
Fast Arbitration in Dilated Routers

by

Matthew E. Becker

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering

at the Massachusetts Institute of Technology

May 1996

@ Massachusetts Institute of Technology 1996

Author

Department of Electrical Engineering and Computer Science
May, 1995

-7

Certified by. / ,V ~- -

Thomas F. Knight, Jr.
Thesis Supervisor

Accepted b2V .. .- ·

- I P ofss r Frederic R. Morgenthaler
Chairman, Department 'tom kittee on Graduate Students
V.AASACHUSETTS INSTITUTE \

h OF TECHNOLOGY

AUG 10 1995

LIBRARIES

Barier EMf

i1,,

----L -- ff Zt . -

--- `---

/.I"L•
r

Iv €.,,•,,•'--•

1 t

Fast Arbitration in Dilated Routers

by

Matthew E. Becker

Submitted to the

Department of Electrical Engineering and Computer Science

May, 1995

In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering

Abstract

In multibutterfly networks the primary limitation on performance is the speed of the dilated
routing component. This thesis studies a technique, dynamic dilation, which reduces latency
in dilated routing components without greatly affecting flexibility. Initially in order to achieve
lower latency we limit dilation flexibility, extract parallelism from the arbitration process and

pipeline the process into two cycles [1].
For implementation reasons the allocation cycle is required to have some unused latency.

Dynamic dilation takes advantage of this latency to allow the dilation of a component to be

reconfigured each cycle based on incoming messages. This effectively recovers the flexibility
lost by limiting dilation, while retaining extremely low latency.

Further we utilize a modified version of conventional domino style logic. This new type of
logic decreases critical path latency by a factor of two.

Thesis Supervisor: Thomas F. Knight, Jr.

Title: Principal Research Scientist, MIT AI Lab

Acknowledgments

Thanks to Tom Simon, Fred Chong, Mike Bolotski, Andre DeHon, Raj Amirtharajah and

Weip Chen for their support, helpful ideas, and friendship. Special thanks to Tom Knight

for being there to listen to my ideas, shape my understanding of the material and provide

guidance.

Thanks to my parents for their patience, understanding and support.

This research is supported in part by the Advanced Research Projects Agency under

contracts N00014-91-J-1698 and N00014-91-J-4038.

I Il-·;--·-·rru*·-;E-···- ---' w~~~*

Contents

1 Introduction 12

2 Routing Components

2.1 Dilation in Routing Components

2.2 Dilation Benefits

2.2.1 Routing Statistics

2.2.2 Multibutterfly Techniques

2.2.3 Fault Tolerance

2.3 Comparison of Network with and without Dilation .

2.4 Component Format

3 Dilation Strategies

3.1 Dilation Flexibility

3.2 General Dilation: Wave-style arbitration

3.3 Fixed Dilation

3.3.1 Wave-Style Arbitration

3.3.2 Parallel-Style Arbitration

3.3.3 Message Format and Pipelining

3.4 Dynamic Dilation

3.4.1 Timing Issues

3.4.2 Flexibility Comparison............ .

3.4.3 Latency Comparison

14

. 14

. 15

. 15

. 16

. 17

. 17

. 18

20

. 20

S 22

. 24

. 24

. 24

. 25

.. 27

.. 28

.. 28

.. 30

4 High Performance Logic Style

4.1 Conventional Domino Logic

4.2 Improvements on Conventional Domino

4.2.1 Removal of Cut-off Devices

4.2.2 Rippling of Precharge

4.2.3 Summary of Benefits

4.3 Implementation Concerns

4.3.1 Race Condition: Fast Precharge Ripple

4.3.2 Race Condition: Fast Evaluate Ripple

4.3.3 Asymmetric Fan-in

4.4 Flip-flops

32

.. 32

S 34

S 34

.. 36

.. 37

.. 37

S 37

S 38

.. 38

.. 38

5 Conclusions

A Dilation Section

B Want Section

C Priority Section

D Allocate Section

E Clock Section

F Test Section

List of Figures

2-1 Multibutterfly with path redundancy 16

2-2 Internal format for allocator 18

3-1 Section of a general dilation allocator 22

3-2 Section of wave-style allocator with a fixed dilation of two 23

3-3 Section of parallel-style allocator 25

3-4 Message Routed Through a Network with Single-Cycle Allocate 26

3-5 Message Routed Through a Network with Double-Cycle Allocate 27

3-6 Timing/Circuit Diagram of Dynamic Dilation 29

4-1 A single stage of domino style logic 33

4-2 Timing diagram for a three stage conventional domino path 33

4-3 Domino without cutoff devices 34

4-4 Resistor model of a 2-input nor with and without cutoff devices 35

4-5 Timing diagram of new logic 36

4-6 Flip-Flop for Modified Dynamic Logic Style 39

A-1 Block Diagram of Dilation Section 43

A-2 Transistor Schematic of Latch Static 44

A-3 Transistor Schematic of Dilation Buffer (2nd stage) 45

A-4 Transistor Schematic of Dilation Setup (3rd stage) 46

A-5 Transistor Schematic of Dilation Ctl (4th stage) 47

B-i Block Diagram of Want Section 50

B-2 Transistor Schematic of Want Setup 51

. 52

. 53

. 54

. 55

B-3

B-4

B-5

B-6

C-1

C-2

C-3

C-4

D-1

D-2

D-3

D-4

D-5

D-6

D-7

D-8

E-1

E-2

E-3

E-4

E-5

E-6

E-7

Block Diagram of the Clock Section . . .

Transistor Schematic of Clock Gen

Transistor Schematic of Clock Mux

Transistor Schematic of Clock Divider . .

Transistor Schematic of Latch Rising Ff .

Transistor Schematic of Clock Pulse Gen.

Transistor Schematic of Clock Delay . . .

F-1 Generalized Block Diagram for Test Section

F-2 Generalized State Diagram for Test FSM .

. 74

. 75

. 76

. 77

. 78

. 79

. 80

. 82

. . . 83

Transistor Schematic of Want Ctl

Transistor Schematic of Want Priority Setup . . .

Transistor Schematic of Want Priority Dilinc . . .

Transistor Schematic of Want Priority Ctl

Block Diagram of Priority Section

Transistor Schematic of Priority Available

Transistor Schematic of Priority Dilinc

Transistor Schematic of Priority Ctl

Block Diagram of Allocate Section

Block Diagram of the Cross-Point, Allocate Block .

Transistor Schematic of Allocate 2-Counter

Transistor Schematic of Allocate 4-Counter

Transistor Schematic of Allocate Got

Transistor Schematic of Allocate Drop

Transistor Schematic of Allocate Final

Transistor Schematic of Allocate Precharge

-- I·--·L- ·--- '-----1··1·-·1··'---~-ur

Chapter 1

Introduction

All massively parallel computers need some kind of interconnection network to allow commu-

nication between processors. For a large scale system with n processors, it would be impossible

to connect each processor to every other processor with a wire. That would require n2 number

of wires. Similarly a single bus proves impractical as the number of processors increases, be-

cause of bandwidth problems. A network using routing components proves more effective at

combatting these problems. This thesis optimizes one type of routing component, the dilated

router, in order to improve overall network performance.

Basically, the routing component can connect any of its input ports to any of its output

ports. To form a network, one could simply use a single component to connect up all the pro-

cessors, one to each port. The number of wires becomes linear with the number of processors.

However, a single routing component has i/o and reliability limitations. A better solution is

to stage smaller components by connecting the output ports of the first stage to other compo-

nents and then to processors as shown in Figure 2-1. This allows many more processors to be

connected with components of a reasonable size. In order to provide fault-tolerance, multiple

paths through the network must exist. This is effectively implemented with dilated routers

through the use of a multibutterfly organization, which is described later.

Within these types of interconnection networks, the latency and bandwidth swiftly become

an important issue because as distributed systems get larger and faster, the amount of network

traffic increases dramatically. Unless network latency and bandwidth keep pace, overall system

performance degrades. However, latency cannot be reduced and bandwidth increased, at the

expense of too much flexibility. Examples of desirable flexibility include randomized path

selection for fault tolerance or variable dilation for network reconfiguration.

In the case of dilated circuit-switched crossbars, my results from optimizing between la-

tency, bandwidth and flexibility have been promising. The central compromise of flexibility is

a limitation on dilation during a single cycle of allocation. This makes path allocation faster,

and allows the switch to operate at speeds close to 400 MHz. These results and any that

follow come from simulations of a 0.8 micron, 3-metal CMOS process under nominal process

corners.

Chapter 2 of this paper refines the concept of dilated routers and their importance. Chap-

ter 3 outlines the different choices of dilation style and how each style affects latency and

flexibility. In Chapter 4, I describe the basic logic form used to improve performance by a

factor of two over conventional forms. Finally the topics presented throughout the thesis are

reviewed in Chapter 5.

Chapter 2

Routing Components

The dilated routing component is described in Section 1. In section 2 some benefits of using

dilation in interconnection networks are outlined. Section 3 provides a brief comparison of

a butterfly style network with and without dilation. Finally in section 4 I explain the basic

structure of a routing component which is fleshed out in later chapters and the appendices.

2.1 Dilation in Routing Components

A dilated routing switch is a crossbar routing component used in multistage interconnection

networks with the important feature of allowing multiple simultaneous messages to be routed

in each logical output direction. An n input switch, for example, having n/2 outputs in each

of two logical direction, can route any of the n input messages intended for either logical

direction to any of the available n/2 physical outputs corresponding to that direction. This

switch is said to have a dilation of n/2. Normal crossbar components thus have a dilation of

1.

Dilation refers to the number of ports on a particular component which a message can be

routed through to get to the same place. It is important to realize that the same place could

either be a single end point or it could be a set of multiple endpoints which provide the same

functionality. An example of multiple endpoints being equivalent logically would be a set of

endpoints that provide i/o to the outside world. If a message is willing to pass through any

i/o port, then all the i/o endpoints would be the same. This distinction of same is relevant

to the issue of dilation flexibility, because sameness can change from message to message.

The use of dilated routing switches is a very effective technique for improving performance

of multistage interconnection switches for three important reasons:

* They improve the probability of successful message routing through the switch.

* They allow the construction of multibutterfly networks which further improve statistics

and avoid hot spot contention.

* They enable high reliability networks with inherent fault tolerance through source-

responsible routing.

2.2 Dilation Benefits

2.2.1 Routing Statistics

Details of the statistical improvements in message routing are more fully analyzed in [2],

but the key insight can be given here. Imagine a switch with n inputs, where each input

is attempting to route to either of n/2 outputs. As long as there are less than n/2 inputs

wanting to route in a given direction, all of the messages will be successfully routed. If more

than n/2 so desire to route, then any in excess of n/2 will fail to route.

Consider now the statistics of the router inputs. It is extremely unlikely that all inputs

together wish to route in only one direction. The most probable set of input routings desired

is an even split, where half of the inputs route one way while the rest route the other way.

The distribution, in fact, is a binomial distribution, with mean n/2 and standard deviation

n/-/2. Statistically, almost all messages are successfully routed through such a component,

for large n.

Unlike a dilation 1 crossbar component, where the statistics for blocking impose an ex-

pected output routing probability of 1 - 1/e for a fully loaded set of inputs, a large dilation

router can successfully route almost all messages.

The dilation we can use in real routers is limited by the available pin count, and by the

necessity, in the final stages of the multistage network, to eventually route to a single final

destination or a small set of final destinations - requiring a low dilation router in the final

An 8x8 multibutterfly network with a stage of dilation two routers and a
stage of dilation one routers. In bold are the equivalent paths from the sixth
endpoint to the third endpoint. The dotted line is a blocked connection.

Figure 2-1: Multibutterfly with path redundancy

stage.

Statistics further improve dramatically, when compared to other types of networks, for

loading even slightly below full loading.

2.2.2 Multibutterfly Techniques

A significant problem with conventional multistage interconnection networks is the hot spot

behavior induced by relatively simple, regular, interconnect patterns such as transpose. In the

worst case, the straightforward butterfly network allows only a single message to successfully

route due to contention within the switch.

Dilation partially solves this hot spot problem, but the use of the multibutterfly intercon-

nection techniques, see Figure 2-1, essentially eliminates hot spot behavior within the switch.

To develop the multibutterfly, we note that in the first stage of an interconnection switch, it

makes no difference how we order the outputs which are routed in a logical direction. All of

these outputs are logically equivalent. By forming the wiring between the first and second

router stages as an expander, we can assure that there are no worst case routing problems.

The construction of such multibutterfly networks depends on our ability to construct dilated

routers.

2.2.3 Fault Tolerance

The availability of multiple router outputs in a single logical direction provides the key idea

in construction of wiring and router fault tolerant interconnection networks [3] [4].

If a particular wire or routing component fails, there is always an alternative path which

avoids the wire or components, but arrives at the same destination. By randomly choosing

the physical output out of available channels in the specified logical direction, we will route

a message on a second attempt through a different path with high probability. Again, the

possibility of performing this rerouting relies on the dilation of the switch component [5].

2.3 Comparison of Network with and without Dilation

Some designers achieve a portion of the gain associated with dilation through the use of

one or more additional stages of routing at the input to a multistage switch. By randomly

choosing the path through these extra switch stages, some of the properties associated with

dilation can be achieved, primarily a degree of fault tolerance and hot spot avoidance [6]. The

difficulty with such extra stage approaches is that the extra stage route is usually chosen prior

to message routing, providing no opportunity to avoid busy ports in the switch components.

By making the decision of physical output port dynamically during the route setup process,

we can route around otherwise occupied or faulty output ports in the switch.

In a dilated switch, then, a portion of the path selection is specified by the logical route

carried with the message, and the details of the physical route are decided with a combination

of random choice and busy path avoidance in each of the switch components.

The delay associated with route setup in such dilated switch components is an important

contributor to end to end latency of interprocessor and cache miss traffic in parallel computer

networks.

r-------------------------------------I

Internal
Arbitration
Logic

L--- I-

The want section interprets the input allocation requests. The priority sec-

tion stores back port availability. The dilation section arbitrates between

different dilation request in dynamic dilation. The allocate arbiter makes

the decision on new allocates.

Figure 2-2: Internal format for allocator

2.4 Component Format

Before we begin describing the different arbitration techniques in detail, we need to discuss

the format of a component as seen in Figure 2-2. It is made up of four sections:

* The dilation section is nonexistent in general and fixed dilation, but in dynamic di-

lation it arbitrates between input port request for different dilations as described in

Appendix A.

* The want section interprets allocation requests made by the input ports. It provides

information to the allocate arbiter about whether each input port would like to be

connected with each output port. It is described in Appendix B.

* The priority section, described in Appendix C, stores the availability of the output ports.

It updates and passes this information to the allocate arbiter each cycle.

* The allocate arbiter uses the input requests and the output availability to decide on the

allocation of new connections. This information combined with previously allocated con-

nections is used for the passing of data through the appropriate ports of the component.

_·__~_···LI··__ ___~__·_I1I ·̂ ·1 ·~ I· Y__··_l~___l

* The clock section creates the necesary clocking signals for the new domino-like logic

style which is described later. The section is described in Appendix E.

* The test section, briefly described in Appendix F, provides the user interface. One can

load in a set of test vectors, allow the internal circuits to evaluate at full speed, and

then load out the result for comparison with expected values.

It is described in Appendix D.

Chapter 3

Dilation Strategies

I consider three types of dilated components: general dilation, fixed dilation and dynamic

dilation. General dilation allows each input port to specify its own dilation on any given

cycle. This translates into network flexibility, but entails a large latency cost. Fixed dilation

is the most conservative dilation technique with a single dilation being statically set for all

ports. This technique significantly reduces the complexity and hence latency of arbitration.

Because of implementation requirements, the fastest version of fixed dilation can be generalized

to dynamic dilation without any penalty in latency. In dynamic dilation, the dilation is

configured on each cycle for the entire component based on incoming messages. The degree

of flexibility for dynamic dilation is the same as the flexibility of general dilation for the most

common case.

The importance of dilation flexibility is outlined in Section 1. In the following two section,

2 and 3, the properties and implementations of general dilation and then fixed dilation are

described. In section 4 I introduce dynamic dilation and compare its flexibility and latency

to the other dilation strategies.

3.1 Dilation Flexibility

General and dynamic dilation allow messages to specify dilation, which may be useful for:

. Fault Tolerance - checking any path through the network

* Load Balancing - spawning messages to random places

* Research Tool - reconfiguring the network

* Separating Multiple Users - dividing the network

* Explicit Traffic Control - statically controlling traffic patterns

* Improved Routing Statistics - described in Chapter 2

In terms of fault tolerance a message can be forced to route through a specific path by

having the message set the dilation to one at each stage. In this way a faulty part of the

network could be located at run time. It can similarly be used as a start-up test to check the

entire network very quickly.

In deterministic dilation the initial processor specifies a set of locations for a spawned

process, which could be in a highly used area of the network. If instead the initial processor

could set the dilation as wide as possible, then the spawning process would naturally tend to

flow away from highly congested areas. This is an extremely simple method of load balancing.

As a research tool, networks with flexible dilation can be used to test and evaluate many

different types of network configurations. All the messages can be setup to request the appro-

priate dilation at each stage of the network.

In most systems it would be useful to insure that certain users do not affect each other.

Dividing a system usually entails separating only processors, with one common network. In

order to truly separate the users, the network must also be divided. A simple method of doing

this is to give each message access to only a certain set of paths by limiting its dilation. For

example specifying a dilation of two would divide the network in half and then one user could

use the upper half while the second could only use the lower half.

Run-time flexibility also allows explicit control of path selection. This could be used when

a particular application requires a specific traffic pattern to operate efficiently. The application

designer could use the control to specify the particular pattern needed.

available available available

Output Port #1 Output Port #2 Output Port #3
Priority Priority Priority

The want signals tell each cross-point if its input port wants to be connected
to its output port. Intermediary signals, prevysatisfied and available, con-
tain information on allocates to higher priority cross-points, which prevents

multiple allocations to the same port.

Figure 3-1: Section of a general dilation allocator

3.2 General Dilation: Wave-style arbitration

In general dilation a message on any input port may request any dilation and any set of

output ports, which maximizes the probability that it will be connected. The availability of

an output port is based on whether the port has been allocated on a previous allocate cycle and

on whether the output port is allocated to another input port during the same cycle. Similarly,

a message's allocate request for an output port depends not only on the original request, but

also on whether the request is satisfied by another output port. Consequently the decision

about making a connection between a particular input-output port pair requires information

about the decision of ports being allocated in the same cycle. This makes allocation in general

dilation a sequential process requiring time linear with the total number of ports.

This sequential process is most easily represented by a two-dimensional array of cross-

points as shown in Figure 3-1. Each cross-point is associated with an input port on the y-axis

and an output port on the x-axis. A cross-point is simply a set of logic that controls whether

_rr__L___· ___·__ · I_ __·__ · __ __·_·E_ _·IL__~·:i

primary secondary primary secondary primary secondary
G 1,1) Go 2,1) 3,1)

Input Port #1 Cross-Point Cross-Point Cross-Point
Want

primary secondary primary secondary primary secondary

Output Port #1 Output Port #2 Output Port #3
Priority Priority Priority

The want signals tell each cross-point if its input port wants to be connected
to its output port. The primary and secondary signals contain information

on the priority of the output ports. When a secondary port passes a want
signal it is promoted to a primary port. When a primary port passes a want
signal it creates a connection. Unavailable ports have neither priority line
asserted.

Figure 3-2: Section of wave-style allocator with a fixed dilation of two

its associated ports are connected. The allocation begins at the lower left cross-point and

proceeds like a wave to the upper right cross-point. A connection is made at a cross-point

when the input port wants to connect, the input port request is not previously satisfied, and

the output port is available.

Due to the sequential nature of the process, the fastest general dilation implementation is

a factor of five times slower than the fixed and dynamic dilation techniques. The latency for

arbitration in general dilation is approximately 14 ns as included in Table 3.1. The general

dilation techniques and performance figures are very similar to separate work described in [8].

m

3.3 Fixed Dilation

Fixed dilation schemes produce significantly lower allocation latency, because they restrict

the distribution of want signals and the sequential effects of previous allocations. This results

from the dilation being configured statically for all input ports. The order in which the output

ports are allocated is statically set, which removes the need for the prevysatisfied signal of

general dilation schemes. There are two styles of implementation: wave-style arbitration and

parallel-style arbitration.

3.3.1 Wave-Style Arbitration

Similar to the general dilation implementations, fixed dilation wave-style arbitration proceeds

like a wave as shown in Figure 3-2 [7]. However, the signaling propagates along only one

axis and therefore passes through half the number of cross-points. At each cross-point an

input-output port pair is allocated only if its associated output port is primary and the input

port is requesting it. Every cross-point above the allocated one receives an unavailable signal

on the priority lines. If the priority of an output port is not primary it is promoted to a higher

priority whenever it passes a cross-point with a input port request. This method lends itself

to a simple pass gate implementation with a latency of 5.2 ns which is included in Table 3.1.

3.3.2 Parallel-Style Arbitration

The second implementation of fixed dilation is fully parallelized as shown in Figure 3-3. As

before, the allocation cycle begins with grouping and ordering, but this time of both input

and output ports. The cross-point receives the randomized order in which its associated ports

are to be allocated. The priorities at each cross point are compared and if they are equal, the

pair is connected. For example if a cross-point has a second priority input port and the output

port is the second to be allocated then a connection is made. Because the decision of each

cross-point can be completed in parallel, the allocation process has extremely low latency. The

fixed dilation scheme implemented with parallel techniques minimizes single cycle latency at

4.3 ns as shown in Table 3.1.

Local
Allocation
Decision

Output Port # 1 Output Port # 2 Output Port # 3

The ouput priority signals tell each cross-point which order the output ports

will be allocated. The input want signals for a specific output port inform

the cross-points of the input port ordering. The cross-point allocates when

the output priority matches the input priority.

Figure 3-3: Section of parallel-style allocator

3.3.3 Message Format and Pipelining

Messages begin with routing words followed by data words. The routing words which set up

new paths, require more processing than the data words. For this reason the allocation logic

can be pipelined to increase network performance.

The routing words contain destination information, which allows a message to route

through a stage of the network. Because of extra word width, often a routing word can

be used to traverse more than one stage. However in large multi-stage networks it often

cannot be used to cross the entire network, and must be swallowed at some point. During a

swallow the original routing word is discarded and a new routing word with information for

subsequent stages propagates to the front of the message as shown in Figure 3-4.

Input Port # 3

Input Port # 2

Input Port # 1

Time
SRCT Router , Router DST

Route0

SRC Routeri Router DST

4.3 ns
SRC FRouter I Router I DST

Data Route 0 DSTSRC Router Router

Data2 Data0

Datag Data *swallowSRC Router Router DST

Data4 Data2 Data 0
SRC Router Router DST

The network is idle when SRC starts to input a message to be routed to

DST. The message requires one cycle to cross every wire and go through a
component. Because of the limited width of the routing words, in the last

stage the routing word has been used up and is swallowed. In the fastest
single cycle implementation each cycle lasts for 4.3 ns.

Figure 3-4: Message Routed Through a Network with Single-Cycle Allocate

Because arbitration latency is high, the allocation of initial routing words limits the clock

frequency of the network. The latency of a single cycle allocate which allows a routing word

to be used for multiple stages requires the full 4.3 ns. The case of a small message, containing

only eight data words, requires 25.8 ns to make a initial connection through the network seen

in Figure 3-4. For the entire message to completely traverse this network requires 55.9 ns.

Compared to routing words, data words require much less processing time, only about

1.8 ns. One obvious way to improve network performance is to pipeline the initial allocation

process into two cycles of 9 gate delays or 2.7 ns. This cycle time is limited by a feedback path

associated with port availability, which will be described later. From the system viewpoint

the network appears to be swallowing a routing word at each stage.

For the example network shown in Figure 3-5, this double-cycle allocate increases the

number of routing words from one to two, and the total message length to ten words when

compared to the single-cycle allocate. However, the increased clock frequency on all words

-;r ---- · ·--l·lrr-·-r -·· -·---·-- ---~-111·-1·--1·- · ^·-191--Yll~ll-~^I

2.7 ns I

QF',) II . .

Route 0

SRC Router - II Router DST

Route 1
SRC Router Router DST

Data0 *swallow
SRC Router Router DST

Data1 Route l
SRC Router Router DST

Data Data,
SRC Data2 Router Router DST

Data3 Datal *swallow

SRC Router Router DST

S Data4 Data Data0SRC Router Router DST

In this case the allocation process occurs over two cycles which forces a rout-

ing words to be swallowed at each stage. The data words of the message still

requires only one cycle to cross every wire and go through each component.

Each cycle lasts for only 2.7 ns.

Figure 3-5: Message Routed Through a Network with Double-Cycle Allocate

offsets the cost of requiring a new routing word for each network stage. An initial connection

requires only 18.9 ns and the total transit time reduces to 35.1 ns. When compared to similar

single-cycle allocate, the pipelining increases bandwidth, decreases total latency, and actually

decreases initial connection latency.

3.4 Dynamic Dilation

By reducing flexibility given to input port requests, we were able to increase bandwidth and

reduce latency. This was the move from general dilation to fixed dilation. Fixed dilation does

not allow a message to decide its dilation. Instead, this is statically set at design time. In the

process of reducing allocation latency we pipelined the allocation decision into two unequal

cycles. The reason for this is explained in the previous section. Dynamic dilation uses the

Time r _niitgI fl\

extra time in one cycle to recover the lost dilation flexibility. As with fixed dilation, the entire

chip operates in one dilation during each allocate cycle. But, similar to general dilation,

dilation is chosen based on the input port allocate requests at the beginning of each cycle.

Because the component must handle multiple requests for allocation in a single cycle, two

input ports might request different dilations. This requires some mediation to choose a single

dilation to be used for all the ports. To insure that an input port is not forced to take a port

it does not consider equivalent, the lowest dilation must always be chosen.

A simple example would be if two input ports simultaneously requested dilation two and

dilation four. If the chip dilation were incorrectly set to four then the input port requesting

dilation two could be connected to any of four output ports even though it considers two ports

to not be equivalent to the ones it is requesting. However if dilation two is chosen then the

input port requesting dilation four is only forced to take a subset of the requested ports, but

each one is still acceptable.

3.4.1 Timing Issues

The breakdown of delay in the final version of the dynamic dilation allocator is shown in

Figure 3-6. The most important part of the diagram is the feedback path in which the new

allocates of one cycle are fed back into the availability paths of the next cycle. This must

occur on a cycle by cycle basis or it would allow an allocation of an output port on one cycle

and then another allocation of the same port on the next cycle. The feedback path which fills

the second allocate stage limits the cycle time to 2.7 ns.

The latency of the first cycle turns out to be 2.6 ns, even with the added logic to support

dynamic dilation. Therefore the addition of dynamic dilation comes at simply the cost of

filling up the unused part of the first cycle.

3.4.2 Flexibility Comparison

Dynamic dilation provides as much flexibility as general dilation in all instances except for

multiple allocations requesting different dilations in one cycle. Normally when there is only

one requesting port, the port would get whichever dilation it requested. Because there is only

one allowed dilation each cycle, if two ports request different dilations, one will be forced to

~.·~·-iYY-IY- --- I·-- --X---· ·-

0.3 ns

I AIIA.ll

Section

(Cross-point)

I Want Counter
S 0.6 ns

I n• I Priority Counter
. D.0.6 ns I

L -I - - I

I I

Dilation Arbiter Priority Control Avalable
1.3 ns 0.6 ns 0.3 ns

.3 Dilation Priority I
Section Section

0.3 ns
Single-cycle Feedback
Critical Path Critical Path

This diagram includes all the major functional units of the allocate logic

with their associated delays. Included are the pipeline stages used to reduce

overall network latency. The dotted bold path shows the feedback loop which

limits cycle time to 2.7 ns. The plain bold path marks the critical path of

an unpipelined version of the allocator which requires 4.8 ns.

Figure 3-6: Timing/Circuit Diagram of Dynamic Dilation

take a dilation it did not request.

However, the likelihood of such an event is rare. Tmessage represents the average number

of cycles for a node to spawn a message. Therefore, the reciprocal of Tmessage becomes the

frequency at which a new route will begin or the probability that a route will start on a given

cycle. If Nnodes is the number of nodes, then the number routing components in each stage

is half that. From this, P2messages, the probability that two messages arrive on a given cycle,

where Npo,,,t, is the number of stages, can be calculated:

I I - I

1 [2
P2messages = * Nnodes* * - 2o * Nstagesj (3.1)

Tmessage Nnodes

The first term in the above equation represents the probability of getting exactly two

messages entering the network on the same cycle. The second term is the chance of the

messages colliding in the same routing component.

The probability of getting a collision between two ports requesting different dilations,

Pcottision, relies on the distribution of dilation requests. If one assumes an even distribution

of these probabilities, Pdifferent, then Pcotisio,, follows easily:

Pcollision = [1 - Pdifferent] * P2messages (3.2)

The first term is equal to the probability of the second message not being the same dilation

as the first. These back-of-the-envelope calculations do not include the second order effect

of more than two messages coming in at the same time. The probability of getting three

messages at once is small compared to the probability of getting two, by a factor of tmessage.

Let's consider a reasonable example:

* 64 nodes (Nnodes = 64)

* 4 stages (Nstages = 4)

* 3 dilations (Pdifferent = 1)

* 100 cycles between messages per processor (Tmessage = 100 cycles)

P2messages would be 0.08%. Pcofision comes out to about 0.05%. Furthermore, it is likely

that most messages will be of the same dilation at a particular stage. In this light the fact that

dynamic dilation is as flexible as general dilation for 99.9% of the time is quite impressive.

3.4.3 Latency Comparison

Table 3.1 summarizes the performance of various implementations of the three different di-

lation schemes. General dilation is by a factor of five the slowest scheme, but provides the

greatest flexibility. The wave-style and parallel-style implementations of fixed dilation greatly

111~__~_~__ ·__1_^ _I_ _·_ __·I· __ __·_C__·L__·__I

Allocate Initial Connection Total Connection

Type Latency (ns) Latency (ns) Latency (ns)

general 14 84 182
fixed wave 5.2 31.2 67.6

fixed parallel 4.3 25.8 55.9
piped fixed 2.7 (x2) 18.9 35.1

piped dynamic 2.7 (x2) 18.9 35.1

These results are for an 8 word message traveling the network shown
in Figure 3-4 and 3-5. The allocate latency sets the system clock. The
initial connection latency is for one hop across the network, while the
total connection latency is for the entire message.

Table 3.1: Dilation Performance Results

reduce latency, but severely limit dilation flexibility. The pipelined versions of dynamic and

fixed dilation provide the lowest network latencies of every other technique, and dynamic

dilation recovers most of the flexibility.

Chapter 4

High Performance Logic Style

The primary design concerns in this project are the latency and bandwidth of the routing

component. In order to improve both of these paramters I needed to minimize the latency

of a single critical path. I found that by altering the conventional style of high speed logic,

domino logic, I could increase speed by almost a factor of two. These findings are especially

interesting because they are not limited to this singular application. They could be applied

to almost any clocked design, where logic latency affects performance.

This chapter reviews conventional domino-style logic, which is generally one of the fastest

logic forms in clocked digital systems. Improvements to this logic form and their effect on la-

tency as well as noise and area are discussed. Finally implementation difficulties and solutions

to these difficulties are outlined.

4.1 Conventional Domino Logic

A single stage of the conventional style of domino logic is shown in Figure 4-1. This stage

implements the general function:

OUT = [input(l, 1) * input(l, 2) * ... * input(l, m)] + ...

+[input(n, 1) * input(n, 2) ... * input(n, m)]

By chaining a number of these stages together, as in Figure 4-2, we can obtain any arbitrary

positive function. One important feature to note is the use of a cutoff device at the bottom

Y^ ·- lll-L.· -^···-l·-l_-··LI1-·l~IIYII·-·~_·i

OUT

0

INPUT(n,1)d

INPUT(n,m)

Cutoff Devices

Figure 4-1: A single stage of domino style logic

of the pull-down chain. This cut-off device serves two purposes. First it minimizes power

spiking caused by the precharge p-device turning on while the pull-down path is still asserted.

Secondly, it allows all domino stages to precharge simultaneously, reducing the total precharge

time. Typically at the beginning of every new cycle the entire chain of domino logic will

precharge in order to prepare for an evaluation as seen in Figure 4-2.

To calculate the total clock cycle required by conventional domino logic, we need to add

Stage 2 Stage 3
Clock

In 1

Out 1/n2 I

Out 2 / In 3

Out 3

Clock

Simultaneous
Precharge

evaluate

evaluate

evaluate

Rippling Evaluate

Figure 4-2: Timing diagram for a three stage conventional domino path

Stage 1

CLKL

INPUT(1,1) D

INPUT(1,m) E

CLK

I

I '

7

CLK PUH

INPUT(1,1) INPUT(n,1)

0

OUT

INPUT(1,m) INPUT(n,m)

Figure 4-3: Domino without cutoff devices

the precharge time, the evaluate time and whatever setup time constraints we have on our

registers or latches. The precharge latency equals the amount of time required to charge

the internal capacitance of the domino stage to Vdd plus the delay of the inverter. However,

because this time is short, the precharge time is more likely set by the rise and fall times of

the precharge clock plus the minimum allowable pulse width. The evaluate latency consists

of a signal rippling through a chain of precharged logic stages as shown in Figure 4-2. The

cut-off devices slow the rippling evaluate by adding one more serial transitor/resistance to

each pull-down path.

Secondary effects of cut-off devices include an increase in capacitive loading on the clock.

This requires a larger driver, which creates di/dt noise on the power lines which could feed

possibly sensitive logic. Also because more buffering is required, minimum pulse widths are

slightly increased, resulting in slightly longer precharge times. Finally, the cut-off devices eat

up valuable area within circuit sections. This requires longer interconnect and larger wire

capacitance which slows down the circuitry.

4.2 Improvements on Conventional Domino

4.2.1 Removal of Cut-off Devices

Removing all the cutoff devices from conventional domino logic, as shown in Figure 4-

3, allows up to a fifty percent gain in the speed of the rippling evaluate. The theoretical

CloadCload

R R

Cutoff
Devices

Figure 4-4: Resistor model of a 2-input nor with and without cutoff devices

limit occurs in the n-input nor gate. If we model the pull-down path as a resistor chain as

in Figure 4-4, the limit is easily calculated. For the n-input nor, the worst case, pull-down

resistance,Rcon,, is 2R. In a style without cutoff devices the resistance, Rno-cuts, is R. For

the same Cload and ignoring self-loading, the percent increase in speed is given by:

%increase = 100%(RconvCload - Rno-cutsCload

RconvCload

2RCload - RCload 100%(1
= lOO%()= loo%() = 50%

2RCload 2

Unfortunately in domino logic this effect is limited by the near constant speed of the

inverter at the end of every stage. As it turns out the increase hovers between 15% and 30%.

The types of gates that fit in this range include all nor gates, buffers, and up to 4-input nand

gates. Complex gates, which use combinations of the above types, can be shown to work

in this range as well. Other logic forms like, NORA [9], which alternate pull-up stages with

pull-down stages, do not require a standard inverter. Their performance would not be limited

by the constant speed inverter, but may have dificulties with noise immunity.

_ I_ _I

Clock 1

Stage 1 Stage 2 Stage 3 In 1

Out 1 / In 2

Clock 2

Out 2 / In 3

Clock 3

Out 3

Precharae
Pulse Rippling Evaluate Rippling Precharge

Figure 4-5: Timing diagram of new logic

4.2.2 Rippling of Precharge

As described earlier one purpose of the cutoff device is to prevent power spiking. To prevent

spiking without using cut-off devices, the inputs to a stage must be low before that stage begins

to precharge. Rippling the precharge through each stage as shown in Figure 4-5 accomplishes

this. The first stage precharges before the next stage will start to precharge. The evaluate

devices, themselves, act as the cut-off devices.

Such a technique requires a matched delay chain to delay the precharge pulse to each

stage. If we make the precharge assertion only long enough to precharge a few stages, then

while later stages are still precharging initial stages can begin evaluating. The need for a

precharge time no longer exists because of the "wave pipelined" precharge and evaluate times.

The logic for precharge pulse generation is described in Appendix E. One concern is that the

precharge time will have to be long enough to withstand buffering and distibution. However,

this concern does not directly affect path latency.

In total we have removed between 15% and 30% off the evaluate latency and we have

completely removed the precharge period. Also the area is smaller, thus reducing interconnect

capacitance and decreasing latency. In the specific application I looked at, the critical path

of the routing component, these effects dropped the latency from 5 ns to 2.5 ns, a factor of

two. Another positive aspect is lower di/dt noise, since precharging is distributed across the

entire cycle.

4.2.3 Summary of Benefits

* Speed increase in evaluation time (typically 30%)

* Speed increase by removing precharge time

* Smaller area (no cut-off devices)

* Reduced di/dt noise

* Adaptable to other clocked logic forms (eg. NORA)

4.3 Implementation Concerns

In this style of logic we are faced with two central problems each of which can be handled.

The first is the race conditions which exist between the evaluate rippling through the logic and

the rippling precharge pulse. The question to be answered is what happens if one or the other

of these ripples overtakes the other and if there is anything that can be done to prevent such

an event. The second problem to be dealt with is asymmetric fan-in from different locations

on the logic chain.

4.3.1 Race Condition: Fast Precharge Ripple

The first race condition occurs if the precharge pulse overtakes the evaluate rippling through

the logic. Should this happen, the value being calculated is lost and the circuit will not

function properly. Realize this requires that the precharge pulse overtakes the front edge of

the evaluate ripple. One solution is to delay the precharge pulse at the beginning of every cycle.

This is partially taken care of by the delay associated with generating the short precharge

pulse. Further delay can be achieved by inserting a simple buffer. Also the delay chain that

ripples the precharge pulse can be designed to be slightly slower than the worst case delay of

the evaluate logic which it feeds. Together these two techniques can effectively prevent the

race condtion in which the precharge pulse overtakes the evaluate ripple.

4.3.2 Race Condition: Fast Evaluate Ripple

The second race condition is the converse in which the front edge of the evaluate ripple

overtakes the back edge of the rippling precharge pulse. In this case a logic stage is still trying

to precharge when its inputs change to evaluate values. This will cause some temporary power

spiking, which will waste power, possibly reduce the lifetime of our transistors and introduce

some di/dt noise on our supply lines. The possibility of this race condition can be minimized

by shortening the precharge pulse and by closely matching the delay line with evaluate times.

However, as will be seen when we later analyze asymmetric data paths, this kind of condition

still exists unless we also throw some area at the problem.

4.3.3 Asymmetric Fan-in

The central problem associated with fan-in of asymmetric path lengths can be traced back to

the race conditions mentioned earlier. If one evaluate path is very short or if there is a data

dependent fast path, the evaluate can overtake the precharge pulse. For the short data path

case the intoduction of extra stages will not affect whole path latency but can more closely

match up the two ripples. Not much can be done for data dependent differences in speed. As

stated earlier this race condition will not affect the logical correctness of the circuit. It will

simply affect the amount of power wasted. However, with respect to assymetric path lengths

and the second race condition logical correctness is an issue. In this case, an early stage that

feeds a later stage may begin to precharge before the other inputs to the later stage have

evaluated. This could lead to an incorrect evaluation in the stage with fan-in. Luckily there

really is no uncontrollable data dependence to the precharge timing. Therefore the addition

of extra stages into the short path will insure logical correctness. The extra area offsets the

area gained by removal of the cutoff devices.

4.4 Flip-flops

Registering values from this type of logic is reasonably straight foward. The only problem to

overcome is that the input is not necesarily stable at the rising edge of the next clock cycle.

The input could conceivably precharge sometime before then, if it were early in the logic chain.

Figure 4-6: Flip-Flop for Modified Dynamic Logic Style

39

w0 MV

For this reason dynamic latches that have a regular domino stage as the master latch provide

the correct functionality as in Figure 4-6. They look for a transition high on the input line

and a transition back low will have no effect because the value will already be latched.

In order to hook up to the front end of this type of logic the output of the flip-flop must

be stable at its final evaluated value or it must be in some precharge state. In order for this

to work the slave latch of the flip-flop must also act as a domino stage which can precharge

once the evaluate ripple has been started. It is actually the first stage in the domino chain to

receive the precharge pulse. The configuration is shown in Figure 4-6.

Chapter 5

Conclusions

This thesis optimizes dilated self-routing crossbars, in order to increase the bandwidth of a

multi-path interconnection network, without losing flexibility. Fixing the dilation minimizes

the allocation latency of a single routing component. However, cross network latency can be

further reduced by pipelining the allocate process into two cycles. The pipelining gives us the

opportunity to regain some flexibility which was lost in the single cycle fixed dilation schemes.

Pipelined routing components with dynamic dilation therefore provide routing flexibility as

well as very low latency.

In order to further decrease the latency of the routing components, a new type of dynamic

logic was employed. This logic style looks like conventional domino without the cutoff devices.

Also, the local clocking methodology must be more complex. The advantage is a factor of two

in speed over conventional domino logic styles.

Even though each of these techniques is used for a specific application, it is hoped that

the concept of dynamic dilation and especially the new dynamic logic style can be applied to

other systems and other networks with similar success.

Appendix A

Dilation Section

This appendix describes the final implementation of the dilation section in the pipelined

version of the dynamic dilation routing component. The purpose of this section is to choose

an appropriate dilation for the whole chip from among those requested by the input ports.

The lowest dilation requested must always be chosen when there are conflicting requests. This

limits one input port, but ensures that the other does not have to choose an output port which

it does not consider equivalent. Ports which are not allocating are simply ignored.

As shown in Figure A-1 the section is broken into 4 stages. The first stage, latch-static,

latches the values from the input ports and is shown in Figure A-2. The second stage, dilation-

buffer, simply buffers the input signals so that they can be distributed. The last two stages

handle the arbitration process. The third stage, dilation-setup, masks the dilation requests of

non-allocating ports and combines the input requests. The final stage, dilation-ctl, translates

the requested dilation into a form more easily used by the other sections. Transistor level

diagrams are included for each block in Figures A-3 to A-5.

There are 3 different types of inputs. The first is the _all-fwd (...) signals which tell if an

input is not attempting to allocate. The _dill-fwd (...) and _dil2-fwd (...) encode the dilation

being requested by each port. If _dill-fwd (1) is low, the first port is requesting dilation 1. If

_dil2-fwd (1) is low, the first port is requesting dilation 2. If neither are low, the first port is

requesting dilation 4.

The output signals, dilationI through dilation4, tell the other sections what the dilation

will be for the entire chip on that cycle. The appropriate output is enabled high.

_.r~-_uu-·-r--rur---·-·-u·--· -·-I --'-·li·l-·l -·l;l·UI-

E ~*1
I I I

Figure A-1: Block Diagram of Dilation Section

m

I

j,

-o u.

OI)

Figure A-2: Transistor Schematic of Latch Static

I O

utO

inl >utl

Figure A-3: Transistor Schematic of Dilation Buffer (2nd stage)

in0

A/

A A

Fv

2'

o I

* A

'a ^ V• v % v v v N

r 4M 13

Figure A-4: Transistor Schematic of Dilation Setup (3rd stage)

r
a

SL

N N'i
A A

o=
V vI\

V V
A

ii
SNIv

ýF k

U -- y

N

0 0U

u

7
7-°-.E c

aC
0

r) r

3:.

Irz-C

00

00_

N
o

7o r

o o

Figure A-5: Transistor Schematic of Dilation Ctl (4th stage)

0

(N

/L I
I I

- q
C C

Appendix B

Want Section

This appendix describes the final implementation of the want section in the pipelined version

of the dynamic dilation routing component. The want section serves two purposes. First, it

randomly assigns the order, or priority, in which each of the input ports is to be allocated with

respect to each other. For any input port, its ordering is then distributed to its associated

cross-points. Ports which are not allocating are excluded from this ordering and a special

signal is sent instead. Secondly, this section sends a signal to each cross-point on whether the

cross-point's associated input port wants a connection with its output port. This requires the

translation of the input request and inclusion of the dilation. Since this entire section is not

in the critical time path it uses conventional domino logic. However, to insure the reasonable

operating speeds the inclusion of dilation is left for the last step.

The first two stages of the want section, Figure B-l, capture the input allocation request

and hold the values for an appropriate period of time. The first stage, latch-static, latches the

values from the input ports. The second stage, alloc-precharge, evaluates at the beginning of

every cycle and holds its value until after the rest of the logic stages have begun to evaluate.

Then it precharges and waits for the next clock cycle. The schematics for these stages are

shown in Figure A-2 and in Figure D-8.

The rest of the logic is most easily described section by section. Want-setup, shown in

Figure B-2, translates the raw input port allocation requests to a simple form covering every

possible dilation. Table B.1 shows the appropriate translations of the raw requests

The next section, want-ctl, combines the data from want-setup with the dilation to produce

-. _;- ·;--···-·---x ---- -I--- I---~·-·rrrr~*riu-7'i·.··

rawl raw2 w2 w2 w3 4 wl - 2 w3 - 4

0 0 0 1 1 1 0 1
0 1 1 0 1 1 0 1
1 0 1 1 0 1 1 0

1 1 1 1 1 0 1 0

Table B.1: Table of raw, input request translations

the information on whether a cross-point's associated input port wants a connection with its

output port. A transistor level schematic is shown in Figure B-3.

Another section which aids in the priority calculation, is want-priority-setup shown in

Figure B-4. This logic block searches for possible collsions, or matches, of two input ports

requesting the same set of output ports. It disregards the dilation. This match information

is passed onto the next section, want-priority-dilinc.

Want-priority-dilinc, shown in Figure B-5, uses the dilation to combine the matches for

the final stage. The last stage, want-priority-ctl, then uses the random data inputs to assign

a priority and simultaneously includes the collisions between input port requests. Also, the

priority sends a special signal if a port is not allocating that cycle. This output form is

specified in Table B.2. The transistor level implementation is seen in Figure B-6.

Table B.2: Table of priority output

of priority bits asserted low
priority 1 1
priority 2 2
priority 3 3
priority 4 4

not allocating 0

II III I

Figure B-1: Block Diagram of Want Section

.i-. 3.·I·h'-L.- -- l--lllr·h--~_-··-·n-YTY -··^ -~ ~·~Cllr;~YII·Uu

Y r
• ai

C-c"__I
N

on2_ L•

N

*i t

Figure B-2: Transistor Schematic of Want Setup

!

T__T3r

-P - r-od

It?

m

f

0

._want-bck<1>

-want-bck<2>

Figure B-3: Transistor Schematic of Want Ctl

.precharqe

_precharge

-precharge

_precharge

_want

-
bck<2>

_precharge

_wantl-2-1

_want3-4-f

_precharge

_wantl-4-f

_precharge

match-dill

_match-dil2

_motch-dil4

Figure B-4: Transistor Schematic of Want Priority Setup

wantl-i

_want2-1

_want3-l

want4-1

U

a
E

In

44 (N
(0 l,

Figure B-5: Transistor Schematic of Want Priority Dilinc

-ur--·~`.l-.l C~'^' 'C"'-l ' C~~~""III~CIUY"Fill

Figure B-6: Transistor Schematic of Want Priority Ctl

m

r
,D
,x
-r
o
·e
a

0

u
P
o
r
o
e
a

Appendix C

Priority Section

This appendix describes the final implementation of the priority section in the pipelined

version of the dynamic dilation routing component. The priority section randomly assigns the

order, or priority, in which each of the output ports is to be allocated with respect to eachother.

For any output port, its ordering is then distributed to its associated cross-points. Ports which

are not available are excluded from this ordering and a special signal is sent instead. Since

only one stage is part of the critical path, this section uses conventional domino logic.

As described in Appendix B, the first two stages of the priority section, Figure C-l,

capture the input allocation request and hold the values for an appropriate period of time.

The schematic for these stages is shown in Figure A-2 and in Figure D-8.

The information on cross-point connections is held locally at each cross-point. In order

to prioritize the output ports, the priority section must collect the information on output

port availability every cycle. Priority-available, shown in Figure C-2, uses this information to

produce a signal for each output port on whether it is available.

The next logic block, priority-dilinc, assigns the order with respect to the dilation and

random data inputs. It produces to output signals. If the first signal, called priorityl, is

asserted, the output port will be either 1st or 3rd. Priorityl-2 is asserted when the output port

is to be 1st or 2nd. The next section handles the change in priority caused by higher priority

ports being unavailable. The schematic for this block is shown in Figure C-3. Table C.1

showing the transformation between random data and output port priority is shown below.

A lower dilation would simply force the priority lines to be asserted regardless of the random

port 1: port 2: port 3: port 4:
ranl ran2 pl pl-2 pl pl-2 pl pl- 2 pl pl-2

0 0 0 0 1 0 0 1 1 1
0 1 0 1 1 1 0 0 1 0
1. 0 1 0 0 0 1 1 0 1

1 1 1 1 0 1 1 0 0 0

Table C.1: Table of random input translations for dilation 4

input. For example in dilation 2, priorityl-2 would be asserted for all ports.

The last stage, priority-ctl, uses the priority and availability to assign an order to be

distributed to the cross-points. If the port is unavailable for allocation a special signal is sent.

This output form is specified below in Table C.2. The transistor level implementation can be

seen in Figure C-4.

Table C.2: Table of priority output

order # of priority bits asserted low
1st to allocate 1
2nd to allocate 2

3rd to allocate 3
4th to allocate 4

not allocating 0

U

Figure C-1: Block Diagram of Priority Section

58

Figure C-2: Transistor Schematic of Priority Available

X
U
C

~
P

wX

CN 0

a

(D 00
Y•I -)

n0

N

CN

·- 11 N

c-
C)
Q)

Figure C-3: Transistor Schematic of Priority Dilinc

60

0

-3 .L

CN

I LI Li I i

r 1ZJ

I m a

4

I •

'4.0CL

TI-7-~ N

rir-v-i

L _- r' -I - 5~r--I ThI-IF

..

.2

(N

-LrJ
TL•

Figure C-4: Transistor Schematic of Priority Ctl

oa '

~ N

__~ __

I

IL_

N
r,

"1
"

c~~oN
T,X

N
L rjJ

Appendix D

Allocate Section

The first block diagram shown in Figure D-1 is the array of cross-points or alloc-block's. In

this block diagram the want section would fit on the left. It feeds the array information on

priority of input ports and on specifying port pairs with the possibility of allocatiion. The

priority section would be located below the array and would feed in priorities and receive

availability signals for each cross-point. The drop signals allow the cross-point that have

previously allocated to drop their connection. Finally, the data lines for each port criss-cross

the array.

Figure D-2 shows the block diagram for the cross-point, alloc-block. The first stage of

latches described in Chapter 4, retime the priorities signals from the want and priority sections.

The schematic for latch-dynamic is shown in Figure 4-6.

The following two stages, alloc-2-counter and alloc-4-counter, sum both sets of 4 priority

signals so that alloc-got can compare the results to provide a connection desired signal. This

process simplifies to comparing, for an input-output port pair, the order in which they are to

allocate. If the two ports have the same order (e.g. input is 3rd and output is 3rd) then a

connection is made and got is asserted. The transistor schematics are shown in Figure D-3,

Figure D-4 and Figure D-5.

There are two stages to process the drop requests which would come from the input and

output port control FSM's (not needed in this test chip). The first is a normal static latch

described earlier and shown in Figure A-2. The second block is alloc-drop, which simply

combines the two drop signals into one drop signal. Its transistor level diagram is shown in

___i·ll_ IYY·LI··II

Figure D-6.

The next set of logic blocks calculate whether a connection should be made and keep

track of connection from cycle to cycle. The alloc-final will assign a connection if there is

no drop input and there was an allocation on the previous cycle or there was a got assertion

and the port pair wants to allocate. The transistor level schematic is included in Figure D-7.

The allocate signal is fed to the pass gates which explicitly make the connection between the

input port's and output port's data lines. Figure D-8 shows alloc-precharge, which retimes

the asymetric logic paths as described in Chapter 4.

lii~i it
A A ý P
Ir- ~ v vc

Figure D-1: Block Diagram of Allocate Section

iAA!!i III 1i111 11111 as~ipusmm'

Aiiii Ii ii

·--- I^·-- -1 -- -- ~·I·" · U-·ru---·li^*a,

Figure D-2: Block Diagram of the Cross-Point, Allocate Block

65

,~-cN

Cd r'j

04

N
0

to pr)

c c04

0

CN

C14

SI I

I

C CV1 lr

C14

C~

L A
' 1 "

z

O On n

Figure D-3: Transistor Schematic of Allocate 2-Counter

c·r~-·u----l-·Y I··-y^*l-L- --- -QII·-C-_ -- Ixil

I !

,,

0' 0' 0'0 0 0 I-2

U

ClI
a,

0

II
n N

C%4 9L-

II
i797LNZ, 9' L'

E 9"L

o

Figure D-4: Transistor Schematic o

rrrLrCrS

a,

0
-c __
U

0a

0,

-- -N

I

0

c it o
0

a,
0' N ("4\

°14PrCLpr

Ua

iLl_1_2r+N >.0''
(D N (No,... r

t- p'r

UIyCL

00*d

.r

A

aK (N (No ,v r'
'-C

4) Z *
I CLCa,

I- (N (N

0 rL') E

a

'-I)N * nd F'N Si
>~ >~ >% 4-' 4-' 4-'1 ' 0

0' 4 -- *C C C. .0

a ca a a
a

Figure D-5: Transistor Schematic of Allocate Got

_____llr--ur~-~--_rrnll··u.·~Ci- -·· · ·- XI------~- ·-~---~^~il--^--^~··- · I~L - -- I -- · ll^llllly·'aihir·

r.

0

C

I I-

II I C

o 0 c-C)V4-
•._ _ L)

-o -] C•

•-- o

II a

Figure D-6: Transistor Schematic of Allocate Drop

M

0

o N
od r

C

o o
0

0 I I

2

I L I I

C)
Qo a

I I

z £

Figure D-7: Transistor Schematic of Allocate Final

O

ci

CL
1D

Figure D-8: Transistor Schematic of Allocate Precharge

Oc

U•

C--
U)a
L.

|

Appendix E

Clock Section

Figure E-1 shows the block diagram for the clock section. This section creates the clock

signals which are fed to all the latches and logic segments. In order to test the new logic style

mentioned earlier, the control of these signals is very important. Nine input signals control

the frequency, pulse widths, and separation between pulses of these special clock signals.

The leftmost block, clock-gen, generates a half-duty cycle clock signal at the desired fre-

quency. The transistor schematic is shown in Figure E-2. It consists of a ring oscilator, control

muxes and a reset circuit. The muxes, clock-mux, allow the user to set the number of inverters

in the ring and hence the rate of oscillation. A diagram for the mux is shown Figure E-3.

Even though the internal logic can run around 300 MHz, the pads and packaging cannot.

In order to determine the maximum clocking speed, the internal clock frequency remains high.

For measurement purposes, the clock is divided by 1024 and run off-chip. Clock-divider, shown

in Figure E-4, does this. Each stage, flip-flop and inverter, divides the frequency by a factor

of two. The schematic for the flip-flop (it is labeled latch-rising-if) is shown in Figure E-5.

The next stage, clock-pulse-gen, shown in Figure E-6, creates two pulsed clock signals from

the half duty cycle clock. The block creates four versions of the first clock signal, evaluate,

which pulses on the rising edge of the half duty cycle clock. The second set of pulse signals,

precharge, are delayed versions of evaluate. The desired pulse width is selected from among

the four by selecting it with the final set of muxes.

If further delay between pulses proves necesary, the final block, clock-delay, can delay the

two clock signals with respect to eachother. As shown in Figure E-7, the muxes select the

Y-IT_-P~I-- 1·-·-I-I~1·~ -·--·-Y--··LII--Y~-.II··*· .r·.·F--r·*ri···li-~~-·'--- ~--'- -L -·~ II "ll^-·'L1I'-l~*lx

number of inverter delays to be added to each signal's path.

I

ppeD-WOPgM
CPPm-qpI

tIT

Figure E-1: Block Diagram of the Clock Section

74

~,1~..L- ·-̂ ---r---· L~··- 1-·1~---11-· · 11 --l···Yir~L-~-ur4U

Figure E-2: Transistor Schematic of Clock Gen

Figure E-3: Transistor Schematic of Clock Mux

inO

in1

out

__·_··~___IU__ _^___Y ~___~__·Y_· 1·1-Llr ""--~~''U~I "~~'~

Figure E-4: Transistor Schematic of Clock Divider

77

O

Figure E-5: Transistor Schematic of Latch Rising Ff

78

... ,~,._.,;...~... .1.1- --·1·-----· --- ·-------- -·--------·l~~a··-.--

Figure E-6: Transistor Schematic of Clock Pulse Gen

79

gPPo

Figure E-7: Transistor Schematic of Clock Delay

Appendix F

Test Section

This chapter briefly describes the test logic. The section with a simplified block diagram

is shown in Figure F-1. The purpose of the section is to load test vectors into an array of

registers at some slow speed, run the test vectors at high speed, store the important outputs

from the internal logic, and finally dump the data back to the user.

The array of registers function in two modes. The first is in snake mode, where the muxes

are asserted and values snake from the input pin through the register array. The second

mode is where each row operates in parallel, forcing inputs into the internal logic and loading

outputs from the internal logic.

The fsm with a generalized state diagram is shown in Figure F-2. Each of the states

shown is actually implemented as a collection of a few states to provide the appropriate

timing. However, the basic idea is apparent.

Figure F-1: Generalized Block Diagram for Test Section

82

-·L^:·"UCiUaTrCCLi·YhWIDUsl*·L~LLL9~~CI~

State
Reset

Figure F-2: Generalized State

Any

Bibliography

[1] S. Arora, T. Leighton, and B. Maggs, "On-line Algorithms for Path Selection in Non-

blocking Networks," Proceedings of the 22nd Annual ACM Symposium on Theory of

Computing, pp.149-158, May 1990.

[2] Thomas F. Knight Jr. and Patrick G. Sobalvarro, "Routing Statistics for Unqueued

Banyan Networks," AI memo 1101, MIT Artificial Intelligence Laboratory, September

1990.

[3] Tom Leighton and Bruce Maggs, "Expanders might be Practical: Fast Algorithms for

Routing around Faults on Multibutterflies," IEEE 30th Annual Symposium on Founda-

tionsof Computer Science, 1989.

[4] Fred Chong, Eran Egozy, and Andr6 DeHon, "Fault Tolerance and Performance of Mul-

tipath Multistage Interconnection Networks," Advanced Research in VLSI and Parallel

Systems 1992, pp. 227-242, March 1992.

[5] L. A. Bassalygo and M. S. Pinsker, "Complexity of Optimum Nonblocking Switching

Networks without Reconnections," Problems of Information Transmission, 9:64-66, 1974.

[6] George Adams and Howard Siegel, "The Extra Stage Cube: A Fault-Tolerant Intercon-

nection Network for Supersystems," Transactions on Computers, vol. c-31, no. 5, pp

443-454, May 1982, IEEE.

[7] Henry Minsky, Andr6 DeHon, and Thomas F. Knight Jr. "RN1: Low-Latency, Dilated,

Crossbar Router," Hot Chips Symposium III, 1991.

~.~~·_-~ i -------------- ^·^rc·-·ll-X----·-·-l··'-- Y·~l·ll.l-·~I~i

[8] Y. Tamir and H. C. Chi, "Symmetric Crossbar Arbiter for VLSI Communication Switch,"

Transactions on Parallel and Distributed Systems, vol. 4, no. 1, pp. 13-27, January 1993,

IEEE.

[9] Nelson F. Gonclaves and Hugo J. DeMan, "NORA: a Racefree Dynamic CMOS technique

for pipelined logic structures," IEEE JSSC, vol SC-18, no.3, June 1986, pp.261-266

