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Abstract: The intensity of a Gibbs point process model is usually an
intractable function of the model parameters. This is a severe restriction on
the practical application of such models. We develop a new approximation
for the intensity of a stationary Gibbs point process on R

d. For pairwise
interaction processes, the approximation can be computed rapidly and is
surprisingly accurate. The new approximation is qualitatively similar to the
mean field approximation, but is far more accurate, and does not exhibit the
same pathologies. It may be regarded as a counterpart of the Percus-Yevick
approximation.
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1. Introduction

In the statistical analysis of spatial point pattern data, an important role is
played by Gibbs point process models, especially pairwise interaction processes
[12, 45, 31]. However, many important properties of these models are intractable,
including the intensity (expected number of points per unit volume), higher
moments, and the partition function (normalising constant of the likelihood).
This intractability is a severe impediment to the use of Gibbs models in applied
probability and statistics, and indeed it motivated the invention of Markov
Chain Monte Carlo methods [29].
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Many approximations to the moments and partition function of Gibbs point
process models have been developed in statistical physics [41, 14] and in spatial
statistics [46, 34, 39, 28, 13]. Two main categories are the simplifying approxima-
tions, such as the Mean Field approximation, derived from heuristic arguments
and designed to be tractable; and convergent sequences of approximations, typ-
ically truncated Taylor series in one of the model parameters θ, expanded about
a value θ0 which corresponds to a Poisson point process. Well-known difficul-
ties with series approximations include slow convergence, restricted radius of
convergence, and intensive computation requirements.

This paper describes a simplifying approximation, which we believe is new, to
the intensity of a Gibbs point process. The fundamental Georgii–Nguyen–Zessin
identity [17, 33, 23] is viewed as a self-consistency equation for the process. Pois-
son approximation is applied to one side of the identity, in a manner reminis-
cent of saddlepoint approximation. The resulting approximate self-consistency
equation can be solved numerically to yield an approximation to the intensity
function of the process.

The rationale for our approximation is reminiscent of the Mean Field ap-
proximation to the intensity, and of the Ornstein-Zernike [35] equation for the
pair correlation function. The functional form of our approximation is also quite
similar to that of the Mean Field approximation. However our approximation is
far more accurate, in the cases studied. Figure 1 compares our approximation
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Fig 1. Comparison of exact and approximate intensities of the stationary Strauss point
process with activity parameter β = 100 and interaction range r = 0.05 for various values of
the interaction strength parameter γ. Circles show Monte Carlo estimates of the exact value
λ for values of γ ranging from 0 to 1 in steps of 0.05. Each estimate is based on 10 000
simulated realisations. Very short vertical lines inside the circles are 95% confidence limits
for the true λ. Solid lines: our new analytic approximation λps. Dashed lines: mean field
approximation λmf.
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(solid lines) with the mean field approximation (dashed lines) and true values
estimated by a large Monte Carlo experiment (circles) for the popular Strauss
point process model [44, 24]. Our new approximation is quite accurate over the
full range of values of the interaction parameter γ. Importantly it does not need
the ‘sparseness’ conditions required for Poisson limit theorems [42, 20, 22].

Possible uses for this approximation include prediction for a fitted model
(i.e. calculating the intensity for a Gibbs point process model that has been
fitted to point pattern data), residual analysis [3] and other diagnostics for
a fitted model, approximations to maximum likelihood estimation (since the
likelihood score involves the point process intensity), and stability improvements
to Markov Chain Monte Carlo methods. Our approximation may also be used
for qualitative study of model behaviour, whereas the mean field approximation
cannot (as shown by the behaviour as γ → 0 in Figure 1).

For simplicity of exposition, we concentrate on stationary, pairwise-interaction
Gibbs processes in the present paper. Extensions to other processes, including
non-stationary processes, and improvements to the approximation, are outlined
at the end of the paper.

Section 2 gives basic background. Our approximation is defined in Section 3.
In Section 4 we derive elementary properties of our approximation and of the
classical mean field approximation. Section 5 gives numerical examples. We con-
clude with a discussion.

2. Background

2.1. GNZ formula

The Georgii–Nguyen–Zessin (GNZ) formula [17, 32, 23] is a fundamental rela-
tionship between the probability distribution of a point process and its reduced
Palm distribution. For simplicity, assume X is a stationary point process on
R

d, with intensity λ > 0. The reduced Palm distribution P !0 at the origin 0 is,
roughly speaking, the conditional probability distribution of X \ {0} given that
there is a point of X at 0. For accessible explanations, see [23, 43]. Under suit-
able conditions, the GNZ formula states that P !0 is absolutely continuous with
respect to the distribution P of X, with Radon-Nikodým density λ(0;X)/λ,
where λ(0;X) is the Papangelou conditional intensity [36] of X at 0. That is,
for any statistic h(X) that is absolutely integrable with respect to P !0,

E
!0[h(X)] = E

[

λ(0;X)

λ
h(X)

]

(1)

where E and E
!0 denote expectation with respect to P and P !0, respectively.

In the special case h ≡ 1, we obtain an expression for the intensity:

λ = E[λ(0,X)]. (2)

For many popular Gibbs models, the conditional intensity λ(0,X) has an
explicit, analytic form in terms of the canonical parameters of the model. How-
ever, the expectation on the right side of (2) is with respect to the distribution
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of X, and is generally intractable. Thus, (2) does not provide a simple route
to an exact expression for λ. Indeed λ is usually an intractable function of the
canonical parameters.

2.2. Pairwise interaction processes

We shall focus on stationary pairwise interaction point processes [11, 18, 25].
The conditional intensity at a location u is assumed to be of the form

λ(u;x) = β
∏

i

g(xi − u), (3)

a countable product over all points xi in the point process realisation x, where
β > 0 is a parameter and g : Rd → [0,∞) is the pairwise interaction function.
Equation (2) becomes

λ = β E

[

∏

i

g(xi)

]

. (4)

Note again that the right hand side is the expectation of a random product over
all points of the point process. This can be formally defined as the exponential
of the random integral of log g(u) with respect to the point process counting
measure.

2.3. Strauss process

A special case of pairwise interaction is the Strauss process [44] where

g(u) =

{

γ if ‖u‖ ≤ r
1 otherwise

where 0 ≤ γ ≤ 1 is the interaction strength parameter and 0 < r < ∞ the
interaction distance. Then

λ(u;x) = βγtr(u,x) (5)

where

tr(u,x) =
∑

i

1{‖xi − u‖ ≤ r} (6)

is the number of points of x within distance r of the location u. Equation (2)
becomes

λ = β E

[

γtr(0,X)
]

. (7)

The right side of (7) is an expectation with respect to the Strauss process. The
distribution of T = tr(0,X) under the Strauss process is not known, and λ is
not known analytically as a function of β and γ.
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A special case of particular interest is the hard core process obtained by
setting γ = 0 and interpreting 00 = 1, so that (5) becomes

λ(u;x) = β1{tr(u,X) = 0} (8)

and (2) is
λ = βP{tr(0,X) = 0}. (9)

Again the right hand side is an (intractable) probability with respect to the
hard core process.

3. New approximation

Our approach is to view (1) as analogous to the tilting property of an exponen-
tial family, and use it to derive approximations analogous to the saddlepoint
approximation. To explain the motivation, consider any model where the con-
ditional intensity is loglinear in the parameter θ, say λ(0;X) = exp(θ V (0,X))
where V (0,X) is a known function. Then the identity (1) may be regarded as an
exponential tilting relationship between P !0 and P . By analogy with saddlepoint
methods, we should approximate the true distribution P on the right hand side
of (2) by a simpler distribution Q with matching first moment. We choose Q to
be the distribution of the Poisson point process with the same intensity λ. Thus
we replace the identity (2) by the approximate relation

λ ≈ EPois(λ)[λ(0;X)] (10)

where the right hand side is the expectation with respect to a Poisson point
process of intensity λ. Solving this equation for λ, if possible, yields a value λps

which is an approximation to the true value of λ.

Definition 1. Consider any stationary Gibbs process with intensity λ and Pa-
pangelou conditional intensity λ(u;X). The Poisson-saddlepoint approxi-

mation of λ is the solution λps of

λ = EPois(λ)[λ(0;X)] (11)

provided a solution exists.

This approach is less restrictive than approximating the moments of a point
process X by those of a Poisson process, based on a Poisson limit theorem
for X in the ‘sparse’ limit (low intensity or weak interaction) [42, 20, 22]. Our
proposed approach is a rationale for applying the same type of approximation
to processes that are not well approximated by Poisson processes. The Palm
distribution of X is approximated by that of a Poisson process of the same (but
unknown) intensity, yielding a self-consistency equation for the intensity of X.

In the special case of a pairwise interaction process X, the conditional inten-
sity (3) is a product over points of X. Under a Poisson process of intensity λ we
have [26, eq. (1.12), p. 20]

EPois(λ)

[

∏

i

g(xi)

]

= exp

(

λ

∫

Rd

[g(u)− 1] du

)

= exp(−λG) (12)
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where

G =

∫

Rd

[1− g(u)] du, (13)

assuming G > −∞. The quantity G is the second Mayer cluster integral [14,
p. 108]. Note that g(x) ≤ 1, with strict inequality on a set of positive measure,
will guarantee that G > 0. Then (11) becomes

λ = β exp(−λG). (14)

Solving this equation yields the following result.

Theorem 1. Consider a stationary pairwise interaction process X with condi-
tional intensity (3) such that G > 0 where G is the second Mayer cluster integral
(13). The Poisson-saddlepoint approximation of the intensity of X is

λps = W (βG)/G, (15)

where W is the inverse function of x 7→ xex.

The increasing function W is (the principal branch of) Lambert’s W function
[10, 9, 40]. Efficient software exists to compute values of W by iterative root-
finding.

The example of the Strauss process is illuminating. Under a Poisson(λ) pro-
cess, T = tr(0,X) has a Poisson distribution with mean µ = λωdr

d, where ωd is
the volume of the d-dimensional unit ball. By direct calculation EPois(λ)[γ

T ] =

exp((γ−1)λωdr
d). This together with (3),(5) and (12) yield equation (15) where

G = (1− γ)ωdr
d. In two dimensions we have ω2 = π and G = (1− γ)πr2 giving

λps as the solid curve of in Figure 1. Further numerical examples of the intensity
approximation are given in Section 5.

4. Elementary properties and comparison with mean field

Here we give some elementary properties of our approximation, and for com-
parison, discuss the corresponding properties of the classical mean field approx-
imation.

There is an extensive literature on “mean field-like” approximations to prop-
erties of Markov Random Fields on finite graphs, including applications to image
processing [47, 8, 15]. This approach “consists [in] neglecting fluctuations from
the mean in the environment of each pixel” [8], effectively replacing the Markov
dependence by independence between pixels. In the context of point processes,
the corresponding approach is to approximate a Gibbs point process by a Pois-
son process.

The mean field approximation can be derived by a variational argument which
we do not recapitulate here. In brief, the true distribution P of the point process
is to be approximated by the distribution Q of a stationary Poisson process with
some intensity λ. In the mean field approximation, λ is chosen to minimise the
Kullback-Leibler divergence K(Q‖P ) = EQ log(dQ/dP ). After some calculation
this yields the following.
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Definition 2. Consider any stationary Gibbs process with intensity λ and Pa-
pangelou conditional intensity λ(u;X). The mean field approximation of λ
is the solution λmf of

λ = exp(EPois(λ) logλ(0;X)) (16)

provided a solution exists.

This yields a result of similar form to (15),

λmf =
W (βΓ)

Γ
(17)

where

Γ = −

∫

Rd

log g(u) du. (18)

For the Strauss process, Γ = −ωdr
d log γ. In two dimensions, Γ = −πr2 log γ

giving λmf as the dashed curve in Figure 1.

Theorem 2. Consider a stationary pairwise interaction process in R
d with

conditional intensity (3) which is ‘purely inhibitory’, i.e. g(u) ≤ 1 for all u ∈ R
d.

Let G be as in (13) and assume 0 < G < ∞. Let Γ be as in (18), and assume
0 < Γ < ∞. Then

1. λmf and λps exist uniquely;
2. λps and λmf are increasing functions of β;
3. λmf ≤ λps and λmf ≤ λ.

Proof. By definition

λmf = fmf(λmf) (19)

λps = fps(λps) (20)

where

fps(λ) = EPois(λ)[λ(0;X)] = β exp(−λG)

fmf(λ) = exp(EPois(λ)[log λ(0;X)]) = β exp(−λΓ).

By Jensen’s inequality fmf(λ) ≤ fps(λ) for all λ ≥ 0. Clearly fps and fmf
are decreasing functions of λ with fps(0) = fmf(0) = β and limλ→∞ fps(λ) =
limλ→∞ fmf(λ) = 0. Hence, solutions to the equations (19)–(20) exist uniquely
for all β ≥ 0, and satisfy λmf ≤ λps. Note that the inverse function of x 7→ xex

is increasing function hence it follows from (15) and (17) that λps and λmf are
increasing functions of β.

For the true value of λ we have by Jensen’s inequality

λ = Eλ(0;X) ≥ expE logλ(0;X)

Now

E logλ(0;X) = log β + E

∑

i

log g(xi) = log β + λ

∫

Rd

log g(u) du
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by Campbell’s formula [11, p. 163]. This expectation is the same for all processes
with intensity λ, including the Poisson process, so we have

E logλ(0;X) = EPois(λ) logλ(0;X)

and hence
λ ≥ expEPois(λ) logλ(0;X) = fmf(λ)

so that λmf ≤ λ.

Note: We conjecture that λ ≤ λps under the assumptions of Theorem 2,
which is strongly suggested by the plots in Section 5.

Next consider the behaviour of these approximations in the limiting case that
corresponds to a hard core.

Theorem 3. Consider a stationary pairwise interaction process in R
d with

conditional intensity (3) with pairwise interaction of the form

g(u) = gθ(u) = exp(−θV (u)) (21)

where θ ≥ 0 is a parameter and V a nonnegative real-valued function. Define

G(θ) =

∫

Rd

[1− gθ(u)] du =

∫

Rd

[1− exp(−θV (u))] du

Γ(θ) = −

∫

Rd

log gθ(u) du = θ

∫

Rd

V (u) du

and assume 0 <
∫

Rd V (u) du < ∞ and 0 <
∫

Rd 1{V (u) > 0} du < ∞. Then

1. λps and λmf are decreasing functions of θ;
2. limθ→∞ λmf = 0;
3. limθ→∞ λps > 0.

Proof. The assumptions imply that G(θ) and Γ(θ) are finite for 0 ≤ θ < ∞.
Using the identities x = W (x) exp(W (x)) and W (x)/x = exp(−W (x)) we have

λmf = W (βΓ(θ))/Γ(θ) = β exp(−W (βΓ(θ)))

λps = W (βG(θ))/G(θ) = β exp(−W (βG(θ))).

Since G(θ) and Γ(θ) are increasing functions of θ, λps and λmf are decreas-
ing functions of θ. As θ → ∞ we have Γ(θ) → ∞ so that limθ→∞ λmf =
β limθ→∞ exp(−W (βΓ(θ)) = 0. Since exp(−θV (u)) → 1{V (u) > 0} as θ →
∞ for each u, we have G(θ) → G∞ :=

∫

Rd 1{V (u) > 0} du < ∞. Hence
limθ→∞ λps = β exp(−W (βG∞)) = W (βG∞)/G∞ > 0.

5. Numerical examples

The accuracy of the approximations was assessed in the case of the stationary
Strauss process.
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Fig 2. Comparison of exact and approximate intensities of Strauss process for β = 100 and
r = 0.1 for various values of γ. Solid lines show our analytic approximation λps. Dashed lines
show the mean field approximation λmf. Dots show Monte Carlo estimates of the exact value
λ for 19 values of γ. Vertical lines are 95% confidence limits.

All computations were performed in the R language [38]. The Lambert func-
tion W was evaluated by the function lambert W0 in the R package gsl, an
interface to the GNU Scientific Library [16]. Computing one value of λps or
λmf took about 10 microseconds on a 3GHz dual core laptop. For comparison,
about 2 milliseconds were required to compute the same values using a generic
root-finding algorithm such as the R function uniroot, which is based on the
Netlib algorithm zeroin [7, 6].

The true intensity λ was estimated by Monte Carlo methods. For each pa-
rameter value, 10, 000 independent realisations of the model were generated by
a coupling-from-the-past (CFTP) algorithm [4] run with the same parameters
on the square [−2r, 1 + 2r]2 and then clipped to the unit square. The number
of points in each realisation was averaged to obtain the estimated intensity and
its standard error. Source code for the CFTP algorithm was kindly provided
by Kasper Klitgaard Berthelsen. It is available as a function rStrauss in the
contributed R package spatstat [2].

Figure 2 shows a numerical example of the intensity approximation. The
Strauss process with β = 100, r = 0.1 was studied for different values of γ.
Solid lines show the analytic approximation λps of (15). Circles show Monte
Carlo estimates of the exact value λ computed for 19 values of γ. Each Monte
Carlo estimate in Figure 2 was the sample mean of 10,000 simulated values of
the number of points in the unit square. Figure 2 shows that the approximation
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Fig 3. Analogues of previous Figures for other parameter values. Left: β = 50, r = 0.05,
Monte Carlo estimates based on 10, 000 simulations. Right: β = 50, r = 0.15, Monte Carlo
estimates based on 1000 simulations.

can be surprisingly accurate. The maximum relative error is about 15% (and of
course this occurs close to γ = 0).

Figure 3 shows two more examples.
Computation times for the CFTP algorithm depend greatly on the parameter

values. In our examples the computing time per realisation (including evaluation
of the mean number of points) ranged from about 2 milliseconds per realisation
when γ = 1 to about 170 milliseconds per realisation for a Strauss process with
β = 100, γ = 0 and r = 0.1. These times must be multiplied by the number
of simulated realisations, typically at least 1000. Thus, the Poisson-saddlepoint
approximation is 5 to 7 orders of magnitude faster than MCMC estimation using
an exact simulation algorithm, in these examples.

The CFTP algorithm is not practicable for all parameter values. Its compu-
tation time increases rapidly with β and r: for example, when β = 100, γ = 0
and r = 0.15, the mean computation time is already about 60 seconds per real-
isation. The tail of the distribution of computation time also becomes heavier.
In such cases, one must fall back on non-exact simulation algorithms such as
birth-death-shift Metropolis-Hastings [19, 31] for which the computation time
is controlled, but which exhibit a small bias.

Note that our CFTP Monte Carlo estimates of λ may also be slightly biased,
since they were not obtained by simulating the stationary Strauss process, but
by simulating the finite Strauss process on [−2r, 1 + 2r]2 and restricting the
realisations to [0, 1]2. As a check, we simulated the hard core process on a
larger window [−m, 1 +m]2 where m > 2r, again restricting the realisations to
[0, 1]2. The resulting estimates of λ, shown in Table 1, suggest that the bias is
small.
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Table 1

Validation of simulation strategy. Estimates of λ, obtained by exact simulation of the finite
Strauss process on [−m, 1 +m]2 and clipping to [0, 1]2, are compared for different values of

the margin m, to check that the policy m = 2r is adequate

β γ r m λ̂ se

100 0 0.05 2r = 0.1 58.627 0.062
1 58.648 0.061

100 0 0.10 2r = 0.2 29.007 0.034
0.5 28.997 0.053

6. Discussion and Conclusions

We proposed an approximation to the intensity of a Gibbs point process. We
believe this approximation is new. It may already be known in the statistical
physics community, but we are unaware of any relevant literature. The idea was
described briefly by the first author in [1, p. 360] and independently in unpub-
lished work by Hahn [21]. An analogous approximation for the mean vacancy of
a hard core disc model is described by Bondesson and Fahlén [5].

The self-consistency equation (11) is analogous to the self-consistency (or
‘closure’) equation which leads to the Percus-Yevick [37] approximation to the
pair correlation function. In a sense our approximation is the counterpart, for
first moments, of the Percus-Yevick approximation for second moments.

The new approximation was only evaluated for pairwise interaction processes
of purely inhibitory type, i.e. those for which g(·) ≤ 1. It would be of interest
to explore other pairwise interaction models such as the Lennard-Jones [27]
interaction. Simulation of these models is more computationally-intensive, and
they will be studied elsewhere.

The new approximation was defined for a general Gibbs process, but com-
puted only for pairwise-interaction processes. For other Gibbs processes, the
existence and uniqueness of the solution to (11) needs to be verified. At least
for models with conditional intensity of the form λ(u,x) = exp(−θV (u,x)) this
is relatively straightforward, as it reduces to determining certain properties of
the moment generating function of V (0,X) for a Poisson process of intensity λ,
as a function of λ. However, algorithms for numerical solution of (11) may in
general require Monte Carlo simulation of V (0,X).

Possible uses for the new approximation (15) were mentioned in the Intro-
duction. These will be canvassed in a sequel paper. Most of the interesting
examples involve an extension of the approximation to the non-stationary case.
The non-stationary analogue of (14) is a straightforward integral equation. How-
ever, numerical solution of the integral equation requires additional techniques,
which we discuss elsewhere.

In statistical physics the mean field approximation is known to be inadequate
for studying phase transitions of molecular gas models, because its asymptotic
behaviour is qualitatively different from the true asymptotic behaviour of the
models. This is reflected in Figure 1 in which, as the interaction parameter γ
tends to zero, corresponding to a hard core process, the mean field approxi-
mation to the intensity λ converges to 0, while the true intensity is manifestly



1166 A. Baddeley and G. Nair

non-zero. Our approximation to the intensity shares the same qualitative be-
haviour as the true intensity, and so could be useful for qualitative study of
Gibbs models.

The mean field approximation can be justified by a variational argument,
outlined at the start of Section 4. We have not been able to find a corresponding
justification for our new approximation. Perhaps one could be found using the
specialised variational calculus for Poisson processes [30].
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