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Abstract. The bootstrap resampling method may be efficientigd to estimate
the generalization error of a family of nonlineagression models, as artificial
neural networks. The main difficulty associatedhwiite bootstrap in real-world
applications is the high computation load. In thaper we propose a simple
procedure based on empirical evidence, to condileraduce the computation
time needed to estimate the generalization erroraofamily of models of

increasing number of parameters.

1. Introduction

Model design has raised a considerable researalt sffice decades, on linear models,
nonlinear ones, artificial neural networks, and ynathers. Model design includes the
necessity tacomparemodels (for example of different complexities)drder to select
the “best” model among several ones. For this paepi is necessary to obtain a good
approximation of the generalization error of eaaidei (the generalization error being
the average error that the model would make om#fnite-size and unknown test set
independent from the learning one).

Nowadays there exist some well-known and widehdusethods able to fulfil this task:
among others the AIC or BIC criteria and the likdg, [[2], [3] as well as cross-
validation, leave-one-out [3, 6] and bootstrap [].these methods have been proved
to be roughly asymptotically equivalent (see forample [5] and [6]). A natural
extension of the bootstrap, the .632 bootstrapH&$, also been proved to be unbiased.
Nevertheless, and while this is not an irrefutaulestion, it seems that the bootstrap is
advantageous in many “real” modelling cases (i.eewthe number of samples is
limited, the dimension of the space high, etc.) @]t the main problem when using the
bootstrap is the computation of the results thalctoeally be time consuming. Another
limitation is that the conventional use of the lsb@tp for model selection leads to a
final model chosen from the restricted seagdriori selected models.
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In this paper we will show that, under reasonalbhel aimple hypotheses usually
fulfilled in real world applications, it is possélto provide a good estimate of the
bootstrap results with a considerably reduced nurabeodelling stages, thus saving a
considerable amount of computation time. Moreoves tnodel selected with this
bootstrap approach may be different from the oses to compute the approximation

2. Bootstrap technique

The bootstrap [4] is based on the plug-in principlet permits to obtain an estimator of
a statistic according to an empirical distributitm.our context we use the bootstrap to
estimate the generalization error of several moidebsder to choose the “best” one.
The bootstrap estimator is computed over a finitenlper N of new samplesc*
generated from the original sampteby drawing with replacement. The bootstrap
estimate of the generalization error is given by

€gen = Eapp + Optimism 1)
wheree,p, is the apparent error obtained when evaluatingribdel built (learned) on
the original sample on the same sample (learning error), aptimismis a correction

term aiming to estimate the difference betweenaaniag and a generalization error.
Theoptimismis computed on thH bootstrap replications:

optimism=E [ey (F, ) —ew (R )] , (2)
where E[ ] is the statistical expectation computed ovdrbalotstrap replications and
ey (Fy )is the error for a model developed (learned) orxthsample and evaluated on
the K, empirical distribution.F, and F« are the empirical distribution functions in
the real world and in the bootstrap world respetyiv
Note that the .632 bootstrap [4] aims to reduce dlight bias introduced by the
optimism correction of the basic bootstrap methodology. Huoeeleration method
presented in this paper can be extended straig¥efdty to the .632 bootstrap.

3. Methodology

3.1. Empirical argument

In numerous applications of the bootstrap for medr model selection we have noticed
two persistent facts.

First, it is well known that the apparent ersgg, of a nonlinear regression model (like
Multi-Layer Perceptrons (MLPs), Radial-Basis FuoctiNetworks (RBFNs), etc.) is
usually roughly exponentially or quadratically degsing with the numbep of
parameters in the model. Of course only parameaitithe same nature have to be
considered (weights in MLPs, centers in RBFNs,) efthis comment must be kept in
mind in the following.

With a good approximationg,,, can thus be expressed as one of the following
expressions:

1

~ Aa-BP =
€app = Ae or ep=—5——.
PP PP A2 +Bx+C

®)
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This empirical fact is usually confirmed on a reasonable rangessible values fop.
When p is either nearby zero or very large, (3) is no longer vélid, this is not a
problem for the following as we will use approximation @8Jy in its validity rangep
too small leads to a poor model with large apparent and genecalizators, whilep
too large leads to overfitting.
A second empirical fact is that tlptimismincreases roughly linearly with the number
p of parameters, leading to:

optimism=Dp+E.. (4)
Here again a limited range of thevalue must be considered.
Empirical evidence of approximations (3) and (4) will bestitated in section 4.

3.2. Theoretical argument

Assuming a linear relation (4) for theptimismis certainly the most unexpected
hypothesis of the method presented in this paper, although confirmed by
experience. To strengthen this hypothesis, we can mention glesesal formulation of
structure selection criteria can also be written as

€prediction = Eapp *+ COrTECtionterm (5)

wherecorrection termis proportional tg in most cases (®/n for AIC and Inf)pa/n
for BIC, wherec is the estimated quadratic error on the learning set). Irhedlet
situations (AIC, BIC and other experiments), we see thapptienismor correction to
add to the apparent error is proportionaptdeaving the constant® andE resulting
from the experimental procedure below is a way to avoid makipgtheses (usually
based on asymptotical results) to fix these constants, ailbtoadapting them to each
specific problem or application.

3.3. Estimating the bootstrap results

Under the empirical argument developed in section 3.1 and accdodihg theoretical
argument in section 3.2, rewriting the bootstrap estimatthefgeneralization error
would then give, for some parameté&B, C, D andE:

= €app +OpPtimism

= Ae BP+Dp+E . (6)

or = -t +Dp+E

AX2 +Bx+C
The principle of the method is then to make a Behihumber of experiments to estimate
A, B, C, Dand E.A, BandC are evaluated by (3) with models (with differeatues of
p) using the original samphe both for learning and test. Th2 andE values can be
computed according to (4) with models built on Istr@ip replicatex* and evaluated on
both the original sampbe and the bootstrap sampbes
In both cases experiments on three (two) diffevahtes ofp are theoretically sufficient
to fix parameterd\, BandC, andD andE respectively. Nevertheless it is suggested to
increase the number of experiments in order to edse the influence of a single
experiment. Wher\, B, C, DandE have been computed, the minimum of (6) gives the
value ofp that minimizes the generalization error.

€generaliztion
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4. Experimental results

We illustrate the method described in the previseigtion on a standard benchmark in
time-series prediction. The Santa Fe A time sdig¢$ias been chosen mainly for the
large number of data available for the trainingyeté1000) as well as for the test stage
(9000). These two numbers correspond to the ruletheo Santa Fe competition, as
detailed in [7].
The model we used is chosaipriori to be:

Y(t+1)= f(y(t),y(t=1),y(t=2),y(t-3),y(t -5),y(t - 6)). )
This regressor has been shown to be adequateisosdhies [7]. Note that we aim here
to present an experimental validation of our met(@pproximation of the bootstrap
results) and not to make a comparison of the mdstj@ate model and regressor. We
take a Radial-Basis Function Network (RBFN) foJ and the regressor given by (7) as
a priori choices.
A RBFN is characterised by its numberof Gaussian kernels (or hidden units). A
detailed description of the learning strategy wedut train the RBFN can be found in
[8]. As the numbep of parameters in a RBFN is proportional to its bemn of units,
the following results will be illustrated accordibg the value oh instead ofp, without
changing anything in the arguments detailed inptlevious section. With respect to the
comment in Section 3.1, theGaussian kernels are effectively parameters ok#me
nature.
We trained 7 RBFNs on the Santa Fe learning dateweat = 20, 40, 60, 80, 100, 120
and 140 respectively. With the apparent generadizatrror obtained for those values of
n we can computd, BandC (in the least mean square sense) and deduceimuatesof
the apparent error. We have decided here to usdetieasing hyperbolic function in
(3). Then bootstrap estimates of thgtimismare evaluated for the same values.0A
linear interpolation give® andE. The results of these two steps are shown indigur
2.a) and 2.b). Figure 3 shows the final estimatethef generalization error. The
minimum of this function is attained for= 103. Then we repeat the same experiment
with four differentn instead of seven, with values ofequals 20, 60, 100 and 140
respectively. The optimal found in this case is a coherent result of 10R8al, we
made another experiment for RBFN networks with weryyumbem of units trained on
the 1000 training data of the Santa Fe A seried, tasted on the 9000 test data.
Assuming that the time series is sufficiently sta#iry, using these 9000 test data gives
a good estimate (in this specific application) lvé effective generalization error. This
last result is illustrated in Figure 4 where thaimium isn = 100, thus confirming our
experimental estimation.
A second example is provided to illustrate the stbess of the proposed method. We
have used this time the abalone dataset [9], v@01data for the training stage and the
remaining 3177 for the test stage. We have apfitiedame methodology with different
RBFN models withn equals 1, 17, 33 and 49. We choose the hyperbeliceasing
function in (3). Figure 5 shows a) the apparentreand b) theptimism Figure 6 is the
final bootstrap estimate. The selected model witln ¢omputed minimum prediction
error has 32 Gaussians kernels, close to the Bdstrdels obtained from the 3177 data.
In comparison with the classical bootstrap methogipl the described method has two
advantages. First, it is not necessary to tegtadéintial models to find the “best” one,
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Figure 2. a) Apparent error for RBFN models with Figure 2. b) Optimism for RBFN models with 20,
20, 40, 60, 80, 100, 120 and 140 Gaussian kernelgp, 60, 80, 100, 120 and 140 Gaussian kernels;
A=-110°B=5.0410andC=0 D=0.17 ancE = 12.18.
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Figure 3. Interpolated graph for the bootstrap Figure 4. Estimate of the effective generalization
estimate of the generalization error. error for the Santa Fe A time series.

thus reducing the computation time of an importéattor since models have a
computation cost proportional t8. Secondly, as the interpolation averages the plessi
variations (due to poor estimate) in the generatimaerror of each model, one can
afford a much lower number of bootstrap replicatido estimate the generalization
error of each tested model. Reducing the numbebaaitstrap replication is a real
breakthrough with respect to the elapsed timeaéssical bootstrap approach.

5. Conclusion

In this paper we have proposed an effective praeettureduce the computation time of
a bootstrap approximation of the generalizationreir a family of nonlinear regression

models. The limited loss of accuracy is balanced ayconsiderable saving in

computation load, the main shortcoming of usinghibetstrap methodology for model

selection. This saving is principally due to thentner of replication that is here much
lower than in a normal use of the bootstrap.

Although this procedure has only been tested inearal network model selection

context, this simple and time saving method coulsilg be extended to other contexts
of nonlinear regression, classification, etc., vheomputation time and complexity
play a role. It can also be applied to other resmmprocedures, as the .632 bootstrap.
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Figure 5. a) Apparent error for abalone case; 1,
17, 33 and 49A =-3.43 1¢%, B = 5.81 10 and
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Figure 5. b) Optimism for the abalone case, wit|
=1,17,33 and 4D = 1.32 1¢ andE = 1.79 10"

C=1.5110d.
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Figure 6. Bootstrap estimate of the generalization
error for the abalone example.
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