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Abstract Image deblurring is essential in high resolution

imaging, e.g., astronomy, microscopy or computational pho-

tography. Shift-invariant blur is fully characterized by a sin-

gle point-spread-function (PSF). Blurring is then modeled

by a convolution, leading to efficient algorithms for blur

simulation and removal that rely on fast Fourier transforms.

However, in many different contexts, blur cannot be consid-

ered constant throughout the field-of-view, and thus necessi-

tates to model variations of the PSF with the location. These

models must achieve a trade-off between the accuracy that

can be reached with their flexibility, and their computational

efficiency.

Several fast approximations of blur have been proposed

in the literature. We give a unified presentation of these

methods in the light of matrix decompositions of the blur-

ring operator. We establish the connection between differ-

ent computational tricks that can be found in the literature

and the physical sense of corresponding approximations in
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Genis Laval CEDEX, France; CNRS, UMR 5574, Ecole Normale

Supérieure de Lyon, F-69007 Lyon, France

E-mail: {eric.thiebaut,ferreol.soulez}@univ-lyon1.fr

terms of equivalent PSFs, physically-based approximations

being preferable. We derive an improved approximation that

preserves the same desirable low complexity as other fast al-

gorithms while reaching a minimal approximation error.

Comparison of theoretical properties and empirical per-

formances of each blur approximation suggests that the pro-

posed general model is preferable for approximation and in-

version of a known shift-variant blur.

Keywords Blur · Deconvolution · Inverse Problems ·
Image Restoration · PSF

1 Introduction

Image deconvolution is widely used to enhance the resolu-

tion, signal-to-noise ratio and contrast of blurred images.

This well studied problem is classically stated as the min-

imization of a suitable cost function composed of a data fi-

delity and regularization terms Titterington (1985); Demo-

ment (1989). The best restored image f⋆ reaches a compro-

mise between fidelity to the data g and some priors:

f⋆ = arg min
f

{

Ψdata(f ,g)+µΨprior(f)
}

, (1)

where Ψdata is a likelihood term derived from the noise

statistics and the image formation model, Ψprior(f) is a reg-

ularization term which has to be minimized to enforce the

priors and µ > 0 is a tuning parameter used to set the rela-

tive level of the priors.

As far as a small field-of-view is considered, the point

spread function (PSF) can be considered as shift-invariant;

as a result blurring amounts to a convolution. In many cases,

however, blur is space-variant and thus cannot be modeled

by a single convolution.

Blur variations across an image can be due to several

causes: relative motion between the camera and the scene;
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moving objects with respect to the background; variable de-

focusing of non planar scenes with some objects located in

front of, or behind the in-focus plane; optical aberrations

such as space-variant distortions, vignetting or phase aber-

rations. Occlusion phenomena occur, e.g., when some ob-

jects are in relative motion with respect to the scene’s back-

ground, or due to parallax when a camera moves during ac-

quisition, or with object masking in scenes displaying vary-

ing defocus blurring. There, however, exists a fundamental

distinction between configurations with and without occlu-

sion: occlusions arise from the 3-D geometry of the scene,

thus a blurred image can not be related to a single planar

crisp image. Occlusions are generally handled by composit-

ing layers using their associated alpha matte (i.e., opacity

image), see Porter and Duff (1984). The matting process,

i.e., the extraction of foreground and alpha images is well

studied for crisp images Chuang et al (2001); Wang and

Cohen (2007). Deblurring images with space-variant blur

involving occlusions requires a simultaneous recovering of

the layers of crisp images and transparency channels, which

is much more challenging, see Levin (2007); Almeida and

Almeida (2009); Chakrabarti et al (2010).

The focus of this paper is shift-variant blur without

occlusion. Several applications with practical interest in-

deed suffer from smooth blur variations, i.e., occlusion-

free phenomena. They include 3-D microscopy, as described

in Preza and Conchello (2004), astronomy with adaptive-

optics correction Cresci et al (2005), or wide-field imaging,

to name a few. Our focus on occlusion-free phenomena is

justified by a methodological concern: PSF variations within

the observed field are handled in a completely different way

when multi-layer compositing is used compared to single-

layer space-variant blurring. In the case of multiple layers,

PSF are defined independently for each layer, and opaci-

ties (alpha values) locally govern which layer is visible, and

hence, the local PSF. Occlusion-free blur requires modeling

smooth PSF variations across the field. Any progress in this

direction will be beneficial to matting-based occlusion mod-

eling by handling blur variations within each layer.

While accurate modeling of PSF variations is essential

for restoration, iterative deblurring techniques demand fast

blurring computation. Blur models must address the two

competing objectives of being fast and accurate.

State of the art: When PSFs have very small supports, com-

putation of the blurring operator can be done in the spatial

domain, see for example Sorel and Flusser (2008); Whyte

et al (2010). PSF with wider supports require blur approxi-

mations. The most straightforward approach to shift-variant

blur modeling is by decomposition of the observed field

into small-enough regions so that the PSF may be consid-

ered invariant within each region. Thus these regions can

be handled as usual with shift-invariant blur by computing

(FFT-based) convolutions, see Sec. 2.2. Such an approach

however generates important artifacts at the region bound-

aries due to PSF discontinuities. In order to reduce these

artifacts, Nagy and O’Leary (1998) propose to smooth out

the transitions by interpolating between blurred images ob-

tained by convolutions with different PSF. This modifica-

tion is a strong improvement on piecewise constant PSF

modeling for a reasonable additional computational cost

(about 4 times more in 2D). This approach lacks physical

basis in that it is not related to a natural approximation of

PSFs; we show in Sec. 3 that a re-ordering of the opera-

tions (namely, weighting before convolving) improves the

approximations without increasing the complexity. This for-

mulation has been independently suggested in Gilad and

Hardenberg (2006); Hirsch et al (2010). We have shown in

Denis et al (2011) that it is a natural consequence of PSF

interpolation. We recall this result in section Sec. 2.3. A dif-

ferent perspective is followed by Flicker and Rigaut (2005)

and Miraut and Portilla (2012), see Sec. 2.4, where PSF are

decomposed on a few modes computed by principal com-

ponent analysis. While this paper was under review, we be-

came aware of recent works that use wavelet transforms to

efficiently encode the shift-variant blurring operator: Wei

et al (2014); Escande and Weiss (2014). These approaches,

not reviewed in details here, offer an appealing trade-off

between accuracy and speed, at the cost of a rather intri-

cate relationship between the PSFs and the approximated

blurring operator. Finally, rather than modeling shift-variant

blur, Maalouf et al (2011) computes several shift-invariant

deconvolutions and interpolates the results. Although blur is

incorrectly modeled, satisfactory results are shown with this

crude approach on some microscopy images.

Our contributions: This paper extends our conference pa-

per Denis et al (2011). We address the problem of defin-

ing fast and accurate models for space variant blur. In a dis-

crete setting, we show that this problem can be recast as a

matrix decomposition and approximation problem, thereby

providing a unified framework for the description of exist-

ing models. We bridge the gap between approaches based

on PSF interpolation and decomposition onto PSF modes by

defining an optimal local PSF approximation. Both theoret-

ical and practical performance of each model are compared.

The formulations of Gilad and Hardenberg (2006); Hirsch

et al (2010) appear better grounded and more effective in its

approximation of PSF variations than the original method

of Nagy and O’Leary (1998) that is still dominant in the

literature. The proposed optimal local PSF approximation

is shown to improve significantly (typically by an order of

magnitude) the approximation error without increasing the

computational cost.

Organization of the paper: Section 2 introduces the model-

ing of shift-variant blur. Existing models cited in the previ-
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ous paragraphs are described in the light of matrix decom-

positions. A new approximation with established optimal

trade-off between accuracy and computational efficiency is

introduced in Sec. 2.5. All these models are compared in

section 3 in terms of equivalent PSFs, preservation of physi-

cal properties, computational complexity, quality of PSF ap-

proximation and image restoration.

2 Approximations of shift-variant blur

Distortions caused by atmosphere turbulence, object / cam-

era relative motion, or the instrument (limited aperture, op-

tical aberrations) transform the original (crisp) image f into

a blurry one, g. A fairly general modeling of this transform

takes the form of a Fredholm integral equation of the first

kind:

g(r) =
∫

h(r,s) f (s)ds , (2)

where h denotes the PSF. The PSF h may be considered as

the conditional density p(r|s) describing the probability that

a photon entering the system at location s leaves it at loca-

tion r, see Richardson (1972). In some cases, the PSF is

shift-invariant (∀t, h(r,s) = h(r+ t,s+ t)), i.e., depends

only on the difference r− s. The right hand side of equa-

tion (2) is then a convolution and the system is referred to as

isoplanatic.

More generally, the PSF may vary smoothly with the in-

put location s. In order to distinguish true PSF variations

from simple shifts of the PSF h(r,s) due to changes in the

input location s, it will prove useful in the following to con-

sider un-shifted PSF defined by: k(r,s) = h(r+s,s). Equa-

tion (2) can then be rewritten under the form:

g(r) =
∫

k(r−s,s) f (s)ds . (3)

In the general case, the simulation of a blurred image by

evaluation of the integral (2) is computationally expensive.

As noted by Gilad and Hardenberg (2006), this evaluation is

highly simplified if a separable linear approximation of the

kernel is used:

k(r,s)≈ ∑
p

mp(r)wp(s) , (4)

where mp are components of the PSF model and wp are

weights depending on the location s. With constant weights

wp(s) = wp, the corresponding kernel would be shift-

invariant. By letting the weight wp(s) of each model mp

vary with the location s, a shift-variant model is obtained.

With this specific approximation, equation (2) simplifies to

a sum of convolutions:

g(r)≈ ∑
p

∫

mp(r−s) [wp(s) f (s)]ds

≡

[

∑
p

mp ∗ (wp f )

]

(r) (5)

where ∗ is the classical notation for convolution. Equation

(5) approximates the shift-variant operator as a sum of con-

volutions of weighted versions of the input image f . The

existence of fast algorithms for discrete convolution makes

this decomposition extremely useful. It will be central to all

approximations that will be studied henceforth.

We now introduce a discrete form for blurring operations

modeled by equation (2). Approximation of the discrete ver-

sion of the blurring operator can then be considered from

the point of view of matrix decomposition / approximation

problems. A linear approximation of the integral in equation

(2) leads to the following discrete linear model for blur:

g =H ·f , (6)

with g ∈R
N the N-pixels blurry image, f ∈R

M the M-pixels

crisp image, H ∈R
N×M the blurring operator, and · the ma-

trix product. The matrix H defining the discrete operator is

obtained by sampling the continuous operator h at locations

(ri)i=1,..,N and (s j) j=1,..,M:

Hi,j
1≤i≤N
1≤ j≤M

= h(ri,s j)∆ j , (7)

with ∆ j the elementary volume measure ensuring normaliza-

tion of H and possible non-uniform sampling of the input

field (s j) j=1,..,M . The jth column H ·, j corresponds to the

sampled PSF for a point-source located at s j.

Discretization (7) has some limitations. A more accurate

discretization of integral (2) can be obtained using general-

ized sampling theory, as recently described by Chacko et al

(2013). Let f int be the continuous image defined by using

the sequence of discrete coefficients f as weights of a set of

basis functions:

f int(s) = ∑
j

ϑ int
j (s)fj , (8)

with ϑ int
j a shifted copy of a certain “mother” basis function

ϑ int (e.g., B-splines). Coefficients f are typically chosen so

as to minimize the approximation error, i.e., the continu-

ous image f int corresponds to the orthogonal projection of

f onto the subspace spanned by basis functions ϑ int
j . More-

over, digitization of the blurred image by the sensor involves

integration on the sensitive area of the pixel that will be

modeled in the following way:

gi =
∫

ϑ
pix
i (r)g(r)dr , (9)
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with ϑ
pix
i a shifted copy of the pixel spatial sensitivity (e.g.,

indicator function of the sensitive area). Collecting together

equations (2), (8) and (9), we get the following set of equa-

tions for the f j coefficients:

gi ≈
∫

ϑ
pix
i (r)

∫

h(r,s) ∑
j

ϑ int
j (s)fj dsdr (10)

Thus the discrete operator H can be defined in a more gen-

eral form than in equation (7):

Hi,j
1≤i≤N
1≤ j≤M

=
∫∫

ϑ
pix
i (r)h(r,s)ϑ int

j (s)dsdr . (11)

In order to separate changes that modify the PSF from

shifts due to the displacement of the point source, we intro-

duce a matrix K that collects all un-shifted PSFs1, similarly

to the un-shifted kernel k introduced in the continuous case:

Ki,j
1≤i≤N
1≤ j≤M

=
∫∫

ϑ
pix
i (r)k(r−s,s)ϑ int

j (s)dsdr . (12)

Using separable linear approximations (see equation (4))

Ki,j ≈ ∑
p

mp(i)wp( j) ↔ K ≈ ∑
p

mp ·w
⊺
p (13)

provides decompositions of the shift-variant blurring opera-

tor as a sum of convolutions with prior weightings

H ≈ ∑
p

conv(mp) ·diag(wp) , (14)

where conv(mp) denotes the discrete convolution matrix

with kernel mp, diag(wp) is a diagonal matrix whose di-

agonal is given by vector wp, and symbol ⊺ denotes matrix

transpose.

Note that if the same kind of approximation were ap-

plied to the adjoint operator H⊺, operator H would then

be written as a sum of convolutions followed by spatial

weighting (rather than preceded by spatial weighting). It

would then resemble deformable filtering (a.k.a. steerable

filtering), as developed in the seminal works of Freeman

and Adelson (1991), Greenspan et al (1994) and Perona

(1995). The key principle of steerable filtering is the abil-

ity to compute quickly the (shift-invariant) filtering result

for any kernel orientation and size by simple linear combi-

nation of few pre-computed (shift-invariant) filtering outputs

with well-chosen convolution kernels. The extension of such

approaches to shift-variant filtering requires to approximate

the rows of discrete operator H (i.e., the integration kernels)

rather than its columns (i.e., the PSFs), which may be chal-

lenging since only PSF measurements are straightforward.

We refer the interested reader to Miraut and Portilla (2012)

1 this matrix can be considered as a dictionary of all PSFs.

for an extended discussion on shift-variant filtering in the

light of deformable filtering2.

We give in Table 1 an illustration of some K and H ma-

trices on very small-scale 1-D problems with Gaussian PSF.

Such representations show how the matrices are structured

and how their structure can be exploited to derive powerful

decompositions. In contrast to Fish et al (1996), matrices K

and H will neither be stored nor explicitly inverted in the

following.

2.1 Shift-invariant PSF

For a shift-invariant PSF, K is a rank-one matrix with iden-

tical columns equal to a single PSF k:

K = k ·1⊺ , (15)

where 1 denotes a vector of convenient length composed of

1. Operator H then corresponds to a discrete convolution.

While circular discrete convolutions are mapped to a simple

product by the discrete Fourier transform, discrete convolu-

tions require adequate zero-padding and cropping steps:

H ≡ conv(k) =R ·FFF−1 ·diag(k̂) ·FFF
︸ ︷︷ ︸

circular convolution

·E , (16)

where E is an expansion operator that adds zeros to the

edges of the input signal, R is a restriction operator that

truncates the input signal to the size of the visible field of the

output image, FFF and FFF−1 are the direct and inverse discrete

Fourier transforms, and k̂ is the discrete Fourier transform

of the PSF:

k̂ =FFF ·E ·k . (17)

Applications of operator H to an image f can then be very

efficiently computed using fast Fourier transforms (FFT).

Correct implementation of discrete convolutions (i.e.,

without periodization artifacts) is essential in all following

shift-variant blur approximations because they rely heav-

ily on discrete convolutions. While circular convolutions

applied to shift-invariant blurring generate artifacts located

mainly at the image borders, they would yield strong arti-

facts all over the image when applied to shift-variant models

of the form of equation (14).

In 1-D problems such as illustrated in the first row of

Table 1, convolution matrix H has a Toeplitz structure.

For 2-D problems, matrix H is Toeplitz-block Toeplitz and

Eq. (16) and Eq. (17) involve 2-D discrete Fourier trans-

forms. Matrix K is useful to exhibit PSF invariance com-

pared to the more intricate structure of matrix H .

2 in particular, the adjoint operator H⊺ of operator H defined in

equation (14) corresponds to a deformable filter
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Table 1 Decomposition schemes of PSF K and blurring operator H in different scenarios of PSF variations. Columns of matrices K and H

represent PSFs.

PSF variations matrix decomposition properties

Note: Matrix entries are represented as dots whose area is proportional to their magnitude. Negative values are displayed as circles.

invariant

(Sec. 2.1)

{
























K

=

























k

·

( )

1⊤

rank one

























H

= conv(k) discrete convolution

piecewise constant

(Sec. 2.2)

{
























K

=

























k1

·

( )

ι⊤
1

+

























k2

·

( )

ι⊤
2

low rank

























H

=

























conv(k1)

·

























diag(ι1)

+

























conv(k2)

·

























diag(ι2)

smooth

(Sec. 2.3)

{
























K

≈

























k1

·

( )

ϕ⊤
1

+

























k2

·

( )

ϕ⊤
2

+ · · ·+

























k4

·

( )

ϕ⊤
4

localized weights

























H

≈

























conv(k1)

·

























diag(ϕ
1
)

+ · · ·+

























conv(k4)

·

























diag(ϕ
4
)

low rank

(Sec. 2.4)

{
























K

≈

























u1

·

( )

σ1v
⊤
1

+

























u2

·

( )

σ2v
⊤
2

optimal global
approximation

























H

≈





























conv(u1)

·

























diag(σ1v1)

+





























conv(u2)

·





























diag(σ2v2)

smooth

(Sec. 2.5)

{
























K

≈

























c⋆
1

·

( )

w⋆

1

⊤

+

























c⋆
2

·

( )

w⋆

2

⊤

+ · · ·+

























c⋆
4

·

( )

w⋆

4

⊤

localized weights

optimal local
approximation

























H

≈

























conv(c⋆
1
)

·

























diag(w⋆

1
)

+ · · ·+

























conv(c⋆
4
)

·

























diag(w⋆

4
)
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2.2 Piecewise constant PSFs

Let us now turn to the case of PSFs that are shift-invariant

within regions defining a partition of the input field. Let P

be the number of these regions. There are then P different

PSF {k1, . . . ,kP} and K is now a rank-P matrix:

K =
P

∑
p=1

kp · ι
⊺
p . (18)

As illustrated in Table 1, the jth column of matrix K is

equal to PSF kp as long as s j is located in the pth region Rp

of the input field. The binary weights ιp define the indicator

vector:

ιp( j) =

{

1 if s j ∈ Rp ,

0 if s j /∈ Rp .
(19)

Within each region, operator H acts like a discrete con-

volution. It is naturally expandable as a sum of discrete con-

volution operations with prior weighting in order to restrict

each convolution to its specific region:

H =
P

∑
p=1

conv(kp) ·diag(ιp) . (20)

A given column h j of H (i.e., the system response to an

impulse at s j) is thus equal to the corresponding column

in the convolution matrix conv(kp), with p the index of

the region containing point s j. The order in which convolu-

tion and weighting are applied is essential: weighting first,

then convolution. The converse order is used in Nagy and

O’Leary (1998) and in many other subsequent works: Cal-

vetti et al (2000); Nagy et al (2004); Preza and Conchello

(2004); Bardsley et al (2006); Ng et al (2007); Rogers and

Fiege (2011). The resulting operator is however not equiv-

alent to H , as illustrated in Table 2 and further discussed

in section 3. We will denote these approximations under the

term image interpolation to emphasize the difference with

the PSF interpolation formulation described next.

2.3 Smoothly varying PSFs and their local approximation

In the applications discussed in the introduction, PSFs vary

smoothly across the field. In such cases, a PSF (e.g., col-

umn k j from K) can be well approximated by other PSFs

taken at nearby locations (columns kp such that ‖sp−s j‖ is

small). Let us select P of these columns {kp | p ∈GP}. Each

column of K is then approximated by the weighted sum of

P columns out of M (typically with P ≪ M):

K ≈ ∑
p∈GP

kp ·ϕ
⊺
p , (21)

Interpolation weights ϕp( j) are no longer constrained to

take binary values. Weights are spatially localized: they are

non-zero only on a spatial neighborhood surrounding loca-

tion sp. The extent of that neighborhood depends on the in-

terpolation order, it corresponds to a square twice the grid

step along each dimension for first order (linear) interpola-

tion.

Using this approximation, Eq. (14) becomes:

H ≈ ∑
p∈GP

conv(kp) ·diag(ϕp) . (22)

Weights localization makes decomposition of Eq. (22) very

suitable for computations: in this way, full-field convolution

computations are not necessary since the preceding weight-

ing operation introduces zeros everywhere except on patches

with size twice the grid step. This consideration led Hirsch

et al (2010) to suggest to use Eq. (22) for shift-variant blur.

The connection with PSF interpolation is however, to the

best of our knowledge, not clearly stated in the literature.

We further discuss the consequences of this connection in

Sec. 3 where formulation (22) is compared with the non-

equivalent image interpolation formulation introduced by

Nagy and O’Leary:

H ≈ ∑
p∈GP

diag(ϕp) · conv(kp) , (23)

in words, convolve then weight.

2.4 Low-rank approximation on PSF modes

It is often adequate to consider that PSF variations are well

captured by a few number of modes; or in an equivalent

way, that K, being a concatenation of PSFs, has low-rank.

A rank-P approximation of matrix K can be expanded as a

sum of P rank-one matrices:

K ≈
P

∑
p=1

cp ·w
⊺
p . (24)

The approximation error on K can be expressed as the

sum of squared differences between corresponding elements

in matrix K and its approximation:

E
2(A,B)≡ ‖A−B‖2

F = ∑
i, j

(Ai, j −Bi, j)
2 . (25)

where ‖‖F designates what is known as Frobenius norm.

In terms of PSF, it is equivalent to the sum of squared

Euclidean distances between corresponding PSF (i.e.,

columns) in K and its approximation.

By Eckart–Young theorem, the closest rank-P approxi-

mation (with minimum error E 2) can be obtained from the

singular value decomposition (SVD) of matrix K (Martin

and Porter (2012)):

K =U ·Σ ·V ⊺ =
N

∑
p=1

up ·σpv
⊺
p , (26)
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Table 2 Comparison of two non-equivalent formulations for shift-variant blur approximation: Approximation is far better using a decomposition

that first applies a weighting, then convolves, rather than the converse as proposed originally in Nagy and O’Leary (1998). The curves represent

respectively the exact and approximate PSFs with solid lines (resp. dashed lines), sampled at locations s1 to s10. Larger errors are observed in the

left panel.

Convolve, then weight Weight, then convolve

References Nagy and O’Leary (1998); Calvetti et al (2000); Nagy et al (2004); Preza and

Conchello (2004); Bardsley et al (2006); Ng et al (2007); Rogers and Fiege

(2011)

Flicker and Rigaut (2005); Hirsch et al (2010); Denis et al (2011); Ben Hadj and

Blanc-Féraud (2012); Ben Hadj et al (2012) and Eq. (20), (22), (28) and (38)

Decomposition H ≈

P

∑
p=1

























diag(wp)

·

























conv(cp)

H ≈

P

∑
p=1

























conv(cp)

·

























diag(wp)

Recentered PSF

approximations

ki

PSF error (× 4)

Properties interpolates blurred images interpolates PSF

preserves positivity preserves positivity

- breaks PSF symmetry + preserves PSF symmetry

- breaks PSF normalization + preserves PSF normalization

same computational complexity

by retaining only the first P left and right singular vectors,

weighted by the corresponding (largest) singular values:

K ≈
P

∑
p=1

up ·σpv
⊺
p , (27)

with up and vp the p-th left and right singular vectors,

and σp the corresponding singular value. In contrast to bi-

nary weights of piecewise constant PSF, or localized weights

used when interpolating a PSF, components of vectors vp

take arbitrary values (positive or negative) and are defined

over the whole input field. Vectors up can no longer be in-

terpreted as PSF (no natural normalization3 nor positivity),

but rather as PSF modes as obtained by principal component

analysis, see Table 1.

3 PSF normalization is generally understood in the context of prob-

ability density functions: summation of the PSF must be equal to 1 for

energy preservation, while it is the (Euclidean) norm of the left singular

vectors up that is taken to be 1.

Decomposition of operator H follows directly from ap-

proximation K by reasoning as for Eq. (20) and Eq. (22):

H ≈
P

∑
p=1

conv(up) ·diag(σpvp) . (28)

Since weights σpvp are not localized, P full-field convolu-

tions must be computed in this approximation, potentially a

large computational load when P ≫ 1.

The decomposition given by Eq. (28) has been proposed

in Flicker and Rigaut (2005) and Miraut and Portilla (2012).

2.5 Proposed optimal local approximation

Low-rank decomposition of Eq. (27) is appealing because

it is optimal with respect to error E 2. The corresponding

weights are however not localized, increasing the compu-

tational cost in proportion with the number of added PSF

modes. PSF interpolation approach is preferable in this re-

gard since weights localization prevents the computation
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Fig. 1 2D illustration of shift-variant blur approximations: one of the convolution kernels and weights used with (a) piecewise constant PSF,

Sec. 2.2; (b) interpolated PSF, Sec. 2.3; (c) decomposition on PSF modes, Sec. 2.4; (d) proposed optimal local approximation, Sec. 2.5. In (b)

and (d), weights are non-zero only on a small region drawn with a dashed line (for visualization purposes, a 4×4 grid of PSF is considered here,

weights are much more localized with denser PSF grids).

of full-field convolutions, saving computational effort espe-

cially for small PSF supports. Let us describe an intermedi-

ate solution that, while keeping localized weights, is optimal

with respect to error E 2. We define an optimal local approx-

imation of matrix K:

K ≈
P

∑
p=1

c⋆p ·w
⋆
p
⊺ , (29)

where PSF {c⋆p}
P
p=1 and weights {w⋆

p}
P
p=1 are optimal solu-

tions in the following minimization problem:

{
c⋆p,w

⋆
p

}P

p=1
= arg min
{cp,wp}

P
p=1

E
2

(

K,
P

∑
p=1

cp ·w
⊺
p

)

. (30)

Without constraint on the support of weights wp, the solu-

tion to Eq. (30) is given by the truncated SVD (Eq. (27)). We

however restrict minimization to the support of interpolation

weights supp(ϕp):

∀p, supp(wp)⊂ supp(ϕp) , (31)

for a fixed PSF interpolation scheme {ϕ1, . . . ,ϕP}, see Fig-

ure 1.

Eq. (30) is a biconvex minimization, as defined

by Gorski et al (2007), for which a partial optimum can be

found by alternate convex search. Let us describe how each

minimization sub-problem is solved.

Computation of optimal PSF: We consider fixed weights

wp, gathered into a single matrix W :

W =





| | |
w1 w2 · · · wP

| | |



 . (32)

Let C be the matrix whose columns are vectors cp:

C =





| | |
c1 c2 · · · cP

| | |



 . (33)

Decompositions (29) and (30) can be rewritten as a single

matrix product:

P

∑
p=1

cp ·wp
⊺ = C ·W ⊺ . (34)

The matrix C⋆ of optimal vectors c⋆p, given the weights, is:

C⋆ = arg min
C

‖K−C ·W ⊺‖2
F

=K ·W · (W ⊺ ·W )−1 . (35)

Proof Frobenius norm can be rewritten using the trace func-

tion:

‖K−C ·W ⊺‖2
F = tr[(K−C ·W ⊺) · (K−C ·W ⊺)⊺]

whose expansion gives a constant term plus two terms de-

pending upon C, whose derivation with respect to matrix C

is:

2
∂

∂C
tr(K ·W ·C⊺) = 2K ·W ,

and

∂

∂C
tr(C⊺ ·W ·W ·C⊺) = 2C ·W ⊺ ·W ,

giving the classical normal equations:

C ·W ⊺ ·W =K ·W .

proving (35). ⊓⊔

In most cases a PSF has a support which is much smaller

than the observed field. Let L be the number of pixels in the

PSF support, N and M the number of pixels of the blurry

and original images respectively. Matrix K can be reduced

to a L×M matrix by discarding the N − L lines of zeros.

Matrix C is then L×P and matrix W is M×P. Eq. (35) in-

volves the inversion of a small P×P matrix and computing

products involving matrix W . These products are efficiently

computed by skipping the many zeros in W due to the re-

stricted supports of the weights (constraint of Eq. (31)).
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Fig. 2 Shift-variant blur applied to an image with 4 different models: (a) the model of Nagy and O’Leary (1998) first convolves image regions

with different PSF and then interpolates the blurry results; (b) Flicker and Rigaut (2005) approximate local PSF on few PSF modes, the image is

thus weighted according to the importance of each mode in the decomposition before convolving with PSF modes; (c) we show in this paper that

interpolating PSF leads to the model proposed by Hirsch et al (2010), image blocks are first weighted according to the interpolation kernel, then

convolved by the PSF; (d) the proposed optimal local approximation of PSF follows the same procedure, with weights and PSF that are chosen so

as to minimize approximation error.

Computation of optimal weights: Weights updating requires

a minimization of the error E 2 subject to the support

constraint of Eq. (31). Direct computation of the optimal

weights matrix W as done for C in Eq. (35) would give

non-zero values outside the supports. In fact, only few non-

zero weights are used to form the approximation of a given

PSF K ·, j. These weights are computed independently from

weights at other locations. They are obtained by projection

of PSF K ·, j on the subspace spanned by active PSFs in C,

as detailed below.

With the local approximation of Eq. (29), element Ki, j is

approximated by:

Ki, j ≈
P

∑
p=1

c⋆p(i) w⋆
p( j) . (36)

A given weight w⋆
p( j) has a global influence on the jth col-

umn of K. For any fixed j, only a few w⋆
p( j) are non-zero

due to weights localization, typically 2d in d dimensions for

supports corresponding to linear interpolation. Let C ′
j be the

sub-matrix obtained by discarding all columns cp of C with
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index p outside the support of the interpolation weights (i.e.,

such that ϕp( j) = 0). Let the weights inside the support be

denoted ω j (i.e., weights allowed to be non-zero), then col-

umn K ·, j is approximated by C ′
j ·ω j. In contrast to Eq. (34),

the product C ′
j ·ω j involves only weights inside the support.

Optimal weights estimation boils down to a least squares

formulation:

ω⋆
j = arg min

ω j

‖K ·, j −C ′
j ·ω j‖

2
2

= (C ′
j
⊺
·C ′

j)
−1 ·C ′

j
⊺
·K ·, j . (37)

Since matrix C ′
j is constant within a cell of the interpolation

grid, Eq. (37) gives the weights of a cell (i.e., intersection of

the supports of interpolation kernels; see an illustration of a

support drawn with a dashed line in Fig. 1). C ′
j
⊺
·C ′

j is a

very small 2d ×2d matrix (dimension d = 2 for 2D images).

To summarize, minimization of the approximation error

is performed by an alternate update of vectors c⋆p with equa-

tion (35) and weights w⋆
p with equation (37). Starting from

PSFs and weights given by the model of linear PSF interpo-

lation described 2.3, each step of the alternate optimization

further improves the accuracy of the model until a partial op-

timum is reached. In practice, only a few iterations are nec-

essary to bring significant improvement (10 iterations where

used to get the results illustrated in this paper).

The shift-variant blurring operator H is approximated

following the decomposition of Eq. (28):

H ≈
P

∑
p=1

conv(c⋆p) ·diag(w⋆
p) . (38)

Optimal vectors c⋆p and optimal weights w⋆
p can be com-

puted beforehand (i.e., for a given PSF model H). The com-

plexity of approximation (38) is the same as Eq. (23).

Figure 2 illustrates how the different models for a

smoothly varying blur are applied on an image. Approaches

(a), (c) and (d) process small blocks, while the method of

Flicker and Rigaut (2005) that approximates PSFs on few

modes operates on the whole image. When PSF variations

can not be captured accurately using only the first PSF

modes, this latter approach is time consuming; approaches

based on local processing of image blocks are preferable.

The method of image interpolation depicted in Fig. 2(a) is

based on the fact that an image with varying blur can be

obtained by interpolating between several blurred images

computed by convolution with different PSFs. Approximat-

ing the blur with PSFs that are (linearly) interpolated from

PSFs that are sampled on a grid, as described in section 2.3,

leads to the method illustrated in Fig. 2(c). We showed that

it is equivalent to the method of Hirsch et al (2010). The

proposed optimal local approximation of blur is applied in

the same way as the model of Hirsch, using only optimal

weights and PSF instead of interpolation weights and sam-

pled PSF.

3 Comparison of blur approximations

Let us now compare the different blur approximations that

have been introduced on the standpoint of preservation of

PSF properties (e.g., positivity or symmetry), computational

efficiency, approximation error, or deblurring quality.

3.1 Equivalent PSF

In the literature devoted to shift-variant blur approximations,

the main subject is computational efficiency; most often, the

equivalent PSF is not considered. It is however essential to

relate a given approximation method with the correspond-

ing approximation in terms of PSF. Some approximations

preserve important properties of the original PSF such as

normalization, symmetry and positivity. We begin by giving

the expression of an equivalent PSF for each model. We then

review in section 3.2 the properties preserved by some of the

models.

Equivalent PSF for each method: The (centered) PSF k j for

a point source located at s j is approximated by an equivalent

PSF k̃ j that depends on the model:

With a shift-invariant PSF model (Sec. 2.1):

k̃
(Cst)
j = k ; (39)

with a piecewise constant PSF model (Sec. 2.2):

k̃
(PCst)
j = kp , with p such that ιp( j) = 1; (40)

with a model based on PSF interpolation (Sec. 2.3):

k̃
(PSFInterp)
j = ∑

p∈GP

ϕp( j) ·kp , (41)

where ϕp( j) are interpolation weights;

with the model of image interpolation:

k̃
(ImageInterp)
j = ∑

p∈GP

diag
(
ϕ→ j

p

)
·kp , (42)

where ϕ
→ j
p (i) is the interpolation weight at location ri+s j,

see derivation in Appendix A;

with a model based on decompositions on modes (Sec. 2.4):

k̃
(Modes)
j = ∑

p

σpvp( j) ·up ; (43)

and finally, with the optimal local approximation proposed

in Sec. 2.5:

k̃
(OptLoc)
j = ∑

p

w⋆
p( j) ·c⋆p . (44)
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Table 3 Summary of the main properties of shift-variant blur models (P is the number of terms in the approximation)

Method Reference Assumptions Properties Complexity

(convolutions)

interpolate deconvolution results [A] slow PSF variations − no shift-variant PSF model ≈ P

piecewise constant PSF Sec. 2.2 large isoplanatic regions − strong boundary artifacts ≈ 1⋆

convolve, then apply linear weighting [B], Eq. (23) smooth PSF variations + preserves PSF positivity ≈ 4 in 2D⋆

+ interpolates PSF,

use linear weighting, then convolve [C], Sec. 2.3 smooth PSF variations + preserves PSF positivity, ≈ 4 in 2D⋆

normalization and symmetry

decompose on PSF modes [D], Sec. 2.4 PSF captured by few modes + optimal global approximation P

use optimal weighting, then convolve Sec. 2.5 smooth PSF variations + optimal local approximation ≈ 4 in 2D⋆

⋆if PSF support is small compared to the size of the regions; for approximations involving the 4 nearest PSFs

References: [A] Maalouf et al (2011); [B] Nagy and O’Leary (1998); [C] Hirsch et al (2010); [D] Flicker and Rigaut (2005)

3.2 Properties

Depending on the approximation method, the equivalent

PSF may fulfill some desirable properties that we list now.

Positivity: PSF of systems based on intensity measurements

are necessarily positive-valued: ∀(i, j), Ki, j ≥ 0.

Equivalent PSF with shift-invariant or piecewise con-

stant models are naturally positive. Models based on PSF

interpolation or image interpolation also preserve positiv-

ity as long as interpolation weights ϕ are positive. This is

in particular the case with linear interpolation. PSF modes

are positive- and negative-valued; thus approximations us-

ing PSF modes are not guaranteed to preserve positivity.

Positivity is not enforced by the proposed local approxima-

tion; this can be done by restating criterion (30) under the

form of constrained optimization.

Normalization: The incoming flux at location s j is spread

over the support of the PSF h(·,s j) during the image for-

mation process. If the system is flux-preserving, the sum of

PSF coefficients should be equal to one: 1⊺h j = 1. In prac-

tice, there are some losses in the system; more flux may be

lost on the border of the field-of-view than in the center, a

phenomenon called “vignetting”. Correction of this space-

variant attenuation requires an accurate modeling of the to-

tal collected flux for each input location, i.e., for all j the

sums 1⊺h j, or equivalently, the sums 1⊺k j.

A shift-invariant PSF model can only account for a sys-

tem without space-variant attenuation, as will be illustrated

in section 3.5. A piecewise constant PSF model will account

for piecewise constant changes of the attenuation; it requires

a partitioning into very small regions to model smooth

changes. Models based on the interpolation of PSF using

positive interpolation weights lead to equivalent PSF with

sum 1
⊺k̃

(PSFInterp)
j = ∑pϕp( j)1⊺kp. These models then ac-

count for variable attenuation by interpolating the attenua-

tion of each sampled PSF kp. In a system with flux con-

servation, the equivalent PSF conserves the norm of sam-

pled PSF. By contrast, the model based on image interpola-

tion does not preserve summation, even in the case of posi-

tive weights where 1⊺k̃
(ImageInterp)
j = ∑p,i ϕ

→ j
p (i) ·kp(i). Ta-

ble 2 summarizes the differences between the widespread

model with image interpolation and approaches such as PSF

interpolation. It can be observed in the simple case of a

Gaussian PSF with standard deviation proportional to lo-

cation s that the equivalent PSF over-estimates the actual

PSF close to s1, and under-estimates it near s10 (so that

‖k̃
(ImageInterp)
1 ‖1 > ‖k1‖1 and ‖k̃

(ImageInterp)
10 ‖1 < ‖k10‖1).

Invariance: In many models, the PSFs exhibit some invari-

ance property. Let K be an un-shifted PSF invariant with

respect to a linear transform T that preserves un-shifted

PSFs: ∀ j, T ·k j = k j. Operator T may represent for exam-

ple a symmetry, or a rotation. Needless to say, shift-invariant

and piecewise constant PSF models that approximate matrix

K with columns sampled from K preserve the invariance

with respect to transform T . The model based on PSF in-

terpolation also preserves this invariance since column k j

is approximated by a linear combination of columns sam-

pled from K. By linearity, T · k̃
(PSFInterp)
j is then equal to

k̃
(PSFInterp)
j , i.e., the equivalent un-shifted PSFs are also in-

variant with respect to transform T . By contrast, the model

based on image interpolation that applies varying weights

to each sampled PSF does not preserve the invariance prop-

erty. This can be again noticed on Table 2 where the refer-

ence shift-variant PSFs are Gaussian functions and the ap-

proximation arising from the image interpolation approach

displays some asymmetry, unlike the interpolation model

k̃
(PSFInterp)
j . The approximation based on a decomposition on
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PSF modes does preserve invariance properties. Equivalent

PSF k̃
(Modes)
j are defined in a subspace of the column space

of matrix K. Each k̃
(Modes)
j could then be re-written as a lin-

ear combination of columns of K, and thus is unchanged af-

ter application of transform T . Finally, the optimal local ap-

proximation method proposed in section 2.5 also preserves

invariance properties. The equivalent un-shifted PSF at lo-

cation s j is defined as a linear combination of vectors c⋆p.

These vectors necessarily lie in the column space of matrix

K. Otherwise, the rank of K would increase, in contradic-

tion with the optimality of error E 2.

3.3 Computational complexity

The inversion of shift-variant blur requires many evalua-

tions of the approximate blur model. Each approximation

discussed in section 2 requires a different computational ef-

fort which is analyzed in this section, regardless of the ap-

proximation quality that will be studied in the next section.

Table 3 summarizes the properties of each model.

Approximating shift-variant blur by an average shift-

invariant PSF is the crudest but fastest method and will be

considered as a reference. Let t denote the time required to

perform such a convolution for a given image with M pixels

and a PSF with a rectangular support of L pixels. The pro-

cessing time of a piecewise constant PSF model, i.e., con-

stant inside rectangular regions, is also of order t if L ≪ M

(so that the overhead required to compute values at the outer-

border of the regions is negligible). Models based on PSF

interpolation have a complexity that depends on the number

of dimensions d along which PSFs vary (typically, d = 1, 2

or 3) and on the interpolation order o. With first-order inter-

polation and 2D shift-variant blur, PSFs are approximated

by bi-linear interpolation; there are 22 non-zero terms in the

sum of equation (22). More generally, there are (o+1)d non-

zero terms and if outer-border computations are negligible

(the support of weights ϕp being large compared to the sup-

port of the PSF), the total computation time is ≈ t×(o+1)d .

A more accurate expression for complexity can be given.

Let us consider a rectangular grid of P PSF sampled uni-

formly. The number of pixels of the crisp image is M, the

number of pixels in the support of the PSF is L, and the

number of pixels inside a grid cell is on average M/P. Due

to the overlap of interpolation weights, each convolution

in equation (22) is carried on (o + 1)d cells. These con-

volutions can be computed using fast Fourier transforms

(FFT) with an appropriate padding with L1/d zeros along

each dimension. FFTs are then computed on areas of about

[(o + 1)× (M/P)1/d + L1/d ]d pixels. Since the whole op-

erator involves P such computations, the total complexity

is of order Pd [(o + 1)× (M/P)1/d + L1/d ]d log[(o + 1)×

(M/P)1/d +L1/d ]. If the PSF support is much smaller than

Table 4 Computation time relative to a simple convolution for an

approximation of operator H based on linear interpolation of PSF

(Sec. 2.3): (a) 5122 pixels image, with 31×31 pixels PSFs; (b) 10002

pixels image, with 101×101 pixels PSFs. On our 3.3 GHz Intel Xeon

Processor, a simple convolution takes 19 ms for a 5122 pixels image

(case a) and 43 ms 10002 pixels image (case b).

PSF grid: 5×5 10×10 20×20

case (a): 3.7 2.4 3.2

case (b): 4.2 15 39

each cell of the grid of PSF (L ≪ M/P), the complexity is of

order (o+1)d ×M logM, i.e., it corresponds to (o+1)d full-

size convolutions (with first-order interpolation, it yields a

multiplication by 2d , where d = 1, 2 or 3 is the dimension).

With very big PSF supports (L ≫ M/P), the complexity

rises to P full-size convolutions.

The method based on image interpolation and ours have

the same complexity as the method described for PSF inter-

polation since convolutions are computed on areas that have

similar sizes. By contrast, the decomposition on PSF modes

described by Flicker and Rigaut (2005) does not enforce lo-

calization of weights. Thus, each of the P convolutions must

be computed on the full image support, which is much more

costly.

The size of the regions affects the efficiency of FFTs and

other operations, which is not visible from the asymptotic

computational complexity analysis. Smaller regions better

fit into the different levels of memory cache; thus, it may be

beneficial to use a finer grid of PSFs, as illustrated in table

4 case (a); larger PSFs involve much larger border effects

and rapidly increasing computational times when the grid is

refined, as illustrated in case (b).

Implementations of the approximations of shift-variant

blur can benefit from parallelism at different levels: SIMD

instructions for FFT and multiplications and additions,

multi-threaded FFT supported by FFT libraries such as

FFTW described in Frigo (1999), and coarse-grained par-

allelism where each term of the sum is computed in parallel

in a different thread. In our implementation, we used both

SIMD instructions and coarse-grained parallelism. Table 5

shows that our code scales well with the number of CPU

cores: an average speedup of 5.3 is measured with 6 cores

in our experiments. Using the same parallelization strategy

for the image interpolation approach and the optimal method

proposed in section 2.5, we reach similar timings.

3.4 Approximation error

The computational complexity should not be dissociated

from the approximation error achievable by each model.

Let us first discuss about the ability of each model

to exactly match the reference shift-variant operator when
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Table 5 Average computation time for an approximation of operator

H based on linear interpolation of PSF (Sec. 2.3): (a) 5122 pixels im-

age, with 31×31 pixels PSF; (b) 10002 pixels image, with 101×101

pixels PSF (Intel Xeon Processor with 6 cores). The speedup factor

relative to a single-threaded computation is placed between brackets.

nb. of cores: 1 2 4 6

PSF grid time in ms (speedup gain w.r.t. one core)

5×5 71 37 (1.9) 19 (3.7) 14 (5.1)

(a) 10×10 46 22 (2.1) 11 (4.2) 8 (5.8)

20×20 60 30 (2.0) 15 (4.0) 11 (5.5)

5×5 182 97 (1.9) 57 (3.2) 47 (3.9)

(b) 10×10 636 325 (2.0) 170 (3.7) 117 (5.4)

20×20 1680 850 (2.0) 435 (3.9) 293 (5.7)

enough terms are used for the approximation. The piecewise

constant PSF model matches the reference operator H when

the number of terms P equals the number of input pixels

M. Each region is then restricted to a single pixel and in-

dicator vectors ι j are elements e j from the canonical basis

(i.e., for all (i, j), e j(i) = 0 when i 6= j and e j(i) = 1 when

i = j). Similarly, using interpolation weights ϕ j restricted

to a single pixel with ϕ j = e j gives a PSF interpolation

model that exactly matches the operator H . By contrast, the

model based on image interpolation with the same interpola-

tion weights produces an approximation of operator H with

an error that is bounded from below (with the consequence

of a systematic irreducible error). Setting the interpolation

weight ϕ j equal to the values e j in the expression of the

equivalent PSF given in equation (42), one obtains:

lim
ϕ j→e j

k̃
(ImageInterp)
j (i) = k(ri,

sq
︷ ︸︸ ︷

ri +s j)∆ j
︸ ︷︷ ︸

kq(i)

6= k(ri,s j)∆ j
︸ ︷︷ ︸

k j(i)

.

(45)

In the extreme case of a grid of PSF with the same density

as the pixel grid, i.e., with as many terms as pixels in the im-

age for the model based on image interpolation, the equiv-

alent PSF does not correspond to the reference PSF. Only

the central value (ri = 0) of the equivalent PSF matches that

of the reference PSF. Other values are sampled from PSFs

located increasingly farther as the output location ri in the

PSF moves away from the PSF center. The model based on

image interpolation offers a similar computational cost as

PSF interpolation or optimal localized PSF/weights without

reaching perfect approximation with regions as small as a

single pixel. This is a serious reason for this model to be

disregarded.

Finally, the model based on a decomposition on PSF

modes provides an exact representation of the original op-

erator H as long as the number P of terms is at least equal

to the rank of H (at most min(M,N)). In the case of optimal

localized weights described in section 2.5, the approxima-

tion error is zero in the limit case already considered. The

Table 6 Zernike coefficients used in the “two phase-screens” shift-

variant simulation. Only non-zero coefficients are displayed.

aberration name Zernike coefficients

defocus a4 = 0.3 a′4 = 0.1
third order astigmatism a6 = 1.4 a′6 =−1.4

third order spherical a11= 0.1 a′11=−0.02

fifth order coma a16= 0.05 a′16= 0

fifth order coma a17= 0.02 a′17= 0

fifth order spherical a22=−0.5 a′22= 0.5

choice c⋆j = k j and w⋆
j = e j for all j corresponding to the

PSF interpolation model indeed leads to a zero approxima-

tion error (E 2 = 0) and is thus a solution to the optimization

problem defined in equation (30).

In order to compare the different approximations of

shift-variant blur on a realistic case, we modeled an opti-

cal system with wavefront aberrations located in two dis-

tinct pupil planes, see Figure 3. These aberrations may come

from inhomogeneity of optical indices in the turbulent layers

of atmosphere crossed by light in ground-based astronomi-

cal observations, or from optical aberrations of a multi-lens

system. Depending on the incoming direction of the plane

wave created by a point source at infinity, the optical aberra-

tions do not sum up the same way, resulting in a shift-variant

blur. Partial pupil masking for large incident angles creates

an attenuation effect called vignetting. Variations of the in-

cidence angle of the incoming wave lead to changing tip-tilt

aberrations resulting in different shifts of the PSF centers.

Using Fraunhofer diffraction theory, Goodman (2008), the

PSF writes:

h(r,s) ∝

∣
∣
∣
∣

∫

Γ (ρ)exp

{

j

[

P(ρ)+2π
r ·ρ

λ

]}

dρ

∣
∣
∣
∣

2

, (46)

with Γ (ρ) the modulus of the complex pupil function:

Γ (ρ) = Π(ρ)Π(ρ−s/smax) , (47)

and with P(ρ) the aberrated phase:

P(ρ) = 2π
λref

λ ∑
k

[
akZk(ρ)+a′kZk(ρ−s/smax)

]
, (48)

where Zk is the k-th unnormalized Zernike polynomial as

defined in Mahajan (1994), ak and a′k are the Zernike coeffi-

cients of the first and second phase screens, s and r are an-

gular coordinates in radians, j stands for the imaginary unit,

Π(ρ) is the indicator function of a disk of unit radius cen-

tered at the origin: Π(ρ) equals one if ‖ρ‖2 ≤ 1, otherwise

Π(ρ) is zero, λ is the optical wavelength and λref = 546nm

is a reference wavelength. Coefficients {ak} and {a′k} used

in our numerical experiments are given in table 6.
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Fig. 3 Shift-variant blurring due to phase aberrations and vignetting: an incident plane wave is distorted according to phase aberrations of each

lens. In the center of the field (b), most phase aberrations are compensated. Farther from the center of the field, part of the incoming wave front is

masked (vignetting), and phase aberrations create a tilt and larger spread of the PSF.

Fig. 4 Grid of PSFs generated from the shift-variant model depicted in

Fig.3. Contrast is inverted in order to improve its visualization.

Figure 5 displays approximation error maps for the dif-

ferent shift-variant models in two cases: a coarse approxi-

mation using a 5× 4 grid of PSFs, and a refined approxi-

mation with a 20× 16 grid. For the model of Flicker and

Rigaut (2005), we set the number of modes to 5 and 13

which represent a computational effort similar to the use

of PSF grids. Unsurprisingly, using a shift-invariant PSF or

piecewise constant PSF lead to the worst errors. PSF inter-

polation and image interpolation approaches are comparable

when using a coarse grid, while the error is twice as much

with image interpolation when the grid is refined (see sub-

figures (i) and (j)). Decomposition on PSF modes using the

method of Flicker and Rigaut (2005) is penalized by the in-

crease of the computational cost in proportion to the number

of modes (errors with 13 modes are over 4 times larger than

with PSF interpolation on a 16× 20 grid).Such an observa-

tion is however application-specific since the approximation

error with the method of Flicker and Rigaut (2005) depends

on the spectrum of singular values of matrix K. Our simu-

lation yields small shifts of the PSF (i.e., geometrical distor-

tions) that reduce strongly the redundancy of the PSF (i.e.,

the decrease of singular values is slower than it would be

with centered PSF). Finally, the highest accuracy is reached

using the proposed optimization of localized weights and

PSF. Approximation errors are reduced by an order of mag-

nitude without increasing the complexity required to evalu-

ate the operator.

The gain obtained by using weights and PSF refinement

is further illustrated on Figure 6. This figure displays the

evolution of the approximation error computed on the PSF

or on a blurred image as a function of the density of the grid

of PSF (solid lines). Approximation errors decrease when

the grid is refined, except in some cases where a slight in-

crease of the grid size gives a less favorable sampling of

the PSF. From the normalized approximation errors given in

log scale on the left-hand side y-axis one sees that PSF and

weights optimization improve the approximation by about

an order of magnitude. Figure 6 also displays the evolution

of the computation times scaled as multiples of a full-size

convolution. Increasing the grid size degrades the perfor-

mance (except for some grid sizes that offer better FFT al-

gorithms or better fit into memory caches). A trade-off must

then be reached between the accuracy of the approximation

and the time required to apply the operator. Thanks to the

improved accuracy of the model with optimized PSF and

weights, a given approximation error can be reached at a

much lower computational cost.
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Fig. 5 Approximation errors of a shift-variant blur. Error maps shown give the RMS errors between the true PSF and its approximation depending

on the location of the PSFs.
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Fig. 5 (cont.) Error maps for more accurate models.
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Fig. 6 Trade-off between reduction of the approximation error and in-

crease of the computational cost.

3.5 Deblurring performance

The blur models discussed in this paper are ultimately used

within image restoration methods. In order to emphasize

the impact of data modeling (i.e., the choice of a specific

blur model), we considered numerical simulations in which

degraded images were computed using a different PSF at

each pixel of the field of view. In the first numerical exper-

iments, no random noise was added, so the discrepancy be-

tween the simulated image and the output of a given blur

model can only reflect modeling errors. The addition of

noise tends to alleviate blur model differences. We used the

same physically-grounded PSF model as described in Figure

3 and in the previous paragraph.

All our image restorations were carried out by solving

the same (convex) MAP optimization problem (1), i.e., only

the blur model H and the regularization weight µ change.

Thus, differences in restoration quality can be directly as-

cribed to the blur model used. Assuming i.i.d. Gaussian

noise, the data fidelity term becomes a simple least squares

criterion:

Ψdata(f) = ‖H ·f −g‖2
2 . (49)

In order to induce smoothness while preserving edges, we

used an hyperbolic approximation of the total variation

(Rudin et al (1992)) for the regularization of our images:

Ψprior(f) = ∑
j

√

‖∇j ·f‖2
2 + ε2 , (50)

with ∇j a finite difference operator which approximates the

spatial gradient ∇ f (s j) around jth position s j and ε > 0 a

relaxation parameter to have a criterion that is differentiable

whatever f . Thanks to this hyperbolic approximation, the

image reconstruction problem (1) is a smooth convex min-

imization problem that can be solved using standard meth-

ods for large-scale optimization. We used a limited memory

iterative quasi-Newton method4 (Nocedal (1980)). Another

advantage of introducing parameter ε is to achieve an ℓ2−ℓ1

behavior and avoid the classical staircase artifacts created by

total variation minimization, Mugnier et al (2001). Choosing

the best tuning parameter µ in equation (1) is the subject of

intensive researches. For our purposes, since we knew the

ground truth image, we simply tuned µ so as to maximize

the PSNR. Note that many alternative regularization terms

could be considered, such as recent models based on patch

statistics: Zoran and Weiss (2011); Chen et al (2014).

To compare the performance of the shift-variant blur

models described in this paper, we first consider the restora-

tion of a simple test image made of white stripes on a black

background. The simulated blurred version is shown in fig-

ure 7(a). Below each image a line profile is plotted corre-

sponding to the red horizontal line. Blur is stronger in the

periphery of the image compared to its center. Restoration

of this test image using an invariant blur model and the cen-

tral PSF produces the result shown in figure 7(b). The reso-

lution in the center of the field is slightly improved but most

of the blur remains in the periphery. Shift-variant models of

Nagy and O’Leary (1998) (figure 7(c)) and bi-linear inter-

polation of PSFs (figure 7(d)) give comparable performance

when a coarse 4× 5 grid is used. The model of Flicker and

Rigaut (2005) gives better performance when 5 modes are

selected (figure 7(e)), probably because the error in PSF

modeling is far more homogeneous in the field compared

to the two previous models (see figure 5(e) compared to 5(c-

d)). It can be noted that the location of the white stripes cor-

responds to areas where the errors in PSF modeling are the

highest for shift-variant models with a 4× 5 grid. The pro-

posed blur model with optimal PSF and weights gives a far

better restoration, as can be visually assessed on figure 7(f)

and in terms of PSNR (9dB improvement compared to the

shift-variant model with bi-linear interpolation of weights,

with identical computational complexity once the optimal

PSFs and weights are computed). Restoration results with

16× 20 refined grids or more modes are shown on figure

7(g-j). The difference between image interpolation and PSF

interpolation is clearly visible with this denser sampling of

PSFs (a 3dB improvement is observed in favor of PSF in-

terpolation). The model of Flicker and Rigaut (2005) offers

a weaker improvement when the number of selected modes

changes from 5 to 13 modes than other models with similar

computational costs. The proposed model with optimized

4 the source code can be downloaded at: http://cral.

univ-lyon1.fr/labo/perso/eric.thiebaut/?Software/

OptimPack
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PSFs and modes reaches the best restoration performance.

It can be observed that the value of the optimal weight µ⋆

of the smoothness term is smaller when the modeling er-

rors are smaller, i.e., the model of the data is more reliable.

The values of µ⋆ reported in figure 7 show a reduction by

a factor 150 when replacing the shift-invariant model with

the most accurate shift-variant model (i.e., with optimized

weights and PSFs on a 16×20 grid).

We then consider the restoration of a natural image dis-

playing different textured areas, figure 8(a). Since the image

is in color, we considered a different PSF model for each

channel. The phase aberration model described in figure 3

is adapted to different wavelengths by scaling. The resulting

blurred image is shown in figure 8(b). We considered that

the sensor covers only the area within the red box super-

imposed on all images. Let γ be the indicator of that area

(i.e., γk = 1 iff pixel k is in the area covered by the sensor,

otherwise γk = 0). We express our data-fitting term as:

Ψdata(f) = (H ·f −g)⊺ diag(γ)(H ·f −g) . (51)

In order to correctly model the image borders, we recon-

struct an image that extends outside the actually observed

area, see Soulez et al (2007); Reeves (2005); Matakos et al

(2013). We chose to apply separately the relaxed total vari-

ation regularization to each color channel, instead of using

the color total variation introduced in Blomgren and Chan

(1998). Thus, artifacts introduced by each blur model are

better identified (i.e., the regularization term does not com-

pensate for inaccuracies of the blur model). The image is

400×320 pixels, PSFs are 51×51 pixels, ε is set to 10 (val-

ues in each color channel are in the range [0,255]), and 500

iterations of the quasi-Newton method are performed (it has

been checked in practice that 300 iterations were generally

sufficient and that 2000 iterations did not bring noticeable

improvement).

Restoration using a shift-invariant model gives the im-

age shown in Figure 9(a). Several artifacts can be observed:

the original flux is not restored; geometrical distortions are

not corrected; and the original resolution is recovered only

in the center of the field of view. Using a shift-variant blur

model such as PSF interpolation leads to restored images

with a more homogeneous resolution. When a coarse PSF

grid is used, PSF interpolation and image interpolation pro-

duce very similar results, thus only the result for PSF in-

terpolation is given in figure 9(b). The decomposition on

few PSF modes fails to correctly model PSF tilt (i.e., de-

centering). The restored image shown in figure 9(c) suf-

fers from strong color artifacts. The decomposition on PSF

modes is not the best method for a simultaneous correction

of shift-variant blur and geometrical distortion (i.e., vari-

able PSF decentering). The model with optimized PSF and

weights on a small 4×5 grid leads to the best PSNR among

coarse models and a significantly improved resolution (e.g.,

region B in the zooms is much better recovered). However,

abrupt changes of the PSF model at the boundary between

two regions of the grid produce annoying artifacts. These

artifacts can be reduced either by considering a refined grid,

or by increasing the regularization weight at the cost of a

resolution loss. They can be considered as a result of a mis-

use of the refined model, the grid being too coarse with re-

spect to PSF variations. Figure 9(e-h) gives deblurring re-

sults with fine blur models of comparable computational

complexity. With a denser grid of PSFs, the difference be-

tween deblurring with a model based on image interpolation

(figure 9(e)) and PSF interpolation (figure 9(f)) is now no-

ticeable in terms of PSNR (+0.25dB). When going from 5

to 13 modes, the results obtained with the model of Flicker

and Rigaut (2005) improve notably. Within a comparable

time budget, this model however gives less accurate restora-

tions (PSNR is 2dB smaller). The proposed optimization of

weights and PSF again leads to the best results in terms of

PSNR. Artifacts at the boundaries of regions that could be

observed with a coarse grid disappear with finer grids (com-

pare figures 9(d) and 9(h)).

Table 7 provides further comparison of blur models

based on the PSNR improvement brought by shift-variant

blur models compared to a shift-invariant model based on

the central PSF. Five natural images and three levels of noise

are considered. Noise levels are given in terms of BSNR,

i.e., the ratio between the noiseless blurred image range and

the noise standard deviation, in log scale. In addition to Bar-

bara image, we chose four images from Berkeley’s segmen-

tation dataset 5. Some of the deblurring results of table 7,

denoted by a star, are displayed in figure 10. Like in the pre-

vious experiments, we selected the number of modes to get

comparable computational times with all blur model.

These deblurring results show a significant improve-

ment for all models that model blur variations compared

to the shift-invariant model. While the use of an accurate

model brings small improvements for moderate SNRs, de-

blurring is strongly improved by accurate blur modeling

in the high SNR regime. Interestingly, improving the SNR

brings almost no improvement when using a shift-invariant

blur model, for the blur under consideration. This means

that in our setting modeling errors dominate stochastic er-

rors from noise, so that only a model refinement can im-

prove the deblurring results. Blur models based on a re-

fined grid or a larger number of PSF modes consistently

improve on coarser models. Among each group of models

with similar computational complexity, the proposed locally

optimal approximation provides the best deblurring perfor-

mance, sometimes on par with the approach based on PSF

interpolation. PSF interpolation and image interpolation be-

5 http://www.eecs.berkeley.edu/Research/Projects/

CS/vision/bsds/
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Fig. 7 Restoration of a resolution target degraded by shift-variant blur: (a) degraded image, (b) single-PSF deblurring, (c-f) deblurring with

shift-variant PSF models of comparable computational complexity (coarse models), (g-j) deblurring with shift-variant PSF models of comparable

computational complexity (fine models). A line profile along the red line indicated by the symbols ◮ and ◭ is drawn below each image.
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Fig. 8 Image used to evaluate shift-variant deblurring of a color image: (a) original image; (b) simulated blurry image with a shift-variant chromatic

PSF.

Table 7 Restoration performance in terms of PSNR gain in dB with respect to shift-invariant deblurring. The noise level used in our simulations

is given in BSNR (see text). The images for the numbers followed by a star ⋆ are displayed in Fig. 10.

image name / BSNR in dB

Barbara bird man tiger flowers

30 40 60 30⋆ 40 60 30⋆ 40 60 30 40⋆ 60 30 40 60⋆

blur model

shift-invariant 17.1 17.1 17.1 15.0⋆ 15.0 15.1 16.1⋆ 16.1 16.1 20.5 20.7⋆ 20.8 20.3 20.5 20.5⋆

image interpolation

(4×5 grid)
+5.5 +6.1 +6.4 +3.8 +4.8 +5.0 +8.0 +9.0 +9.3 +3.1 +3.6 +3.7 +5.9 +7.2 +7.7

PSF interpolation

(4×5 grid)
+5.5 +6.1 +6.4 +3.8⋆ +4.8 +5.0 +8.0⋆ +9.1 +9.3 +3.1 +3.6⋆ +3.7 +5.9 +7.2 +7.7⋆

PSF modes

(5 modes)
+4.7 +5.2 +5.4 +3.5⋆ +4.2 +4.4 +6.9⋆ +7.8 +8.0 +3.2 +4.3⋆ +4.7 +5.7 +7.0 +7.8⋆

proposed model

(4×5 grid)
+5.2 +6.2 +7.3 +4.6⋆ +7.1 +9.0 +8.3⋆+10.7 +12.7 +3.5 +5.4⋆ +7.5 +5.9 +7.9 +10.5⋆

image interpolation

(16×20 grid)
+5.9 +7.2 +9.6 +4.8 +7.9 +11.8 +9.2 +12.6 +17.3 +4.0 +6.4 +10.7 +6.6 +9.2 +14.6

PSF interpolation

(16×20 grid)
+5.9 +7.3 +9.8 +4.9⋆ +8.0 +12.2 +9.3⋆+12.7 +17.9 +4.0 +6.4⋆+11.0 +6.6 +9.3 +15.0⋆

PSF modes

(13 modes)
+5.7 +6.8 +8.2 +4.6⋆ +7.1 +8.8 +8.8⋆+11.5 +14.0 +3.9 +6.0⋆ +8.7 +6.4 +8.8 +12.5⋆

proposed model

(16×20 grid)
+5.9 +7.3 +9.8 +4.9⋆ +8.0 +12.3 +9.3⋆+12.8 +18.1 +4.0 +6.4⋆+11.1 +6.6 +9.3 +15.1⋆

have similarly when a coarse grid is considered, or for lower

values of the SNR. The improved accuracy brought by PSF

interpolation models is visible in the high SNR regime and

with refined grids (size of the grid should be comparable or

smaller than the PSF size). By close inspection of the images

in figure 10, block artifacts are visible with the proposed lo-

cally optimal method only in the case of very high SNR and

coarse grid (sixth row of images, last column).

4 Conclusions

We have provided a unified presentation of several shift-

variant blur models that co-exist in the literature. Some of

these models had earlier been introduced merely as compu-

tational tricks to produce a shift-variant blur effect, within

a time lapse comparable to few convolutions. Detailed anal-

ysis of how those models relate to particular PSF approxi-

mations show that some are more sound, physically speak-
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Fig. 9 Restoration of a color image degraded by chromatic and shift-variant blur: (a) deconvolution with a shift-invariant model; (b-d) deblurring

with shift-variant PSF models of comparable computational complexity (coarse models).
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Fig. 9 (cont.) Restoration of a color image degraded by chromatic and shift-variant blur: (e-h) deblurring with shift-variant PSF models of

comparable computational complexity (fine models).
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ground truth

simulated data

(BSNR: 30dB) (BSNR: 30dB) (BSNR: 40dB) (BSNR: 60dB)

shift-invariant

PSF interpolation

(4×5 grid)

PSF modes

(5 modes)

proposed method

(4×5 grid)

PSF interpolation

(16×20 grid)

PSF modes

(13 modes)

proposed method

(16×20 grid)

Fig. 10 Illustration of some of the deblurring results from the numerical experiment of Tab. 7.
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ing, thus leading to improved performance for shift-variant

deblurring. The most natural model follows from assuming

that the PSF between two given locations can be interpo-

lated, Denis et al (2011). It leads to a numerical implemen-

tation as efficient as the more widespread model based on

image interpolation due to Nagy and O’Leary (1998), but

with a better grounded approximation yielding systematic

improvement of the deblurring quality. Incidentally, this PSF

interpolation model has the same mathematical formulation

as in Hirsch et al (2010).

These blur models can be refined in order to achieve

high accuracy, at the cost of increased computational cost.

We proposed to seek, within a given computational bud-

get, the best possible model in terms of approximation qual-

ity. We modified the model based on PSF interpolation by

considering optimal interpolation weights and PSF samples.

This quite simple method improves the RMS modeling er-

ror of PSFs by as much as an order of magnitude. When

applied to deblurring, this model consistently provides im-

proved restorations, as quantified by PSNR values. Some

block artifacts can appear if the grid of PSF is too coarse.

These artifacts are due to some discontinuities of PSF ap-

proximations between neighboring blocks. They are visible

only for high signal to noise ratios and disappear either by

increasing the regularization or by refining the grid.

The cost of accurate models can be modest (an increase

of computational time typically between a factor 4 to 10 in

2D) compared to convolution by a stationary PSF. The com-

putational complexity should no longer be an obstacle to ac-

count for blur variations within the field of view.

Modeling a shift-variant PSF is necessary but not suffi-

cient. The next important task is to properly calibrate this

PSF. In practice, this is considerably more difficult than for

a shift-invariant PSF because it requires the ability to put

reference sources at any spot. The methodology proposed

in Delbracio et al (2012) seems a promising approach to

estimate shift-variant PSFs. A more general method would

be to follow a blind deconvolution approach which is able

to estimate the deblurred image and the blur from a single

blurred image, see e.g., Ayers and Dainty (1988); Campisi

and Egiazarian (2007); Soulez et al (2012) and Ben Hadj

et al (2013). In some sense, the PSF and weight optimiza-

tion strategy that we used in order to improve the quality of

the model of the shift-variant blur is already a step in that

direction.

A Derivation of the equivalent PSF for the model of

Nagy and O’Leary (1998)

Nagy and O’Leary (1998) proposed to approximate the shift-variant

blurring operator H by interpolating between the result of several

shift-invariant blur:

H ≈ ∑
p∈GP

diag(ϕp) · conv(kp) . (52)

Compared to expression (22) for PSF interpolation, the order of the

weighting and blurring operations is exchanged. The right-hand side of

equation (52) does not correspond to blurring with an equivalent PSF

that is interpolated from a few sampled PSF. The equivalent un-shifted

PSF k j at location s j , as defined in section 2, is: k j(i) = k(ri,s j)∆ j =
h(ri +s j,s j)∆ j . From equation (52), we get:

h(ri,s j) = ∑
p∈GP

ϕp(ri) · kp(ri −s j) . (53)

The equivalent PSF is then:

k j(i) = h(ri +s j,s j)∆ j

= ∑
p∈GP

ϕp(ri +s j) · kp(ri +s j −s j)∆ j

= ∑
p∈GP

ϕ→ j
p (i) ·kp(i) , (54)

where ϕ
→ j
p designates the interpolation weights ϕp shifted by the vec-

tor s j . Using vector notation, the equivalent PSF can be written as in

equation (42) that we recall here:

k̃
(ImageInterp)
j = ∑

p∈GP

diag
(
ϕ→ j

p

)
·kp .
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