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Abstract

A cascade face detector uses a sequence of node clas-
sifiers to distinguish faces from non-faces. This paper
presents a new approach to design node classifiers in
the cascade detector. Previous methods used ma-
chine learning algorithms that simultaneously select
features and form ensemble classifiers. We argue that
if these two parts are decoupled, we have the free-
dom to design a classifier that explicitly addresses the
difficulties caused by the asymmetric learning goal.
There are three contributions in this paper. The
first is a categorization of asymmetries in the learn-
ing goal, and why they make face detection hard.
The second is the Forward Feature Selection (FFS)
algorithm and a fast caching strategy for AdaBoost.
FFS and the fast AdaBoost can reduce the training
time by approximately 100 and 50 times, in com-
parison to a naive implementation of the AdaBoost
feature selection method. The last contribution is
Linear Asymmetric Classifier (LAC), a classifier that
explicitly handles the asymmetric learning goal as a
well-defined constrained optimization problem. We
demonstrated experimentally that LAC results in im-
proved ensemble classifier performance.

1 Introduction

There has been much progress in frontal face detec-
tion in recent years. State of the art face detec-
tion systems can reliably detect frontal faces at video
rate. Various face detection methods have been pro-
posed [33, 28, 31, 45, 24, 11, 37].

Most face detectors use a pattern classification
approach. A classifier that can discriminate face
patches from background non-face patches is trained
from a set of training examples. When a new test im-
age is presented, patches of all possible sizes and posi-
tions are extracted and scaled to the same size as the
training samples. The trained classifier then decides
whether a patch is a face or not. This brute-force
search strategy is used in most of the face detection
methods.

The classifiers used in early work on face detec-
tion, e.g. neural networks [28] and SVM [24], were
complex and computationally expensive. Instead of
designing a complex classifier, Viola and Jones [37]
employed a cascade of simpler classifiers, illustrated
in figure 1. An input patch was classified as a face
only if it passed tests in all the nodes. Most non-
face patches were quickly rejected by the early nodes.
Cascade detectors have demonstrated impressive de-
tection speed and high detection rates. In this paper
we use the cascade structure, in order to ensure high
testing speed.

There were three contributions in the Viola-Jones
face detection system: the integral image representa-
tion, the cascade framework, and the use of AdaBoost
to train cascade nodes. The cascade framework al-
lows background patches to be filtered away quickly.
The integral image representation can calculate the
image features extremely fast, which are called ‘rec-
tangle features’ and are then used in the node classi-
fiers. The AdaBoost algorithm [29] is used to select
rectangle features and combine them into an ensem-
ble classifier in a cascade node. The integral image
and the cascade framework make the detector run
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Figure 1: Illustration of the cascade structure with r
nodes, where H; is the ith node classifier, and d; and
f; are the detection rate and false positive rate of the
ith node, respectively.

fast, and AdaBoost is the key to a cascade’s high
detection rate.

AdaBoost performs two tasks simultaneously when
it trains a node classifier: selecting several rectan-
gle features, and forming an ensemble classifier using
linear combination of these features. However, these
two processes are not necessarily tied together. In
this paper, we show that by decoupling the problems
of feature selection and ensemble classifier design, we
can address the fundamental difficulties in the learn-
ing problem explicitly. The result is improved classi-
fication performance and faster training times. The
contributions of this paper are summarized as three
points.

First, we categorize different forms of asymmetries
in the face detection problem and explain how they
make face detection hard. For example, while the
positive class contains only faces and requires only
thousands of training images, the negative class con-
tains image patches from all over the world and re-
quires billions of training samples.

Second, we propose the Forward Feature Selection
(FFS) algorithm as an alternative way to select fea-
tures in a cascade node. FFS has similar detection
accuracy as AdaBoost. It also reduces the cascade’s
training time by two orders of magnitude compared
to a naive implementation of AdaBoost. We also
present a faster implementation for the AdaBoost al-
gorithm. FFS is approximately 2 to 3 times faster

than this new implementation of AdaBoost. In addi-
tion, FFS only requires about 3% memory usage as
that of the faster AdaBoost implementation, which
makes it a natural choice in applications with a huge
training set and a big pool of features.

Third, we then propose the Linear Asymmetric
Classifier (LAC) to form ensemble classifiers. Decou-
pled from the feature selection process, LAC has the
freedom to explicitly address the asymmetries in the
face detection problem. Thus, LAC can improve the
node classifiers’ performances. For example, apply-
ing LAC to features selected by AdaBoost, we obtain
a better classifier than that provided by AdaBoost
itself. LAC runs very fast and is easy to implement.
The derivation of LAC also explains the empirical
phenomenon that setting the false positive rate of
each node to 50% gives the best performance.

The rest of this paper is organized as follows Sec-
tion 2 explains how the cascade framework helps solv-
ing difficulties in the face detection problem and sec-
tion 3 provides a survey of related methods. FFS
and a faster implementation for AdaBoost are intro-
duced in section 4, and LAC is described in section 5.
Experimental results comparing FFS/LAC to other
methods are also presented. Section 6 concludes this
paper with discussions of future work.

Preliminary versions of portions of this work has
been published in [42] and [41]. The FFS algorithm
presented in this paper is an improved version of the
FFS algorithm in [42]. Some new results are also
presented in this paper, including analysis of asym-
metries in the face detection problem (section 2 and
3), an fast implementation of the AdaBoost method
(section 4.3), validity of LAC’s assumptions (section
5.2), and additional experimental results (figure 7,
10(c), and 11).

2 Analysis of the cascade face
detector

2.1 Asymmetries in Face Detection

We observe three asymmetries in the face detection
problem: uneven data distribution, goal asymmetry,
and the unequal complexity within the positive and



negative classes. In this section, we will discuss why
these asymmetries make the classifier design problem
difficult. We want to point out that these asymme-
tries also apply to the detection of all other objects
(e.g. car detection).

The first asymmetry comes with the uneven data
distribution. Among the millions of image patches
generated from an input image, only very few con-
tain faces. The occurrence of a face in an image is
a rare event. In this sense, face detection (and all
other detection problems in vision) are rare event de-
tection problems. Methods designed to minimize er-
ror rate will classify all instances as negative on such
extremely uneven data sets. Thus all faces will be
missed. Another difficulty associated with this un-
evenness is that the negative class usually has huge
amount of data. Approximately 350 million non-face
patches are used in [37] to train a cascade. The
flood of non-face patches makes the learning algo-
rithm train very slowly.

The second asymmetry comes from the difference
in positive and negative class learning goals. A high
(e.g. 95%) detection rate is required, because we do
not want to lose any faces. However, because of the
huge amount of non-face data, an extremely low false
positive rate (e.g. 10~7) is necessary for reliable de-
tection. It is difficult for a single classifier to achieve
such a learning goal.

The last asymmetry comes from the different com-
position of the two classes. The positive class consists
of only faces. However, the negative class consists of
image patches from a nearly infinite number of dif-
ferent object categories: animals, trees, man-made
objects, buildings, and more. It is not hard to distin-
guish faces from cars. However, it is much harder to
distinguish faces from all other objects.

2.2 Cascade Approach to Asymmetric
Problems

The cascade structure alleviates the difficulties asso-
ciated with the three asymmetries described above.
Cascade classifier deals with the uneven data set
with sampling. The training set for each node classi-
fier is balanced by sampling roughly the same amount
of non-face patches as the number of faces. After a

new node is trained, all non-face patches which are
correctly classified by this node are removed from the
pool of non-faces. So the number of non-face patches
in the pool decreases at an exponential speed. This
data bootstrapping strategy deals effectively with the
huge amount of non-face data. It is also a way to
find non-face samples that are difficult to separate
from faces [33]. It is worth noting that sampling is a
widely used strategy to deal with uneven data sets in
the machine learning and data mining domains [40].

Goal asymmetry is also addressed by the cascade
classifier. Consider a cascade consists of a set of nodes
H,,Hs,...,H,.. Let M be the event that the testing
instance is a true face, and A; be the event that H;
classifies it as a face. Then, the detection rate D and
false positive rate F' of the cascade are computed as

H;:1 di
Hi:l fi

by the chain rule, where d; = Pr[A;|A;_1,..., A1, M|
and f; = Pr [Ai\Ai_l, .. .,Al,M] are the detection
rate and false positive rate of the ith node. The above
equations do not assume that the nodes make inde-
pendent errors. The false positive rate F' drops to 0
exponentially with the depth of the cascade.

As a consequence of Eq. (1), it is natural to define
the learning goal of a cascade as: for every node, de-
sign a classifier with very high (e.g. 99.9%) detection
rate and only moderate (e.g. 50%) false positive rate.

This node learning goal is in principle easier to
achieve in comparison to the daunting 10~7 false pos-
itive rate goal for a single classifier. However, it is
a cost-sensitive learning problem. A false negative
clearly costs more than a false positive since we allow
about 50% errors in the negative class, but nearly
no error can be allowed in the face class. Many ma-
chine learning algorithms (including AdaBoost) are
designed to minimize error rates and usually do not
work well on cost-sensitive problems [40]. Viola and
Jones proposed the AsymBoost method [36] to han-
dle this asymmetry. We will discuss the drawback of
AsymBoost and other asymmetric learning methods
in the related works (section 3). We then propose
the Linear Asymmetric Classifier to deal with this
cost asymmetry in section 5.

D =
F =

Pr[A,,..., A |M] =

PrA,,..., A M| = (1)



The asymmetry in class composition is taken care
of by increasing the complexity of the node classifiers.
When more nodes are used, the data bootstrapping
process will include instances from more object cat-
egories, thus making the node negative training set
contain non-face patches which are hard to separate
from faces. The node classifiers become more com-
plex, consequently. In [37], only 2 features were used
in the first node, while 200 features were used for the
last node. Since most non-face patches are rejected
by early nodes, a small number of features are evalu-
ated for these patches. This fact enables the cascade
to run at video rate.

3 Related works

Our goal is to solve the node learning goal quickly and
robustly. However, before presenting our solution, we
will first discuss some works that are related to the
cascade structured face or general object detectors. A
comprehensive review on other face detection systems
can be found in [44].

3.1 ‘Project and Reject’ detectors

One key aspect of the cascade detector is the abil-
ity to quickly reject some candidate image patches.
This intuition is utilized in many face detection sys-
tems implicitly or explicitly. For example, the neural
network-based detector of Rowley et. al. [28] incor-
porated a manually-designed two node cascade struc-
ture for improving the detection speed.

There are some other detectors which explicitly ex-
ploited the idea of rejecting non-face patches in a
cascade-like structure. Most of these methods fol-
low a ‘Project and Reject’ approach. In the maximal
rejection classifier approach [8] and the Antiface ap-
proach [18], in each stage the input patch was pro-
jected to a given direction and was rejected if the pro-
jected value was beyond certain thresholds. In [27],
a set of reduced set vectors was calculated from a
support vector machine. These vectors were applied
as projection directions sequentially. An alternative
cascade framework for SVM classifiers was proposed
by Heisele et. al. [14]. Baker and Nayar proposed a

theory of pattern rejection for object recognition [3]
using the project and reject procedure.

There are two major differences between these
methods and the Viola-Jones detector. First, cas-
cade detectors used Haar-like rectangle features [25].
Rectangle features can be extracted more quickly, in
comparison to the projection operation. Second, ear-
lier nodes in a cascade have smaller complexity than
deeper nodes. Since most non-face patches are re-
jected by these early nodes, the cascade is able to
run faster than those detectors whose nodes all have
the same complexity.

3.2 Node training in a cascade frame-
work

From now on we focus on the Viola-Jones cascade
framework in order to ensure video rate testing speed.
The central learning problem is to construct a single
node which satisfies the node learning goal. Succes-
sive iterations of this procedure will result in a cas-
cade.

As discussed above, it is the cost asymmetry (or,
cost-sensitive) nature of this learning goal that makes
it difficult. Many cost-sensitive learning methods
have been proposed. We are specifically interested
in those variants of AdaBoost since the Viola-Jones
work has demonstrated that AdaBoost is an effec-
tive method to learn a node. The naive way, by
modifying the initial weight distribution, was used
by Schapire et al. in text filtering [30]. However, it is
pointed out by Viola and Jones in [36] that, even
when positive examples are assigned much higher
initial weights than negative examples, the differ-
ence is absorbed quickly by AdaBoost. They pro-
posed AsymBoost [36] as a remedy, which continu-
ously gave positive examples higher weights at every
training round. They applied AsymBoost to face
detection and showed that it had fewer false posi-
tives than standard AdaBoost. The key idea is to
put more weights on positive examples than nega-
tive ones. Many other strategies to apply this idea
have been proposed in the machine learning and data
mining literature, e.g. AdaUBoost [17], AdaCost [9],
and the CSB family [34]: CSBO, CSB1 and CSB2.
One characteristic of these methods is that they all



conflate the problem of selecting features with the
problem of designing an ensemble classifier.

There are other methods that are related to the
node learning goal, e.g. BMPM [15] and MRC [8].
BMPM is an asymmetric learning algorithm, which
maximizes an lower bound of the detection rate while
keeping the false positive rate smaller than a con-
stant. Additional discussions on these methods will
be presented in section 5.4.

Finally, we mention in pass that there are tools
to analyze the generalization ability of a cascade.
The cascade structure is a special case of decision
list, a data structure introduced by Rivest [26]. An-
thony gave generalization bounds for threshold deci-
sion lists [1], which can be applied to cascade detec-
tors.

3.3 Other methods related to the cas-
cade detector

We also briefly mention some other improvements to
the cascade detector, including new features, node
and cascade classifiers designing methods, and appli-
cations.

New features have been proposed, e.g. the rotated
Haar-like features [21], features based on the mod-
ified Census Transform [12], and the diagonal fea-
tures [16]. Levi and Weiss studied various features to
reduce the number of training images [19]. Torralba
et al. proposed a way to efficiently share features for
multi-class object detection, although they did not
use a cascade [35].

The learning algorithm used to train node classi-
fiers was another topic of interest. Lienhart et al.
[21] experimentally evaluated different boosting al-
gorithms and different weak classifiers. They argued
that Gentle AdaBoost and CART decision trees had
the best performance. Xiao et al. proposed the
Boosting Chain algorithm [43] to integrate historical
knowledge into the ensemble classifier. Li et al. incor-
porated floating search into the AdaBoost algorithm
(FloatBoost) for detecting multi-view faces [20]. Liu
and Shum proposed KLBoosting to train a node clas-
sifier, in which the weak classifiers were based on his-
togram divergence of linear features [22]. It is worth

noting that in KLBoosting classifier designing was de-
coupled from feature selection. In KLBoosting, the
linear classifier was learned using gradient descent af-
ter features were selected.

The aforementioned research focused on improving
a single node classifier. In [32], Sun et al. considered
the problem of connecting the learning objectives of
a node to the overall cascade performance. They pro-
posed a cascade indifference curve framework to se-
lect the point of operation in a node classifier’s ROC
curve.

Besides improving the cascade face detector, re-
searchers have used the framework in other fields.
A cascade approach has been used (in some cases
with substantial modifications) to detect multi-view
faces [16, 20], text [6], wiry objects [5], and pedestri-
ans [38].

4 Fast Feature Selection

Algorithm 1 The cascade framework

1: {Given a set of positive examples P, an set of
initial negative examples N, and a database of
bootstrapping negative examples D. }
{Given a learning goal G for the cascade}
{The output is a cascade H = (Hy, Ha, ...
i<=0H <0,
repeat
1<=1+1
NodeLearning { Learn H; using P and N, add
Hi to H }
N<=0
9:  Run the current cascade H on D, add any false
detection to A until A reaches the same size
as the initial set.
10: until The learning goal G is satisfied

Hy)}

i

The cascade framework is shown in algorithm 1.
This is an abstract description of the cascade learn-
ing algorithm. As showed in algorithm 1, there are
two major blocks in training a cascade: line 7 is a
node learning algorithm and line 9 is the data boot-
strapping process.



In the Viola-Jones detector, the node learning
algorithm is AdaBoost, which do feature selection
and classifier designing simultaneously. We decouple
‘NodeLearning’ into two separate parts and propose
Forward Feature Selection to perform the feature se-
lection task. We also propose a fast implementation
of AdaBoost to select features.

4.1 The Forward Feature Selection al-
gorithm

In [37], AdaBoost was used to train the node classi-
fier H; in line 7 of the algorithm 1. AdaBoost is an
iterative method for obtaining an ensemble of weak
classifiers by evolving a distribution of weights, Dy,
over the training set. In the Viola-Jones approach,
each iteration ¢ of the boosting process added the
rectangle feature h; with the lowest weighted error
to the ensemble classifier. After T rounds of boost-
ing, the decision of the AdaBoost ensemble classifier
is defined as H(x) = sgn (Zle arhy(x) — 9), where
the a;’s are the ensemble weights obtained by the
AdaBoost algorithm and 6 is threshold of the ensem-
ble. The flowchart of this algorithm is shown in figure
2(a).

AdaBoost picked the rectangle feature with the
smallest weighted error with respect to the weight dis-
tribution D;. D; was updated every round, which in
turn required that the weak classifiers were re-trained
at every round, as indicated by figure 2(a). In the face
detection application, the number of training exam-
ples and rectangle features are both in the order of
thousands. Thus, the re-training of rectangle features
is the most time consuming component in the algo-
rithm. In [37], it took a few weeks to train a complete
cascade face detector.

We propose a new feature selection method based
on Forward Feature Selection (FFS), a greedy feature
selection method [39]. After the features are selected,
an ensemble classifier can be formed by simple vot-
ing of the selected features. Pseudo-code for the FFS
algorithm for selecting features and building an en-
semble classifier for a single cascade node is given
in algorithm 2. The corresponding flowchart is illus-
trated in figure 2(b).

Algorithm 2 The FFS algorithm as a new feature
selector and node learning algorithm

1: {Given a set of examples {xi,yi}f\]:17 where N is

the size of the training set.}

2: {Given a set of rectangle features {hi}i]\ip where
M is the number of rectangle features.}

3: {The output is an ensemble classifier, whose false
positive rate is 0.5. S is the set of selected fea-
tures. }

4: for i =1to M do

5.  Pick appropriate threshold for rectangle fea-

ture h;, such that h; has smallest error on the
training set

6: end for

7. Make a table V;; such that V;; = h;(z;), 1 <i <
M1<j<N

8 S < 0,v < 014, where 01« is a row vector of
Zeros.

9: fort=1toT do

10 fori=1to M do

11: S" < SUh;, v < v+ V., where V;. is the
ith row of V.
12: {The classifier associated with S’ is

H'(x) =sgn (> ,cq h(x) —
H'(x;) = sgn(v; — 0).}

0), and we have

13: Find the # that makes H’ has the smallest
error rate on the training set

14: €; < the error rate of H' with the chosen 6
value

15:  end for

16: k< argmin ;<7 €

17: S@SUhk,Eé’l}-‘v—Vk:

18: end for

19: {The output is H(x) =sgn (> ,cqh(x) —0)}

20: Adjust the value of 6 such that H has a 50% false
positive rate on the training set.
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Figure 2: Diagram comparing the naive AdaBoost implementation, the FFS algorithm, and the faster
implementation of AdaBoost for selecting features and forming a single node classifiers. In these diagrams,
N is the number of training examples, M is the total number of features, and T is the number of features
that is needed to be selected in a single node classifier.



Before getting into details of FFS, the flowcharts
reveal the intuition behind it. In 2(b), ‘Train all weak
classifiers’, the most time-consuming component, is
moved out of the loop. That is, the weak classifiers
will be trained for only once. In AdaBoost, they need
to be trained T times, where T is the number of fea-
tures in the AdaBoost ensemble. Since most of the
training time is used to train weak classifiers, FFS
requires only 1/T training time as that of AdaBoost.

In summary, the key intuition in FFS is caching:
the results of trained weak classifiers are stored and
re-used.

Both AdaBoost and FFS are greedy feature selec-
tion methods: they pick up the ‘best’ feature they
find in every round, based on different criteria. There
are three major differences between FFS and Ad-
aBoost.

First, there is no distribution maintained over the
training set in FFS. Each training example is treated
equally. Thus, the rectangle features are trained only
once. Their corresponding weak classifiers’ classifica-
tion results are stored into a table V. In the following
feature selection part, table lookup operations pro-
vides all the information needed about the rectangle
features. Thus, FFS greatly expedites the training
process, with the cost of the storage of a table V.

Second, after the features are selected, the out-
put ensemble classifier H(x) = sgn (3, cqh (x) — 6)
is a voting of these features in S. The total vote
> hes P (%) is an integer between 0 and T, the num-
ber of selected features. The total vote in AdaBoost
is a real number instead.

Third, the criterion used in FFS to select features
is that the selected feature should make the ensem-
ble classifier has smallest error. In AdaBoost, the
criterion is to choose a single feature with smallest
weighted error.

The FFS algorithm operates as follows. The first
step is to train all weak classifiers and store their clas-
sification results into a table V. The set of selected
features, S, is initialized to an empty set. At every
round, we examine every possible feature and select
the feature that mostly reduce the ensemble classi-
fier’s error.

Given the candidate feature h; and S, it is easy to
compute the error rates of S’ = S U h;. The sum of

votes v’ for S’ is obtained by a vector addition (line 11
in algorithm 2). As discussed above, the components
of v' are integers between 0 and ¢, the round index
number. Thus, the threshold 6 can only take values
in the set {0,1,...,t}. A histogram for v can be built
(how many positive/negative examples have 0 votes,
1 votes, etc.) With this histogram, it is trivial to find
the optimal value for 6, which makes the ensemble
classifier associated with S’ has smallest error rate
(line 13).

As in Algorithm 2, N, M, T denotes the number of
training examples, the number of rectangle features,
and the number of selected features, respectively. It
takes O(N) to compute v'. It takes O(N) steps to
build a histogram, and O(t) time to find 6 (usually
t < N). The code between line 11 and line 14 has
complexity O(N). The outer loop between line 9 and
line 18 is O(NMT'). We will later show that to train a
single feature (line 5) requires O (N log N) time steps
(refer to section 4.3). So the overall time complexity
of the FFS algorithm is O(NMT+N M log N). These
computational complexity results are also shown in
figure 2(a).

4.2 Complexity of the AdaBoost algo-
rithm

Similarly, we can analyze the complexity of the Ad-
aBoost algorithm.

The first step is to analyze the complexity of the
weak classifier training algorithm. When a rectangle
feature is given, the optimal threshold 7 can only take
value from a finite set: the feature values at the train-
ing samples. After the feature values are sorted, the
error rate of a weak classifier with different thresholds
can be updated sequentially at all possible threshold
values. This algorithm is described in Algorithm 3.

The sorting can be done in O(NlogN). Thus,
the complexity of training a single weak classifier is
O(Nlog N). The AdaBoost algorithm runs 7" rounds.
In every rounds, almost all time is used to train
the M weak classifiers. So the time complexity of
the AdaBoost algorithm for training a single node is
O(NMTlog N). As discussed in section 4.1, FFS has
complexity O(NMT + NM log N). In face detection
we have N > T > log N, which means that FFS



Algorithm 3 Training a weak classifier

1: {Given a training set {xi,yi}fil with weights
{wi};\il, a rectangle feature h, and its corre-
sponding mask m}

2: Compute the feature values, v, ..
v; = Xle

3: Sort the feature values into a new vector
Viyy ...,V such that (i1,...,iyx) is a permuta-
tion of (1,...,N), and v;; <...<w;,

., N, wWhere

4: € <= Zy,;zfl w;

5: for k=1to N do

6: if y;, = —1 then

7 €<= €—Wj, ,€ <€
8: else

9: €E=€etw;,, €6 =€
10 end if

11: end for

— : — T
12: k=argmin <y €, T =X; M

13: The output is a weak classifier h(x) = sgn(x’ m—

7)

requires approximately 1/T of the training time of
AdaBoost.

4.3 Faster AdaBoost implementation

Caching is the key to the speed improvement of FFS.
Although we have to store a big table V' in memory,
we never need to train the classifiers again, because
all pertinent information is stored in V. We trade
space for time.

Careful examination of the Algorithm 3 revealed
that AdaBoost can also be expedited using the same
caching strategy. In different rounds of the AdaBoost
algorithm, the weight distribution {wi}iTzl changes,
but the training set {x;, yz}f\il remains constant.
Furthermore, the feature values v; and the permu-
tation vector iq,...,ixy do not change in different
rounds of AdaBoost. This part (line 2 and line 3
in Algorithm 3) only needs to be done once and the
permutation vectors can be stored in a M x N table
V for future use. Using such a permutation table V,
the weak classifier training algorithm (now only line
4-13 of Algorithm 3) is O(N).

With the permutation table, the complexity of
the AdaBoost algorithm is greatly reduced. In or-
der to obtain the permutation table V, we need
O(NM log N) time steps. The following T rounds of
feature selection each takes O(NM). So the overall
complexity of the faster implementation of AdaBoost
is O(NMT + NMlog N), which is the same as the
FFS algorithm. The flowchart of this implementa-
tion is shown in figure 2(c). Avidan and Butman
suggested using a similar caching idea independently
in [2].

We want to point out that FFS has much lower
memory requirement than the faster AdaBoost im-
plementation. In FFS every entry in the table V is a
binary value and requires only 1 bit. However, every
entry in the table V' in AdaBoost is an integer which
uses 32 bits (in a 32-bit CPU). In applications with
large number of training examples and a large fea-
ture set (and consequently a large table V'), FFS is
the preferred feature selection method.

4.4 Experiments comparing FFS and
AdaBoost

Although the computational complexity of the FFS
and AdaBoost algorithms can be analyzed, their de-
tection performances need to be compared by exper-
iments. Both algorithms are used to build cascade
face detectors, and their performances are compared
on the MIT+CMU test set [28]. We did controlled ex-
periments. Two cascade face detectors were trained
using the FFS and AdaBoost algorithm, respectively.
All other aspects of the experimental setup were the
same: the two cascades were trained with the same
training set, validation set, abstract cascade algo-
rithm, and learning goal. In all cascades we trained,
cascade nodes at the same depth all have the same
number of features. All cascades were evaluated us-
ing the same test set and post-processing step.

Our training set contained 5000 example face im-
ages and 5000 initial non-face examples, all of size
24x24. We had a set of 4832 face images for vali-
dation purposes. We used approximately 2284 mil-
lion non-face patches to bootstrap the non-face ex-
amples between nodes (line 9 of Algorithm 1). We
used 16233 features sampled uniformly from the en-



tire set of rectangle features. For testing purposes
we used the MIT4+CMU frontal face test set in all
experiments. Although many researchers use auto-
matic procedures to evaluate their algorithm, we de-
cided to manually count the missed faces and false
positives.! When scanning a test image at different
scales, the image is re-scaled repeatedly by a factor
of 1.25. Post-processing is similar to [37].

In the AdaBoost cascade, every node classifier is
an AdaBoost ensemble. In each node classifier, the
weights of selected features are set by the AdaBoost
training algorithm. In the FFS cascade, every node
is an ensemble classifier too. In each node classifier,
we use FF'S to select features, and the weights for all
of the selected features are set to 1. In both cascades,
we adjust thresholds of the node classifiers such that
they have 50% false positive rates.

Our cascade training algorithm terminates when
the bootstrapping non-face image database are de-
pleted. Since our learning goal requires that every
cascade node has a false positive rate of 50%, all cas-
cades should have approximately the same number
of nodes. However, we find that the AdaBoost cas-
cade has 21 nodes, but the FFS cascade has only 17
nodes. This discrepancy comes from the fact that in
FFS, every weak classifier has integer votes (1 or -1).
With only integer votes, FFS can not achieve an ex-
act 50% false positive rate and we choose lower false
positive rates for each node in our experiments. The
average false positive rate of all nodes in the FFS cas-
cade is 43.48%. So the FFS cascade has fewer nodes?.

ROC curves of the AdaBoost cascade and the FFS
cascade are shown in figure 3. We construct the ROC
curves by repeatedly removing nodes from the cas-
cades to generate points with increasing detection
and false positive rates. The curve between two con-
secutive points is approximated by a line segment.
The ROC curves show that the FFS cascade has very
close performance to the AdaBoost cascade. In re-
gions with more false positives (>100), the AdaBoost
classifier’s performance is slight better than that of
the FFS classifier. In regions with less false positives,
the FFS cascade has slightly better performance.

Experiments also showed other properties of the
FFS algorithm. Since the same cascade framework
was used in the FFS cascade and each node had the
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Figure 3: ROC curves comparing cascade detec-
tors using the AdaBoost and FFS algorithm on the
MIT+CMU test set.

same number of features as the AdaBoost cascade,
the detection speed (test speed) should be about the
same as the AdaBoost cascade. The experiments
showed that both cascade detectors did have very
close testing speed.

Furthermore, although both FFS and faster imple-
mentation of the AdaBoost algorithm has the same
complexity O(NMT + NM log N), the constant fac-
tor in FFS is smaller. To train a node having
the same number of features, experiments showed
that the faster implementation of AdaBoost usually
took 2.5-3.5 times of the training time of FFS, and
the original AdaBoost implementation needed 50—150
times of the training time of FFS.

The fact that FFS has similar performance as Ad-
aBoost suggests that AdaBoost is not the only choice
for the feature selection method in training a cascade
node. Other feature selection methods, such as FFS,
can be used in place of AdaBoost and still get good
or even better performance. For a complete com-
parison of feature selection methods in the cascade
framework (including FFS, CMIM [10] and various
boosting methods), we refer the readers to [4].



5 Linear Asymmetric Classifier

We have presented FFS as an alternative to Ad-
aBoost for feature selection in cascade classifiers.
This raises the question of whether alternative meth-
ods for forming an ensemble classifier from selected
features could lead to performance improvements. In
particular, neither FFS or AdaBoost explicitly ad-
dresses the difficulties caused by the asymmetries dis-
cussed in section 2.1. In this section, we propose
the Linear Asymmetric Classifier (LAC) which is de-
signed to handle the asymmetric node learning goal
in the cascade framework: for every node, design a
classifier with very high (e.g. 99.9%) detection rate
and only moderate (e.g. 50%) false positive rate.

5.1 The Linear Asymmetric Classifier

We do not handle the feature selection problem
in LAC, that is, we assume that appropriate fea-
tures have already been selected by other algorithms.
For example, AdaBoost, FFS, or information theory
based method [10] can be used to select features. We
study the problem of how to find a linear classifier
that’s optimal for the node learning goal with these
features.

The problem formulation can be formalized as fol-
lows. Let x ~ (X, Xx) denote that x is drawn from a
distribution with mean X and covariance matrix Y.
Note that we do not assume any specific form of the
distribution. The only assumption is that its mean
and covariance can be estimated from samples. We
are dealing with binary classification problems with
two classes x ~ (X,Xx),y ~ (¥, 2y ), which are fixed
but unknown. Here x denotes a vector of feature val-
ues of a positive example and y denotes a vector of
feature values of a negative example. Note that the
notations in this section are different from previous
sections. Both x and y are used to denote feature
vectors, in order to emphasis the fact the learning
goals are asymmetric and to make presentations more
clear. Class labels of training examples are obvious
from the notation (x for positive and y for negative)
and are ignored. We use z to denote an example
with unknown class label. The linear classifier to be
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learned can be written as H = (a, b):

{

The asymmetric node learning goal is expressed as:

ifalz>b
ifalz<bd

+1

H@z) =1 ©)

max Pr  {aTx > b}
a#0,b  x~(%X,3x) (2)
s.t. Pr {aTy <b} =3

yN(yVEy)

In general this problem has no closed-form solution.
In this section, we will develop an approximate solu-
tion for it. Empirical results showed that it is effec-
tive to set S = 0.5 for all cascade nodes. Thus, we
will give a closed-form (approximate) solution when
6 =0.5.

Note that an AdaBoost classifier is a linear combi-
nation of weak classifiers:

H(x) = sgn(S{_; achi(x)—b) = sgn(a’h(x)-b) (3)

in which h(x) is the vector of weak classifiers’ out-
puts. Thus H(x) is a linear classifier in the feature
space defined by h(x). However, there is no guaran-
tee that the (a,b) selected by AdaBoost will satisfy
Eq. (2) for a given choice of §. The same argument
applies to FFS. We seek a linear discriminant (a,b)
which maximizes the node learning goal in Eq. (2).

The key idea to solve this learning problem is to
use the cumulative distribution functions of a’x and
al'y to replace the Pr{} function.

Let x, denote the standardized version of a’x (x
projected onto the direction of a), i.e.

al'(x —x)
Vals,a'

obviously we have x5 ~ (0,1). Let ®x 5 denotes the
cumulative distribution function (c.d.f.) of x,, i.e.

(5)

Xaq =

(4)

Px,a(b) = Pr{xa < b}.
Ya and Py, , are defined similarly as
a’(y - y)
VaTs,a’

Dy a(b) = Pr{ya < b}.

(6)

Ya =



Thus, the constraint in Eq. (2) can be re-written as

8 = Pr {aTy < b}
— a’(y—y) b—aly
= br { \/aTZya < \/aTEya
= P b_aTy
== y,a )

vaTYya

which in turn gives an expression for the optimal

value of b:
b=a"y+ o, (0)/aTEya (8)

where @1, is the inverse function of ®y . Note that

CI);la depends on both y and a. Similarly, the objec-

tive function in Eq. (2) can be re-written as
b—a'x

1—®xa| ——
' (x/aTExa>

Using Eq. (8) to eliminate b and we obtain

| g (T =X) + Bya(f)Valiya
o valsia .

Thus the constrained optimization problem (2) is
+ o, L(B)y/aTEya

equivalent to
. (9
valY,a > ©)

(ﬂw—@

In Eq. (9), ®x,a and @y}, depend on the distributions
of x and y, in addition to the projection direction a.
Because we have no knowledge of these distributions,
we cannot solve Eq. (9) analytically. We need to
make some approximations to simplify it.

First, let us give a bound for ® and ®~!. Let
Z ~ (0,1), applying the one-tailed version of the
Chebyshev inequality, for z > 0 we get

D(z) Pr{Z <z}
1-Pr{Z >z}

_1
1 _2 1422

1422

T

min &
a0 x,a

(10)

AVAN|

Since ®~! is increasing, we have

52
1422

P HD(2)=2> 7! (

)
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A little bit of algebraic manipulation gives us the
following bound:

d~1(B) < k(B), where & (5) (11)

1-5

From the definition, it is obvious that x5 ~ (0,1).
Thus, instead of minimizing ®xa(z) in Eq. (9), we
can instead minimize its upper bound k(z). Further-
more, since k(z) is an increasing function, it is equiv-
alent to minimizing z. Thus, we can approximately
solve Eq. (9) by solving

a’ (y —x) + @, L(8)y/aTSya

min , 12
a70 vaTl¥,a (12
or, equivalently,
a’ (x —§) — @, a(8)y/aTEya
max - (13)
a#0 vaTlYsa

This transformation is approximate because in Eq.
(9), the function @« a depends on a, while a also ap-
pears in the argument of &4 o. However, if we assume
that a’x is Gaussian for any a, then X, is the stan-
dard normal distribution. Under this assumption,
®x.a does not depend on a any more, and Eq. (13)
is exactly equivalent to Eq. (2).

Second, we assume that the median value of the
distribution y, is close to its mean. This assumption
is true for all symmetric distributions and is reason-
able for many others. Under this assumption, we
have &, 1(0.5) ~ 0. Thus for = 0.5 (which is used
in the cascade framework), Eq. (13) can be further
approximated by

al(x - y)
max

a0 \/aTy a

If in addition we can assume that y, is a symmetric
distribution and 3 = 0.5, we have @} 1(0.5) = 0 in
addition to Eq. (13). The implication is that under
these assumptions, Eq. (14) is exactly equivalent to
the node learning goal in Eq. (2). We call the linear
discriminant function determined by Eq. (14) the
Linear Asymmetric Classifier (LAC) and use it in the
cascade learning framework.

i (14)
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Figure 4: Normality test for a’x, in which x is fea-
tures extracted from face data, and a is drawn from
the uniform distribution [0 1]7.

The form of Eq. (14) is similar to the Fisher Dis-
criminant Analysis (FDA) [13], which can be written

as:

al(

X-y)
al(Xx +Xy)a
The only difference between FDA and LAC is that
the pooled covariance matrix Y + Xy is replaced by

Yx. This analogy immediately gives us the solution
to Eq. (14) as:

1
g )

a* =y ' (x—y),b =aly, (16)
under the assumption that ¥ is positive definite. In
applications where ¥, happens to be positive semi-
definite, Xy + AI can be used to replace Yx, where A

is a small positive number.

5.2 Empirical Support for Gaussian-
ity

We have shown that if for any a, a' x is Gaussian
and a’'y is symmetric, then LAC is guaranteed to
be the optimal linear classifier for the node learning
goal. In this section we verify that these assumptions
are valid in the cascade face detector.

Probability theory shows that x is Gaussian if and
only if aTx is Gaussian for all a’s [7]. Obviously x is

T
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Figure 5: Normality test for a’x. This figure shows
overlapped results for 10 different a’s, all drawn from
the uniform distribution [0 1]7. The data in this
figure are centered (i.e. means are subtracted).

not Gaussian since all of its components are binary
random variables. However, experiments show that
aTx is approximately Gaussian for most reasonable
instantiations of a. Figure 4 shows the normal prob-
ability plot of a’x for a randomly drawn from the
uniform distribution. aTx fits closely to a normal
distribution, only with small deviations at the tails.
Figure 5 shows that a’x is approximately Gaussian
for all different a’s in our experiments.

Experiments also show that a”'y fits nearly exactly
to a Gaussian (refer to Figure 6). We tested the nor-
mality of a’y for many non-face training data sets
and different instantiations of a, and aTy always fits
a Gaussian distribution. Since centered Gaussian dis-
tributions are symmetric, we can safely assume that
a’y is symmetric for all a’s.

The normal probability plot is a way to visually ex-
amine whether a distribution is normal or not. The
kurtosis of a one dimensional distribution provides a
numerical evaluation of the normality, since the kur-
tosis of a normal distribution is 0 and nearly all non-
Gaussian distributions have non-zero kurtosis. Table
1 summarizes the kurtosis value of a”x and a”y for
1000 different a’s, all of which drawn randomly from
the uniform distribution [0 1]7. The result in table 1
confirms that for most reasonable a, a”x is approxi-
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Figure 6: Normality test for a’y, in which y is fea-
tures extracted from non-face data, and a is drawn
from the uniform distribution [0 1]7.

mately Gaussian and a”'y fits very close to a normal
distribution.

| | Kurt(a”x) [ Kurt(ay) |

mean -0.23 -0.02
standard deviation 0.05 0.07
min -0.38 -0.06
max -0.22 0.23

Table 1: Summary of the kurtosis of a”x and a’'y for
1000 different a’s randomly drawn from the uniform
distribution [0 1]7.

5.3 LAC in the cascade framework

Since most visual classification tasks are not linearly
separable, we need to inject some non-linearity into
the linear asymmetric classifier. When the rectangle
features are used, the vector of their corresponding
weak classifiers’ output h(x) is used as features (refer
to Eq. 3). The rectangle features can be selected by
any feature selection method, e.g. AdaBoost, Asym-
Boost, or FFS. The abstract cascade learning algo-
rithm remains unchanged (Algorithm 1), while the
node learning algorithm is replaced by a feature se-
lector plus LAC. The new node learning algorithm is
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shown in Algorithm 4.

Algorithm 4 The LAC algorithm as a new node
learning algorithm

1: {Given a training set composed of positive exam-
ples {x;},, and negative examples {y;};¥,, and
a set of rectangle features.}

2: {Given a feature selection method F}

3: {The output is a classifier with false positive rate
0.5}

4: Use F to select T weak classifiers h =
(h1,ha, ..., hr) where h;(z) = sgn(z’ m; — 7;)

5: Build a  feature  vector  h(z) =
(h1(z), ha(z),...,hr(z)) for each training
example.

6: Estimate the mean and covariance:
e _ Z:L;(l h(xi) S _ Zigl h(}'i)

- Nx ’ y - ny
Y = E?;uh(xi):i)(h(xi)fi)T7 N, =
> (h(yi)=y)(h(yi)=y)"

7: Applying Eé (16) to get

a=y.'(x-y).b=a"y

8: The output is a classifier

T

H (z) = sgn (Zt_

) a;hy(z) — b) = sgn (a’ h(z)

When we want to apply FDA instead of LAC, we
replace Eq. (16) with the following FDA solution:

a=(Sx+%y) " (x-Y). (17)

It is tempting to use the integral feature values

z"'m;, — 75, directly as features in the Linear Asym-

metric Classifier or FDA. However, since z’m; —

7¢ is a linear function of the input z, H (z)

sgn (Zthl a;(z"'my — 1) — b) is still a linear dis-
criminant function and will not work for problems
that are not linearly separable. The sgn function in-
troduces the necessary non-linearity into the features.

Both AdaBoost and LAC have the same form
H (z) = sgn (a”h(z) — b) and they share the same
feature vector h(z). The only difference between



these two classifiers are parameters of the linear dis-
criminant (a,b). In AdaBoost, a; is chosen in step i of
the AdaBoost procedure to minimize a margin-based
cost function [23]. This is a greedy procedure and a;
is never changed after its value is determined. Fur-
thermore, AdaBoost does not take into account the
fact that the two classes are asymmetric. The linear
asymmetric classifier, on the contrary, is a global pro-
cedure to seek the optimal vector a which optimizes
the asymmetric loss in Eq. (2).

Viola and Jones proposed AsymBoost [36] to ac-
commodate the asymmetry. In AsymBoost, sample
weights were updated using

D, (i) exp (—yihe(z;)) exp (yi log \/E)

Dy (i) = 7,

instead of the standard AdaBoost updating rule

Diya (i) = Dy (i) eXP(Z:yiht(xi)).

The extra term exp (yl log \/E) causes the algorithm

to gradually pay more attention to positive samples
in each round of boosting, in which £ is a parameter
representing the level of asymmetry. However, the
resulting linear discriminant (a,b) is determined in
the same way as ordinary AdaBoost.

5.4 Comparison to previous work

There are other methods that are similar to the form
of Eq. (14). Researchers have also presented methods
that are related to the node learning goal. However,
the node learning goal was not explicitly defined and
solved in these methods. In this section we will exam-
ine the relationship between the proposed LAC and
other related classifiers.

By applying Eq. (11) into Eq. (9), we get another
approximation to Eq. (9):

al (x—y)—r(B)y/aTxya

max ,

a0 valY,a

which is the Biased Minimax Probability Ma-
chine [15]. Eq. (18) is a worst case lower bound

(18)

of our objective function Eq. (9). The solution of a
BMPM used fractional programming which is com-
putationally expensive. The BMPM solver in [15]
often takes thousands of iterations to converge, while
the solution in Eq. (16) requires only a single ma-
trix inversion. BMPM solves a more general class of
problems than LAC (3 is not confined to 0.5), while
LAC incorporates more domain knowledge. This dif-
ference is clear from the derivations of these method.
BMPM is based on the Chebyshev inequality, while
LAC is based prior knowledge (assumptions) about
the data.

Another related objective function comes from the
Maximum Rejection Classifier (MRC) [8], which can
be written:

(aTy — anc)2 + aTEya

max
aly,a

a#0

(19)

The solution of Eq. (19) requires solving a gen-
eralized eigenvalue problem. The intuition behind
Eq. (19) is to make the overlap between the pro-
jections x, and y, small. The derivation of Eq.
(19) in [8] treats the two classes equally. Asymme-
try in the MRC framework results from the fact that
the two classes have different prior probabilities with
P(x) <« P(y). However, the effect of the prior on y
is reduced quickly as the stage-wise rejection process
continues. After a few rejections, P(x) is not negli-
gible any more in comparison to P(y). Under such
conditions, Eq. (19) is not an appropriate objective
function.

A final comparison can be made between LAC and
FDA. FDA and LAC both have their own merits and
drawbacks. We have shown that when x, is normal,
Ya is symmetric, and 8 = 0.5, LAC is indeed the op-
timal solution to the node learning goal. However,
when these assumptions are broken, LAC may be
suboptimal. The intuition in FDA is to maximize
the (normalized) separation between the two class
means. It does not minimize the error rate or the
node learning goal. The advantage of FDA is that it
does not have constraints — performance will be rea-
sonably good if the class means are far apart. If we
assume that x and y have equal covariance matrices,
LAC is equivalent to FDA.
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Figure 7. Comparing LAC and FDA on synthetic
data set when both x and y are Gaussians.

5.5 Experiments on LAC

We tested the performance of the linear asymmetric
classifier on both a synthetic data set and the face de-
tection task. In the synthetic data set, LAC is com-
pared against BMPM, MRC and FDA. For detection
of faces, the cascade framework is used. Three fea-
ture selectors are used: AdaBoost, AsymBoost, and
FFS. We compare three different ways to determine
the linear discriminant (a, b) after the features are se-
lected. The first method is to use the weights a and
threshold b found by AdaBoost or AsymBoost; the
second method uses the proposed linear asymmetric
classifier; the third method uses Fisher Discriminant
Analysis. We use “X+Y” to denote the methods used
in experiment, e.g. AdaBoost+LAC means that the
features are selected by AdaBoost and the linear dis-
criminant function is trained by LAC.

5.5.1 Results on Synthetic Data

Figure 7 gives some intuition of the difference be-
tween LAC and FDA. The positive data is drawn
from a normal distribution with mean (1.23,1.23) and
covariance [10 0;0 1]. The negative data is drawn
from a normal distribution with mean (0,0) and co-
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a Positive

- Negative

Figure 8: Example of a synthetic data set where y is
not symmetric.

variance [1 0;0 10]. LAC is guaranteed to be optimal
in this data set. It rejects 50% of the negative data,
while keeping almost all positive data. On the con-
trary, FDA returns a boundary that also rejects 50%
of the negative data, but more than 13% of the pos-
itive data are rejected.

We also tested LAC on data sets where its assump-
tions were broken. The synthetic data set was gen-
erated using the following steps. Three distributions
were created as: d; = A;c; + m;,i = 1,2,3, where
¢, ~ N(0,I),m; ~ N(0,0.1]), and the elements of
A were drawn randomly from a uniform distribution
in [0,1]. The positive examples x were drawn from
X = di, and negative examples y were drawn from
Y = d3 — d3. This choice produced a Y which is
not symmetric, and has a reasonable overlap with X.
One example of such a data set is shown in figure
8. The training and test sets both contain 1000 sam-
ples, including 500 positive and 500 negative samples.
Four linear discriminant methods (LAC, FDA, MRC,
and BMPM) were compared®. In each method, we
determined the projection direction a using the cor-
responding method. The threshold b was determined
such that on the training set the false positive rate
was 50%. For every method, the experiments were
repeated 100 times. The averaged test set accuracy
on both classes are reported in table 2.

Although the negative class is not symmetric and
LAC is not optimal, it works the best while FDA
follows closely. Two-tailed paired t-test shows that



there is no significant difference between LAC and node used 200 features).

FDA. Both the difference between LAC and MRC,
and the difference between LAC and BMPM are sig-
nificant, at the 0.01 level.

We consider two types of performance measures:
node and cascade. The node performance measure
is the classifiers’ ability to achieve the node learn-
ing goal. Given a trained cascade, each node has

’ Classifier H Positive Accuracy \ Negative Accuracy ‘an associated training set, which is generated by the

LAC 96.11 50.04
FDA 95.12 49.96
MRC 90.19 49.96
BMPM 87.99 50.26

Table 2: Results on synthetic data set.

In cascaded classifiers, the imbalance between
classes is absorbed by the cascade structure. In each
node of a cascade, balanced training sets are usually
used. This is why we used a balanced training set in
the above synthetic data set. We also tested the per-
formance of these classifiers on imbalanced training
set. Two extra sets of experiments were performed.
The training sets still had 500 positive examples, but
the negative class had 1000 and 1500 examples, re-
spectively. The examples were drawn from the same
distributions as described above. All four classifiers’
performances remained approximately the same, de-
spite of the increasing of negative training examples.
Thus detailed error rates are not presented. Under
both imbalance level, LAC performed about the same
as FDA, and both LAC and FDA were better than
MRC and BMPM.

5.5.2 Results on Face Detection

For face detection, we trained 9 different cascades,
using the three feature selectors (AdaBoost, Asym-
Boost, and FFS) and three linear discriminant func-
tions (using weights provided by the feature selector,
LAC, or FDA). Each cascade has 21 nodes, except
that the AsymBoost+LAC cascade has 22 nodes and
the FFS cascade has 17 nodes. We require that every
node have 50% false positives and the cascade train-
ing process is finished when there are not enough non-
face patches to bootstrap.

In order to make the face detector run at video
speed, the first node used only 7 features. We used
more features while the node index increases (the last
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bootstrapping process (refer to algorithm 1). We col-
lected all such training sets from the 9 trained cas-
cades. Given one such training set, different algo-
rithms are required to achieve the criteria in Eq. (2).
Their performance is evaluated using the validation
set. The node performance measure is useful because
it directly compares the ability of each method to
achieve the node learning goal. The cascade perfor-
mance measure compares the performance of the en-
tire cascade. The performance of a cascade depends
on more than the classifier that is used to train the
nodes. The background data bootstrapping step and
post processing step in face detection also have sig-
nificant effects on the cascades’ performance. The
cascade performance measure is evaluated using the
MIT+CMU benchmark test set.

The node comparison results are shown in figure 9.
We did not perform the node comparison for the FFS
algorithm, since FF'S enforced all weights to be 1 and
was not in the same hypothesis space as AdaBoost,
FDA, or LAC. We collected the training set from the
remaining 6 cascades, using the other two feature se-
lectors (AdaBoost and AsymBoost) and three linear
discriminant functions. The AdaBoost cascade is the
same one as used in section 4.4).*

We are able to observe the effects of using FDA
or LAC to train a linear discriminant function in-
stead of using the values provided by the AdaBoost
(or AsymBoost) algorithm. From the results in figure
9, it is obvious that both FDA and LAC can greatly
reduce the false negative rates (i.e. increase the de-
tection rates). In figure 9(a), averaged over the 11
nodes shown, AdaBoost+FDA reduces the false neg-
ative rates by 31.5% compared to AdaBoost, while
in 9(c) AdaBoost+LAC reduces it by 22.5%. When
AsymBoost is used as the feature selector, the reduc-
tions are 27.3% and 17.3%, respectively. In figure
9(a) to 9(d), training sets came from FDA or LAC
cascades. We also compare node performance when
the training sets came from the AdaBoost or Asym-
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Figure 9: Experiments comparing different linear discriminant functions. The y axis shows the false negative
rate when 3 = 0.5. In 9(a), training sets are collected from the AdaBoost+FDA cascades’ node 11 to
21 (x axis shows the node number). AdaBoost and AdaBoost+FDA are compared using these training
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AdaBoost, and AsymBoost cascades respectively. We do not show results when the data set index is less
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Boost cascade. Results are shown in figure 9(e) and
9(f). Both FDA and LAC work better than the orig-
inal AdaBoost and AsymBoost.

Cascade comparison results are shown in figure 10.
The x axis is the total number of false positives in the
MIT+CMU test set. The y axis is the correct detec-
tion rate. Figure 10(a)-10(c) show the results when
AdaBoost, AsymBoost, or FFS is used as the fea-
ture selector, respectively. These ROC curves show
that both FDA and LAC have significant advantages
over the linear discriminant provided by AdaBoost,
AsymBoost, and FFS. It coincides well with the node
performances in figure 9.

Another way to interpret figure 10 is to compare
the number of false positives at a same detection rate.
LAC can greatly reduce false positives. For example,
in figure 10(a), averaged over the range of possible
detection rates, AdaBoost+LAC reduces the number
of false positives by 36.1% compared with AdaBoost.

5.5.3 Discussions

There are a few interesting observations from the ex-
perimental results that are worth discussion.

First, the improvement of LAC over AsymBoost
is smaller than that of LAC over AdaBoost. Our
conjecture is that since AsymBoost already takes into
account the asymmetry when it selects features, LAC
has smaller space to improve.

Second, the error reduction effects of FDA or LAC
in figure 9 is more significant than those in figure 10.
We conjecture that the background data bootstrap-
ping and post processing remove part of the error
reducing effects.

The effect of post-processing can be studied by
evaluating the cascade detector without performing
the post-processing step. The results without post-
processing when AdaBoost was used is shown in fig-
ure 11. Comparing figure 10(a) and figure 11, we find
that the post-processing step does not change the rel-
ative performances of different algorithms, since these
two figures are very similar to each other. However,
post-processing can greatly reduce the absolute num-
ber of false positives.

Third, we find that FDA works better than LAC
in a few cases. LAC is derived under the assumptions
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Figure 11: Experiments comparing cascade perfor-
mances using the MIT4+CMU benchmark test set.
The x axis is the total number of false positives with-
out performing the post-processing step.

that x, is Gaussian and y, is symmetric. However,
from figure 4 and figure 6 we find that although ya.
is always symmetric, x, slightly deviates from the
Gaussian distribution at the tails. This might be the
reason why LAC does not perform the best in some
cases.

One final point is that the derivation of LAC gives
an explanation for setting 8 = 0.5. Experiments
show that 8 = 0.5 gives the best empirical results.
The cascade framework itself does not explain this
phenomenon. Our explanation is that setting 5 = 0.5
helps us incorporate the domain knowledge. The neg-
ative data sets y are successive samples of the non-
face images, which basically includes every possible
image in the world, except faces. The characteristics
of these negative data sets are very complex to model.
However, it is reasonable to assume that y follows a
symmetric distribution. By setting § = 0.5 and con-
sequently using ®; 1,(0.5) = 0, we have incorporated
all the domain knowledge we have about y, without
any further assumptions.

6 Conclusions

We have presented a new approach to design a node
classifier in a cascade detector. Previous methods
used machine learning algorithms that simultane-
ously select features and form ensemble classifiers.
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We analyzed the asymmetries inherent in the face de-
tection problem and why these asymmetries make the
problem difficult. We then argued that if we decouple
the feature selection step from the classifier design
step, we have the freedom to use different feature
selection methods. More importantly, we have the
freedom to design an ensemble classifier that explic-
itly address the asymmetries in its learning goal. We
proposed FFS as the new feature selection method,
and LAC as the new classifier.

The contributions of this paper can be summarized
into three points. The first contribution is an analysis
of the cascade detector. Three types of asymmetries
are categorized: uneven data distribution, goal asym-
metry, and the unequal complexity of the positive and
negative class. We argued that these asymmetries are
the characteristics of the face detection problem that
make it hard to solve. A literature survey of com-
puter vision and machine learning researches to deal
with these asymmetries are provided too.

The second contribution is Forward Feature Selec-
tion, the feature selection part of our new decoupled
node learning algorithm. We also propose a faster
implementation method for the AdaBoost algorithm.
On one hand, FFS provides an alternative feature se-
lection method. The classifier formed by voting the
FFS features has similar accuracy as the AdaBoost
method. On the other hand, FFS is computationally
attractive. FFS is two orders of magnitude faster
than the naive implementation of AdaBoost. FFS
is also 2.5 to 3.5 times faster than the faster imple-
mentation of AdaBoost, but only requires about 3%
memory usage as that of AdaBoost.

The third contribution is Linear Asymmetric Clas-
sifier, the classifier design part of the decoupled node
learning algorithm. The asymmetries is taken care
of by LAC as a well-defined constrained optimization
problem. By incorporating domain knowledge (or as-
sumptions about the data), LAC solves this complex
optimization problem approximately in closed form
and a computationally efficient manner. The deriva-
tion of LAC also gives some hints to interesting char-
acteristics of the face detection data sets and the phe-
nomenon that setting 8 = 0.5 gives best empirical re-
sult. Experiments on both synthetic and MIT+CMU
benchmark show that LAC can greatly reduce the er-
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rors. In addition, we also applied Fisher’s Discrimi-
nant Analysis to features extracted by AdaBoost and
got improved results.

Despite its effectiveness, there are limitations in
our node learning algorithm. We describe these lim-
itations and propose some future work that are pos-
sible ways to address these limitations.

e One of the conditions for LAC to be optimal
is 8§ = 0.5. However, in applications other
than face detection, § # 0.5 may be required.
Other asymmetric learning methods, such as
BMPM [15], might be used in these cases.

LAC is a linear classifier. It is possible to extend
LAC to a non-linear classifier (for example, use
the kernel method). Will this non-linear exten-
sion improve the classifier’s performance?

We observed that FDA outperformed LAC in
some cases and we conjecture that this is because

a’x is only approximately Gaussian. Is it pos-

sible to design a new feature selection method
which guarantees a’x to be normally distrib-
uted?

It is also desirable to have a feature selection
method that take into account the asymmetric
learning goal in a principled way.

Notes

IWe found that the criterion for automatically finding de-
tection errors in [21] was too loose. This criterion yielded
higher detection rates and lower false positive rates than man-
ual counting.

2Since every node in the FFS cascade has a false positive
rate lower than 50%, it will consume more bootstrapping non-
face data than a cascade node trained by AdaBoost (with 50%
false positive rate). Thus the FFS cascade consumes the boot-
strapping non-face data more quickly and consequently has
fewer number of nodes.

3We wused the Matlab toolbox for BMPM from
http://www.cse.cuhk.edu.hk/ “miplab/mempm_toolbox/.

4The source code for training a cascade using meth-
ods described in this paper is available online at
http://www.cc.gatech.edu/ "wujx. We also provide trained
cascades, demo executables, and a video showing testing
results.
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