matching edge, as Mt

is unweighted. The game terminates after T
def
= g(n) rounds. There are 2 possible winning

criteria: according to the gap criterion, C wins if gap(GT+1) is at least f(n). According to
the expansion criterion, C wins if α(GT+1) is at least f(n) · g(n). Otherwise, the matching

31

Cut-Matching Game (G(n), f(n), g(n)):

• G1 := (V, ∅, 0) be an empty weighted graph, where V = [n] and n is an even integer.

• Fix a cut player C and a matching player M.

• For t = 1, . . . , T = g(n),

1. C chooses a bisection (St, St) of V .

2. M chooses a perfect matching Mt = (V,E(Mt)) across (St, St).

3. Gt+1 ← Gt +Mt.

• Winning criteria:

– Gap criterion: C wins if gap(GT+1) ≥ f(n). Otherwise, M wins.

– Expansion criterion: C wins if α(GT+1) ≥ f(n) · g(n). Otherwise, M wins.

Figure 4.1: The Cut-Matching Game with two different winning criteria.

player M is the winner. A summary of the game definition is given in Figure 4.1.
From the definition of the game, we can immediately observe that the graph Gt will be

(t− 1)-regular and that |E(Gt| ≤ (t− 1) ·O(n), by the bound on the size of the edge set of
each perfect matching. In particular, we have the following fact, which will be useful when
discussing the running times of the cut strategies.

Fact 4.1.1. For t ∈ [T + 1],
|E(Gt)| ≤ T ·O(n).

It is very important to notice the relation between the two winning criteria. If a cut
player wins according to the gap criterion than it must also win by the expansion criterion
as

α(GT+1) ≥ gap(GT+1) · g(n) ≥ f(n) · g(n). (4.1)

because GT+1 is g(n)-regular. KRV introduced the expansion criterion; the stronger gap
criterion was introduced in our work. While the expansion criterion suffices for the applica-
tion to Expansion, the gap criterion allows a cleaner formulation of the game in terms of
spectral quantities alone. Moreover, we will see how different strategies perform differently
according to the two criteria and how we have different lower bounds for the two criteria.

Intuitively, the cut player wants to improve the connectivity properties of Gt, measured
either by gap(Gt) or α(Gt), by picking bisections containing few edges. Notice that by picking

32

a bisection (S, S), the cut player can ensure that the expansion of S and of all similar cuts is
large in the next graph. Similarly, it practically enforces that random walks will mix quickly
across the chosen bisection and similar ones. On the other hand, the matching player will
try to place his perfect matching in a way that preserves either low expansion or the slow
mixing of random walks on the graph. We will further explore the usage of random walks in
the design of cut-player strategies for the Cut-Matching game in Section 4.2.

The importance of the Cut-Matching Game stems from its connection to the design of
fast algorithms for the Expansion problem, which is captured by the following lemma of
KRV [41].

Lemma 4.1.2 ([41]). Consider an instance graph G = (V,E) with |V | = n, |E| = m. Assume
that there exists a winning cut-player strategy C for (G(n), f(n), g(n)) under the expansion

criterion and that this strategy runs in time T (n) per round. Let Tflow
def
= Õ(m+n3/2). Then,

there is an O(1/f(n))-approximation algorithm for the Expansion problem on G. Moreover,
the algorithm runs in time Õ(g(n) · (T (n) + Tflow)).

Notice that a winning cut-player strategy for (G(n), f(n), g(n)) under the gap criterion
also ensures the existence of an approximation algorithm with the same parameters by
Equation 4.1.

Here we give a sketch of the proof of Lemma 4.1.2. Suppose we are trying to decide
whether the instance graph G has expansion larger than γ. Then, the idea behind this
reduction is to let the matching player M perform a single-commodity flow operation at
every round. The flow computation attempts to “improve” the bisection given by the cut
player, i.e. to find a cut of expansion less than γ that is well-correlated to the bisection.
The flow operation either finds such cut, in which case the algorithm is successful and the
game stops, or displays a certificate that no low-expansion cut exists “near” (St, St). The
certificate takes the form of a perfect matching between (St, St) that is routed with congestion
1/γ in the instance graph. If no cut is found after g(n) rounds, the cut strategy guarantees
that the union of the certificate matchings GT+1 has expansion f(n) · g(n). As GT+1 can
be routed in G with congestion g(n)/γ, it must be the case that G has expansion at least
γ · f(n). Hence, we can distinguish between α(G) < γ and α(G) ≥ γ · f(n), which implies
a 1/f(n)-approximation algorithm for Expansion. Moreover, we only require g(n) maxflow
operations to solve this decision problem. Guessing the optimal value for the expansion
by binary search only increases the running time by a logarithmic factor, so that the total
running time is Õ(g(n) · (T (n) + Tflow)).

From this discussion, it should be clear that we are ideally looking for cut-player strategies
that achieve large f(n) and small g(n), as they yield better approximations in lower running
time. In particular, all the strategies that we will discuss achieve g(n) = O(polylog(n))
and f(n) = Ω(1/polylog(n)). Also, all the strategies that we present will be randomized and
provably successful with high probability. The main result of KRV [41] is the existence of a
cut strategy yielding f(n) = Ω(1/log2 n) and g(n) = O(log2 n) under the expansion criterion.
We will show that their strategy also yields a weaker guarantee for the gap criterion.

33

Theorem 4.1.3 (Extension of result in [41]). There is a cut-player CKRV that runs in time
Õ(n) and with high probability wins the Cut-Matching game (G(n),Ω(1

log2 n
), O(log2 n)) under

the expansion criterion and the game (G(n),Ω(1
log4 n

), O(log2 n)) under the gap criterion.

In our paper [56], we improve on this result by giving two different strategies that yield a
O(log n)-approximation for Expansion. The first strategy CEXP is based on the same ideas
that are behind the Matrix MWU algorithm of Chapter 3 and achieves the same performance
for both the gap and expansion criteria. We discuss its connection with the Matrix MWU
algorithm in Section 4.6.

Theorem 4.1.4. There is a cut strategy CEXP that runs in time Õ(n) and with high prob-
ability wins the Cut-Matching game (G(n),Ω(1

logn
), O(log2 n)) under both the expansion and

gap criterion.

The strategy CNAT, while using similar ideas as CEXP, is computationally and intuitively
simpler and can be seen as a hybrid between CEXP and CKRV. While this strategy yields
a O(log n)-approximation to Expansion through its performance in the game under the
expansion criterion, as for CKRV, we can only prove weaker bounds on its success under the
gap criterion.

Theorem 4.1.5. There is a cut strategy CNAT that runs in time Õ(n) and with high probabil-
ity wins the Cut-Matching game (G(n),Ω(1

logn
), O(log2 n)) under both the expansion criterion

and the Cut-Matching game (G(n),Ω(1
log3 n

), O(log2 n)).

Our second main result regarding the Cut-Matching game is the first lower bound on the
performance of any cut player under the expansion criterion. It implies that no approxima-
tion algorithm for Expansion designed following the Cut-Matching framework can achieve
an approximation ratio better than Ω(

√
log n). Curiously, this is also the best approximation

ratio known for any polynomial-time algorithm for Expansion [12].

Theorem 4.1.6. There is a matching player M∗ that is successful against any cut player
on the game (G(n), O(1/

√
logn), g(n)) for all g(n) under the expansion criterion.

This lower bound is tight, as there is a cut strategy, albeit an inefficient one, that is
successful on the under the expansion criterion. This strategy requires the use of multi-
commodity flows and is mentioned in various papers [8, 11, 59]. Hence, our lower bound
settles the question of the power of the Cut-Matching game. Sherman [59] has showed
that a matching player similar to that of Theorem 4.1.6 is successful on the game the
game (G(n), O(log logn/logn), g(n)) for all g(n) under the gap criterion. This is significant
as cut strategies for the gap criterion tend to be computationally fast because they only use
nearly-linear-time spectral routines. Hence, this theorem suggests that no nearly-linear-time
strategies based on spectral ideas can achieve a better approximation that O(logn/log logn). In
particular, CEXP is almost optimal in this class of strategies.

34

In the next section, we discuss how random-walks arise naturally when trying to use
potential-reduction arguments to analyze cut strategies. In Section 4.3, we describe the
random walks of interest and some of their fundamental properties. In Section 4.4, we
present the geometric argument at the core of the potential-reduction analysis. Finally, in
Section 4.5, we complete the proofs of the performance of each cut strategy. The remaining
sections are dedicated to the proof of the lower-bound result of Theorem 4.1.6 and a brief
survey of related work.

4.2 Construction of Cut Strategies

4.2.1 Using Random Walks

We motivate the use of random walks from the perspective of a cut player trying to win
under the gap criterion. Similar ideas apply under the expansion criterion. We start by
recalling the definition of spectral gap for a regular graph. Let S be the set of unit vectors

in the subspace of Rn perpendicular to the vector ~1, i.e. S def
= {x ∈ Rn : xT~1 = 0, ‖x‖2 = 1}.

Then, for a d-regular graph H = (V,E(H)),

gap(H) =
1

d
min
x∈S

xTL(H)x.

As GT+1 is g(n)-regular, the goal of the cut player is to ensure that minx∈S x
TL(Gt)x grows

above f(n) as t goes to g(n). For a vector x ∈ S, we call xTL(G)x the mixing of x, as this
quantity describes how quickly the vector x approaches the uniform distribution under the
natural random walk. Hence, the goal of the cut player is to ensure that all vectors x ∈ S
have mixing greater than f(n).

The following lemma shows that the cut player can enforce that a given vector x ∈ S
have a large mixing by presenting a bisection obtained from a sweep cut of the vector x.
Then, for any choice M of the matching player, xTL(M)x will be at least 1.

Lemma 4.2.1. Given x ∈ S, with xi1 ≥ xi2 ≥ . . . ≥ xin, let S ⊆ [n] be defined as S
def
=

{i1, i2, . . . , in
2
}. Then, for any perfect matching M = (V,E(M)) across (S, S), we have:

xTL(M)x ≥ 1

Proof. Let xin/2 = a. Then, for any {i, j} ∈ E(M), we must have without loss of generality
xi ≥ a, xj < a, so that

(xi − xj)2 ≥ (xi − a)2 + (xj − a)2.

Hence,

xTL(M)x =
∑

{i,j}∈E(M)

(xi − xj)2 ≥
∑

{i,j}∈E(M)

(xi − a)2 + (xj − a)2 ≥
∑
i∈V

(xi − a)2 ≥ ‖x‖2 = 1,

35

where the second inequality follows as M is 1-regular and the last inequality is a consequence
of the fact that xT~1 = 0 as x ∈ S.

In particular, if at round t, the cut player chooses bisection St based on the bisecting
sweep of x, the mixing of x will be larger than 1 >> f(n) from then on in the game and x
will not constitute an obstacle to the cut player’s success.

As the cut player wants to lower-bound gap(GT) when T = g(n), a naive approach would
be to use gap(Gt) as a measure of progress and, at time t, return the bisection correspond-
ing to the eigenvector v associated to the spectral gap, in the hope of increasing gap(Gt)
sufficiently. After the addition of Mt, v will have large mixing by Lemma 4.2.1. However,
another eigenvector with associated eigenvalue just larger than gap(Gt) may not have had
its mixing improved by Mt at all and still be present in Gt+1, causing the spectral gap to
be almost unchanged. Indeed, it is possible to construct examples when the cut strategy of
playing the bisection given by the least mixing eigenvector requires Ω(n) rounds to produce
any non-trivial guarantee on the gap.

Hence, in our choice of bisection, we must go beyond the greedy approach that just
considers the eigenvector associated to the spectral gap, as, while very large progress is
made on a single eigenvector, many iterations may be necessary to “fix” all eigenvectors.
Instead, we must settle for a cut player that induces less progress on the mixing of each
single eigenvector, but is able to raise the mixing of multiple eigenvectors at the same time.
In this way, many of the low-mixing eigenvectors of L(Gt) will increase by a sufficiently large
amount. To apply this idea, we must choose a measure of progress different from the mixing
of the lowest-mixing vector in S and, in particular, one that incorporates information from
possibly all the eigenvectors of Gt, while focusing on the progress of the lowest-mixing ones.
To achieve this effect, we will use a potential Φt based on a measure of the mixing behavior
of random walks that is more robust than gap(Gt).

An abstract random-walk process P (such as the natural random walk or the heat-kernel
random walk [21]) defines a sequence of probability-transition matrices {Pt ∈ Rn}t∈[T], where
Pt is the matrix corresponding to process P on graph Gt. Notice that, as Pt depends on Gt,
it also depends on the first (t − 1) choices of the matching player M. We require that Pt
have stationary distribution that is uniform over the vertices, i.e. Pt~1 = ~1. Note that, as Gt

is regular, the stationary distribution is also uniform over the edges. For the purpose of the
following discussion, the reader may find it simpler to let Pt represent a specific random-walk
process, such as the natural random walk.

The spectral gap and the expansion are often used to study the mixing of a random
walk in a regular graph, as it is usually possible to upper-bound the `2-distance between the

random-walk operator Pt and the projection Π
def
= 1/n ·~1 ~1 T onto the uniform distribution as

a function of these quantities. For instance, if Pt equals W (Gt)
k, the natural random walk

36

for k steps, we have

‖Pt − Π‖2
2 = (1− gap(Gt))

2k ≥
(

1− α(Gt)

t− 1

)2k

,

where the second inequality follows by Cheeger’s Inequality in Lemma 2.2.3. Hence, an upper
bound on the left-hand side yields a lower bound on the spectral gap and the expansion. To
obtain a potential that takes into account multiple eigenvectors and still bounds the spectral
gap and the expansion, we consider the Frobenius norm [29], instead of the `2-norm. As the
Frobenius norm is at least the spectral `2 norm, an upper bound on ‖Pt−Π‖F yields a lower
bound on gap(Gt) and α(Gt). At the same time, the Frobenius norm, with its dependence
on multiple eigenvectors and eigenvalues, fulfills our requirement for an improved measure
of progress. Hence, given a choice for Pt, our potential function will be

Φt
def
= ‖Pt − Π‖2

F .

The choice of Pt will be fundamental, and the next section will be dedicated to it. For
example, if Pt = W (Gt)

k, as k grows, the potential will capture the spectral gap more tightly,
but will also begin to suffer of the same problem as the greedy strategy, namely it will not
capture the mixing along vectors different from the second eigenvector. This problem will
then make it impossible to relate Φt+1 to Φt while making meaningful progress. Hence, the
random walk must be chosen to ensure a trade-off between two important properties:

• tight connection with spectral gap or expansion, and

• ease of relating Φt+1 to Φt and guaranteeing that the potential decreases at every round.

The next subsection will address which conditions are required of a random walk more in
detail.

The potential Φt can be given a simple interpretation by noticing that

Φt = ‖Pt − Π‖2
F =

∑
i∈V

‖Ptei −
1

n
~1‖2

2;

hence, Φt is just the sum, over all vertices, of the `2
2-distance between the distribution given

by the walk Pt when started at a single vertex and the uniform distribution. The connection
with the spectral gap of Gt can then be stated in random-walk language: if all the Ptei
random walks mix, then the spectral gap must be large. Equivalently, if the spectral gap
were small, some random walks from single vertices would mix slowly and the potential
would be high. Finally, we remark that Φt can also be rewritten as

Φt = Tr(P T
t Pt)− 1,

by noticing that Pt~1 = ~1.

37

This use of random walks in the design of cut strategies was championed by KRV. While
their random walk was designed ad-hoc for ease of analysis in the Cut-Matching game, in
our work we use more general and powerful random walks, such as the heat kernel, defined in
Chapter 2, and develop a more sophisticated understanding of which properties are desirable
in a random-walk process for it to apply to the design of cut strategies. Alternatively, in
Section 4.6, we will also show how the problem of designing cut strategies can be apporached
using the Matrix MWU algorithm. Unfortunately, we are still unable to show that the natural
random walk, the most obvious choice for this process, can be used in the construction of
cut strategies: this stems from the difficulty of relating Pt+1 to Pt.

4.2.2 Potential Analysis

In this subsection, we formalize the conditions under which a random-walk process will
successfully yield a cut strategy through the potential analysis outlined above. Our goal is
to show that our choice of potential, i.e. Φt = Tr(P T

t Pt)− 1 significantly decreases at every
round for any choice ofM. To follow this direction, we will need our choice of random walk
to obey the following conditions:

1. Connection to spectral gap and expansion: A upper bound on ΦT+1 implies a
lower bound on gap(GT+1) and α(GT+1).

2. Round-by-round decomposition: For all t ∈ [T],

Φt+1 ≤ Φt − ηt · Tr(P T
t L(Mt)Pt),

where ηt is some coefficient, usually a constant, depending on the choice of random
walk. Hence, the expression Tr(P T

t L(Mt)Pt) will regulate the potential reduction at
every step.

3. Bisection choice: Given Pt, it is possible to choose bisection (S, S) such that, for
any perfect matching M, which is bipartite across (S, S),

Tr(P T
t L(Mt)Pt) ≥ O

(
Φt

log n

)
.

Conditions 2 and 3 guarantee that the potential decreases at every round by a multi-
plicative factor of 1 − Ω(1/logn). After T steps, this reduction will yield an upper bound on
ΦT+1, which, combined with condition 1, will complete the proof of the performance of the
cut player.

While the first two conditions will be proved separately for each different random walk,
the procedure allowing us to fulfill condition 3 will be the same. We describe it in Section 4.4.
In the next section, we define the random walks of interest and prove lemmata about their
connection to spectral gap and expansion and about their round-to-round decomposition.
Section 4.5 will be dedicated to completing the analysis for each cut strategy.

38

4.3 The Random Walks

In this subsection, we introduce the random-walk processes that we will be using in our
construction of cut strategies. For each random walk, we will prove a decomposition lemma,
which will allow us to relate Φt+1 and Φt in our analysis, and a lemma connecting ΦT+1 to
the expansion and the spectral gap of GT+1. We will first present the sequential random walk
of CKRV [41]. Then, we will define the random walks used by CEXP and by CNAT.

4.3.1 The Random Walk for CKRV

The random walk of KRV on Gt is just a sequential composition of the lazy random walks
across each matching M1, . . . ,Mt−1. More formally, for t ∈ [T], given Gt which is the sum of
bipartite matchings M1, · · · ,Mt−1, we define:

PKRV
t+1

def
=

(
I +W (Mt)

2

)
. . .

(
I +W (M1)

2

)
=

1∏
i=t

(
I +W (Mi)

2

)
,

and
PKRV

1 = I.

Notice that the definition of the walk depends strongly on the partition in perfect matchings
of the edges of Gt+1 and on the order in which these matchings arrived. In the rest of this
subsection, let Pt denote PKRV

t .

Connection with spectral gap and expansion

We start with proving the connection between the potential function Φt, based on Pt, and
both gap(Gt) and α(Gt). The main idea in the following lemma is the fact that we can embed
the weighted graph with adjacency matrix PT+1 into GT+1 by using the paths defined by the
random walk over matchings described by PT+1. We will then apply the embedding results
of Lemma 2.2.4 to yield the desired relations.

Lemma 4.3.1. Consider the 1-regular weighted graph H with adjacency matrix PT+1. The
following two inequalities hold for T ≥ 1 :

L(GT+1) � 1

T
L(H) =

1

T
(I − PT+1),

α(GT+1) ≥ α(H) ≥ λ2(I − PT+1)

Proof. Consider the embedding of H given by routing each edge following the paths defined
by the definition of PT+1 as

1∏
i=T

(
I +W (Mi)

2

)
.

39

The congestion of this embedding is 1 and its dilation is T. Hence, Lemma 2.2.4 together
with Cheeger’s Inequality, gives the required inequalities.

Decomposition lemma for PKRV

The main advantage of the definition of PKRV is the ease of relating Pt+1 to Pt. Indeed, the
following decomposition lemma regarding the potential function is a simple consequence of
the walk definition.

Lemma 4.3.2.
Tr
(
P T
t+1Pt+1

)
= Tr

(
P T
t Pt

)
− 1/2 · Tr

(
P T
t L(Mt)Pt

)
Proof.

Tr(P T
t+1Pt+1) = Tr

(
P T
t

(
I +W (Mt)

2

)2

Pt

)
= Tr

(
P T
t

(
I − L(Mt)

2

)2

Pt

)
.

We also have L(Mt) � 2I, as Mt is 1-regular. Hence L(Mt)
2 � 2L(Mt), so that(

I − L(Mt)

2

)2

� I − L(Mt) +
L(Mt)

2
= I − L(Mt)

2
.

By Fact 2.3.6, we have the required result.

4.3.2 The Random Walk for CEXP

.
The cut player CEXP makes use of the heat kernel random walk defined in Chapter 2. The

rate of the walk at time t is t− 1, meaning that this random walk can be seen as performing
the natural random walk on Gt for a number of steps which is Poisson distributed with rate
t− 1. Hence, we can write:

PEXP
t = e−L(Gt).

Notice that PKRV
1 = I. This walk enjoys two useful properties; first, gap(GT+1) will be lower

bounded by definition by an explicit function of ΦT+1, without recurring to any embed-
ding. Secondly, Φt+1 will be connected to Φt by using the Golden-Thompson Inequality of
Lemma 2.3.8. For the rest of this subsection, we let Pt denote PEXP

t .

Connection with spectral gap and expansion

Lemma 4.3.3. For T ≥ 1,

gap(GT+1) ≥ − log(ΦT+1)

2T
,

α(GT+1) ≥ − log(ΦT+1)

2
.

40

Proof. It suffices to prove the first inequality, as it immediately implies the second. By
definition, we have

PT+1 = e−L(GT+1).

By the properties of the matrix exponential in Chapter 2, we have

λn+1−i(e
−L(GT+1)) = e−λi(L(GT+1),

so that, as GT+1 is T -regular, we have

gap(GT+1) = − 1

T
· log(λn−1(PT+1)).

As ~1 is an eigenvector of Pt+1 associated with the largest eigenvector 1, it is clear that

(λn−1(PT+1))2 = ‖PT+1 − Π‖2
2 ≤ ‖PT+1 − Π‖F2 = ΦT+1.

Hence,

gap(GT+1) = − log(λn−1(PT+1))

T
≥ − log(

√
ΦT+1)

T
= − log(ΦT+1)

2T
.

Decomposition lemma for PEXP
t

The main reason for the choice of the heat-kernel random walk is the Golden-Thompson
Inequality of Lemma 2.3.8. Applied to Pt+1, it yields the following lemma.

Lemma 4.3.4.

Tr
(
P T
t+1Pt+1

)
≤ Tr

(
P T
t Pt

)
− (1− e−4)

4
· Tr

(
P T
t L(Mt)Pt

)
.

Proof.

Tr
(
P T
t+1Pt+1

)
= Tr

(
e−2·L(Gt+1)

)
= Tr

(
e−2·L(Gt)e−2·L(Mt)

)
= Tr

(
P T
t e
−2·L(Mt)Pt

)
.

We can now use Lemma 2.3.3 and Fact 2.3.6 to obtain the required inequality.

4.3.3 The Random Walk for CNAT

.
Like PKRV, the random walk PNAT used by CNAT also depends on the decomposition of

Gt into matchings, but it preserves properties of the heat kernel that make it more powerful
in the context of the Cut-Matching game. It is a round-robin random walk that can be seen
as a hybrid of the natural random walk and the heat kernel.

For the definition of PNAT, we assume that the duration of the game T = g(n) is a power

of 2, i.e. T = 2k, for some k ≥ 1. Also, let Nt
def
= T−1

T
I+ 1

T
W (Mt). The probability-transition

matrix PNAT
t is defined recursively as follows:

41

• Let Q1 = I and PNAT
1 := I.

• For 1 < t ≤ T, define

Qt+1
def
= Nt Qt Nt,

and
PNAT
t+1

def
= (QT+1))

T/4

In other words, Nt is a lazy random walk across Mt with staying probability T−1/T and

PNAT
t+1 = (NtNt−1 . . . N1N1 . . . Nt−1Nt)

T/4 .

The main motivation behind the design of this random walk was to realize a construction
closer to the natural random walk that still proved effective in the Cut-Matching game.
PNAT can be seen as an analogue of lazy natural random walk where, rather than sending a
1/T fraction of probability mass across every incident edge at once, the same fraction is sent
across edges in Mt−1 first, then Mt−2 and so on, wrapping around in a round-robin fashion
after reaching M1 for the first time. In the rest of this subsection, we denote PNAT

t by Pt.

Connection with spectral gap

The following analysis is different from both the analysis of CKRV and that of CEXP. For CKRV,
we used an argument based on an embedding with bounded congestion and dilation, while
for CEXP we relied on a stronger algebraic relation between the heat-kernel random walk and
the spectral gap. In this case, we use a combination of these two methods. We will consider
the 1-regular weighted graph RT+1 with adjacency matrix

A(RT+1)
def
= QT+1 = (NTNT−1 . . . N1N1 . . . NT−1NT),

and embed RT+1 (and not the walk PT+1 itself) in GT+1 to show a connection between the
two graphs. Then, we will then use the bound on gap(RT+1) given by ΦT+1 to show a lower
bound on the spectral gap and expansion of the graph GT+1.

Lemma 4.3.5.

gap(GT+1) ≥ 1

4T

(
1− (ΦT+1)

2
T

)
,

α(GT+1) ≥ T

2

(
1− (ΦT+1)

2
T

)
,

Proof. Notice that, by the definition of PT+1

ΦT+1 ≥ ‖PT+1 − Π‖2
2 = λn−1(P T

T+1PT+1) = (1− gap(RT+1))
T/2.

42

Hence, we have

gap(RT+1) ≥ 1− (ΦT+1)
2
T . (4.2)

Consider now the embedding of RT+1 in GT+1 that follows the paths defined by the product

NTNT−1 . . . N1N1 . . . NT−1NT .

This embedding has congestion 2/T by the definition of Nt and dilation 2 · T. Hence, by
Lemma 2.2.4,

L(Gd+1) � 1

4
· L(Rd+1),

α(Gd+1) ≥ T

2
· α(Rd+1).

Combining this with Equation 4.2 and using the fact that GT+1 is T -regular yields the first
required inequality. Moreover, as α(RT+1) ≥ gap(RT+1), the second part also follows.

Decomposition lemma for PNAT.

The use of a round-robin ordering is motivated by the rearrangement inequality in Theo-
rem 2.3.9, which allows us to prove the following lemma about decomposing the potential
for the PNAT walk.

Lemma 4.3.6.

Tr(P T
t+1Pt+1) ≤ Tr

(
P T
t Pt

)
− (1− e−2)

2
· Tr

(
P T
t L(Mt)Pt

)
. (4.3)

Proof. Applying Theorem 2.3.9 and Fact 2.3.5:

Tr(P T
t+1Pt+1) = Tr

(
(Nt Qt Nt)

T/2
)
≤ Tr

(
N

T/2
t Q

T/2
t N

T/2
t

)
≤

Tr
(
Q
T/2
t NT

t

)
.

Now, notice that Nt = I − 1/T · L(Mt) as Mt is 1-regular. Hence:

NT
t =

(
I − 1

T
· L(Mt)

)T
� e−L(Mt) �

(
I − (1− e−2)

2
L(Mt)

)
where the first inequality is a consequence of the fact that (1 + a/x)x ≤ ea, for a ∈ R, x > 0
and the second follows from Lemma 2.3.3. The lemma is a consequence of these two last
inequalities together with Fact 2.3.6.

In Section 4.5, we will discuss how PNAT can be cast as an approximation to the heat-
kernel random walk, which partially justifies why the decomposition of Lemma 4.3.6 is
possible.

43

4.4 Analyzing the Potential Reduction

In this subsection, we describe how the cut player achieves condition 3 of Section 4.2.2 by
giving a subroutine that outputs a bisection (S, S) given graph Gt and random walk process
Pt. The same subroutine was used in the work of KRV.

The cut player must output a bisection (S, S) such that, whichever response Mt the
matching player chooses, we have

Tr
(
P T
t L(M)Pt

)
= Ω

(
Φt

log n

)
.

Following [41], we take a geometric view of this problem by considering the vectors

vi = P T
t ei −

~1

n
∈ Rn

for i ∈ V. Notice that ∑
i∈V

vi = P T
t
~1−~1 = 0.

Hence, the mean of the vectors {vi} is 0. Moreover, we have that

Φt = Tr(P T
t Pt)− 1 = ‖Pt − Π‖2

F =
∑
i∈V

‖vi‖2
2, (4.4)

showing that Φt is the total variance of the embedding {vi ∈ Rn}i∈V . At the same time, let
us also consider a geometric interpretation of the potential reduction:

Tr
(
P T
t L(Mt)Pt

)
=
∑
i∈V

(Ptei)
TL(Mt)(Ptei) =

∑
{h,k}∈E(Mt)

‖vh − vk‖2
2.

Hence, it suffices for the cut player to find a bisection (S, S) such that, for all match-
ings across (S, S), the distance between the vectors corresponding to matched vertices is a
Ω(1/logn)-fraction of the total variance. This can be achieved using random projections as
follows. Noticing that all the vectors in {vi}i∈V live in the subspace of Rn perpendicular to
the vector ~1, let r be a random uniformly distributed unit vector in that n− 1-dimensional
subspace and consider the projection u of the embedding {vi}i∈V onto r defined for all i ∈ V
as:

ui
def
= vTi r = eTi Ptr − 1/n rT1 = eTi Ptr.

The second term disappears as rT1 = 0, by assumption. Then, the cut player returns the
bisecting sweep cut of vector u as the cut (St, St). This algorithm is based on the hope that
vectors which are far apart when projected onto r may also be far apart before projection and
hence contribute a large quantity to the potential reduction when matched. This intuition
is formalized by the following lemma, which is based on the Gaussian nature of projections
and appears in the same form in [41]. Our proof is given in Section A.1.

44

Lemma 4.4.1. Let {vi}ni=1 be vectors in Rn−1 such that
∑

i vi = 0. Let Φ
def
=
∑
‖vi‖2. Let r

be a random uniform unit vector in Rn−1 and, for all i, set ui := vTi r. Let S be the partition
of [n] such |S| = n/2 and, for all i ∈ S and j ∈ S, ui ≥ uj. Consider any perfect matching
M across (S, S). Then,

E
r

 ∑
{i,j}∈E(M)

‖vi − vj‖2

 = Ω

(
Φ

log n

)
.

4.4.1 Algorithmic Template

We can now give an explicit algorithmic formulation of the cut strategies that we will be
analyzing. At rounds t, given graph Gt which is the union of perfect matchings M1, . . . ,Mt−1,
and a probability-transition matrix Pt on Gt, the cut player runs the following procedure to
find which bisection to output:

1. Sample an uniformly distributed unit vector rt in the subspace of perpendicular to ~1.

2. Compute yt := Ptrt.

3. Sort the entries of yt = (y1, . . . , yn) as yi1 ≤ · · · ≤ yin/2 ≤ yin/2+1
≤ · · · ≤ yin .

4. Let St := {i1, . . . , in/2} and St := V \St.

From a combinatorial rather than geometric point of view, the reason this procedure finds
a bisection containing a non-expanding cut is the following: Suppose (S, S) is a cut across
which there are very few edges in Gt, say none. Then the walk procedure Pt never transfers
any charge across this cut. Also, the initial random vector will create a Θ(1/√n) charge
differential between S and S, i.e |

∑
i∈S(rt)i −

∑
i∈S(rt)i| = Θ(1/√n) with high probability.

Hence, in the bisection output after mixing and sorting based on yt, the two sides of the
bisection will have non-trivial correlations with S and S respectively. Thus, the matching
added in the next iteration will add some edges across the sparse cut (S, S). It is remarkable
that the strategy CKRV, CEXP and CNAT are able to ensure high expansion with high probability
after only O(log2 n) such simple steps.

4.5 Completing the Analysis

4.5.1 The CKRV Strategy

In this subsection, we complete the proof of Theorem 4.1.3. For the rest of this subsection,
we denote PKRV

t by Pt.

45

We are now ready to combine the connection with gap and expansion of Lemma 4.3.1, the
decomposition result of Lemma 4.3.2 and the potential reduction guaranteed of Lemma 4.4.1
to prove Theorem 4.1.3.

Proof of Theorem 4.1.3. Recall that Φt = Tr(P T
t Pt) − 1 and that T = g(n). Then, for all

t ∈ [T], by Lemma 4.3.2

Φt+1 = Φt −
1

2
Tr
(
P T
t L(Mt)Pt

)
.

Define the vectors

vi = P T
t ei −

1

n
~1.

Notice that, as L(Mt)~1 = 0,

Tr(P T
t L(Mt)Pt) =

∑
{i,j}∈E(Mt)

‖vi − vj‖2,

and, by Equation 4.4, Φt =
∑

i∈V ‖vi‖2. Applying Lemma 4.4.1, we obtain

E
rt

[
Tr(P T

t L(Mt)Pt)
]
≥ Ω

(
Φt

log n

)
.

The last equation implies that, in expectation, the potential decreases by at least a (1 −
Ω(1/logn))-fraction at each iteration.

Hence, after all T rounds, we have

E
r1,...,rT

[ΦT+1] ≤ (1− Ω(1/logn)) E
r1,...rT−1

[ΦT] ≤ . . . ≤ (1− Ω(1/logn))T Φ1.

But Φ1 = Tr(P T
1 P1)− 1 = Tr(I)− 1 = n− 1, so that

E
r1,...,rT

[ΦT+1] ≤ (n− 1) (1− Ω(1/logn))T .

Taking T = O(log2 n), we can have

E
r1,...,rT

[ΦT+1] ≤ 1

2n
,

and, by Markov’s Inequality, with high probability we obtain that

‖PT+1 − Π‖2
F = ΦT+1 ≤

1

2
.

Finally, this means that

‖PT+1 − Π‖2
2 ≤ ‖PT+1 − Π‖2

F ≤
1

2
,

46

and

PT+1 �
1

2
(I − Π) + Π =

1

2
(I + Π)

Combining with Lemma 4.3.1, we get

L(GT+1) � 1

T
(I − PT+1) � 1

2T
(I − Π),

and

α(GT+1) ≥ λ2(I − PT+1) ≥ 1

2
. (4.5)

The first inequality immediately implies that

gap(GT+1) ≥ 1

2T 2
.

as GT+1 is T -regular. Hence, CKRV with high probability achieves a gap of 1/2T 2 and an
expansion of 1/2 in T = O(log2 n) rounds, implying that it is successful for the game
(G(n),Ω(1/log4 n), O(log2 n)) under the gap criterion and for the (G(n),Ω(1/log2 n), O(log2 n))-
game under the expansion criterion. The running time required at each round by the cut
strategy is Õ(n) as it just needs to compute at most T = O(log2 n) matrix-vector multi-
plications, where each matrix has at most Õ(n) non-zero entries as it represents a perfect
matching.

Discussion and comparison

In the above proof, CKRV can only guarantee constant edge expansion at termination, as seen
in Equation 4.5. Here, we provide some intuition of why CKRV may fail to achieve better
expansion. Suppose the union of matchings (M1, . . . ,Mt−1), has no edges crossing some
bisection (S, S). Now suppose that the walk PKRV

t on matchings M1, . . . ,Mt−1 mixes the
probability charge on each side of (S, S) perfectly (or very well). The next cut selected by
CKRV is necessarily (S, S). Moreover, once any perfect matching Mt is added across (S, S),
PKRV
t+1 mixes across that perfect matching in its last step and the random walk distribution

becomes very close to stationary. At this point, we can have Φt+1 arbitrarily small, yet the
edge expansion across bisection (S, S) is 1. This suggests considering a different walk, which
is either lazier than PKRV at every step or utilizes the matchings in a different order. We
will see that PEXP and PNAT display both these characteristics.

As CEXP (and to some extent CNAT) makes use of the heat kernel random walk, it is
worthwhile pointing out that CKRV can also be seen as using matrix exponentials. In par-
ticular, it is not difficult to show that e−ηL(M) represents a slowed-down lazy random walk

along matching M . As
(
I+W (M)

2

)i
= (I+W (M))

2
for i ≥ 1, the Taylor Series of the exponential

yields: e−ηL(M) = 1+e−η

2
I + 1−e−η

2
M. Hence, the CKRV mixing procedure is close to the walk

e−ηL(Mt)e−ηL(Mt−1) · · · e−ηL(M1)

47

for small η. Our second cut-finding procedure CEXP uses the probability-transition matrix
e−η(tI−(M1+···+Mt)). If it were true that

e−ηL(M1+···+Mt) ≈ e−ηL(Mt)e−ηL(Mt−1) · · · e−ηL(M1),

then it would establish that the two strategies are almost the same. In fact, even under the
weaker condition that

Tr
[
e−ηL(M1+···+Mt)

]
≤ Tr

[
e−ηL(Mt) · · · e−ηL(M1)

]
we could extend the analysis of CEXP to CKRV and improve CKRV’s performance guarantee.
Unfortunately, this is generally false, as the Golden-Thompson Inequality relies on the cycli-
cal property of the trace function and only applies to two matrices.

4.5.2 The CEXP Strategy

We now complete the proof of our main theorem about the player CEXP. For the rest of this
subsection, we denote PEXP

t by Pt.

Proof of Theorem 4.1.4. Recall that Φt = Tr(P T
t Pt)− 1 and that T = g(n). For all t ∈ [T],

by the decomposition result of Lemma 4.3.4, we have

Φt+1 = Φt −
(1− e−4)

4
· Tr

(
P T
t L(Mt)Pt

)
.

As in the proof of Theorem 4.1.3, we apply Lemma 4.4.1 to vectors

vi = P T
t ei −

1

n
~1,

to obtain

E
rt

[
Tr(P T

t L(Mt)Pt)
]

= E
rt

 ∑
{i,j}∈E(Mt)

‖vi − vj‖2

 ≥ Ω

(
Φt

log n

)
.

Hence, the potential decreases in expectation by a (1 − Ω(1/logn))-fraction at every round.
After T rounds, we have

E
r1,...,rT

[ΦT+1] ≤ (1− Ω(1/logn)) E
r1,...rT−1

[ΦT] ≤ . . . ≤ (1− Ω(1/logn))T Φ1.

As P1 = I, this implies that

E
r1,...,rT

[ΦT+1] ≤ (n− 1) (1− Ω(1/logn))T .

48

We take T = O(log2 n) to be large enough that

E
r1,...,rT

[ΦT+1] ≤ 1

n2
.

Hence, with high probability, by Markov’s Inequality

E
r1,...,rT

[ΦT+1] ≤ 1

n
.

Finally, by Lemma 4.3.3, we obtain

gap(Gt+1) ≥ − log(ΦT+1)

2T
≥ Ω

(
1

log n

)
and

α(Gt+1) ≥ − log(ΦT+1)

2
≥ Ω (log n) .

Hence, CEXP is successful at the (G(n),Ω(1/logn), O(log2 n))-game for both the gap criterion
and the expansion criterion. We complete the proof by analyzing the running time necessary
to compute yt = Ptrt at every round t, in the next subsection.

Running time

We approximate the exponential e−L(Gt) by truncating its Taylor series as is also done in
Arora and Kale [11]. All we need to compute is e−L(Gt)u for some random unit vector u. We
define the approximation vk as

vk :=
k∑
j=0

1

j!
(L(Gt))

j u.

For vk to be a good approximation for the purposes of the algorithm it suffices to have

‖vk − e−L(Gt)u‖2 ≤ O

(
Φt

log n

)
. (4.6)

The error occured by the truncation can be written as

‖vk − e−L(Gt)u‖ ≤
∞∑
k+1

1

j!
‖L(Gt)‖j .

By a standard approximation of the factorial, it is straightfoward to show that, for

k ≥ max{Ω(t),Ω(log n)},

49

Equation 4.6 is satisfied. Finally, to compute vk we just need to perform k matrix-vector
multiplications. Each of these takes time O(tn) as Gt is t− 1 regular. As t ≤ O(log2 n) and

by the bound on k, we get a running time of O(n log4 n) = Õ(n) for running the strategy Cexp

for one round. The survey by Golub and Van Loan [29] describes other ways of computing
the exponential efficiently that may be useful in practice. In Section 4.5, we will see a relation
between one of these methods, that of “splitting”, and the CNAT random walk.

Discussion and comparison

The strong connection between ΦT+1 and gap(GT+1), which arises from properties of the
matrix exponential, allows CEXP to achieve the same performance under both criteria. In
particular, CEXP does not need to recur to the embedding results of Lemma 2.2.4, which
cause CKRV and CNAT to obtain only weaker spectral results because of the Ω(T)-dilation
incurred by these embeddings.

In contrast to CKRV, CEXP is able to obtain a final expansion of α(GT+1) ≥ Ω(log n). The
obstacle described above for CKRV does not present itself in this case as heat kernel walk does
not mix fully across a newly-matched bisection. Hence, the laziness of the walk potentially
allows multiple matchings to be added to each bisection. Intuitively, a lazier version of the
CKRV strategy, where the random walk with staying probability 1/2 is replaced by one with
higher staying probability, may also achieve a better expansion. However, to date, we are
still unable to prove or disprove this conjecture.

Finally, in Section 4.6, we discuss how the CEXP strategy is equivalent to a strategy that
can be designed implicitly using the Matrix MWU algorithm of Chapter 3.

4.5.3 The CNAT Strategy

For the rest of this subsection, we denote PNAT
t by Pt. Recall that

Nt =
T − 1

T
I +

1

T
Mt.

We now complete the proof of the main theorem about the player CNAT.

Proof of Theorem 4.1.5. Recall that Φt = Tr(P T
t Pt)− 1 and that T = g(n). For all t ∈ [T],

by the decomposition result of Lemma 4.3.6, we have

Φt+1 = Φt −
(1− e−2)

2
· Tr

(
P T
t L(Mt)Pt

)
.

As in the proof of Theorem 4.1.3, we apply Lemma 4.4.1 to vectors

vi = P T
t ei −

1

n
~1,

50

to obtain

E
rt

[
Tr(P T

t L(Mt)Pt)
]

= E
rt

 ∑
{i,j}∈E(Mt)

‖vi − vj‖2

 ≥ Ω

(
Φt

log n

)
.

Hence, the potential decreases in expectation by a (1 − Ω(1/logn))-fraction at every round.
After T rounds, we have

E
r1,...,rT

[ΦT+1] ≤ (1− Ω(1/logn)) E
r1,...rT−1

[ΦT] ≤ . . . ≤ (1− Ω(1/logn))T Φ1.

As P1 = I, this implies that

E
r1,...,rT

[ΦT+1] ≤ (n− 1) (1− Ω(1/logn))T .

We take T = O(log2 n) to be large enough that

E
r1,...,rT

[ΦT+1] ≤ 1

n2
.

Hence, with high probability, by Markov’s Inequality

ΦT+1 ≤
1

n
.

Finally, by Lemma 4.3.5, we obtain

gap(GT+1) = gap(Gd+1) ≥ 1

4T

(
1−

(
1

n

) 2
T

)

and

α(GT+1) = α(Gd+1) ≥ T

2

(
1−

(
1

n

) 2
T

)
.

But T = O(log2 n), so that we have(
1−

(
1

n

) 2
T

)
=
(

1− e−Ω(1
logn)

)
= (1− (1− Ω(1/logn)) ≥ Ω

(
1

log n

)
.

Hence,

gap(GT+1) ≥ Ω

(
1

log3 n

)
,

and
α(GT+1) ≥ Ω(log n).

51

Therefore, CNAT is successful at the (G(n),Ω(1/logn), O(log2 n))-game under the expansion
criterion and at the (G(n),Ω(1/log3 n), O(log2 n)) under the gap criterion.

Turning to the running time, note that we do not need to compute Pt explicitly, as we only
need Ptrt. Hence, at iteration t we only need to perform O(2t ·T) = O(log4 n) matrix-vector
multiplications. As each matrix is a step of a lazy random walk along a perfect matching,
each of these operations takes time O(n). Hence, the total running time is Õ(n).

Discussion and comparison

In Section 4.3, we already described how CNAT can be seen as a proxy for the natural random
walk, for which we do not have an adequate decomposition lemma. CNAT can also be seen
as a hybrid between CNAT and CEXP. P

NAT takes distinct steeps across each matching like
CKRV; however, these steps are lazier, a feature that might contribute to the better results
obtained by CNAT. On the other hand, the powering of the sequential walk T/4 times makes
PNAT comparable to PEXP. Indeed, the following theorem shows that PNAT can be seen
as an approximation to the matrix exponential. Such approximations have been studied
before in the survey by Moler and Van Loan [55] and are known as “splitting methods” for
computing the matrix exponential, as they spit the exponent, in this case L(Gt) into a sum
of addends, the matchings, for each of which it is easy to compute the exponential. The
following theorem is a simple variation of a result in [55] and is stated without proof here.

Theorem 4.5.1. For q > 0, let

Nt =

(
q − 1

q
· I +

1

q
·W (L(Mt)

)
.

Then, for t ∈ [T],

lim
q→∞

(NtNt−1 . . . N1N1 . . . Nt−1Nt)
q/4 = e−

1/2·L(Gt+1).

Our result shows that it suffices to take q = T to have a sufficiently good approximation
for the purposes of the Cut-Matching game under the expansion criterion.

4.6 Matrix MWU Interpretation

Our discussion of why random walks arise in the construction of cut strategies in Section 4.3
was based on the following intuition: any successful cut strategy cannot only focus on the
single lowest-mixing eigenvector, but must sufficiently hedge on all low-mixing eigenvectors
to guarantee that progress is made at every round. This reasoning is completely analogous to
that of Chapter 3, which motivated how the Matrix MWU algorithm arises and why it makes
use of the matrix exponential. It is then not surprising that the same matrix exponential
plays an important role in our discussion of the cut strategies, and in particular of CEXP.

52

We chose to present CEXP through the random-walk derivation of Section 4.3 because
this how we constructed it first and because of the strong analogy with CNAT and CKRV.
However, it is possible to give a simple proof of the performance of a variant of CEXP just by
using the results of Chapter 3. We present a sketch of this proof in the rest of this section.
Among other things, this connection highlights how CNAT and CKRV can be interpreted as
variations of the Matrix MWU algorithm that are targeted for the Cut-Matching game, and
in particular for bounding expansion rather than the spectral gap.

Let N = I − 1/n ·~1~1T and notice that N is a projection onto the subspace orthogonal to
the vector ~1. We consider a Matrix MWU setting in which we must choose action X(t) in the
set ∆N . The loss function at time t takes the form L(Mt), where Mt is the matching output
by M at that round. We then have, by Theorem 3.3.3, for some choice of ε > 0:

X(t+1) = Eε,I,N

(
t∑

s=1

L(Ms)

)
=

(1− ε)
∑t
s=1 L(Ms)

N • (1− ε)
∑t
s=1 L(Ms)

.

This construction of X(t) is analogous to that of PEXP
t , and the two are exactly the same

for ε = (1− e). However, for the following analysis, we assume ε < 1/2. Now, we notice that
Lemma 4.4.1 yields a lower bound on the loss of X(t) at every iteration. Indeed, if we pick
the output bisection as in CEXP, we have that, for all t ∈ [T],

L(Mt) •X(t) ≥ 1

log n
.

We have 0 � L(Mt) � 2N, so that, by Theorem 3.3.3, :

T

log n
≤

T∑
t=1

L(Mt) •X(t) ≤ 2ρ log n

ε
+ (1 + ε)λmin,N

(
T∑
t=1

L(Mt)

)
.

Finally,

gap(GT+1) = λmin,T ·N

(
T∑
t=1

L(Mt)

)
≥ 1

T

(
Ω

(
T

log n

)
−O(log n)

)
≥

Ω

(
1

log n

)
−O

(
log n

T

)
.

Hence, taking T = O(log2 n), the cut player CEXP achieves gap(GT+1) = Ω(1/logn).
Despite hiding the random-walk intuition, this simpler proof has many advantages. In

particular, it can be used to generalize the results about CEXP to variant of the Cut-Matching
games that capture conductance and other graph partitioning objectives.

53

4.7 Lower Bounds for the Cut-Matching Game

In this section we prove the lower bound of Theorem 4.1.6 on the performance of any cut
player in the Cut-Matching game under the expansion criterion. This result establishes the
existence of a matching strategy M? such that no cut players, including computationally
unbounded ones, can achieve an expansion better than Ω(

√
log n) · g(n) against M∗.

4.7.1 Proof Idea

A matching playerM wins the the game (G(n), O(1/
√

logn), g(n)) for all g(n) if at each round
t,M is able to exhibit a cut with expansion less than O(t/

√
logn) in the graph Gt−1 formed

by the union of the matchings thus far. A simple way for M to do this would be to pick a
fixed cut (D,D) at the beginning of the game and keep this cut as sparse as possible round
after round. However, if the cut player guesses one bisection containing or equal to D, any
perfect matching that M adds across this bisection will make the cut (D,D) have constant
expansion immediately.

To overcome this problem, the matching playerM∗ first identifies the vertex set [n] with
the vertex set of a hypercube with d coordinates, {−1, 1}d. (Assume n = 2d.) Then, rather
than trying to keep one bisection sparse, it tries to keep d = log n orthogonal bisections
sparse on an average. The natural choice for such orthogonal bisections for the hypercube
vertex set are those induced by the coordinate cuts. Formally, denote this set of bisections
by D := {(D1, D1), . . . , (Dd, Dd)}. Here, Di := {(x1, . . . , xd) ∈ {−1, 1}d | xi = 1}, and
Di := {−1, 1}d\Di. The orthogonality makes it possible to add edges across one (Di, Di)
without increasing the expansion of other bisections in D by too much. More formally, we
will show that, after t rounds, the expected expansion is at most O(t/

√
logn), which implies

the existence of a cut Di with the required expansion.
The Main Lemma, described in the next subsection, achieves this goal by proving that

at any iteration t, and for any choice of a bisection (St, St) (by any cut player), there exists
a matching Mt across (St, St) which increases the average expansion over D by at most

O
(

1√
logn

)
.

4.7.2 Main Lemma

The main technical result of this section is the following claim about the hypercube. The
lower bound is a simple consequence of this result.

Lemma 4.7.1 (Main Lemma). Given a unit embedding of the d-dimensional hypercube(
+1√
d
, −1√

d

)d
, for any bisection of its vertices, there exists a perfect matching of the vertices

across the bisection such that the average `2
2-distance of matched vertices is O

(
1√
d

)
.

54

Notice that here a matching just indicates a pairing of the vertices and has no relation
with the edges of the hypercube graph. The Main Lemma will be shown to be a consequence
of the vertex iso-perimetry of the hypercube. Intuitively, if the vertex iso-perimetry is large,
no two large sets of vertices can be a large distance apart. The proof shows how to apply the
same reasoning to show the existence of a “short” perfect matching across any bisection. To
establish this lemma, we first encode the task of finding a matching across the given bisection
with minimum `2

2 length as a min-cost perfect-matching LP. Then, we show that the dual
of this LP can be interpreted as a non-expanding embedding of the hypercube into `1. This
allows us to use the hypercube vertex iso-perimetry to upper bound its optimal value. The
matching of interest can then be found by the matching player by solving the matching LP.

In the next subsection, we give some necessary prelimaries, before proceeding to the proof
of Theorem 4.1.6 and Lemma 4.7.1.

4.7.3 Preliminaries

Cut vectors

For any cut (S, S) of [n], we define the cut vector ~xS ∈ Rn by:

(~xS)i =

{
+1 if i ∈ S
−1 if i /∈ S

Hence, for any cut (S, S):

~xT

SL(G)~xS = 4|E(S, S)|.

Vertex iso-perimetry of the hypercube

For any graph G = (V,E), let γ(G) denote the vertex iso-perimetry number of G. γ(G) is

the minimum ratio among all cuts S ⊆ V, with |S| ≤ |V |
2
, of the number of neighbors of S

outside of S to that of the size of S. That is

γ(G) := min
S⊆V, |S|≤ |V |

2

{i ∈ V \S : ∃j ∈ S : {i, j} ∈ E}
|S|

.

The following is a standard fact about the vertex iso-perimetry of the hypercube [21].

Fact 4.7.2. γ(Hd) = Θ
(

1√
d

)
.

4.7.4 Proof of Theorem 4.1.6

Let n := 2d for a positive integer d. Let Hd denote the d-dimensional hypercube. This is
the graph with V (Hd) := {−1, 1}d and {i, j} ∈ E(Hd) if and only if i and j differ in exactly

55

one coordinate. At the start of the game, M∗ picks an arbitrary bijection f : V → Hd. Let
Ud be the unit embedding of Hd, i.e., Ud := Hd√

d
and, for all v ∈ V , denote by uv the point

f(v)√
d

of Ud. Each dimension cut in Hd corresponds to a cut in V through the mapping f . In

particular, we denote by Di the cut {v ∈ V : f(v)i = +1}, and Di := V \Di. This defines a
set D := {D1, . . . , Dd} of bisections of V .

Fix an arbitrary cut player C which at every round presents a bisection to the matching
player M∗ to which M∗ must add a perfect matching. At every round, M∗ will output a
perfect matching Mt. Let Gt := (V,Et) denote the graph formed by the union of matchings
M1, . . . ,Mt, with G1 := (V, ∅). Define a potential function

Φt
def
= E

Di←D

[
Et(Di, Di)

|Di|

]
to be the expected expansion in Gt of a cut sampled uniformly at random from D. The
following fact shows that the value of the potential function Φt equals a scaling of the sum
of the squared lengths of the edges of Gt in the hypercube embedding Ud.

Fact 4.7.3. Φt = 1
2n

∑
{h,k}∈Et ‖uh − uk‖

2

Proof.

Φt = E
Di←D

[
|Et(Di, Di)|
|Di|

]
= E

Di←D

[
~xT
Di
L(Gt)~xDi
4|Di|

]

=
1

d

d∑
i=1

~xT
Di
L(Gt)~xDi

2n

=
1

d

d∑
i=1

∑
{h,k}∈Et ((~xDi)h − (~xDi)k)

2

2n

=
1

2n

∑
{h,k}∈Et

d∑
i=1

(
1√
d

(~xDi)h −
1√
d

(~xDi)k

)2

=
1

2n

∑
{h,k}∈Et

‖uh − uk‖2.

Notice that in the last inequality we used the definition of the cuts D1, . . . , Dd as the coor-
dinate cuts of Hd.

Hence, for any t ≥ 1, we can rewrite the increase in potential at round t as:

Φt − Φt−1 =
∑

{i,j}∈Et\Et−1

‖ui − uj‖2 =
∑

{i,j}∈E(Mt)

‖ui − uj‖2

56

At every iteration t, given C’s choice of (St, St), our player M∗ adds the matching Mt

across (St, St) which minimizes
∑
{i,j}∈E(Mt)

‖ui − uj‖2. This only requires a minimum cost

matching computation on the complete bipartite graph induced by (St, St). Moreover, this
choice of matching ensures the potential increases the least possible at every iteration.

The Main Lemma (Lemma 4.7.1) can now be restated as follows.

Lemma 4.7.4. For all bisections (S, S) of V, there exists a perfect matching M across (S, S)

such that
∑
{i,j}∈M ‖ui − uj‖2 = O

(
n√
d

)
.

The proof of this Lemma will be given in Section 4.7.5. Here we see how the Main Lemma
implies Theorem 4.1.6.

Proof of Theorem 4.1.6. By the Main Lemma and Fact 4.7.3, the potential increase at round
t round is at most

Φt+1 − Φt = O

(
1√
d

)
.

Hence Φt+1 ≤ O
(

t√
d

)
. This implies that EDi←D

[
|Et+1(Di,Di)|

|Di|

]
≤ O

(
t√
d

)
. Hence, there

exists a cut Di with |Et+1(Di,Di)|
|Di| ≤ O

(
t√
d

)
. This shows that α(Gt+1) ≤ O

(
t√
d

)
for all

integers t ≥ 1. Hence for any choice of termination T = g(n), we have

α(GT+1) ≤ O

(
g(n)√
d

)
≤ O(1/

√
logn) · g(n)

as required.

4.7.5 Proof of Lemma 4.7.4

We now proceed to prove the Main Lemma.

of Main Lemma 4.7.4. Let cij := ‖ui − uj‖2. Consider the LP relaxation of Figure 1 for
computing the minimum cost perfect matching across the cut (S, S).

By the integrality of the bipartite perfect matching polytope (see [57]), the objective of
this program is the minimum of

∑
{i,j}∈M ‖ui − uj‖2 over all perfect matchings M across

(S, S). In Figure 2 we consider a formulation of the dual of this LP.
A feasible solution for this LP can be seen an embedding {yi}i∈[n] of [n] on the real line

such that no pair i, j with i ∈ S and j ∈ S and yi ≥ yj can be further away in `1 distance than
its `2

2 distance in the hypercube embedding Ud. We now prove the following two properties
of solutions to the dual LP:

1. If {yi}i∈[n] is a feasible solution of value Y , then for any c ∈ R, {y′i = yi + c}i∈[n] is a
feasible solution of value Y ′ = Y .

57

Minimize
∑

i∈S,j∈S cijxij
Subject to

∀i ∈ S,
∑

j∈S xij = 1

∀j ∈ S,
∑

i∈S xij = 1

∀i ∈ S, j ∈ S, xij ≥ 0

Figure 4.2: LP for Bipartite Min-Cost Matching

Maximize
∑

i∈S yi −
∑

j∈S yj
Subject to

∀i ∈ S, j ∈ S, yi − yj ≤ cij
∀i ∈ V, yi ∈ R

Figure 4.3: The dual of the LP for Bipartite Min-Cost Matching

2. In any optimal dual solution, we must have, for all pairs i, j ∈ [n], |yi − yj| ≤ cij =
‖ui − uj‖2.

Proof of Property 1: The shifted solution is feasible as for all i ∈ S, j ∈ S:

y′i − y′j = yi + c− yj − c = yi − yj ≤ cij

The value of this solution is:

Y ′ =
∑
i∈S

y′i −
∑
j∈S

y′j =
∑
i∈S

(yi + c)−
∑
j∈S

(yj + c)

=
∑
i∈S

yi +
cn

2
−
∑
j∈S

yj −
cn

2
=
∑
i∈S

yi −
∑
j∈S

yj = Y

Proof of Property 2: Notice that the costs cij’s respect the triangle inequality as the `2
2-

distance on the hypercube is a metric. To prove the statement, we need to handle the three
remaining cases:

1. i ∈ S, j ∈ S. Assume yi ≥ yj without loss of generality. As the solution is optimal,
it is not possible to increase yj to obtain a larger dual objective. This implies that
there must exist k ∈ S such that yj − yk = cjk. But we must have cik ≥ yi − yk =
(yi − yj) + (yj − yk) = yi − yj + cjk. As cik ≤ cij + cjk, we have yi − yj ≤ cij.

2. i ∈ S, j ∈ S. This is handled as in the previous case.

58

3. i ∈ S, j ∈ S such that yj ≥ yi. Because the solution is optimal there must exists j′ ∈ S
and i′ ∈ S such that yj′ − yj = cj′j and yi − yi′ = cii′ . But, by the dual constraint, we
must have ci′j′ ≥ yj′ − yi′ = (yj′ − yj) + (yj − yi) + (yi − yi′) = cj′j + yj − yi + cii′ . By
triangle inequality, ci′j′ ≤ cj′j + cji + cii′ , so that yj − yi ≤ cji as required.

Application of vertex iso-perimetry of Hd: Now we use these properties of an optimal dual
solution together with the vertex iso-perimetry of the hypercube to obtain an upper bound
on the dual optimal. By Property 1, we can translate any optimal dual solution preserving
optimality. Hence, we may consider an optimal solution {yi}i∈[n] such that at most n

2
vertices

are mapped to positive value and at most n
2

are mapped to negative values. Notice that, as
maxi,j ‖ui − uj‖2 = 4, we have yk ∈ [−4, 4] for all k ∈ [n]. Now define sets R1, . . . , R4d ⊆ [n]
as follows:

Ri :=

{
k ∈ [n] : yk ∈

(
i− 1

d
,
i

d

]}
.

Similarly, for the negative side we can define L1, . . . , L4d:

Li :=

{
k ∈ [n] : yk ∈

[
− i
d
,−i− 1

d

)}
.

We also define Ai :=
⋃4d
k=iRi and Bi :=

⋃4d
k=i Li. By our assumption on {yi}i∈[n] we know

that, for all i, |Ai|, |Bi| ≤ n
2
.

Consider now any k ∈ Ai for i ≥ 2. Consider any h /∈ Ai such that ‖uh−uk‖2 = 1
d
, i.e., uh

is a neighbor of uk in the hypercube graph. Notice that h must lie in Ri−1, as, by Property
2, |yk − yh| ≤ 1

d
and h /∈ Ai. Hence, all vertices which are outside of Ai and adjacent to Ai

in the hypercube must belong to Ri−1. Because |Ai| ≤ n
2
, by the vertex iso-perimetry of the

hypercube, there are at least γ(Hd)|Ai| such vertices and, for i ≥ 2:

|Ri−1| ≥ Ω

(
1√
d

)
|Ai|.

This implies that for i ≥ 2,

|Ai−1| ≥
(

1 + Ω

(
1√
d

))
|Ai|.

Since |A1| ≤ n
2
,

|Ai| ≤
n

2

(
1 + Ω

(
1√
d

))−(i−1)

.

The same reasoning can be applied to Bi to deduce that

|Bi| ≤
n

2

(
1 + Ω

(
1√
d

))−(i−1)

.

59

Now notice that the cost of the dual solution {yk}k∈[n] is upper bounded by

1

d

(
4d∑
i=1

i|Li|+
4d∑
i=1

i|Ri|

)
≤ 1

d

(
4d∑
i=1

|Ai|+
4d∑
i=1

|Bi|

)

=
n

d

4d∑
i=1

(
1 + Ω

(
1√
d

))−(i−1)

=
n

d
O
(√

d
)

= O

(
n√
d

)
.

But, by strong duality, the primal optimum equals the the dual optimum. Hence, there
exists a matching M such that∑

{i,j}∈M

‖ui − uj‖2 = O

(
n√
d

)
.

Finally, we consider a slight variation on our matching-player construction, in which the
matching player does not solve the matching LP at ever round. Suppose that a matching
player M∗, given bisection (S, (S)) outputs a perfect matching by greedily matching the
two vertices i and j that are closest in Ud, removing them and iterating. Using our in-
tuition based on iso-perimetry, Sherman [59] showed that this greedy player M∗ achieves
asymptotically the same performance as that of Theorem 4.1.6. Moreover, Sherman also
showed that the same iso-perimetry method can be extended to embeddings other than
the hypercube. In particular, he applied this argument to the sphere embedding to ob-
tain a stronger lower bound regarding the Cut-Matching game under the gap criterion. He
shows that, for this version of the game, there is a matching player that is successful in the
(G(n),Ω(log logn/logn), g(n))-game for all g(n).

4.8 Related Work

We remark that Arora and Kale [11] described an algorithm that also achieves O(log n)-
approximation using polylog(n) single-commodity maximum flow computations. However,
their algorithm works outside of the Cut-Matching game and its certificate of expansion
seems different than the one produced by our algorithms.

The study of fast algorithms for graph partitioning using single-commodity flows saw
three other developments after the publishing of our work. First, Sherman [59] gave a
O(
√

logn/ε)-approximation for Expansion using only Õ(nε) flow operations. His algorithm
did not make use of the Cut-Matching game. Secondly, Madry [54] showed how to obtain

60

a trade-off between approximation and running time for many graph-partitioning problem.
His result yields the first polylogarithmic approximation algorithms that run in time o(m3/2).

Finally, Christiano et al. [20] gave an algorithm for approximate single-commodity maxi-
mum flow that runs in time Õ(m4/3). As the reduction from Cut-Matching game to Expan-
sion can be modified to use approximate maxflow, their result reduces the running time of
all algorithms employing this framework to Õ(n4/3 +m).

61

Chapter 5

Fast Spectral Algorithms for Balanced
Separator and Graph Decomposition

Recalling the definition of Balanced Separator in Chapter 2, we seek an approxi-
mation algorithm that, on input an unweighted undirected instance graph G = (V,E) with
|V | = n, |E| = m, a constant balance b ∈ (01/2] and a parameter γ ∈ [0, 1], either outputs
a cut of conductance at most f(γ, n) and balance Ωb(1)1 or a certificate that G has no
b-balanced cut of conductance at most Ω(γ). In their seminal series of papers [66, 67, 65],
Spielman and Teng use an approximation algorithm for Balanced Separator as a fun-
damental primitive to decompose the instance graph into a collection of near-expanders.
This decomposition is then used to construct spectral sparsifiers and solve systems of linear
equations in nearly linear time. Their algorithm has two crucial features: first, it runs in
nearly linear time; second, in the case that no balanced cut exists in the graph, it outputs a
certificate of a special form. Such certificate consists of an unbalanced cut of small conduc-
tance which is well-correlated with all low-conductance cuts in the graph, i.e. contains at
least half of the volume of any cut that has conductance less than O(γ). This immediately
implies that no large set of small conductance can exist.

Theorem 5.0.1. [66] Given a graph G, a balance parameter b ∈ (0, 1/2], b = Ω(1) and a
conductance value γ ∈ (0, 1), Partition(G, b, γ) runs in time T (γ, n) and outputs a cut
S ⊆ V such that vol(S) ≤ 7/8 · vol(G), φ(S) ≤ f(γ, n) or S = ∅, and with high probability,
either

1. S is Ωb(1)-balanced, or

2. for all C ⊂ V such that vol(C) ≤ 1/2 · vol(G) and φ(C) ≤ O(γ), vol(S∩C)
vol(C)

≥ 1/2.

1We will use Ob(·) and Ωb(·) in our asymptotic notation when we want to emphasize the dependence of
the hidden coefficent on b.

62

Originally, Spielman and Teng showed f(γ, n) = O
(√

γ log3 n
)

and T (γ, n) = Õ (m/γ2) .

This was subsequently improved by Andersen, Chung and Lang [4] and then by Andersen
and Peres [5] to the current best of f(γ, n) = O

(√
γ log n

)
and T (γ, n) = Õ(m/√γ). All these

results made use of bounds on the convergence of random walk processes on the instance
graph, such as the Lovasz-Simonovits bounds [53]. These bounds yield the log n factor in
the approximation guarantee, which appears hard to remove while closely following this
approach, as such an improvement would have consequences for important variations of the
Unique Games Conjecture [43, 7], a fundamental open question in Inapproximability.

5.0.1 Our Result

In this chapter, we use a semidefinite programming approach to design a new spectral algo-
rithm, called BalCut, that improves on the result of Theorem 5.0.1. The following is our
main result.

Theorem 5.0.2 (Main Theorem). Given a graph G = (V,E), a balance parameter b ∈
(0, 1/2], b = Ω(1), and a conductance value γ ∈ (0, 1), BalCut(G, b, γ) runs in time Õ (m/γ)
and outputs a cut S ⊂ V such that vol(S) ≤ 1/2 · vol(G), if S 6= ∅ then φ(S) ≤ Ob

(√
γ
)
, and

with high probability, either

1. S is Ωb(1)-balanced, or

2. for all C ⊂ V such that vol(C) ≤ 1/2 · vol(G) and φ(C) ≤ O(γ), vol(S∩C)
vol(C)

≥ 1/2.

Note that our result improves the parameters of previous algorithms by eliminating the
log n factor in the quality of the cut output, making the approximation comparable to the
best that can be hoped for using spectral methods [30]. Our result is also conceptually
simple: we use the primal-dual framework of Arora and Kale [11], which we described in
Section 3.4, to solve SDPs combinatorially, and we give a new separation oracle that yields
Theorem 5.0.2. Moreover, our algorithm has a simple and intuitive interpretation in terms of
random walks, which we discuss in Section 5.4. Finally, our result implies an approximation
algorithm for Balanced Separator, as the guarantee of Theorem 5.0.2 on the cut S
output by BalCut also implies a lower bound on the conductance of balanced cuts of G.

Corollary 5.0.3. Given an instance graph G, a balance parameter b ∈ (0, 1/2] and a target
conductance γ ∈ (0, 1], BalCut (G, b, γ) either outputs an Ωb(1)-balanced cut of conductance
at most Ob(

√
γ) or a certificate that all Ωb(1)-balanced cuts have conductance at least Ω(γ).

The running time of the algorithm is Õ(m/γ).

This is the first nearly-linear-time spectral algorithm for Balanced Separator that
achieves the asymptotically optimal approximation guarantee for spectral methods.

63

5.0.2 Application to Graph Decomposition.

The main application of Theorem 5.0.1 is the construction of a particular kind of graph
decomposition. In this decomposition, we wish to partition the vertex set of the instance
graph V into components V1, . . . , Vi, . . . , Vk such that the graph induced by G on each Vi
has conductance as large as possible, while at most a constant fraction of the edges have
endpoints in different components. These decompositions are a useful algorithmic tool in
several areas, such as clustering and preconditioning [69, 47, 67, 36].

Kannan, Vempala and Vetta [36] construct such decompositions achieving a conductance
value of Ω(1/log2 n). However, their algorithm runs in time Õ(n2) on some instances. Spielman
and Teng [67] relax this notion of decomposition by only requiring that each Vi be contained
in a superset Wi in G, where Wi has large induced conductance in G. In the same work, they
show that this relaxed notion of decomposition suffices for the purposes of sparsification by
random sampling. The advantage of this relaxation is that it is now possible to compute
this decomposition in nearly-linear time by recursively applying the algorithm of Theorem
5.0.1.

Theorem 5.0.4. [67] Assume the existence of an algorithm achieving a nearly-linear run-
ning time T (γ, n) and approximation f(γ, n) in Theorem 5.0.1. Given γ ∈ (0, 1), in time
Õ(T (γ, n)), it is possible to construct a decompositions of the instance graph G into compo-
nents V1, . . . , Vk such that:

1. for each Vi, there exists Wi ⊇ Vi such that the conductance of the graph induced by G
on Wi is Ω(γ/logn).

2. the fraction of edges with endpoints in different components is O(f(γ, n) · log n).

Using Theorem 5.0.4, Spielman and Teng showed the existence of a decomposition achiev-
ing conductance Ω(1/log6 n). Our improved results in Theorem 5.0.2 imply that we can obtain
decompositions of the same kind with conductance bound Ω(1/log3 n). Our improvement also
implies speed-ups in the sparsification procedure described by Spielman and Teng [67]. Our
work leaves open the important question posed by Spielman [62] of whether stronger de-
compositions, of the kind proposed by Kannan, Vempala and Vetta [36], can be produced in
nearly-linear time.

5.0.3 Our Techniques

We will use the SDP relaxation of Figure 5.1. We denote by µ : V 7→ R≥0 the distribution

defined as µi
def
= di/vol(G), and by di the degree of the i-th vertex. Also, vavg

def
=
∑

i µivi.
Even though our algorithm uses the SDP, at the core, it is spectral in nature, as it relies on
the matrix-vector multiplication primitive. We will formalize this reasoning by discussing a
random walk interpretation of our algorithm in Section 5.4.

64

psdp(G, b, γ) : 1/4 · E
{i,j}∈E

‖vi − vj‖2
2 ≤ γ

E
j∼µ
‖vj − vavg‖2

2 = 1

∀i ∈ V ‖vi − vavg‖2
2 ≤

(1− b)
b

Figure 5.1: SDP for b-Balanced Separator

For our SDP, the method of Arora and Kale can be understood as a game between two
players: an embedding player and an oracle player. The embedding player, in every round
of this game, gives a candidate vector embedding of the vertices of the instance graph to the
oracle player. We show that if the embedding is close to feasible for the SDP, i.e. the first
two constraints are satisfied and for a large set S, for every i ∈ S, ‖vi − vavg‖2 ≤ O((1−b)/b),
then a projection of the vectors along a random direction followed by a sweep cut gives an
Ωb(1)-balanced cut of conductance at most O(

√
γ). We call such an embedding roundable.

The difficult case takes p when the embedding given to the oracle player is not roundable. In
this case, the oracle outputs a candidate dual solution along with a cut. The oracle obtains
this cut by performing a radial sweep cut of the vectors given by the embedding player. We
show that such a cut is of conductance at most Ob(

√
γ). If at any point in this game the

union of cuts output by the oracle becomes balanced, we output this union and stop. If this
union of cuts is not balanced, then the embedding player uses the dual solution output by the
oracle to update the embedding. Finally, the matrix-exponential update rule ensures that
this game cannot keep on going for more that O(logn/γ) rounds. Hence, if a balanced cut is
not found after this many rounds, we certify that the graph does not contain any b-balanced
cut of conductance less than γ. To achieve a nearly-linear running time, we maintain only a
log n-dimensional sketch of the embedding. The guarantee on the running time then follows
by noticing that, in each iteration, the most expensive computational step for each player is
a logarithmic number of matrix-vector multiplications, which takes at most Õ(m) time.

The reason why our approach yields the desired correlation condition in Theorem 5.0.2
is that, if no balanced cut is found, every unbalanced cut of conductance lower than γ will,
at some iteration, have a lot of its vertices mapped to vectors of large radius. At that
iteration, the cut output by the oracle player will have a large correlation with the target
cut, which implies that the union of cuts output by the oracle player will also display such
large correlation. This intuition is formalized in the proof of Theorem 5.0.2.

The implementation of the oracle player, specifically dealing with the case when the
embedding is not roundable, is the main technical novelty of our work. Studying the problem
in the SDP-framework is the main conceptual novelty. Before our work, all nearly-linear-
time algorithms for this problem were based on the use of local random walks. The main

65

advantage of using SDPs to design a spectral algorithm seems to be that SDP solutions
provide a simple representation for possibly complex random-walk objects. Furthermore,
the benefits of using a carefully designed SDP formulation can often be reaped with little
or no burden on the running time of the algorithm, thanks to the primal-dual framework of
Arora and Kale [11].

5.1 Algorithm Statement and Main Theorems

In Section 5.1.1, we set some useful notation and state a few basic facts. In Section 5.1.2, we
present our SDP, its dual and define the notion of a roundable embedding. In Section 5.1.3,
we present the algorithm BalCut and the separation oracle Oracle, and reduce the task
of proving Theorem 5.0.2 to proving statements about the Oracle. Section 5.3 contains
the proof of the main theorem about the Oracle used in Section 5.1.3.

5.1.1 Notation and Basic Facts

Instance graph and edge volume. We denote by G = (V,E) the unweighted instance
graph, where V = [n] and |E| = m. We let d ∈ RV , be the degree vector of G, i.e. di
is the degree of vertex i. We mostly work with the edge measure µ over V, defined as

µi
def
= µ(i)

def
= di/2m. For a subset S ⊆ V, we also define µS as the edge measure over S, i.e.

µS(i)
def
= µ(i)/µ(S). Notice that µ(S) = vol(S)/2m, for the concept of volume defined in Chapter 2.

Special graphs For a subset S ⊆ V, we denote by KS the complete graph over S such
that edge {i, j} has weight µiµj for i, j ∈ S and 0 otherwise. KV is the complete graph with
weight µiµj between every pair i, j ∈ V. For i ∈ V, we denote by Si the star graph rooted at
i. Si has an edge {i, j} of weight µj for all j ∈ V.

Embedding notation. We will deal with vector embeddings of G, where each vertex
i ∈ V is mapped to a vector vi ∈ Rh. For such an embedding {vi}i∈V , we denote by vavg the

mean vector, i.e. vavg
def
=
∑

i∈V µivi. Given a vector embedding of {vi ∈ Rh}i∈V , recall that
X � 0, is the Gram matrix of the embedding if Xij = vTi vj. For any X ∈ RV×V , X � 0,
we call {vi}i∈V the embedding corresponding to X if X is the Gram matrix of {vi}i∈V . For
i ∈ V, we denote by Ri the matrix such that Ri •X = ‖vi − vavg‖2

2.

Basic facts. We will alternatively use vector and matrix notation to reason about the
graph embeddings. The following are some simple conversions between vectors and matrix
forms and some basic geometric facts which follow immediately from definitions. Here X � 0
and {vi} is the corresponding embedding.

Fact 5.1.1. Ei∼µ‖vi − vavg‖2
2 = 1/2 · E{i,j}∼µ×µ‖vi − vj‖2

2 = L(KV) •X.

66

Fact 5.1.2. For i ∈ V, L(Si) = L(Ri) + L(KV).

Fact 5.1.3. For a subset S ⊆ V,
∑

i∈S µiRi � µ(S)L(KV)− L(KS).

Fact 5.1.4. For a subset S ⊆ V, E{i,j}∼µS×µS‖vi − vj‖2
2 = 2 · 1/µ(S)2 · L(KS) •X.

Modified matrix exponential update. We will apply the method of Section 3.4 with
normalization matrix equal to L(KV). Letting v = 1/2m ·D1/2~1, notice that

L(KV) =
1

2m

(
D − 1

2m
D~1 ~1 TD

)
=

(
1√
2m

D
1/2

)
(I − vvT)

(
1√
2m

D
1/2

)
. (5.1)

As v is an unit vector, I−vvT is a projection matrix and Equation 5.1 gives us the decompo-
sition of the normalization matrix required to apply Theorem 3.4.4. Then, let Π = I − vvT .
Our updates will take the following form, for a positive ε and a symmetric matrix A ∈ RV×V ,

Uε(A)
def
= Eε,1/2m·D,Π(A) = 2m · D

−1/2(1− ε)2m·D−1/2AD−
1/2
D−1/2

Π • (1− ε)2m·D−1/2AD−1/2
=

D−1/2(1− ε)2m·D−1/2AD−
1/2
D−1/2

L(KV) •D−1/2(1− ε)2m·D−1/2AD−1/2D−1/2

We will draw a connection between this update and the heat-kernel random walk in Sec-
tion 5.4.

5.1.2 SDP Formulation

We consider an SDP relaxation to the decision problem of determining whether the in-
stance graph G has a b-balanced cut of conductance at most γ. The SDP feasibility program
psdp(G, b, γ) appears in Figure 5.2, where we also rewrite the program in matrix notation,
using Fact 5.1.1 and the definition of Ri. psdp can be seen as a scaled version of the balanced-

psdp(G, b, γ) : E
{i,j}∈E

‖vi − vj‖2
2 ≤ 4γ

E
j∼µ
‖vj − vavg‖2

2 = 1

∀i ∈ V ‖vi − vavg‖2
2 ≤

1− b
b

psdp(G, b, γ) :
1

m
· L •X ≤ 4γ

L(KV) •X = 1

∀i ∈ V Ri •X ≤ 1− b
b

X � 0

Figure 5.2: SDP for b-Balanced Separator

67

cut SDP of [12], modified by replacing vavg for the origin and removing the triangle-inequality
constraints. The first change makes our psdp invariant under translation of the embeddings
and makes the connection to spectral methods more explicit. Indeed, the first two constraints
of psdp now exactly correspond to the standard eigenvector problem, with the addition of
the Ri constraint ideally forcing all entries in the eigenvector not to be too far from the
mean, just as it would be the case if the eigenvector exactly corresponded to a balanced cut.
The removal of the triangle-inequality constraints causes psdp to only deal with the spectral
structure of L and not to have a flow component. For the rest of the paper, denote by ∆
the set {X ∈ RV×V , X � 0 : L(KV) •X = 1}.

The following simple lemma establishes that psdp is indeed a relaxation for the integral
decision question and is proved in Section 5.5.

Lemma 5.1.5 (SDP is a Relaxation). If there exists a b-balanced cut S with φ(S) ≤ γ, then
psdp(G, b, γ) has a feasible solution.

BalCut will use the primal-dual approach of [11] and Section 3.4 to determine the
feasibility of psdp(G, b, γ). When psdp is infeasible, BalCut will output a solution to the
dual dsdp(G, b, γ), shown in Figure 5.3.

dsdp(G, b, γ) : α− 1− b
b

∑
i∈V

βi > 4γ

1

m
· L+

∑
i∈V

βiRi − αL(KV) � 0

α ∈ R, β ≥ 0

Figure 5.3: dsdp(G, b, γ) feasibility problem

Following the notation of Section 3.4, for the rest of this chapter we are going to use the
following shorthands for the dual constraints

V (α, β)
def
= α− 1− b

b

∑
i∈V

βi, M(α, β)
def
=

L

m
+
∑
i∈V

βiRi − αL(KV).

Notice that V (α, β) is a scalar, while M(α, β) is a matrix in RV×V . Given X � 0, a choice of
(α, β) such that V (α, β) > 4γ and M(α, β) •X ≥ 0 corresponds to a hyperplane separating
X from the feasible region of psdp(G, b, γ) and constitutes a certificate that X is not feasible.

Ideally, BalCut would produce a feasible solution to psdp and then round it to a bal-
anced cut. However, as discussed in [11], it often suffices to find a solution “close” to feasible
for the rounding procedure to apply. In the case of psdp, the concept of “closeness” is
captured by the notion of roundable solution.

68

Definition 5.1.6 (Roundable Embedding). Given an embedding {vi}i∈V , let R = {i ∈ V :
‖vi − vavg‖2

2 ≤ 32 · (1−b)/b}. We say that {vi}i∈V is a roundable solution to psdp(G, b, γ) if:

• E{i,j}∈E ‖vi − vj‖2
2 ≤ 2γ,

• Ej∼µ ‖vj − vavg‖2
2 = 1,

• E{i,j}∼µR×µR‖vi − vj‖2
2 ≥ 1/64.

A roundable embedding can be converted into a balanced cut of the conductance required
by Theorem 5.0.2 by using a standard projection rounding, which is a simple extension of
an argument already appearing in [12] and [11]. The rounding procedure ProjRound is
described precisely in Section 5.5, where the following theorem is proved.

Theorem 5.1.7 (Rounding Roundable Embeddings). If {vi ∈ Rh}i∈V is a roundable solution
to psdp(G, b, γ), then ProjRound({vi}i∈V , b) produces a Ωb(1)- balanced cut of conductance
Ob

(√
γ
)

with high probability in time Õ(nh+m).

5.1.3 Primal-Dual Framework

In this subsection, we define the algorithm BalCut and justify it as an instantiation of the
SDP-solver of Section 3.4. This view is the most useful in the analysis, but does not convey
a strong intuition behind the workings of the algorithm. In Section 5.4, we give a different
interpretation of BalCut, based on random walks.

Separation Oracle. By Theorem 3.4.4 in Section 3.4, the problem of checking the feasi-
bility of an SDP can be reduced to that of, given a candidate solution X, to check whether
it is close to feasible and, if not, provide a certificate of infeasibility in the form of a hy-
perplane separating X from the feasible set. The algorithm performing this computation
is known as a separation oracle. Specific conditions under which a separation oracle yields
an algorithm for approximately solving an SDP program were given in Definition 3.4.2. We
introduce the concept of good separation oracle to capture these conditions for the program
psdp(G, β, 3/4 · γ).

Definition 5.1.8 (Good Separation Oracle). An algorithm is a good separation oracle if, on
input some representation of X, the algorithm either finds X to be a roundable solution to
psdp(G, b, γ) or outputs coefficents α, β such that V (α, β) ≥ 3/4 · γ, M(α, β) •X ≥ 0 · γ and
−γL(KV) �M(α, β) � 5L(KV).

Note that a good separation oracle is a (γ, 5)-oracle for psdp(G, β, 3/4 · γ) by Defini-
tion 3.4.2.

69

Input: An instance graph G = (V,E), a balance value b ∈ (0, 1/2] such that b = Ω(1), a
conductance value γ ∈ (0, 1).

Let ε = 1/32 and δ = γ/16. For t = 1, 2, . . . , T = O
(

logn
γ

)
:

• Compute the embedding {ṽ(t)
i }i∈V corresponding to

X̃(t) = Ũε

(
1/10 ·

t−1∑
j=1

M(α(j), β(j))

)
.

If t = 1, X̃(1) = Ũε (0) = 2m/n−1 ·D−1.

• Execute Oracle
(
G, b, γ, {ṽ(t)

i }i∈V
)
.

• If Oracle finds that {ṽ(t)
i }i∈V is roundable, run ProjRound

(
G, b, {ṽ(t)

i }i∈V
)
, out-

put the resulting cut and terminate.

• Otherwise, Oracle outputs coefficients
(
α(t), β(t)

)
and cut B(t).

• Let C(t) def
=
⋃t
i=1B

(i). If C(t) is b/4-balanced, output C(t) and terminate.

• Otherwise, proceed to the next iteration.

Output S =
⋃T
t=1B

(t). Also output α′ = 1/T
∑T

t=1 α
(t) − δ and β̄ = 1/T

∑T
t=1 β

(t).

Figure 5.4: The BalCut Algorithm

Algorithmic Scheme. The algorithmic strategy of Section 3.4 is to produce a sequence
of candidate primal solutions X(1), . . . , X(T) iteratively, such that X(t) ∈ ∆ for all t. For the
following discussion, let ε be a small constant parameter.

Our starting point X(1) will be the solution Uε(0) = 2m/n−1 · D−1. At every iteration, a
good separation oracle Oracle will take X(t) and either guarantee that X(t) is roundable
or output coefficents α(t), β(t) certifying the infeasiblity of X(t). The algorithm makes use of
the information contained in α(t), β(t) by updating the next candidate solution as follows:

X(t+1) def
= Uε

(
1/10 ·

t∑
i=1

M(α(i), β(i)

)
= Eε,D,Π

(
1/10 ·

t∑
i=1

M(α(i), β(i)

)
. (5.2)

The algorithm is presented in more detail in Figure 5.4. The good separation oracle Oracle
is given in Figure 5.5, while ProjRound appears in Figure 5.6.

70

We want to emphasize at this point that Oracle will not only be a good separation
oracle, but will also have an additional property which will be crucial in proving the correla-
tion condition in Theorem 5.0.2. Using Theorem 3.4.4, we prove that, after a small number
of iterations this algorithm either yields a roundable embedding or a feasible solution to
dsdp(G, b,Ω(γ)).

Theorem 5.1.9 (Iterations of Oracle, [11]). Let ε = 1/32 and δ = γ/16. Assume that the
procedure Oracle is a good separation oracle . Then, after T = O (logn/γ) iterations of
the update of Equation 5.2, we either find a roundable solution to psdp(G, b, γ) or a feasible
solution (1/T

∑T
t=1 α

(t) − δ, 1/T
∑T

t=1 β
(t)) to dsdp(G, b, 3/16 · γ).

Proof. By Theorem 3.4.4, we have that, if Oracle does not find a roundable solution, after

T = O

(
γ log n

δ2

)
= O

(
log n

γ

)
rounds, the assignment (1/T

∑T
t=1 α

(t) − δ, 1/T
∑T

t=1 β
(t)) to the dual variables constitutes a

feasible solution for dsdp(G, b, 3γ/4− δ) = dsdp(G, b, 3γ/16).

Approximate Computation. While we are seeking to construct a nearly-linear-time
algorithm, we cannot hope to compute X(t) exactly and explicitly, as just maintaining the
full X(t) matrix requires quadratic time in n. Instead, we settle for a approximation X̃(t+1)

to X(t+1) which we define as

X̃(t+1) = Ũε

(
1/10 ·

t∑
i=1

M(α(i), β(i)

)
.

The function Ũε is a randomized approximation to Uε obtained by applying the Johnson-
Linderstrauss dimension reduction to the embedding corresponding to Uε. Ũε is described
in full in Section A.2, where we also prove the following lemma about the accuracy and
sparsity of the approximation. It is essentially the same argument appearing in [35] applied
to our context. We let tM denote the running time necessary to perform a matrix-vector
multiplication by matrix M.

Lemma 5.1.10. Let ε = Θ(1). For a matrix M ∈ RV×V , M � 0, let X̃
def
= Ũε(M) and

X
def
= Uε(M). Then, with high probability,

1. X̃ � 0 and X̃ ∈ ∆.

2. The embedding {ṽi}i∈V corresponding to X̃ can be represented in h = O(log n) dimen-
sions.

3. {ṽi ∈ Rh}i∈V can be computed in time Õ(tM + n).

71

4. for any graph H = (V,EH), with high probability

(1− 1/64) · L(H) •X − τ ≤ L(H) • X̃ ≤ (1 + 1/64) · L(H) •X + τ,

and, for any vertex i ∈ V,

(1− 1/64) ·Ri •X − τ ≤ Ri • X̃ ≤ (1 + 1/64) ·Ri •X + τ,

where τ ≤ O(1/poly(n)).

This lemma shows that X̃(t) is a close approximation to X(t). We will use this lemma to
show that Oracle can receive X̃(t) as input, rather than X(t), and still meet the conditions
of Theorem 5.1.9. In the rest of the paper, we assume that X̃(t) is represented by its
corresponding embedding {ṽ(t)

i }i∈V .

5.2 Oracle and Proof of the Main Theorem

The Oracle. Oracle is described in Figure 5.5. We show that Oracle on input X̃(t)

meets the condition of Theorem 5.1.9. Moreover, we show that Oracle obeys an additional
condition, which, combined with the dual guarantee of Theorem 5.1.9 will yield the correla-
tion property of BalCut. Under this additional condition, Oracle not only finds vertices
whose vectors in the embedding violate the Ri-constraint, but also finds a cut of conductance
O(
√
γ) around such vertices.

Theorem 5.2.1 (Main Theorem on Oracle). On input X̃(t), Oracle runs in time Õ(m)
and is a good separation oracle for X(t) with high probability. Moreover, the cut B in Step 4
is guaranteed to exist.

Proof of Main Theorem. We are now ready to prove Theorem 5.0.2. To show the overlap
condition, we consider the dual condition implied by Theorem 5.1.9 together with the cut
B(t) and the values of the coefficents output by the Oracle.

Proof of Theorem 5.0.2. With high probability ORACLE is a good separation oracle for
X(t) at all iterations. Then, at any iteration t, if it finds that the embedding {ṽ(t)

i }i∈V
corresponding to X̃(t) is roundable, so that the standard projection rounding ProjRound
produces a cut of balance Ωb(1) and conductance Ob(

√
γ) with high probability by Theorem

5.1.7. Similarly, if for any t, C(t) is b/4-balanced, BalCut satisfies the balance condition in
Theorem 5.0.2, as φ(C(t)) ≤ O(

√
γ) because C(t) is the union of cuts of conductance at most

O(
√
γ).

72

1. Input: The embedding {ṽi}i∈V , corresponding to X̃ ∈ ∆. Let ri = ‖ṽi − ṽavg‖2 for

all i ∈ V. Denote R
def
= {i ∈ V : r2

i ≤ 32 · (1−b)/b}.

2. Case 1: E{i,j}∈E ‖ṽi − ṽj‖2
2 ≥ 2γ. Output α = γ, β = 0 and B = ∅.

3. Case 2: not Case 1 and E{i,j}∼µR×µR‖vi − vj‖2
2 ≥ δ. Then {ṽi}i∈V is roundable, as

X̃ ∈ ∆ implies Ej∼µ r2
j = 1.

4. Case 3: not Case 1 or 2. Relabel the vertices of V such that r1 ≥ r2 ≥ . . . ≥ rn
and let Si = {1, . . . , i} be the j-th sweep cut of r. Let z the smallest index such that
µ(Sz) ≥ b/8. Let B the most balanced sweep cut among {S1, . . . , Sz−1} such that
φ(B) ≤ 2048 · √γ. Output α = 7/8γ, βi = µi · γ for i ∈ B and βi = 0 for i /∈ B. Also
output the cut B.

Figure 5.5: Oracle

Otherwise, after T = O (logn/γ) iterations, by Theorem 5.1.9, we have that (α′
def
=

1/T
∑T

t=1 α
(t) − δ, β

def
= 1/T

∑T
t=1 β

(t)) constitutes a feasible solution dsdp(G, b, 3/16 · γ) with
high probability. This implies that M(α′, β̄) � 0, i.e.

1

m
· L+

∑
i∈V

β̄iRi − α′L(KV) � 0. (5.3)

For any cut C such that µ(C) ≤ 1/2 and φ(C) ≤ 3γ/64, let the embedding {ui ∈ R}i∈V
be defined as ui =

√
µ(C̄)/µ(C) for i ∈ C and ui = −

√
µ(C)/µ(C̄) for i /∈ C. Then uavg = 0 and

Ei∼µ‖ui − uavg‖2
2 = 1. Moreover,

E
{i,j}∈E

‖ui − uj‖2
2 = 1/m · |E(C,C̄)|/µ(C)µ(C̄) ≤ 4 · φ(C) ≤ 3γ/16.

Let U be the Gram matrix of the embedding {ui ∈ R}i∈V .
We apply the lower bound of Equation 5.3 to U. By Facts 5.1.1 and 5.1.3.

E
{i,j}∈E

‖ui − uj‖2
2 +

∑
i∈V

β̄i‖ui − uavg‖2
2 − α′ E

i∼µ
‖ui − uavg‖2

2

= M(α′, β̄) • U ≥ 0

Recall that, by the definition of Oracle, for all t ∈ [T], α(t) ≥ 7/8 · γ and β
(t)
i = µi · γ for

i ∈ B(t) and β
(t)
i = 0 for i /∈ B(t). Hence, we have α′ = 7

8
γ − δ = 13

16
γ, and

3γ/16 + γ/T ·
T∑
t=1

(
µ(B(t) ∩ C) · µ(C̄)/µ(C) + µ(B(t) ∩ C̄) · µ(C)/µ(C̄)

)
− 13/16 · γ ≥ 0

73

Dividing by γ and using the fact that µ(C) ≤ 1/2 and µ(C̄) ≤ 1, we obtain

1/T ·
T∑
t=1

(
µ(B(t) ∩ C)

µ(C)
+
µ(B(t) ∩ C̄)

2 · µ(C̄)

)
≥ (13/16− 3/16) = 5/8.

Now, recalling that S =
⋃T
t=1 B

(t),

µ(S ∩ C)

µ(C)
+
µ(S ∩ C̄)

2 · µ(C̄)
≥ 1/T ·

T∑
t=1

(
µ(B(t) ∩ C)

µ(C)
+
µ(B(t) ∩ C̄)

2 · µ(C̄)

)
,

so that we have
µ(S ∩ C)

µ(C)
+
µ(S ∩ C̄)

2 · µ(C̄)
≥ 5/8.

As µ(S) ≤ b/4, µ(S∩C̄)/2·µ(C̄) ≤ µ(S) ≤ b
4
≤ 1/8. This finally implies that

µ(S ∩ C)

µ(C)
≥ 1/2.

Moreover, being the union of cuts of conductance O(
√
γ), S also has φ(S) ≤ O(

√
γ).

Finally, both ProjRound and Oracle run in time Õ(m) as the embedding is O(log n)
dimensional. Notice that, by Fact 2.2.6, at time t, it suffices to compute Ũε(M) for

M = 1/10 ·
t−1∑
i=1

(
1

m
· L+

∑
j∈V

β
(i)
j Rj

)
.

By Lemma 5.1.10, this can be done in time tM . We show that tM = O(m), as follows. First,
tL = O(m) as L has only O(m) non-zero entries. Secondly, we let the algorithm maintain at
each iteration an updated copy of the vector β =

∑t
s=1 β

(s) and consider M ′ =
∑

j∈V βjRj.
We have M = L+M ′. To perform a matrix-vector multiplication M ′x, we observe that, for
all j ∈ V,

Rjx = (xj −
∑
i∈V

µixi) = (xj − xavg.)

Pre-computing xavg takes time O(n). After that, we can compute each βjRj in constant time.
Hence, tM ′ = O(n) and tM = O(m). Hence, each iteration runs in time Õ(m), which shows
that the total running time is Õ(m/γ) as required.

74

5.3 Proof of Theorem on Oracle

5.3.1 Preliminaries

The following is a variant of the sweep cut argument of Cheeger’s Inequality [21], tailored
to ensure that a constant fraction of the variance of the embedding is contained inside the
output cut. For a vector x ∈ RV , let supp(x) be the set of vertices where x is not zero.

Lemma 5.3.1. Let x ∈ RV , x ≥ 0, such that xTLx ≤ λ and µ(supp(x)) ≤ 1/2. Relabel the
vertices so that x1 ≥ x2 ≥ . . . ≥ xz−1 > 0 and xz = . . . = xn = 0. For i ∈ [z − 1], denote by
Si ⊆ V, the sweep cut {1, 2, . . . , i}. Further, assume that

∑n
i=1 dix

2
i ≤ 1, and, for some fixed

k ∈ [z − 1],
∑n

i=k dix
2
i ≥ σ. Then, there is a sweep cut Sh of x such that z − 1 ≥ h ≥ k and

φ(Sh) ≤ 1/σ ·
√

2λ.

We will also need the following simple fact.

Fact 5.3.2. Given v, u, t ∈ Rh, (‖v − t‖2 − ‖u− t‖2)2 ≤ ‖v − u‖2
2.

5.3.2 Proof of Theorem 5.2.1

The main novelty in Oracle is found in the analysis of Case 3, where Oracle finds a cut
B of conductance O(

√
γ). Then, Oracle is constrained to output β with suppβ ⊆ B, while

respecting the conditions necessary to be a good separation oracle. The proof of the following
theorem shows that this is achieved by ensuring B contains a large constant fraction of the
variance of the embedding.

Proof. Notice that, by Markov’s Inequality, µ(R̄) ≤ b/(32·(1−b)) ≤ b/16. Recall that τ =
O (1/poly(n)) .

• Case 1: E{i,j}∈E ‖ṽi− ṽj‖2
2 = 1

m
·L • X̃ ≥ 2γ. We have V (α, β) ≥ γ and, by Lemma

5.1.10,
M(α, β) •X ≥ (1− 1/64) · 2γ − γ − τ ≥ 1/64 · γ ≥ 0.

• Case 2: E{i,j}∼µR×µR‖vi − vj‖2
2 ≥ 1/64. Then {ṽi}i∈V is roundable by Definition 5.1.6.

• Case 3: E{i,j}∼µR×µR‖vi − vj‖2
2 < 1/64. This means that, by Fact 5.1.4, L(KR) • X̃ <

1/2 · µ(R)2 · 1/64 < 1/128. Hence, by Fact 5.1.3,∑
i∈R̄

µiRi • X̃ =
∑
i∈R̄

µiri ≥ µ(R)− 1/128 ≥ 1− 1/32− 1/128

≥ 1− 5/128.

We then have R̄ = Sg for some g ∈ [n], with g ≤ z as µ(Sg) ≤ µ(Sz). Let k ≤ z be

the the vertex in R such that
∑k

j=1 µjrj ≥ (1 − 1/128) · (1 − 5/128) and
∑g

j=k µjrj ≥

75

1/128 · (1 − 5/128). By the definition of z, we have k ≤ g < z and r2
z ≤ 8/b ≤ 16 · (1−b)/b.

Hence, we have rz ≤ 1/2 · ri, for all i ≥ g. Define the vector x as xi
def
= 1/2m · (ri− rz) for

i ∈ Sz and ri
def
= 0 for i /∈ Sz. Notice that:

xTLx =
∑
{i,j}∈E

(xi − xj)2 ≤ 1/2m ·
∑
{i,j}∈E

(ri − rj)2

Fact 5.3.2

≤ 1/2m ·
∑
{i,j}∈E

‖ṽi − ṽj‖2
2 ≤ γ.

Also, x ≥ 0 and µ(supp(x)) ≤ b/8 ≤ 1/2, by the definition of z. Moreover,

n∑
i=1

dix
2
i = 1/2m ·

z∑
i=1

di(ri − rz)2 ≤ 1/2m ·
z∑
i=1

dir
2
i = 1,

and

n∑
i=k

dix
2
i = 1/2m ·

z∑
i=k

di(ri − rz)2

≥ 1/2m ·
g∑
i=k

di(ri − 1/2 · ri)2

= 1/2m · 1/4 ·
g∑
i=k

dir
2
i

≥ 1/512 · (1− 5/128) ≥ 1/1024

Hence, by Lemma 5.3.1, there exists a sweep cut Sh with z > h ≥ k, such that
φ(Sh) ≤ 2048 · √γ. This shows that B, as defined in Figure 5.5 exists. Moreover, it
must be the case that Sk ⊆ Sh ⊆ B. As h ≥ k, we have

∑
i∈B

µir
2
i ≥

k∑
i=1

µir
2
i ≥≥ (1− 1/128) · (1− 5/128) ≥ 1− 3/64.

Recall also that, by the construction of z, µ(B) ≤ b/8. Hence, we have

V (α, β) = 7/8 · γ − (1−b)/b · µ(B) · γ ≥ (7/8− 1/8) · γ ≥ 3/4γ.

M(α, β) •X ≥ (1− 1/64) · (1− 3/64)γ − 7/8γ − τ ≥ 1/64 · γ ≥ 0

This completes all the three cases. Notice that in every case we have:

1/m · L− γL(KV) �M(α, β) � 1/m · L+ γL(KV).

76

Hence,
−γL(KV) �M(α, β) � 5L(KV),

as L � 4m ·L(KV). Finally, using the fact that {ṽi}i∈V is embedded in O(log n) dimensions,
we can compute L • X̃ in time Õ(m). L(KR) • X̃ can also be computed in time Õ(n) by
using the decomposition E{i,j}∼µR×µR‖vi − vj‖2

2 = 2 · Ei∼µR‖vi − vavgR‖
2
2, where vavgR is the

mean of vectors representing vertices in R. The sweep cut over r takes time Õ(m). Hence,
the total running time is Õ(m).

5.4 Random Walk Interpretation

In this section, we give a novel detailed interpretation of our algorithm in terms of certain
random walks over the instance graph. This view provides an intuition of why BalCut and
its SDP approach are successful at finding sparse balanced cuts. We start by defining the
concept of accelerated heat kernel: this is a heat-kernel random walk in which certain vertices
have increased probability-mass leakage towards the rest of the graph. We show that the
updates X(t) computed by BalCut can be seen as representing the probability transition
matrix of accelerated-heat-kernel random walks. Intuitively, the vertices are contained in
some unbalanced sparse cut have their rate increased, allowing probability to mix more
quickly across such cut, so that different cuts become the next obstacles to mixing. The
analysis of Section 3.4 allows us to argue that after at most Õ(logn/γ) iterations, this procedure
either finds an accelerated-heat-kernel random walk whose slow mixing is due to a sparse
balanced cut - in which case we can recover such cut - or a certificate that all balanced cuts
have sufficiently large conductance.

Accelerated Heat Kernel

Definition 5.4.1. An accelerated heat-kernel process with rate vector β ≥ 0 on the instance
graph G is the continuous-time Markov process defined by transition rate matrix

Qβ = −

(
L+

∑
i∈V

βidiL(Si)

)
D−1.

Hence, it has probability transition matrix Pβ(t) at time t:

Pβ(t) = e−t(L+
∑
i∈V βidiL(Si))D−1

.

It is easy to verify that Qβ respects the necessary conditions to be a transition rate
matrix. In particular, the rates are balanced as ~1TQβ = 0 and Qβ has positive off-diagonal
entries and negative diagonal entries. Moreover, it is possible to verify that µ, the uniform
distribution weighted by the edge measure, is the unique stationary distribution for Pβ(t).

77

Unfortunately, Pβ(t) is not equal to the heat kernel on the modified graph L+
∑

i∈V diβiL(Si)
as the normalization by D−1 does not match the degree of L(Si). However, Pβ(t) still has an
interesting interpretation. The best way to understand the behavior of Pβ(t) is to compare
it with the heat-kernel process by considering the differential equation characterizing the
accelerated heat-kernel process. Let p(t) be the probability distribution of an accelerated
heat-kernel process at time t. Then, for all j ∈ V,(

∂p(t)

∂t

)
j

= −

(
LD−1p(t) +

∑
i∈V

diβiL(Si)D
−1p(t)

)
j

=

−

p(t)j − ∑
{i,j}∈E

p(t)i
di

− djβj (p(t)j
dj
−
∑
i∈V

p(t)i
2m

)
= (5.4)

−

p(t)j − ∑
{i,j}∈E

p(t)i
di

− βj (p(t)j − µj) .

While the first term of this expression is the same as for the heat kernel, the second term
shows us how the accelerated heat-kernel yields a larger out-rate at vertices where p(t)j is
far from µj. The parameter βj controls the magnitude of this increase in rate. From this
discussion, it should be clear that the accelerated heat-kernel displays a faster converge
to uniform than the heat kernel, particularly at vertices with large β values. This fact is
exploited crucially by BalCut.

Vector Embedding as Accelerated Heat Kernel We now show that the update X(t),
which BalCut approximates, is strictly related to the transition matrix of an accelerated
heat kernel. This is an easy consequence of Definition 5.4.1. In the following, we let Z
denote the factor used to normalize for X(t) such that L(KV) • X(t) = 1. The embedding
corresponding to X(t) can be recovered from the columns of (X(t))1/2. We have:

(X(t))
1/2 =

1√
Z
·D−1(1− ε)m/10·

∑t−1
i=1

(
1
m
L+
∑
j∈B(i) β

(i)
j Rj

)
D−1

=

1√
Z
·D−1 · e−

− log(1−ε)
10

t(LD−1+ 1
2t
·
∑
i∈V diβiRiD

−1)

where β = D−1
∑t−1

i=1 β
(i). Notice that our choice of (X(t))1/2 is symmetric. Hence, if we define

the rate vector
q

def
= 1/2t · β ∈ Rn,

and the time

t′ = − log(1− ε)
10

t,

78

we see that the embedding {v(t)
i }i∈V corresponding to X(t) is given by

v
(t)
i =

1√
Z
·D−1Pq (t′) ei.

It is convenient to think of v
(t)
i as a scaled version of the vector that at entry i contains the

amount of probability mass on edges adjacent to vertex i under the distribution Pq (t′) ei.
Following this view, the quantity

di‖v(t)
i −

1

2m
~1‖2,

which plays an important part below, is just the `2-distance over the edges of the distribution
from the stationary. Moreover, because (X(t))1/2 is symmetric, the ith-row of the embedding

(X(t))1/2 also equals v
(t)
i . This will facilitate the expression of some quantities of interest in

the next paragraph.

Algorithm Interpretation Given this interpretation of the embedding produced by Bal-
Cut at every step, we can verify that the psdp is asking the algorithm to find a rate vector
q such that:

• On average over all starting points in V, the random walks display low mixing, i.e.∑
i∈V

(
v

(t)
i

)T
Lv

(t)
i ≤ 4γm ·

∑
i∈V

(
v

(t)
i

)T
L(KV)v

(t)
i = 2γ ·

∑
i∈V

di‖v(t)
i −

1

2m
~1‖2.

• No single vertex i contributes too much to the total `2-distance of the vectors {v(t)
i }

from the stationary distribution, ie. for all i ∈ V,

‖v(t)
i −

1

2m
~1‖2 ≤ 1− b

b
·
∑
i∈V

µi‖v(t)
i −

1

2m
~1‖2.

If the current rate q does not satisfy the first requirement the time t′ is increased so that
the mixing of the random walk decreases. This corresponds to case 1 in the description of
Oracle. The more interesting case is when enough of the other constraints are violated so
that the embedding is not roundable, i.e. it is not possible to recover a sparse balanced cut
from it. The analysis of Oracle shows that this is the case when a small fraction of vertices
contribute a large constant fraction of the total distance from the stationary distribution.

Under our random-walk interpretation, this means that the for a small fraction of starting
vertices R = {rj}, the walk Pq(t

′)rj is very far from stationary. Using this fact, together with
Cheeger’s Inequality, we can find an unbalanced sparse cut B ⊆ R that is also responsible
for most of the distance from the stationary distribution. At this point, we want to modify

79

q such that the random walk Pq(t) will be somehow able to bypass B and highlight some
different, hopefully balanced, cuts in G. To do so, BalCut increases the rate out of each
vertex in B by increasing the entries qji for i ∈ B. By Equation 5.4, this ensures that
probability mass is leaked towards the uniform distribution faster at vertices in B, which
allows the new walk to better mix across cut B. Finally, by the primal-dual analysis, the fact
that B contributed to a large fraction of the total distance from uniform allows BalCut to
make sufficient progress at every iteration to achieve the guarantee of Theorem 5.0.2 after
O(logn/γ) rounds.

5.5 Other Proofs

5.5.1 Proof of Basic Lemmata

Proof of Lemma 5.1.5. For a b-balanced cut (S, S̄) with φ(S) ≤ γ. Without loss of generality,
assume µ(S) ≤ 1/2. Consider the one-dimensional solution assigning vi =

√
µ(S̄/µ(S) to i ∈ S

and vi = −
√

µ(S/µ(S̄) to i ∈ S̄. Notice that vavg = 0 and that ‖vi − vj‖2
2 = 1/µ(S)µ(S̄) for

i ∈ S, j /∈ S. We then have:

•

E
{i,j}∈E

‖vi − vj‖2
2 =

1

m
· |E(S, S̄)|
µ(S)µ(S̄)

≤ 2 · |E(S, S̄)|
2m · µ(S)µ(S̄)

≤ 4 · φ(S) ≤ 4γ.

•
E
i∼µ
‖vi − vavg‖2

2 = µ(S) · µ(S̄)/µ(S) + µ(S̄) · µ(S)/µ(S̄) = 1.

• for all i ∈ V,

‖vi − vavg‖2
2 ≤

µ(S̄)

µ(S)
≤ 1− b

b
,

where the last inequality follows as S is b-balanced.

5.5.2 Projection Rounding

The description of the rounding algorithm ProjRound is given in Figure 5.6. We remark
that during the execution of BalCut the embedding {vi ∈ Rh}i∈V will be represented by
a projection over h = O (log n) random directions, so that it will suffice to take a balanced
sweep cut of each coordinate vector. We now present the proof of Theorem 5.1.7. The
constants in this argument were not optimized to preserve the simplicity of the proof.

80

1. Input: An embedding {vi ∈ Rh}i∈V , b ∈ (0, 1/2].

2. Let c = Ωb(1) be a constant to be fixed in the proof.

3. For t = 1, 2, . . . , O(log n):

(a) Pick a unit vector u uniformly at random from Sh−1 and let x ∈ Rn with

xi
def
=
√
h · uTvi.

(b) Sort the vector x. Assume w.l.og. that x1 ≥ x2 ≥ . . . ≥ xn. Define Si
def
= {j ∈

[n] : xj ≥ xi}.

(c) Let S(t) def
= (Si, S̄i) which minimizes φ(Si) among sweep-cuts for which vol(Si) ∈

[c · 2m, (1− c) · 2m].

4. Output: The cut S(t) of least conductance over all choices of t.

Figure 5.6: ProjRound

Preliminaries.

We will make use of the following simple facts. Recall that for y ∈ Rh, sgn(y) = 1 if y ≥ 0,
and −1 otherwise.

Fact 5.5.1. For all y, z ∈ R, (y + z)2 ≤ 2(y2 + z2).

Fact 5.5.2. For all y ≥ z ∈ R, |sgn(y) · y2 − sgn(z) · z2| ≤ (y − z)(|y|+ |z|).

Proof.

1. If sgn(y) = sgn(z), then |sgn(y) · y2 − sgn(z) · z2| = |y2 − z2| = (y − z) · |y + z| =
(y − z)(|y|+ |z|) as y ≥ z.

2. If sgn(y) 6= sgn(y), then since y ≥ z, (y−z) = |y|+|z|. Hence, |sgn(y)·y2−sgn(z)·z2| =
y2 + z2 ≤ (|y|+ |z|)2 = (y − z)(|y|+ |z|).

Fact 5.5.3. For all y ≥ z ∈ R, (y − z)2 ≤ 2(sgn(y) · y2 − sgn(z) · z2).

Proof.

81

1. If sgn(y) = sgn(z), (y − z)2 = y2 + z2 − 2yz ≤ y2 + z2 − 2z2 = y2 − z2 as y ≥ z. Since
sgn(y) = sgn(z), y2 − z2 ≤ 2(sgn(y) · y2 − sgn(z) · z2).

2. If sgn(y) 6= sgn(z), (y − z)2 = (|y|+ |z|)2 ≤ 2(|y|2 + |z|2) = 2(sgn(y) · y2 − sgn(z) · z2).
Here, we have used Fact 5.5.1.

We also need the following standard facts.

Fact 5.5.4. Let v ∈ Rh be a vector of length ` and u a unit vector chosen uniformly at
random in Sh−1. Then,

1. Eu
(
vTu

)2
= `2

h
, and

2. for 0 ≤ δ ≤ 1, Pu
[√

h · |vTu| ≤ δ`
]
≤ 3δ.

Fact 5.5.5. Let Y be a non-negative random variable such that P[Y ≤ K] = 1 and E[Y] ≥ δ.
Then,

P[Y ≥ δ/2] ≥ δ

2K
.

The following lemma about projections will be crucial in the proof of Theorem 5.1.7. It
is a simple adaptation of an argument appearing in [12].

Lemma 5.5.6 (Projection). Given a roundable embedding {vi ∈ Rh}i∈V , consider the em-

bedding x ∈ Rn such that xi
def
=
√
d · uTvi, where u ∈ Sh−1, and assume without loss of

generality that x1 ≥ . . . ≥ xn. Then, there exists c ∈ (0, b] such that with probability Ωb(1)
over the choice of u ∈ Sh−1, the following conditions hold simultaneously:

1. E{i,j}∈E(xi − xj)2 ≤ Ob

(
E{i,j}∈E‖vi − vj‖2

)
= Ob(γ),

2. Ei∼µ(xi − xavg)2 = Ob(1), and

3. there exists 1 ≤ l ≤ n with vol({1, . . . , l}) ≥ c · vol(G) and, there exists l ≤ r ≤ n such
that vol({r, . . . , n}) ≥ c · vol(G) such that xl − xr ≥ Ωb(1).

Proof. We are going to lower bound the probability, over u, of each of (1), (2) and (3) in the
lemma and then apply the union bound.

Part (1). By applying Fact 5.5.4 to v = vi − vj and noticing
√
h · |vTu| = |xi − xj| , we

have
E
u

E
{i,j}∈E

(xi − xj)2 = E
{i,j}∈E

‖vi − vj‖2.

Hence, by Markov’s Inequality, for some p1 to be fixed later

P
u

[
E

{i,j}∈E
(xi − xj)2 ≥ 1/p1 · E

{i,j}∈E
‖vi − vj‖2

]
≤ p1.

82

Part (2).

E
u
E
i∼µ

(xi − xavg)2 Fact 5.5.4−(1)
= E

u
E
i∼µ
‖vi − vavg‖2 roundability

= 1.

Hence, for some p2 be fixed later

P
u

[
E
i∼µ

(xi − xavg)2 ≥ 1/p2 · E
i∼µ
‖vi − vavg‖2

]
≤ p2.

Part (3). Let R
def
= {i ∈ V : ‖vi − vavg‖2 ≤ 32 · (1−b)/b}. Let σ

def
= 4 ·

√
2
√

(1−b)/b. By
Markov’s Inequality, µ(R̄) ≤ 1/σ2. As {vi}i∈V is roundable, for all i, j ∈ R, ‖vi − vj‖ ≤ 2σ.
Hence, ‖vi − vj‖ ≥ 1/2σ · ‖vi − vj‖2 for such i, j ∈ R. This, together with the roundability of
{vi}i∈V , implies that

E
{i,j}∼µR×µR

‖vi − vj‖ ≥ 1/128σ.

For any k ∈ R, we can apply the triangle inequality for the Euclidean norm as follows

E
{i,j}∼µR×µR

‖vi − vj‖ ≤ E
{i,j}∼µR×µR

(‖vi − vk‖+ ‖vk − vj‖)

≤ 2 · E
i∼µR
‖vi − vk‖.

Hence, for all k ∈ R
E

i∼µR
‖vi − vk‖ ≥ 1/256σ.

Let Rk be the set {i ∈ R : ‖vi − vk‖ ≥ 1/512σ}. Since ‖vi − vk‖ ≤ 2σ, applying Fact 5.5.5
yields that, for all k ∈ R,

P
i∼µR

[i ∈ Rk] ≥ 1/1024σ2.

For all vertices i ∈ Rk, by Fact 5.5.4

P
u

[|xk − xi| ≥ 1/9 · 1/512σ = 1/4608σ] ≥ 2

3
.

Let δ
def
= 1/2 · 1/4608σ = 1/9216σ. Consider the event E def

= {i ∈ Rk ∧ |xi − xk| ≥ 2 · δ}. Then,

P
u, {i,k}∼µR×µR

[E] = P
{i,k}∼µR×µR

[i ∈ Rk] · P
u
[|xi − xk| ≥ 2 · δ | i ∈ Rk]

≥ 1

1024σ2
· 2

3
=

1

1536σ2

def
= ρ.

Hence, from Fact 5.5.5, with probability at least ρ/2 over directions u, for a fraction
ρ/2 of pairs {i, k} ∈ R × R, |xk − xi| ≥ 2 · δ. Let ν be the median value of {xi}i∈V . Let

L
def
= {i : xi ≤ ν − δ} and H

def
= {i : xi ≥ ν + δ}. Any pair {i, j} ∈ R×R with |xi−xj| ≥ 2 ·δ

has at least one vertex in L ∪H. Hence,

µ(L ∪H) ≥ 1/2 · ρ/2 · µ(R)2 ≥ ρ/4 · (σ2−1/σ2)
2 ≥ ρ/16 = Ωb(1).

83

Assume µ(L) ≥ ρ/32, otherwise, apply the same argument to H. Let l be the largest index
in L. For all i ∈ L and j such that xj ≥ ν, we have |xi − xj| ≥ δ. (Similarly, let r be the
smallest index in H.) This implies that,

|xl − xbn/2c| ≥ δ

with probability at least ρ/2 = Ωb(1), satisfying the required condition. Let p3 be the proba-
bility that this event does not take place. Then,

p3 ≤ 1− ρ/2.

To conclude the proof, notice that the probability that all three conditions do not hold
simultaneously is, by a union bound, at most p1 + p2 + p3. Setting p1 = p2 = ρ/5 = Ωb(1), we
satisfy the first and third conditions and obtain

p1 + p2 + p3 ≤ 1− ρ · (1/2− 1/5− 1/5) ≤ 1− ρ/10.

Hence, all conditions are satisfied at the same time with probability at least ρ/10 = Ωb(1).

From this proof, it is possible to see that the parameter c in our rounding scheme should
be set to ρ/32. We are now ready to give a proof of Theorem 5.1.7. It is essentially a variation
of the proof of Cheeger’s Inequality, tailored to produce balanced cuts.

Proof of Theorem 5.1.7. For this proof, assume that x has been translated so that xavg = 0.
Notice that the guarantees of 5.5.6 still apply. Let x, l, r and c be as promised by Lemma
5.5.6. For z ∈ R, let sgn(z) be 1 if z ≥ 0 and −1 otherwise. Let

yi
def
= sgn(xi) · x2

i .

Hence,

E
{i,j}∈E

|yi − yj|
Fact 5.5.2

≤ E
{i,j}∈E

(|xi − xj|) · (|xi|+ |xj|)

≤
√

E
{i,j}∈E

(xi − xj)2 · E
{i,j}∈E

(|xi|+ |xj|)2

Fact 5.5.1

≤
√

2 · E
{i,j}∈E

(xi − xj)2 · E
{i,j}∈E

(x2
i + x2

j)

=

√
2 · E
{i,j}∈E

(xi − xj)2 · 2m

m
· E
i∼µ

xi2

=
√

4 · E
{i,j}∈E

(xi − xj)2 · E
i∼µ

xi2

Lemma 5.5.6−(1),(2)

≤ Ob (
√
γ) .

84

Now we lower bound E{i,j}∈E |yi − yj|. Notice that if xi ≥ xj, then yi ≥ yj and vice-versa.
Hence,

y1 ≥ . . . ≥ yn.

Let Si
def
= {1, . . . , i} and let φ be the minimum conductance of Si over all l ≤ i ≤ .r

E
{i,j}∈E

|yi − yj| =
1

|E|

n−1∑
i=1

|E(Si, S̄i)| · (yi − yi+1)

≥ φ ·
∑
l≤i≤r

min{vol(Si), vol(S̄i)}
|E|

(yi − yi+1)

Lemma 5.5.6−(3)
= Ωb(1) · φ ·

∑
l≤i≤r

(yi − yi+1)

≥Ωb(1) · φ · (yl − yr)
Fact 5.5.3

≥ Ωb(1) · φ · (xl − xr)2

Lemma 5.5.6

≥ Ωb(1) · φ.

Hence, φ ≤ Ob(
√
γ) with constant probability over the choice of projection vectors u. Re-

peating the projection O(log n) times and picking the best balanced cut found yields a high
probability statement. Finally, as the embedding is in h dimensions, it takes Õ(nh) time to
compute the projection. After that, the one-dimensional embedding can be sorted in time
Õ(n) and the conductance of the relevant sweep cuts can be computed in time O(m), so that
the total running time is Õ(nh+m).

85

Bibliography

[1] Rudolf Ahlswede and Andreas Winter. Strong converse for identification via quantum
channels. IEEE Transactions on Information Theory, 48(3):569–579, 2002.

[2] Noga Alon and V. D. Milman. λ1, isoperimetric inequalities for graphs, and supercon-
centrators. J. Comb. Theory, Ser. B, 38(1):73–88, 1985.

[3] Christoph Ambuhl, Monaldo Mastrolilli, and Ola Svensson. Inapproximability results
for sparsest cut, optimal linear arrangement, and precedence constrained scheduling.
In FOCS’07: Proc. 48th Ann. IEEE Symp. Foundations of Computer Science, pages
329–337, 2007.

[4] Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. Local graph partitioning using
pagerank vectors. In FOCS’06: Proc. 47th Ann. IEEE Symp. Foundations of Computer
Science, pages 475–486, 2006.

[5] Reid Andersen and Yuval Peres. Finding sparse cuts locally using evolving sets. In
STOC ’09: Proc. 41st Ann. ACM Symp. Theory of Computing, pages 235–244, 2009.

[6] Serge A.Plotkin, David B. Shmoys, and Éva Tardos. Fast approximation algorithms for
fractional packing and covering problems. In FOCS’91: Proc. 32nd Ann. IEEE Symp.
Foundations of Computer Science, pages 495–504, 1991.

[7] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique
games and related problems. In FOCS’11: Proc. 52nd Ann. IEEE Symp. Foundations
of Computer Science, 2010.

[8] Sanjeev Arora, Elad Hazan, and Satyen Kale. O(
√

log n) approximation to sparsest cut
in Õ(n2) time. In FOCS’04: Proc. 45th Ann. IEEE Symp. Foundations of Computer
Science, pages 238–247, 2004.

[9] Sanjeev Arora, Elad Hazan, and Satyen Kale. O(
√

log n) approximation to sparsest cut
in Õ(n2) time. In FOCS’04: Proc. 45th Ann. IEEE Symp. Foundations of Computer
Science, volume 00, pages 238–247, 2004.

86

[10] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update
method: a meta algorithm and applications, 2005. Manuscript.

[11] Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to semidefinite
programs. In STOC ’07: Proc. 39th Ann. ACM Symp. Theory of Computing, pages
227–236, 2007.

[12] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embed-
dings and graph partitioning. In STOC ’04: Proc. 36th Ann. ACM Symp. Theory of
Computing, pages 222–231, 2004.

[13] Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-ramanujan sparsi-
fiers. In STOC ’09: Proc. 41st Ann. ACM Symp. Theory of Computing, pages 255–262,
2009.

[14] András A. Benczúr and David R. Karger. Approximating s -t minimum cuts in Õ(n2)
time. In STOC ’96: Proc. 28th Ann. ACM Symp. Theory of Computing, pages 47–55,
1996.

[15] Rajendra Bhatia. Matrix Analysis (Graduate Texts in Mathematics). Springer, 1996.

[16] G. W. Brown and J. von Neumann. Solutions of games by differential equations. Annals
of Mathematics Studies, 24:73–79, 1950.

[17] George W. Brown. Iterative solution of games by fictitious play. Activity Analysis of
Production and Allocation, pages 374–376, 1951.

[18] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cambridge
University Press, 2006.

[19] Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D. Sivaku-
mar. On the hardness of approximating multicut and sparsest-cut. Comput. Complex.,
15(2):94–114, 2006.

[20] P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman, and S.-H. Teng. Electrical flows,
Laplacian systems, and faster approximation of maximum flow in undirected graphs.
ArXiv e-prints, arXiv:1010.2921v2 [cs.DS], 2010.

[21] Fan R.K. Chung. Spectral Graph Theory (CBMS Regional Conference Series in Math-
ematics, No. 92). American Mathematical Society, 1997.

[22] Samuel I. Daitch and Daniel A. Spielman. Faster approximate lossy generalized flow
via interior point algorithms. pages 451–460, 2008.

87

[23] Nikhil R.]Devanur, Subhash A. Khot, Rishi Saket, and Nisheeth K. Vishnoi. Integrality
gaps for sparsest cut and minimum linear arrangement problems. In STOC ’06: Proc.
38th Ann. ACM Symp. Theory of Computing, pages 537–546, 2006.

[24] Lisa K. Fleischer. Approximating fractional multicommodity flow independent of the
number of commodities. SIAM J. Discret. Math., 13(4):505–520, 2000.

[25] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sciences,
55(1):119 – 139, 1997.

[26] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[27] Naveen Garg and Jochen Könemann. Faster and simpler algorithms for multicommodity
flow and other fractional packing problems. In FOCS’98: Proc. 39th Ann. IEEE Symp.
Foundations of Computer Science, pages 300–309, 1998.

[28] Andrew V. Goldberg and Satish Rao. Beating the flow decomposition barrier. J. ACM,
45:783–797, 1998.

[29] Gene H. Golub and Charles F. van Loan. Matrix computations (3. ed.). Johns Hopkins
University Press, 1996.

[30] Stephen Guattery and Gary L. Miller. On the performance of spectral graph partitioning
methods. In SODA’95: Proc. 6th Ann. ACM-SIAM Symp. Discrete Algorithms, pages
233–242, 1995.

[31] G. Iyengar, David J. Phillips, and Clifford Stein. Approximation algorithms for semidef-
inite packing problems with applications to maxcut and graph coloring. In IPCO’05:
Proc. 11th Conf. Integer Programming and Combinatorial Optimization, pages 152–166,
2005.

[32] Rahul Jain, Zhengfeng Ji, Sarvagya Upadhyay, and John Watrous. Qip = pspace. In
STOC ’10: Proc. 42nd Ann. ACM Symp. Theory of Computing, pages 573–582, 2010.

[33] Mark Jerrum and Alistair Sinclair. Approximating the permanent. SIAM J. Comput.,
18(6):1149–1178, 1989.

[34] Satyen Kale. Efficient algorithms using the multiplicative weights update method. Tech-
nical report, Princeton University, Department of Computer Science, 2007.

[35] Satyen Kale. Efficient algorithms using the multiplicative weights update method. Tech-
nical report, Princeton University, Department of Computer Science, 2007.

88

[36] R. Kannan, S. Vempala, and A. Vetta. On clusterings-good, bad and spectral. In
FOCS’00: Proc. 41st Ann. IEEE Symp. Foundations of Computer Science, page 367,
2000.

[37] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for parti-
tioning irregular graphs. SIAM Journal on Scientific Computing, 20:359–392, 1999.

[38] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for parti-
tioning irregular graphs. SIAM Journal on Scientific Computing, 20:359–392, 1999.

[39] Jonathan A. Kelner and Aleksander Madry. Faster generation of random spanning
trees. In FOCS’09: Proc. 50th Ann. IEEE Symp. Foundations of Computer Science,
pages 13–21, 2009.

[40] Rohit Khandekar. Lagrangian relaxation based algorithms for convex programming
problems. Technical report, Indian Institute of Technology Delhi, 2004.

[41] Rohit Khandekar, Satish Rao, and Umesh Vazirani. Graph partitioning using single
commodity flows. In STOC ’06: Proc. 38th Ann. ACM Symp. Theory of Computing,
pages 385–390, 2006.

[42] Rohit M. Khandekar, Subhash Khot, Lorenzo Orecchia, and Nisheeth K. Vishnoi. On
a cut-matching game for the sparsest cut problem. Technical Report EECS-2007-177,
EECS Department, University of California, 2007.

[43] Subhash Khot. On the power of unique 2-prover 1-round games. In STOC ’02: Proc.
34th Ann. ACM Symp. Theory of Computing, pages 767–775, 2002.

[44] Subhash Khot. On the power of unique 2-prover 1-round games. In CCC ’02: Proc.
17th Ann. IEEE Conference on Computational Complexity, page 25, 2002.

[45] Subhash A. Khot and Nisheeth K. Vishnoi. The unique games conjecture, integrality
gap for cut problems and embeddability of negative type metrics into `1. In FOCS’05:
Proc. 46th Ann. IEEE Symp. Foundations of Computer Science, pages 53–62, 2005.

[46] Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient de-
scent for linear predictors. Inf. Comput., 132:1–63, 1997.

[47] Ioannis Koutis and Gary L. Miller. Graph partitioning into isolated, high conductance
clusters: theory, computation and applications to preconditioning. In SPAA’08: Proc.
20th ACM Symp. Parallelism in Algorithms and Architectures, pages 137–145, 2008.

[48] Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for solving
sdd linear systems. In FOCS’10: Proc. 51st Ann. IEEE Symp. Foundations of Computer
Science, pages 235–244, 2010.

89

[49] Frank Thomson Leighton and Satish Rao. An approximate max-flow min-cut theorem
for uniform multicommodity flow problems with applications to approximation algo-
rithms. In FOCS’88: Proc. 29th Ann. IEEE Symp. Foundations of Computer Science,
pages 422–431, 1988.

[50] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their
use in designing approximation algorithms. J. ACM, 46(6):787–832, 1999.

[51] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Commu-
nity structure in large networks: Natural cluster sizes and the absence of large well-
defined clusters. CoRR, abs/0810.1355, 2008.

[52] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some
of its algorithmic applications. Combinatorica, 15:577–591, 1995.

[53] László Lovász and Miklós Simonovits. Random walks in a convex body and an improved
volume algorithm. Random Struct. Algorithms, 4(4):359–412, 1993.

[54] Aleksander Madry. Fast approximation algorithms for cut-based problems in undirected
graphs. In FOCS’10: Proc. 51st Ann. IEEE Symp. Foundations of Computer Science,
pages 245–254, 2010.

[55] Cleve Moler and Charles Van Loan. Nineteen dubious ways to compute the exponential
of a matrix. SIAM Review, 20:801–836, 1978.

[56] Lorenzo Orecchia, Leonard J. Schulman, Umesh V. Vazirani, and Nisheeth K. Vishnoi.
On partitioning graphs via single commodity flows. In STOC ’08: Proc. 40th Ann.
ACM Symp. Theory of Computing, pages 461–470, 2008.

[57] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algo-
rithms and Complexity. Prentice-Hall, 1982.

[58] Boyd S. and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004.

[59] Jonah Sherman. Breaking the multicommodity flow barrier for O(
√

log n)-
approximations to sparsest cut. In FOCS’09: Proc. 50th Ann. IEEE Symp. Foundations
of Computer Science, 2009.

[60] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Trans.
Pattern Analysis and Machine Intelligence, 22:888–905, 2000.

[61] David Shmoys. Cut problems and their application to divide and conquer. In Dorit
Hochbaum, editor, Approximation algorithms for NP-hard problems, pages 192–235.
PWS Publishing Co., 1996.

90

[62] Daniel A. Spielman. Algorithms, graph theory, and linear equations in laplacian matri-
ces. In ICM’10: Proc. International Congress of Mathematicians, 2010.

[63] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.
In STOC ’08: Proc. 40th Ann. ACM Symp. Theory of Computing, pages 563–568, 2008.

[64] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph
partitioning, graph sparsification, and solving linear systems. In STOC ’04: Proc. 36th
Ann. ACM Symp. Theory of Computing, pages 81–90, 2004.

[65] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for pre-
conditioning and solving symmetric, diagonally dominant linear systems. CoRR,
abs/cs/0607105, 2006.

[66] Daniel A. Spielman and Shang-Hua Teng. A local clustering algorithm for mas-
sive graphs and its application to nearly-linear time graph partitioning. CoRR,
abs/0809.3232, 2008.

[67] Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. CoRR,
abs/0808.4134, 2008.

[68] David Steurer. Fast SDP algorithms for constraints satisfaction problems. In SODA’10:
Proc. 21st Ann. ACM-SIAM Symp. Discrete Algorithms, 2010.

[69] Luca Trevisan. Approximation algorithms for unique games. In Proc. 46th Ann. IEEE
Symp. Foundations of Computer Science, pages 05–34, 2005.

[70] Koji Tsuda, Gunnar Rätsch, and Manfred K. Warmuth. Matrix exponentiated gradient
updates for on-line learning and bregman projection. J. Mach. Learn. Res., 6:995–1018,
2005.

[71] Manfred K. Warmuth and Dima Kuzmin. Online variance minimization. In COLT,
pages 514–528, 2006.

[72] Neal E. Young. Randomized rounding without solving the linear program. In SODA’95:
Proc. 6th Ann. ACM-SIAM Symp. Discrete Algorithms, pages 170–178, 1995.

91

Appendix A

Omitted Proofs

A.1 Projection Lemma

The results in this section essentially appear in [41], albeit without a detailed proof. We
include a formal proof here for completeness.

Fact A.1.1 (Gaussian behavior of projections). If v is a vector of length l in Rm and u is
a random vector in Sm−1. Then

1. Eu
[
(vTu)2

]
= l2

m
,

2. For x ≤ m/16, Pu
[
(vTu)2 ≥ xl2/m

]
≤ e−x/4.

Lemma A.1.2. Let {vi}ni=1 be vectors in Rn−1 such that
∑

i vi = 0. Let Φ
def
=
∑
‖vi‖2. Let r

be a random uniform unit vector in Rn−1 and for all i set ui := vTi r. Let S be the partition
of [n] such |S| = n/2 and for all i ∈ S and j ∈ S ui ≥ uj. Consider any matching M of the
indices [n] across (S, S). Then,

E
r

 ∑
{i,j}∈E(M)

‖vi − vj‖2

 = Ω

(
Φ

log n

)
.

Proof. Define the event

Eij :=

{
(ui − uj)2 ≤ c log n

n− 1
‖vi − vj‖2

}
for some constant c > 0. Let E :=

⋂
i,j Eij. By the Fact A.1.1 we have that P[E ij] ≤ n−c/4.

Hence, by a union bound, P[E] ≤ n−c/4+2. Then,

E
r

 ∑
{i,j}∈E(M)

‖vi − vj‖2

 ≥ n− 1

c log n
E
r

 ∑
{i,j}∈E(M)

(ui − uj)2 | E

 · P[E].

92

Let a be the real number such that ui ≥ a ≥ uj for all i ∈ S, j ∈ S. We have
∑n

i=1 ui =∑n
i=1 v

T
i r = (

∑n
i=1 vi)

T r = 0. Hence, by the same argument as in Lemma 4.2.1,

∑
{i,j}∈E(M)

(ui − uj)2 ≥
n∑
i=1

(ui − a)2 = ‖u‖2 − 2a

(
n∑
i=1

ui

)
+ na2 = ‖u‖2 + na2 ≥ ‖u‖2.

So, we have

E
r

 ∑
{i,j}∈E(M)

‖vi − vj‖2

 ≥ n− 1

c log n
E
r

[
‖u‖2 | E

]
· P[E].

To obtain a lower bound on the r.h.s., notice that

E
r
[‖u‖2] =

n∑
i=1

E
r
[u2
i] =

n∑
i=1

‖vi‖2

n− 1
=

Φ

n− 1
.

Moreover, as ‖u‖2 ≤ Φ,

E
r

[
‖u‖2 | E

]
· P[E] ≥ E

r
[‖u‖2]− E

r

[
‖u‖2 | E

]
· P[E] ≥ Φ

n− 1
− Φ · n−c/4+2.

By picking c to be a large enough constant, one obtains

E
r

 ∑
{i,j}∈M

‖vi − vj‖2

 ≥ Φ

2c log n
.

A.2 Proof of Lemma 5.1.10

This argument follows almost exactly a similar analysis by Kale [34]. It is included for
completeness.

Preliminaries

For the rest of this section the norm notation will mean the norm in the subspace described
by Π. Hence ‖A‖ = ‖ΠAΠ‖. Recall also that tA is the running time necessary to perform a
matrix-vector multiplication by matrix A. We will need the following lemmata.

93

Lemma A.2.1 (Johnson-Lindenstrauss). Given an embedding {vi ∈ Rn}i∈V , V = [n], let
u1, u2, . . . , uk, be vectors sampled independently uniformly from the n−1-dimensional sphere

of radius
√

n/k. Let U be the k × t matrix having the vector ui as i-th row and let ṽi
def
= Uvi.

Then, for kδ
def
= O(logn/δ2), for all i, j ∈ V

(1− δ) · ‖vi − vj‖2 ≤ ‖ṽi − ṽj‖2 ≤ (1 + δ) · ‖vi − vj‖2

and
(1− δ) · ‖vi‖2 ≤ ‖ṽi‖2 ≤ (1 + δ) · ‖vi‖2.

Lemma A.2.2 ([35]). There exists an algorithm EXPV which, on input of a matrix A ∈
Rn×n, a vector u ∈ Rn and a parameter η, computes a vector v ∈ Rn, such that ‖v−e−Au‖ ≤
‖e−A‖ · η in time O(tA log3(1/η)).

The algorithm EXPV is described in [35] and [31] .

Proof

We define the Ũε algorithm in Figure A.1 and proceed to prove Lemma 5.1.10.

• Input: A matrix M ∈ Rn×n.

• Let η
def
= O(1/poly(n)). Let δ = Θ(1) and ε = 1/32.

• For kδ as in Lemma A.2.1, sample kδ vectors u1, . . . , ukδ ∈ Rn as in Lemma A.2.1.

• Let A
def
= log(1− ε) · 2m ·D−1/2MD−1/2.

• For 1 ≤ i ≤ kδ, compute vectors bi ∈ Rn, bi
def
= EXPV(1/2 · A,D−1/2ui, η).

• Let B be the matrix having bi as i-th row, and let ṽi be the i-th column of B.

Compute Z
def
= E{i,j}∈µ×µ‖ṽi − ṽj‖2 = L(KV) •BTB.

• Return X̃
def
= 1/Z ·BTB, by giving its correspoding embedding, i.e., {1/

√
Z · ṽi}i∈V .

Figure A.1: The Ũε algorithm

Proof. We verify that the conditions required hold.

• By construction, X̃ � 0, as X̃ = 1/Z ·BTB, and L(KV) • X̃ = 1.

94

• X̃ = (1/
√
Z ·B)T (1/

√
Z ·B) and B is a kδ × n matrix, with kδ = O(log n), by Lemma

A.2.1.

• We perform kδ = O(log n) calls to the algorithm EXPV, each of which takes time
Õ(tA) = Õ(tM + n). Sampling the vectors requires Õ(n) time{ui}1,...,kδ and so does
computing Z as we can exploit Fact 5.1.1. Hence, the total running time is Õ(tM +n).

• Let U be the kδ×n matrix having the sampled vectors u1, . . . , ukδ as rows. Let {vi}i∈V
be the embedding corresponding to matrix Y

def
= D−1/2e−AD−1/2, i.e., vi is the i-th

column of Y 1/2. Notice that X = Y/L(KV)•Y . Define v̂i
def
= Uvi for all i and let Ŷ be the

Gram matrix corresponding to this embedding, i.e., Ŷ
def
= (Y 1/2)TUTU(Y 1/2). Also, let

Ỹ be the Gram matrix corresponding to the embedding {ṽi}i∈V , i.e., Ỹ = BTB and
X̃ = Ỹ/L(KV)•Ỹ . We will relate Y to Ŷ and Ŷ to Ỹ to complete the proof.

First, by Lemma A.2.1, applied to {vi}i∈V , with high probability, for all H

(1− δ) · L(H) • Y ≤ L(H) • Ŷ ≤ (1 + δ) · L(H) • Y

and for all i ∈ V
(1− δ) ·Ri • Y ≤ Ri • Ŷ ≤ (1 + δ) ·Ri • Y.

In particular, this implies that (1− δ) · Π • Y ≤ Π • Ŷ ≤ (1 + δ) · Π • Y. Hence,

1− δ
1 + δ

· L(H) •X ≤ L(H) • X̂ ≤ 1 + δ

1− δ
· L(H) •X

and for all i
1− δ
1 + δ

·Ri •X ≤ Ri • X̂ ≤
1 + δ

1− δ
·Ri •X.

Now we relate Ŷ and Ỹ . Let E
def
=
(
Ỹ 1/2 − Ŷ 1/2

)
D1/2. By Lemma A.2.2

‖E‖2 ≤ ‖E‖2
F =

∑
i

‖diṽi − v̂i‖2 ≤ 2m · ‖eε/2·A‖2 · η2

≤ 2m · ‖Y 1/2D
1/2‖2 · η2 ≤ (2m)2 · L(KV) • Y · η2.

This also implies

‖E‖ · ‖Ŷ 1/2D
1/2‖ ≤ ‖E‖F · ‖Ŷ 1/2D

1/2‖F

≤
(√

2m · ‖Y 1/2D
1/2‖ · η

)
·
√∑

i

di‖v̂i − v̂avg‖2

≤ 2m · η · (1 + δ) · L(KV) • Y.

95

As D1/2
(
Ỹ − Ŷ

)
D1/2 = ETE + (Ŷ 1/2)TE + ET Ŷ 1/2, we have

‖D1/2
(
Ỹ − Ŷ

)
D

1/2‖

≤ ‖ETE + (Ŷ
1/2)TE + ET Ŷ

1/2‖

≤
√

3
(
‖E‖2 + 2 · ‖E‖‖Ŷ 1/2‖

)
≤ 9 · (2m)2 · (1 + δ) · L(KV) • Y · η.

and

|L(KV) • (Ỹ − Ŷ)|
≤ L(KV) • (ETE) + 2 · |L(KV) • (ET Ŷ

1/2)|
≤ 1/2m · ‖E‖2

F + 2/2m · ‖E‖F‖Ŷ 1/2‖F
≤ 3 · 2m · (1 + δ) · L(KV) • Y · η.

Finally, combining these bounds we have

‖X̃ − X̂‖2 = ‖ Ỹ

L(KV) • Ỹ
− Ŷ

L(KV) • Ŷ
‖2

≤ ‖ Ỹ

L(KV) • Ỹ
− Ỹ

L(KV) • Ŷ
‖2

+‖ Ỹ

L(KV) • Ŷ
− Ŷ

L(KV) • Ŷ
‖2

≤ ‖Ỹ ‖ · |L(KV) • Ỹ − L(KV) • Ŷ |
L(KV) • Ỹ · L(KV) • Ŷ

+
‖Ỹ − Ŷ ‖
L(KV) • Ŷ

≤ 2m · |L(KV) • Ỹ − L(KV) • Ŷ |+ ‖Ỹ − Ŷ ‖
L(KV) • Ŷ

≤ 12 · (2m)2 · (1 + δ) · L(KV) • Y · η
(1− δ) · L(KV) • Y
≤ 12 · (2m)2 · 1+δ/1−δ · η

≤ O(1/poly(n))

by taking η sufficiently small in O(1/poly(n)) and δ = Θ(1).

Hence, as ‖L(H)‖ ≤ O(m) and ‖Ri‖ ≤ O(m)

|L(H) · X̂ − L(H) · X̃| ≤ O(1/poly(n))

96

and
|Ri • X̂ −Ri • X̃| ≤ O(1/poly(n)).

This, together with the fact that we can pick δ = O(1) such that 1−δ/1+δ ≥ 1− 1/64 and
1+δ/1−δ ≤ 1 + 1/64 completes the proof.

