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Abstract. The bootstrap resampling method may be efficiently used to estimate 
the generalization error of a family of nonlinear regression models, as artificial 
neural networks. The main difficulty associated with the bootstrap in real-world 
applications is the high computation load. In this paper we propose a simple 
procedure based on empirical evidence, to considerably reduce the computation 
time needed to estimate the generalization error of a family of models of 
increasing number of parameters. 

1. Introduction 

Model design has raised a considerable research effort since decades, on linear models, 
nonlinear ones, artificial neural networks, and many others. Model design includes the 
necessity to compare models (for example of different complexities) in order to select 
the “best” model among several ones. For this purpose, it is necessary to obtain a good 
approximation of the generalization error of each model (the generalization error being 
the average error that the model would make on an infinite-size and unknown test set 
independent from the learning one). 
Nowadays there exist some well-known and widely used methods able to fulfil this task: 
among others the AIC or BIC criteria and the like [1], [2], [3] as well as cross-
validation, leave-one-out [3, 6] and bootstrap [4]. All these methods have been proved 
to be roughly asymptotically equivalent (see for example [5] and [6]). A natural 
extension of the bootstrap, the .632 bootstrap [6], has also been proved to be unbiased.  
Nevertheless, and while this is not an irrefutable question, it seems that the bootstrap is 
advantageous in many “real” modelling cases (i.e. when the number of samples is 
limited, the dimension of the space high, etc.) [6]. But the main problem when using the 
bootstrap is the computation of the results that could really be time consuming. Another 
limitation is that the conventional use of the bootstrap for model selection leads to a 
final model chosen from the restricted set of a priori selected models. 
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In this paper we will show that, under reasonable and simple hypotheses usually 
fulfilled in real world applications, it is possible to provide a good estimate of the 
bootstrap results with a considerably reduced number of modelling stages, thus saving a 
considerable amount of computation time. Moreover the model selected with this 
bootstrap approach may be different from the ones used to compute the approximation 
 
2. Bootstrap technique 

The bootstrap [4] is based on the plug-in principle that permits to obtain an estimator of 
a statistic according to an empirical distribution. In our context we use the bootstrap to 
estimate the generalization error of several models in order to choose the “best” one.  
The bootstrap estimator is computed over a finite number N of new samples x* 
generated from the original sample x by drawing with replacement. The bootstrap 
estimate of the generalization error is given by  
 optimismee appgen +=ˆ , (1) 

where eapp is the apparent error obtained when evaluating the model built (learned) on 
the original sample x on the same sample (learning error), and optimism is a correction 
term aiming to estimate the difference between a learning and a generalization error. 
The optimism is computed on the N  bootstrap replications:  

 )]F̂(e)F̂(e[Eoptimism *x*xx*x −= , (2) 

where E[ ] is the statistical expectation computed over all bootstrap replications and 
)F̂(e x*x is the error for a model developed (learned) on the x* sample and evaluated on 

the xF̂ empirical distribution. xF̂  and *F̂x  are the empirical distribution functions in 
the real world and in the bootstrap world respectively. 
Note that the .632 bootstrap [4] aims to reduce the slight bias introduced by the 
optimism correction of the basic bootstrap methodology. The acceleration method 
presented in this paper can be extended straightforwardly to the .632 bootstrap. 
 
3. Methodology 

3.1. Empirical argument 

In numerous applications of the bootstrap for nonlinear model selection we have noticed 
two persistent facts. 
First, it is well known that the apparent error eapp of a nonlinear regression model (like 
Multi-Layer Perceptrons (MLPs), Radial-Basis Function Networks (RBFNs), etc.) is 
usually roughly exponentially or quadratically decreasing with the number p of 
parameters in the model. Of course only parameters of the same nature have to be 
considered (weights in MLPs, centers in RBFNs, etc.). This comment must be kept in 
mind in the following. 
With a good approximation, eapp can thus be expressed as one of the following 
expressions: 
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This empirical fact is usually confirmed on a reasonable range of possible values for p. 
When p is either nearby zero or very large, (3) is no longer valid, but this is not a 
problem for the following as we will use approximation (3) only in its validity range: p 
too small leads to a poor model with large apparent and generalization errors, while p 
too large leads to overfitting. 
A second empirical fact is that the optimism increases roughly linearly with the number 
p of parameters, leading to: 
 EDpoptimism += . (4) 

Here again a limited range of the p value must be considered. 
Empirical evidence of approximations (3) and (4) will be illustrated in section 4.  
 
3.2. Theoretical argument 

Assuming a linear relation (4) for the optimism is certainly the most unexpected 
hypothesis of the method presented in this paper, although it is confirmed by 
experience. To strengthen this hypothesis, we can mention that a general formulation of 
structure selection criteria can also be written as  
 termcorrectioneê appprediction  +=  (5) 

where correction term is proportional to p in most cases (2pσ/n for AIC and ln(n)pσ/n 
for BIC, where σ is the estimated quadratic error on the learning set). In all these 
situations (AIC, BIC and other experiments), we see that the optimism or correction to 
add to the apparent error is proportional to p; leaving the constants D and E resulting 
from the experimental procedure below is a way to avoid making hypotheses (usually 
based on asymptotical results) to fix these constants, and to allow adapting them to each 
specific problem or application. 
 
3.3. Estimating the bootstrap results 

Under the empirical argument developed in section 3.1 and according to the theoretical 
argument in section 3.2, rewriting the bootstrap estimate of the generalization error 
would then give, for some parameters A, B, C, D and E: 
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The principle of the method is then to make a limited number of experiments to estimate 
A, B, C, D and E. A, B and C are evaluated by (3) with models (with different values of 
p) using the original sample x both for learning and test. The D and E values can be 
computed according to (4) with models built on bootstrap replicates x* and evaluated on 
both the original sample x and the bootstrap samples x*. 
In both cases experiments on three (two) different values of p are theoretically sufficient 
to fix parameters A, B and C, and D and E respectively. Nevertheless it is suggested to 
increase the number of experiments in order to decrease the influence of a single 
experiment. When A, B, C, D and E have been computed, the minimum of (6) gives the 
value of p that minimizes the generalization error. 
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4. Experimental results 

We illustrate the method described in the previous section on a standard benchmark in 
time-series prediction. The Santa Fe A time series [7] has been chosen mainly for the 
large number of data available for the training stage (1000) as well as for the test stage 
(9000). These two numbers correspond to the rules of the Santa Fe competition, as 
detailed in [7]. 
The model we used is chosen a priori to be: 
 ( ))t(y),t(y),t(y),t(y),t(y),t(yf)t(ŷ 653211 −−−−−=+ . (7) 

This regressor has been shown to be adequate for this series [7]. Note that we aim here 
to present an experimental validation of our method (approximation of the bootstrap 
results) and not to make a comparison of the most adequate model and regressor. We 
take a Radial-Basis Function Network (RBFN) for f(.) and the regressor given by (7) as 
a priori choices. 
A RBFN is characterised by its number n of Gaussian kernels (or hidden units). A 
detailed description of the learning strategy we used to train the RBFN can be found in 
[8]. As the number p of parameters in a RBFN is proportional to its number n of units, 
the following results will be illustrated according to the value of n instead of p, without 
changing anything in the arguments detailed in the previous section. With respect to the 
comment in Section 3.1, the n Gaussian kernels are effectively parameters of the same 
nature. 
We trained 7 RBFNs on the Santa Fe learning dataset, for n = 20, 40, 60, 80, 100, 120 
and 140 respectively. With the apparent generalization error obtained for those values of 
n we can compute A, B and C (in the least mean square sense) and deduce an estimate of 
the apparent error. We have decided here to use the decreasing hyperbolic function in 
(3). Then bootstrap estimates of the optimism are evaluated for the same values of n. A 
linear interpolation gives D and E. The results of these two steps are shown in figure 
2.a) and 2.b). Figure 3 shows the final estimate of the generalization error. The 
minimum of this function is attained for n = 103. Then we repeat the same experiment 
with four different n instead of seven, with values of n equals 20, 60, 100 and 140 
respectively. The optimal n found in this case is a coherent result of 102. Finally, we 
made another experiment for RBFN networks with varying number n of units trained on 
the 1000 training data of the Santa Fe A series, and tested on the 9000 test data. 
Assuming that the time series is sufficiently stationary, using these 9000 test data gives 
a good estimate (in this specific application) of the effective generalization error. This 
last result is illustrated in Figure 4 where the minimum is n = 100, thus confirming our 
experimental estimation. 
A second example is provided to illustrate the robustness of the proposed method. We 
have used this time the abalone dataset [9], with 1000 data for the training stage and the 
remaining 3177 for the test stage. We have applied the same methodology with different 
RBFN models with n equals 1, 17, 33 and 49. We choose the hyperbolic decreasing 
function in (3). Figure 5 shows a) the apparent error and b) the optimism. Figure 6 is the 
final bootstrap estimate. The selected model with the computed minimum prediction 
error has 32 Gaussians kernels, close to the best 27 kernels obtained from the 3177 data. 
In comparison with the classical bootstrap methodology, the described method has two 
advantages. First, it is not necessary to test all potential models to find the “best” one,  

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 475-480



0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

 
Figure 2. a) Apparent error for RBFN models with 
20, 40, 60, 80, 100, 120 and 140 Gaussian kernels; 
A = -1 10-6, B = 5.04 10-4 and C = 0 
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Figure 2. b) Optimism for RBFN models with 20, 
40, 60, 80, 100, 120 and 140 Gaussian kernels;  
D = 0.17 and E = 12.18. 
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Figure 3. Interpolated graph for the bootstrap 
estimate of the generalization error. 
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Figure 4. Estimate of the effective generalization 
error for the Santa Fe A time series. 

 
thus reducing the computation time of an important factor since models have a 
computation cost proportional to n². Secondly, as the interpolation averages the possible 
variations (due to poor estimate) in the generalization error of each model, one can 
afford a much lower number of bootstrap replications to estimate the generalization 
error of each tested model. Reducing the number of bootstrap replication is a real 
breakthrough with respect to the elapsed time of a classical bootstrap approach. 
 
5. Conclusion 

In this paper we have proposed an effective procedure to reduce the computation time of 
a bootstrap approximation of the generalization error in a family of nonlinear regression 
models. The limited loss of accuracy is balanced by a considerable saving in 
computation load, the main shortcoming of using the bootstrap methodology for model 
selection. This saving is principally due to the number of replication that is here much 
lower than in a normal use of the bootstrap. 
Although this procedure has only been tested in a neural network model selection 
context, this simple and time saving method could easily be extended to other contexts 
of nonlinear regression, classification, etc., where computation time and complexity 
play a role. It can also be applied to other resampling procedures, as the .632 bootstrap. 
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Figure 5. a) Apparent error for abalone case, n  = 1, 
17, 33 and 49; A =-3.43 10-6, B = 5.81 10-4 and  
C = 1.51 10-1.  
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Figure 5. b) Optimism for the abalone case, with n  
= 1, 17, 33 and 49; D = 1.32 10-2 and E = 1.79 10-1. 
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Figure 6. Bootstrap estimate of the generalization 
error for the abalone example. 

References 

[1] H. Akaike, “Information theory and an extension of the maximum likelihood principle”, 
2nd Int. Symp. on information Theory, 267-81, Budapest, 1973 

[2] G. Schwarz, “Estimating the dimension of a model”, Ann. Stat. 6, 461-464, 1978. 
[3]  L. Ljung, “System Identification - Theory for the user”, 2nd ed, Prentice Hall, 1999. 
[4]  B. Efron, R. J. Tibshirani, "An introduction to the bootstrap", Chapman & Hall, 1993. 
[5] M. Stone, “An asymptotic equivalence of choice of model by cross-validation and 

Akaike’s criterion”, J. Royal. Statist. Soc., B39, 44-7, 1977.  
[6] R. Kohavi, “A study of Cross-Validation and Bootstrap for Accuracy Estimation and 

Model Selection”, Proc. of the 14th Int. Joint Conf. on A.I., Vol. 2, Canada, 1995. 
[7] A. S. Weigend and N.A. Gershenfeld, “Times Series Prediction: Forcasting the future 

and Understanding the Past”, Addison-Wesley Publishing Company, 1994. 
[8] N. Benoudjit, C. Archambeau, A. Lendasse, J. Lee, M. Verleysen, “Width optimization 

of the Gaussian kernels in Radial Basis Function Networks”, Proc. of ESANN’2002, d-
site, Brussels, 2002. 

[9] W.J. Nash, T.L. Sellers, S.R. Talbot, A.J. Cawthorn and W.B. Ford, "The Population 
Biology of Abalone (_Haliotis_ species) in Tasmania. I. Blacklip Abalone (_H. rubra_) 
from the North Coast and Islands of Bass Strait", Sea Fisheries Division, Technical 
Report No. 48, 1994. 

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 475-480


