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Abstract—The need for efficient implementation of simple
crossbar schedulers has increased in the recent years due to
the advent of on-chip interconnection networks that require
low latency message delivery. The core function of any crossbar
scheduler is arbitration that resolves conflicting requests for the
same output. Since, the delay of the arbiters directly determine
the operation speed of the scheduler, the design of faster
arbiters is of paramount importance. In this paper, we present
a new bit-level algorithm and new circuit techniques for the
design of programmable priority arbiters that offer significantly
more efficient implementations compared to already-known
solutions. From the experimental results it is derived that the
proposed circuits are more than 15% faster than the most
efficient previous implementations, which under equal delay
comparisons, translates to 40% less energy.

I. INTRODUCTION

Arbitration is needed in any case that multiple contenders

request access to a shared resource. This scenario appears

in many forms in almost every computer system. The most

common cases, where conflicting requests are resolved by

arbiters, are the widely used bus-based systems where multi-

ple masters and slave modules compete for gaining exclusive

access to the bus, and the memory systems, where the small

number of supported memory ports do not suffice to serve

the read or write requests. Additionally, arbitration is the

core function of network switching fabrics where packet

flows arriving from different inputs need to be directed to

the appropriate output.

On-chip networks are widely used in many complex sys-

tems such as general-purpose chip multiprocessors and large

systems-on-chip in the embedded systems domain. When

the number of cores used is small, a centralized switching

fabric is preferred [1], [2]. Due to scalability and technology

issues in systems with a large number of cores direct network

topologies, such a 2D mesh, are preferred [3], [4], [5]. In

these cases, the switches at each node of the network support

a smaller number of I/O ports, while a packet needs to travel

along many hops before reaching its final destination.

In both cases, either using a centralized switch or a direct

network, the switches employed follow almost the same

architecture as the one shown in Fig. 1. Incoming packets
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Fig. 1. The abstract architecture of a packet switching fabric.

are stored in input buffers and possibly in output buffers (not

show in Fig. 1) after crossing the crossbar. Which inputs are

allowed to send their data over the crossbar are determined

by the crossbar scheduler (or switch allocator) that resolves

all conflicting requests for the same outputs. In many cases,

in order to allow the sharing of the network’s channels, to dif-

ferentiate between separate traffic classes, i.e., request/reply

packets, and to offer deadlock-free adaptive routing, virtual-

channels (VCs - or virtual lanes) are used [6]. The VC

allocator similar to the crossbar scheduler is responsible for

distributing the outputs’ VCs to the requesting inputs. The

complexity of the VC allocator increases with the number

of available VCs per output link and the versatility of the

routing logic [7]. The time needed to complete, either switch

or VC allocation is critical to the performance of the switch

and it determines the critical path of the design [7], [5], [8].

A. Crossbar scheduler

In the following we will briefly describe the organization

of the crossbar scheduler. Practically, the VC allocator fol-

lows exactly the same structure. The only difference is that

the number of input and outputs of the circuit are multiplied

by the number of supported VCs.

The crossbar scheduler is responsible for determining in

each cycle the connections between the input and the output

ports of the switch. The configuration must meet certain

constraints: an input can be connected to at most one output

for unicast traffic (or several outputs for multicast traffic),

and an output can be connected to at most one input for

either unicast or multicast traffic.

The scheduler accepts the requests from each input and
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Fig. 2. The block diagram of a programmable-priority arbiter.

decides which one to grant so as to produce a valid connec-

tion pattern for the crossbar. Each input holds packets (or

flits in case of a wormhole switching) for different outputs.

Depending on the organization of the input queues and the

packets’ destinations, each input can request one or more

outputs every cycle. If just a single FIFO queues exists per

input, only one request per input is eligible. In that case

the crossbar scheduler is constructed using a single arbiter

per output of the switch, which decides independently which

input to serve.

However, in case that the input buffers are organized in

multiple-independent queues forming virtual channels, the

inputs can send multiple request per clock cycle. In that case,

the scheduling operation is organized in two phases where

output arbitration is followed by an input arbitration phase,

in order to resolve the grants that came from different outputs

to the same input. In many cases, for locality reasons input

arbitration is performed first where each input independently

decides which of its request to nominate to the output

arbiters. In either case, the delay of the scheduling operation

equals the delay of 2 arbitrations plus any overhead imposed

by the wires connecting the input and output arbiters. A

rough diagram of the organization of the 2n arbiters of the

crossbar scheduler is shown also in Fig. 1.

The core function of the scheduling operation is performed

by the arbiter which grants only one of the incoming

requests, serving first the request with the highest priority.

To allow a fair allocation of resources and to achieve high

performance switch operation, we should be able to change

the priority of the arbiters. The way the priority changes

is part of the policy employed by the crossbar scheduling

algorithm. For example, the round-robin policy which is one

of the most widely used priority update schemes, dictates

that the request served in the current cycle gets the lowest

priority for the next arbitration cycle.

Hence, efficient schedulers are built using programmable

priority arbiters (PPAs). The block diagram of a general PPA

is shown in Fig. 2. It consists of two parts; the programmable

arbitration logic (PAL) that decides which request to grant

based on the current state of the priority vector and the

pointer update logic that decides according to the current

grant vector which input to promote. PAL scans the input

requests in a cyclic manner beginning from the position that

has the highest priority. For example, if the ith request has

the highest priority then the priority is diminishing in a cyclic

manner to positions i+1, i+2, . . . ,n−1,0,1, . . . i−1, giving

to the request i− 1 the lowest priority to win a grant. The

focus of this paper is the design of PAL units that clearly

determine the energy-delay behavior of the PPA and the

whole scheduler. In the most common cases, like the round-

robin arbiter, the design of the pointer update logic is trivial

and it consists of just re-arranging the grant signal wires.

Another form of centralized scheduler is the wavefront

arbiter [9]1 which receives all input requests and decides

which one to grant using a single circuit instead of the

distributed input and output arbiters. The main drawback of

the wavefront arbiter is that its delay grows linearly with the

number of requests. Also the cyclic combinational paths that

are inherent to its structure, cannot be handled by commercial

static timing analysis tools.

B. Paper Organization

In the following, we briefly review the most efficient

approaches used today for the design of PALs and comment

on their characteristics. Next, in Section III, we present

the proposed arbitration circuits that are based on a new

circuit design methodology. The proposed solutions are

highly regular, borrowed from the parallel prefix structures

employed for their design and offer significant delay savings

that are more than 15% when compared to the most efficient

previous implementation. Under equal delay comparisons,

the proposed circuits can be designed either to support 1.6×

the input requests compared to previous implementations,

or to save more than 40% of energy consumption for the

same number of inputs. To substantiate these arguments

detailed experimental results are given in Section IV, while

conclusions are drawn in the last section.

II. PROGRAMMABLE ARBITRATION LOGIC:

STATE-OF-THE-ART

The simplest form of arbitration can be achieved by the

fixed priority arbiter (FPA) (also called priority encoder). The

n-bit FPA takes n requests Ri, where the least significant line

(position 0) has the highest priority and the most significant

one (position n− 1) the lowest. The FPA produces n grant

signals Gi and an additional flag AG (Any Grant) that denotes

if at least one input request was granted. A grant is given to

the ith bit position when Ri = 1 and no other requests exist

to any of the rest less significant bit positions.

The FPA can be implemented in many ways. We are

interested only in high-speed implementations, where all

grant signals are computed in parallel for each bit position. In

this case, the grant signal Gi is computed via the well-known

priority encoding relation [10] Gi =Ri ·Ri−1 ·. . .R1 ·R0, where

· represents the boolean-AND operation and Ri denotes the

complement of Ri. Assuming 2-input gates, the output of the

FPA is computed in the best case in log2 n+1 logic stages,

using regular parallel prefix structures. Custom solutions also

exist that provide high-speed impelementation [11]. When

using AND gates with more inputs it is possible to get

faster circuits depending on the ratio of the available input

capacitance and output loading capacitance [10].

1Please, note that the wavefront arbiter, although called an arbiter, is a
complete scheduler. In this paper, the term arbiter refers to a circuit that
accepts many requests and grants only one them.
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Fig. 3. The dual-path arbiter proposed in [12].

The FPA is the basic block for the design of the most

efficient up-to-now programmable arbitration logic, which is

the dual-path arbiter [12] and employs two FPAs in parallel.

In order to work properly the priority signal P is thermometer

coded; in the case that the ith position has the highest priority

then the i+1 less significant bits of P are equal to 1 while the

rest n− i−1 most significant bits are equal to 0. The block

diagram of the dual-path arbiter is shown in Fig. 3. The upper

FPA is used to search for a winning request from the position

denoted by the priority vector P, i.e., Ppos, up to position

n−1. It does not cycle back to input 0, even if it could not

find a request among the inputs Ppos . . .n− 1. In order not

to allow the upper FPA to search in positions 0 . . .Ppos− 1

its requests are masked with the thermometer coded priority

vector P. The lower FPA is driven by the original request

lines and searches for a winning request among all positions

assuming that position 0 has the highest priority.

The two arbitration phases work in parallel and only one

of them has computed the correct grant vector. The selection

between the two outputs is performed by employing a simple

rule. If there are no requests in the range Ppos . . .n− 1, the

correct output is the same as the output of a lower FPA.

If there is a request in the range Ppos . . .n− 1, then the

correct output is given by the output of the upper FPA.

Differentiating between the two cases is performed by using

the AG signal of the upper FPA. No multiplexers are needed

to select between the two computed grant vectors and the

output is derived by using a simpler AND-OR gate, as shown

in Fig. 3. The dual-path arbiter requires 2 more stages of

logic compared to the FPA, i.e., log2 n+3 in total, while the

AG line of the upper FPA needs to drive n logic gates in

order to perform the selection procedure.

Several other methods have appeared for the design of PAL

units. All proposals are specific cases of the designs analyzed

in [12] with only minor modifications. In [13], a hierarchical

structure is described that uses multiple smaller FPAs to build

a larger arbiter. Also, another class of designs rely on carry-

lookahead like structures that try to transfer the priority to

the lower-priority positions when high-priority positions do

not have an active request [1], [12], [14], [15]. The main

drawback of these approaches is that when the priority needs

to be transferred from position n− 1 back to position 0 a

cyclic combinational path appears to the circuit that increases

the delay of the design and causes testability problems. One

simple, but inefficient approach, to break the loop is to add

two carry-lookahead structures where the carry out of the

first adder feeds the carry-in of the second [15]. Practically,

all these techniques do not offer any delay benefits compared

to the dual-path arbiter.

The proposed method, presented in the following section,

is also derived from the carry-lookahead formulation of the

programmable arbitration logic. Nevertheless, the introduced

methodology leads to completely new circuits that do not

have the aforementioned limitations and offer significantly

faster implementations compared to the dual-path arbiter.

III. NEW PROGRAMMABLE ARBITRATION LOGIC

In our case, we eliminate the need for multiple copies of

the FPA and we design a new circuit that handles in a unified

manner the cyclic nature of the diminishing priority transfer

signals. In our case, the position with the highest priority is

declared using priority vector P which is encoded in one-hot

form. For example, if position 1 has the highest priority in

the case of an 8-input PPA the P vector equals 00000010.

As in the case of FPA a request is granted when no other

higher priority input has an active request. Therefore, at each

bit position a new signal is required that indicates whether

a grant was given to a highest priority request. This priority

transfer signal is denoted as Ci and it is computed at each

bit position based on the value of the local request signal

Ri, the priority signal Pi , and the corresponding priority

transfer signal of the higher priority position Ci−1. When

Ci = 1 it means that the next position i+ 1 can produce

a winning grant assuming that Ri+1 is asserted, since all

previous request lines are equal to zero. In the opposite case,

when Ci = 0, no other winning grant should be produced

in the positions with index larger than i (taken in a cyclic

manner). Assuming that Ri = 1 the ith input can give a grant

when either Pi or the incoming priority transfer signal Ci−1 is

asserted. In that case, the grant signal Gi is set equal to 1 and

the priority transfer signal out of the ith bit position Ci is set

equal to zero. The above conditions for the assertion of the

grant and the priority transfer signals have been described

in [12] and [15] and can be written as follows (+ denotes

the boolean-OR operation):

Gi = Ri · (Pi +Ci−1) (1)

Ci = Ri · (Pi +Ci−1) (2)

The priority transfer signal Cn−1 should be fed back to

position 0, i.e., Cn−1 =C−1 in order to guarantee the cyclic

transfer of the diminishing priority. This property is the cause

of the cyclic combinational path, which was discussed at the

end of Section II.

Departing from (1) and (2), we express the priority transfer

operation differently. The priority transfer signal out of the

ith position is represented by Xi that is equal to

Xi = Pi +Ci−1 (3)
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Using Xi we are able to combine in one signal the two

sources of priority transfer. The priority either comes from

the previous bit positions via Ci−1 or is set by signal Pi. For

a systematic design, we need to derive a recursive formula

that connects Xi and Xi−1. To achieve this goal we express at

first the bit Ci as a function of Xi. Following (2) and (3) we

can write Ci as Ri ·Xi. Replacing in (3) the new definition

derived for Ci−1 we get that

Xi = Pi +Ri−1 ·Xi−1 (4)

Hence, the C terms have disappeared and the new value of

Xi depends only on the priority Pi, the request Ri−1 and the

unified incoming priority transfer signal Xi−1. Using Xi the

grant signal at the ith bit position can be computed as Gi =
Ri ·Xi.

The recursive definition of Xi in has exactly the same form

as the well known carry lookahead equation ci = gi + pi ·

ci−1 where in place of the carry generate bit gi we have the

priority signal Pi (called priority generate) and instead of the

carry propagate bit pi we use the inverted request signal Ri−1

(called priority propagate) For example, by unrolling Eq. (4)

the priority transfer X2 in the case of a 4-input PAL can be

computed using the priority generate and propagate bits as

follows:

X2 = P2 +R1 ·P1 +R1 ·R0 ·P0 +R1 ·R0 ·R−1 ·Xin

Xin = X−1 denotes the incoming priority transfer similar to

the carry-in signal of an adder and due to the cyclic transfer

of the priority of the arbiter R−1 = Rn−1 and X−1 = Xn−1.

Following adder design principles, we set at first gi = Pi
and pi = Ri−1 while p0 = Rn−1. Then, we can define groups

of priority generate and priority propagate. In the general

case each priority generate group starting at position j and

ending at position i, with i≥ j is defined as

GPi: j = gi +
i−1

∑
k= j

(GRi:k+1 ·gk)

where GRi: j denotes the group propagate term in the range

i . . . j of positions that is defined as follows:

GRi: j =
i

∏
k= j

pk

For the degenerated case GPi:i = gi and GRi:i = pi. Please,

note that the AG signal is equal to GRn−1:0 indicating that

at least one request is active.

Using groups of priority propagate and generate signals

we can express the priority transfer signal Xi as follows:

Xi = GPi:0 +GRi:0 ·Xin (5)

The group priority generate term GPi:0 covers the case that

the priority is generated for the ith position after having

searched in all less significant positions down to position

0. For the case of the most significant bit position n−1 the

corresponding group generate term GPn−1:0 searches all the

input requests from input 0 to input n−1. Therefore, in all

cases GPn−1:0 is equal to the desired priority transfer signal
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Fig. 4. The Proposed-I arbiter following the end-around-carry approach.

for position n− 1 that is Xn−1. Following this observation

and the fact that Xn−1 = Xin the equation describing the

computation of the bit Xi can be transformed as follows:

Xi = GPi:0 +GRi:0 ·GPn−1:0 (6)

Thus the ith position has the highest priority because either

the priority was generated in the range 0 . . . i or it is coming

from a more significant position as declared by GPn−1:0 and

has been propagated to i via the propagate term GRi:0. In

fact in the case that the priority was transferred in a circular

manner to the ith position only the range n−1 . . . i+1 needs

to be examined.

By definition GPn−1:0 can be derived by any smaller

group generate and propagate terms. Thus we can analyze

GPn−1:0 as GPn−1:i+1+GRn−1:i+1 ·GPi:0. Substituting the new

expression to (6) we get that

Xi = GPi:0 +GRi:0 · (GPn−1:i+1 +GRn−1:i+1 ·GPi:0)

Eliminating the redundant term GRi:0 ·GRn−1:i+1 ·GPi:0, the

new relation can be written as:

Xi = GPi:0 +GRi:0 ·GPn−1:i+1 (7)

In this way, the redundant examination of the requests in the

range i . . .0 has been removed, and the circular operation of

the priority transfer has been embedded inside each relation.

In order to better understand the derived relation we will

write the new equations describing the bits of X in the case

of a 4-input arbiter.

X3 = P3 +R2 ·P2 +R2 ·R1 ·P1 +R2 ·R1 ·R0 ·P0

X2 = P2 +R1 ·P1 +R1 ·R0 ·P0 +R1 ·R0 ·R3 ·P3

X1 = P1 +R0 ·P0 +R0 ·R3 ·P3 +R0 ·R3 ·R2 ·P2

X0 = P0 +R3 ·P3 +R3 ·R2 ·P2 +R3 ·R2 ·R1 ·P1

A. Circuit Organization

Equations (6) and (7) allow the derivation of two new

circuits for the design programmable priority arbitration logic

that are described in the following paragraphs.

667



P

3

R


2

P


2

R


1

P


1

R


0

P


0

R


3


R

3


R

2
 R


1

R


0
X

3


X

2


X

1


X

0


G

3


G

2
 G


1

G


0

AG


Fig. 5. Fast 4-bit arbiter.

1) Proposed I: Eq. (6) can be computed in a very elegant

way using only a single circuit, instead of the two FPAs

used in the case of the dual-path arbiter. Using traditional

CLA techniques we can compute in parallel the terms GPi:0
and GRi:0 for each position from 0 up to n−1 and compute

the final value of the priority transfer signal Xi using an

additional AND-OR gate, as shown in Fig. 4. In this way

there is no cyclic operation and the most significant output

GPn−1:0 is just given to n AND-OR gates in order to derive

the final bits of X . This technique resembles the carry-

increment stage used in end-around-carry adders [16]. At

the final stage, the bits of X are ANDed with the request

lines in order to produce the final grant signals.

Any form of carry-computation unit can be used for the

computation of GPi:0. Instead, for fast implementations we

prefer the powerful parallel prefix carry computation units.

Parallel prefix circuits are designed using the associative

operator ◦ that combines groups of bits and was defined

in [17] as (t,z)◦(t ′,z′) = (t+z ·t ′,z ·z′). Thus to compute the

priority transfer for ith position we must associate via the ◦

operator all the terms (Pi,Ri−1) from position 0 up to position

i. For example (GP2:0,GR2:0) is computed as follows:

(GP2:0,GR2:0) = (P2,R1)◦ (P1,R0)◦ (P0,R3)

The ◦ operator accepts two pairs of inputs and produces

two outputs, i.e., a new group generate term and a new

group propagate term. The logic-level implementation of the

◦ operator that is graphically represented as a 2-input-1-

output • cell is also shown in Fig. 4. The grey circles in

Fig. 4 represent a simplified form of the operator where no

new group propagate term is produced.

The Proposed-I arbiter although solving the arbitration

problem in a unified and concise manner, it stills has some

serious drawbacks. It requires an additional logic level com-

pared to the FPA and has a large fanout line that negatively

affects the delay of the circuit. These shortcomings are

alleviated by the Proposed II solution that is derived using

the simplified equation (7).

2) Proposed II: Following (7), and by properly grouping

the input signals (Pi,Ri−1), according to the guidelines pre-

sented in [18] for the case of 1’s complement adders, we

can derive very fast arbiters. We will present the Proposed-

II solution via an example. Using the new formulation all

priority transfer bits of a 4-input arbiter (shown in Fig. 5)

can be computed using the ◦ operator as follows:

X3 ↔ (P3,R2)◦ (P2,R1)◦ (P1,R0)◦ (P0,R3)

X2 ↔ (P2,R1)◦ (P1,R0)◦ (P0,R3)◦ (P3,R2)

X1 ↔ (P1,R0)◦ (P0,R3)◦ (P3,R2)◦ (P2,R1)

X0 ↔ (P0,R3)◦ (P3,R2)◦ (P2,R1)◦ (P1,R0)

In the first level of the parallel prefix tree all terms of the

form (GPi:i−1,GRi:i−1) = (Pi,Ri−1) ◦ (Pi−1,Ri−2) are com-

puted. For the case, of (GP0:−1,GR0:−1) the pairs (P0,R3) and
(P3,R2) are used in order to satisfy the cyclic nature of the

priority transfer. In the next level these terms are combined to

produce double size terms. For example in the case of X1 we

need to combine the terms (GP1:0,GR1:0) and (GP3:2,GR3:2)
produced in the first level of the tree in order to produce

the final relation. This combination involves lines that run

from the more significant positions back to less significant

positions. This property is better shown in the 8-input arbiter

depicted in Fig. 6.

In the general case, for the construction of a n-bit arbiter

we need n log2 n • operators placed on the log2 n levels of the

parallel prefix tree. The last level is composed of simpler grey

cells. Every operator placed on the ith row (prefix level) and

the jth column (bit position) is connected to the 2 operators

of row i−1 that are placed on columns j and ( j−2i) mod n,

respectively. In the first level, the operators are driven directly

from the priority signals and the inverted request lines. When

n is not a power-of-two simpler structures an be derived

following the methodology presented in [19].

Using this technique the grant vector is computed in

exactly log2 n+ 1 logic levels, as in ordinary FPA. Also,

no large fanout line is required, since the cyclic nature of

the priority transfer is performed inside the prefix tree. The

only drawback of the proposed circuits are the long lines

inside the priority transfer computation unit that increase its

layout area. Although the extra capacitance added by these

lines degrades by a small percentage the delay of the circuit,

the overall circuit is faster than the most efficient previous

implementation, i.e., the dual-path arbiter.

IV. RESULTS

The proposed circuits have been evaluated using static

CMOS implementations in the UMC 130nm standard per-

formance CMOS technology [20]. The delay measurements

for all examined designs are reported in fanout-of-4 inverter

delays (FO4). The FO4 delay metric equals to the delay of an

inverter that drives four equally-sized inverters, and it is used

since it provides in some sense a technology independent

way to express the delay of a circuit [10]. In our case

1FO4 ∼ 62ps, under typical process conditions, nominal Vt
and Vdd = 1.2V .

In order to explore the energy-delay space for each design,

we performed gate sizing for several delay targets, beginning
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Fig. 6. The 8-bit arbiter designed according to Proposed-II methodology.

from the circuit’s minimum achievable delay. Circuit sizing

is performed using geometric-programming-based optimiza-

tion following the guidelines presented in [21]. For the

formulation of the geometric program, the delay and the

energy of each gate are expressed in mathematical form as

a function of the gate’s size (transistor widths) and the slope

of the input signals. The delay and energy models have

been calibrated using HSpice simulations and appropriate

data fitting. For multi-input gates the input-to-output delay is

modeled separately for each input. Geometric programming

leads to convex optimization problems that were solved using

the solver of [22]. For the derived gate sizes, the energy and

the delay of each circuit have been measured back in HSpice.

For the energy measurements, we assumed random inputs.

During optimization and measurements, the maximum

allowable input capacitance equals 25fF, while the circuits

under comparison drive a load of 100fF. Also interstage

wiring loads, both capacitance and resistance, have also been

taken into account. The RC contribution of each wire has

been estimated according to its length. In datapath functions,

as the proposed ones, every two stages of logic are connected

both with short wires running vertical (from inputs to outputs

direction) and with longer wires that are placed orthogonal

to the rest data signals. The length of these wires is then

a function of how many bit positions they have to cross in

order to reach the connecting node. Hence, the length of each

wire inside the datapath is the product of the bit pitch and

the number of bit positions it has to cross. For the circuits

under evaluation, we assume a bit pitch of 12 metal-1 tracks,

as the one used in state-of-the-art microprocessors [23].

We compared the proposed arbiters with the most efficient

arbiter that is the dual-path architecture. In order to get

a high-speed implementation for the dual-path arbiter we

implemented the FPAs using a Kogge-Stone parallel prefix

topology [24] of AND gates. Other topologies have also been

tested but lead to slower circuits.

At first, we present our results for the case of small

arbiter circuits with input length of 8 bits. The corresponding

energy-delay curves are shown in Fig. 7. It can be observed

that the proposed methodology (Proposed II) leads to faster

circuits and their minimum achievable delay is smaller than
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Fig. 7. The energy-delay curves of the 8-input arbiters under comparison.

the corresponding delay of the dual-path PAL by more than

16%. From the delay results reported and extra experiments

performed, we conclude that a complete 8-input scheduler

can be built with a delay well under 10 FO4 (2 arbiter in

series plus wiring overhead).

For equal delay measurements the proposed circuits offer

more than 50% of energy savings2. The reduced energy per

arbitration of the proposed structures partially comes from

the one-hot encoding of the priority vector. When the priority

changes, and assuming a constant request vector, only 2

positions switch their values from 1→0 and from 0→1, re-

spectively. On the contrary in the case of the dual-path arbiter

when the priority moves from a more significant position

(close to n−1) back to a less significant position many gates

change their state due to the thermometer encoding of the

priority. 3 This feature also positively affects the energy of

the register holding the priority vector (see Fig. 2).

Please notice that the energy dissipation of the crossbar

scheduler is only a small part of the total power consumption

of the switch, so reducing the arbiter’s energy does not

improve much the overall power efficiency. However, this

extra energy benefit offered by the proposed designs can be

used for increasing the available input capacitance of the

proposed circuits in order to further decrease the delay of the

critical path. Allowing such an optimization leads to circuits

that require the same energy as their dual path counterparts

and are faster by more than 20%. Increasing the available

input capacitance increases also the delay of the driving gates

of the proposed circuit by a small percent. This overhead has

been taken into account into the delay savings reported.

In Fig. 7, we included also the energy-delay behavior

of the Proposed I solution. This structure does not offer

any benefit compared to the dual-path arbiter, except from

slightly reduced energy for delays larger than 7 FO4. This

behavior is expected since Proposed I has almost the same

characteristics as Dual-Path arbiter, i.e., high fanout line and

extra logic stages.

For even smaller arbiters servicing between 4 to 6 requests,

as those required in on-chip network switches implementing

2Please notice than the energy reported refers to the energy of the
programmable arbitration logic of Fig. 2 and does not include the overhead
of registers and the pointer update logic.

3The dual-path arbiter needs the thermometer encoded priority vector in
order to function correctly and it cannot be changed to an one-hot code.
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low-dimension networks, the proposed arbiters offer signifi-

cantly faster implementations. Under the same optimization

conditions, we report that the minimum achievable delay of

the proposed 4-input arbiter shown in Fig. 5, which follows

the Proposed II design method, is roughly equal to 3.2 FO4

which is 20% less than the 4 FO4 of the dual-path circuit.

In such small designs, the main cause of the delay reduction

is the the reduced number of logic levels of the new circuits,

while the reduced fanout plays a supplementary role.

Finally, for completeness, we repeated the same experi-

ments for larger arbiter designs that are used in high-end

switches and routers with a large number of input ports.

In the case of high-radix switches, again the design of

efficient arbiter circuits is critical for the overall switch

performance [25]. Fig. 8 shows the energy-delay curves

obtained for the case of 16 and 32-input arbiters. In both

cases, the proposed arbiters are faster in average by 14%

while they require significantly less energy per arbitration.

For larger delays, where the dual-path arbiter appears more

energy-efficient, we can instead use the Proposed-I designs

and further reduce energy. Also, note that the delay of the

Proposed-II solution in case of 16 inputs is very close to

the delay of an 8 input dual-path arbiter. After performing

additional experiments, we found that the proposed circuits

can support roughly 1.6x the number of input requests of the

dual-path arbiter without incurring any delay overhead.

V. CONCLUSIONS

A new bit-level algorithm for the design of programmable-

priority arbiters has been presented in this paper, along with

an efficient circuit implementation. The new parallel-prefix

arbiters compute the winning grants using only log2 n+ 1

logic stages and follow a regular structure that makes them

amenable to efficient VLSI implementations. From, the ex-

perimental results it is derived that the proposed circuits

offer significant delay reductions compared to state-of-the-

art arbiter architectures. Taking into account that crossbar

scheduling and/or VC allocation determine the operation

speed of the whole switch we conclude that switch designers

can truly benefit by the adoption of the proposed arbiters.
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