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We use the dynamical invariants associated with the Hamiltonian of an atom in a one dimensional moving

trap to inverse engineer the trap motion and perform fast atomic transport without final vibrational heating. The

atom is driven nonadiabatically through a shortcut to the result of adiabatic, slow trap motion. For harmonic

potentials this only requires designing appropriate trap trajectories, whereas perfect transport in anharmonic traps

may be achieved by applying an extra field to compensate the forces in the rest frame of the trap. The results

can be extended to atom stopping or launching. The limitations due to geometrical constraints, energies, and

accelerations involved are analyzed along with the relation to previous approaches based on classical trajectories

or “fast-forward” and “bang-bang” methods, which can be integrated in the invariant-based framework.

DOI: 10.1103/PhysRevA.83.013415 PACS number(s): 37.10.Gh, 03.65.Ca, 03.65.Nk

I. INTRODUCTION

A key element to attain an exhaustive control of states

and dynamics of cold atoms and ions is their efficient

transport by moving the confining trap. In spite of the broad

span of conditions, heating mechanisms, transport distances

from microns to tens of centimeters, transport times, and

accelerations involved, there are some common elements and

objectives that allow for a rather generic theoretical treatment

as the one presented in this paper. Transport should ideally be

lossless and fast and lead to a final state as close as possible

(“faithful”) to the initial one, up to global phase factors, in

the frame of the transporting trap. The latter requirement

is characterized in the most demanding applications as a

high-fidelity condition or, more generally, as a no-heating

or at least minimal heating condition; equivalently, it is

characterized by the absence or minimization of vibrational

excitations at the end of the transport. Note that reaching a

faithful final state is not incompatible with some transient

excitation in the instantaneous basis at intermediate times,

i.e., the process does not have to be slow or, in the usual

quantum mechanical jargon, “adiabatic,” although slowness is

certainly a simple way to avoid heating, at least under ideal

conditions.

Efficient atom transport is a major goal for many applica-

tions, such as quantum information processing in multiplexed

trap arrays [1,2] or quantum registers [3]; controlled translation

from the production or cooling chamber to interaction or

manipulation zones [4–6]; accurate control of interaction times

and locations, e.g., in cavity QED experiments [7], quantum

gates [8], or metrology [9]; and velocity control to launch [10]

or stop atoms [11,12].

Different approaches have been implemented. Neutral

atoms have been transported as thermal atomic clouds [6,13],

condensates [14], or individually [15,16], using magnetic

or optical traps. The magnetic traps can be translated by

moving the coils mechanically [5], by time-varying currents

in a lithographic conductor pattern [17], or on a conveyor

belt with a chain of permanent magnets [18]. Optical traps

can be used as optical tweezers whose focal point is trans-

lated by mechanically moving lenses [4,19] or by traveling

lattices (conveyor belts) made with two counterpropagating

beams slightly detuned with respect one another [15,16,20].

There are also mixed magneto-optical approaches [6]. For

ions, controlled time-dependent voltages have been used in

linear-trap-based frequency standards [9] and, more recently,

in quantum information applications using multisegmented

Paul traps [21], an array of Penning traps [22], and also

2D configurations [23].

As mentioned, an obvious solution, at least in principle,

to avoid spilling or heating of the atoms is to perform a

sufficiently slow (adiabatic) transport. For some applications,

however, this takes too long. In particular, since transport

could occupy most of the operation time of realistic quantum

information algorithms, “shuttling times” need to be mini-

mized [2,21]. In addition, long times may be counterproductive

in practice and induce overheating from coils or fluctuating

fields and decoherence. In summary, there are good reasons to

reduce the transport time, and, indeed, several theoretical and

experimental works have studied ways to make fast transport

also faithful [19,24–26].

Invariant-based inverse engineering is ideally suited to

this end. The main aim of this paper is to set the basic

invariant-based inverse engineering transport theory, analog

to the one developed recently for trap expansions [27].

We shall also show that previous approaches for efficient

transport [24,25] and some generalizations are embraced by

it and point out the potential limitations of the method. In

Sec. II we shall provide the main concepts and formulas of the

time-dependent quadratic-in-momentum invariants relevant

for transport problems. The two main reference cases are

(i) rigid harmonic oscillator transport and (ii) transport on

an arbitrary trap with force compensation. In Sec. III we

explain and apply the inversion technique; this is compared

in Sec. IV with an alternative “bang-bang” approach based
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on time segments of constant acceleration. Section V deals

with practical limitations, and Sec. VI discusses the results

and draws the conclusions.

II. DYNAMICAL INVARIANTS

In a seminal paper Lewis and Riesenfeld derived a simple

relation between the solutions of the Schrödinger equation of a

system with time-dependent Hamiltonian and the eigenstates

of the corresponding invariants [28]. They paid special

attention to the time-dependent harmonic oscillator and its

invariants quadratic in position and momentum, following

earlier work by Ermakov on the classical oscillator [29]. From

a classical physics point of view, Lewis and Leach found the

general form of the Hamiltonian compatible with invariants

quadratic in momentum [30], including nonharmonic poten-

tials. This is the result that interests us here, together with

the corresponding quantum formulations by Leach for the

harmonic oscillator [31,32] and by Dhara and Lawande for

taking anharmonicity into account [33]. In this section we

shall state the main concepts and equations and apply them to

standard transport problems.

A 1D Hamiltonian with an invariant that is quadratic

in momentum must have the form H = p2/2m + V (q,t),1

with [30,33]

V (q,t) = −F (t)q +
m

2
ω2(t)q2 +

1

ρ(t)2
U

[
q − α(t)

ρ(t)

]

. (1)

ρ, α, ω, and F are arbitrary functions of time that satisfy the

auxiliary equations

ρ̈ + ω2(t)ρ =
ω2

0

ρ3
, (2)

α̈ + ω2(t)α = F (t)/m, (3)

with ω0 being constant. Their physical interpretation in the

context of transport is detailed below. The dynamical invariant,

up to a constant factor, is given by

I =
1

2m
[ρ(p − mα̇) − mρ̇(q − α)]2

+
1

2
mω2

0

(
q − α

ρ

)2

+ U

(
q − α

ρ

)

(4)

and verifies

dI

dt
≡

∂I (t)

∂t
+

1

ih̄
[I (t),H (t)] = 0, (5)

so that d
dt

⟨ψ(t)|I (t)|ψ(t)⟩ = 0 for any wave function ψ(t) that

evolves with H . ψ(t) may be expanded in terms of constant

coefficients cn and eigenvectors ψn of I ,

ψ(q,t) =
∑

n

cne
iαnψn(q,t), (6)

I (t)ψn(q,t) = λnψn(q,t), (7)

where the λn are time-independent eigenvalues. We shall

generally deal with ψn normalized to 1, but continuum,

1Following the usual practice, q and p will denote operators or

numbers, and the context should clarify their meaning.

delta-normalized states are also possible. The phases αn satisfy

[28,33]

h̄
dαn

dt
= ⟨ψn|ih̄

∂

∂t
− H |ψn⟩, (8)

αn = −
1

h̄

∫ t

0

dt ′
(

λn

ρ2
+

m(α̇ρ − αρ̇)2

2ρ2

)

. (9)

The ψn are, in practice, obtained easily as [33]

ψn(q,t) = e
im
h̄ [ρ̇q2/2ρ+(α̇ρ−αρ̇)q/ρ] 1

ρ1/2
φn

(
q − α

ρ
︸ ︷︷ ︸

=:σ

)

(10)

from the solutions φn(σ ), normalized in σ space, of the

auxiliary stationary Schrödinger equation

[

−
h̄2

2m

∂2

∂σ 2
+

1

2
mω2

0σ
2 + U (σ )

]

φn = λnφn. (11)

Whereas trap expansions and contractions imply a time-

dependent ρ function [27], a large family of transport problems

may be described by taking

ρ(t) = 1, ω2(t) = ω2
0 (12)

so that the auxiliary Eq. (2) plays no role and only Eq. (3) is

relevant. Except in the final discussion we shall assume that

the conditions (12) hold from now on and consider in detail

two main reference cases.

(i) Rigid harmonic oscillator driven by the “transport

function” q0(t). Hereafter this case is referred to as “harmonic

transport” for short. Suppose that a harmonic trap is moved

from q0(0) at time t = 0 to d = q0(tf ) at a time tf . In Eq. (1)

this case corresponds to

F = mω2
0q0(t), ω(t) = ω0, U = 0. (13)

Adding to V the irrelevant time-dependent global term

mω2
0q

2
0/2, which produces no force, the trap potential can be

written as a moving harmonic oscillator mω2
0[q − q0(t)]2/2,

H = p2/2m + mω2
0[q − q0(t)]2/2, (14)

and α may be identified with a classical trajectory qc since

Eq. (3) becomes

q̈c + ω2
0(qc − q0) = 0. (15)

The invariants and transport modes will depend on it. In this

case, λn = En = (n + 1/2)h̄ω0, and the transport mode eiαnψn

takes a physically transparent form,

eiαnψn = e− i
h̄

[Ent+
∫ t

0

mq̇2
c

2
dt ′]eimq̇cq/h̄φn(q − qc). (16)

Efficient transport will be engineered in Sec. III by designing

first an appropriate classical trajectory qc(t), from which the

trap motion trajectory q0(t) is deduced via Eq. (15).

A variant of this case is vertical transport with a gravity

force, so that F = mω2
0q0 − mg and Eq. (15) is modified to

q̈c + ω2
0(qc − q0) = −g. (17)

013415-2
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(ii) Arbitrary trap-driven transport with compensating

force. Hereafter this case is referred to as the “compensating-

force approach” for short. Now, in Eq. (1),

ω = ω0 = 0, (18)

F = mq̈0. (19)

In this case the trap potential U [q − q0(t)] is arbitrary; in

particular, it could be harmonic, and it is rigidly displaced

along q0(t), so α in Eq. (3) may be now identified with

the transport function q0. In addition to U , there is a time-

dependent linear potential term −mqq̈0 in H ,

H = p2/2m − mqq̈0 + U (q − q0). (20)

The corresponding force compensates exactly the inertial force

due to the trap motion in the rest frame of the trap, so that

the wave function in that frame is not modified up to a

time-dependent global phase factor; see Appendix A. This

Hamiltonian has been proposed by Masuda and Nakamura

following a very different route, using a “fast-forward” scaling

technique [25].

III. INVERSE ENGINEERING METHOD

The Lewis-Riesenfeld theory of invariants has been

considered before in harmonic-oscillator-driven transport in

the direct, rather than inverse, way by setting the transport

function q0 and analyzing the final heating, in particular, in

adiabatic or quasiadiabatic regimes [2]. We shall use it instead

as the basis for an inverse engineering approach, including

also nonharmonic driving. The two main cases discussed

above require different implementations. In both cases we shall

assume that q0 is displaced from 0 to d in a time tf .

A. Harmonic transport

In case (i) we may adopt, as in [27], an inverse engineering

strategy by designing first the classical trajectory qc to assure

that the transport modes coincide with the eigenvectors of

the instantaneous Hamiltonian at initial and final times. This

amounts to imposing the commutativity of I (t) and H (t)

at t = 0 and t = tf , which can be achieved by setting [see

Eq. (16)] the following boundary conditions:

qc(0) = q0(0) = 0; q̇c(0) = 0; q̈c(0) = 0, (21)

qc(tf ) = q0(tf ) = d; q̇c(tf ) = 0; q̈c(tf ) = 0, (22)

with the last condition in these equations being determined

by consistency with Eq. (15). qc(t) is then interpolated by

assuming some flexible functional form, such as a polynomial,

qc(t) =
∑5

n=0 βnt
n, where βn are found by solving the system

of equations established by the boundary conditions. The

resulting qc depends on time only trough the ratio s = t/tf
and is directly proportional to d:

qc(t)/d = 10s3 − 15s4 + 6s5. (23)

Once qc is fixed, we get the trap trajectory from Eq. (15),

q0(t) = q̈c(t)/ω2
0 + qc(t). (24)

0 0.2 0.4 0.6 0.8 1
0.5

0

0.5

1

1.5

s

q
o

d
,
q

c
d

FIG. 1. (Color online) Trap trajectories q0/d versus s = t/tf
for tf = 12.57/ω0 = 2T0 (blue line with dots), tf = 2.505/ω0 (the

critical value; red line with triangles), and tf = 2/ω0 (brown line

with squares). For all three cases, qc/d is the dashed line, which

is hardly distinguishable from q0/d for the slowest case, i.e., for

tf = 12.57/ω0.

This procedure is equivalent to the one followed by Murphy

et al. [24], who used a Fourier sum as an interpolating function

for qc.

For short times tf (see Fig. 1), the corresponding trap

trajectories q0(t) could exceed the interval [0,d]. For the

polynomial ansatz (23) it occurs symmetrically at the lower

and upper edges of the interval for tf ! 2.505/ω0 ≈ 0.4 T0,

where T0 ≡ 2π/ω0 is the oscillation period. This may or may

not be a problem depending on the geometrical constraints of

the experimental setting.

An interesting generalization is to consider

boundary conditions for stopping atoms when their initial

average velocity is known. Suppose that an atom gun or

pulsed valve sends atoms with a specific average velocity v0,

as in coil-gun experiments with paramagnetic atoms [34,35]

or a Stark decelerator for polar molecules [36–38]. The valve

opening time is controlled, so a traveling harmonic trap

wrapping the atoms can be turned on at time t = 0 and moved

along some trajectory q0(t) to stop them at a fixed distance d

in a specified time tf . The final conditions may still be given

by Eq. (22), but a different set of initial conditions is to be

imposed:

qc(0) = 0, q̇c(0) = v0, q̈c(0) = 0. (25)

In this case the nth initial transport mode at t = 0 does not

coincide with the nth stationary eigenstate of H (0) but with its

moving version, eimv0q/h̄φn(q). ω0 is in principle arbitrary, but

it may be optimized by taking into account the spatial width of

the incoming state. Its value also has an impact on the domain

of the trajectory, as we shall see. The polynomial ansatz now

gives

qc(t) = d[3(2 − a)s5 − (15 − 8a)s4 − 2(−5 + 3a)s3 + as],

(26)

q0(t) = d

{

3(2 − a)s5 − (15 − 8a)s4

+

[
60(2 − a)

b2
− 2(−5 + 3a)

]

s3 − 12
(15 − 8a)

b2
s2

+

[

− 12
(−5 + 3a)

b2
+ a

]

s

}

, (27)
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FIG. 2. (Color online) Three stopping trajectories: a = 0.8, b =

ω0tf = 1.6, and tf /T0 = 0.25 (brown line with squares); b = ω0tf =

1.9 and tf /T0 = 0.30 (red line with triangles); and b = ω0tf = 3.0

and tf /T0 = 0.477 (blue line with circles). They all share the same

qc(s)/d (black dashed line) given by Eq. (26).

where s = t/tf , a = v0tf /d, and b = ω0tf = 2π tf /T0. Some

trajectories are shown in Fig. 2. The shaded regions in Fig. 3

correspond to the values of a and b/2π for which the trajectory

q0(t) exceeds the domain [0,d]. Even though the details are

now more complicated than for the rest-to-rest case, two simple

general rules can be drawn: q0 is never negative when tf >

T0 (the asymptotic threshold for large a is at b = 6), whereas

if a " 2.513, there is always some t in (0,tf ) for which

q0(t) > d.

Launching or “catapulting” atoms at rest to end up with a

chosen velocity v0 [10] may be designed similarly by setting

Eq. (21) for the initial conditions and setting the final boundary

conditions as

qc(tf ) = d, q̇c(tf ) = v0, q̈c(tf ) = 0. (28)

A major practical concern in all these applications should

be to keep the harmonic approximation valid. This may

require an analysis of the actual potential in each specific

case and of the excitations taking place along the nonadiabatic

transport process. Without performing such detailed analysis,

the feasibility of the approach for a given transport objective set

by the pair d,tf can be estimated rather simply by comparing

lower excitation bounds provided in Sec. V with the trap depth.

B. Compensating-force approach

In the compensating-force approach, case (ii), we may

proceed similarly, but now the variable α of Eqs. (1) and (3) is

directly q0, so instead of fixing values of qc and its derivatives at

the boundary times, we shall fix values of q0 and its derivatives.

For simplicity, we shall consider only a rest-to-rest scenario,

but the generalizations are straightforward. The compensating

potential −mq̈0q in the Hamiltonian (20) should vanish before

and after transport since the trap remains at rest and q̈0 = 0

FIG. 3. (Color online) Stopping atoms. The shaded areas repre-

sent the values of a = v0tf /d and b/2π = tf /T0 for which there is a t

in (0,tf ) where (left) q0(t) < 0 or (right) q0(t) > d . We have used the

polynomial ansatz of Eqs. (26) and (27).

for t < 0 and t > tf . To make the ψn coincide, up to a global

phase factor, with the eigenstates of the Hamiltonian before

and after transport, H = p2/2m + U (q − q0), at t = 0 and

t = tf , we impose

q0(0) = q̇0(0) = 0, q0(tf ) = d, q̇0(tf ) = 0. (29)

We may also impose q̈0 = 0 as a boundary condition at t = 0

and tf to have a continuous q̈0(t), but at least formally, it is

not strictly necessary. In practice, several experiments have

been designed with (approximate) discontinuities in the trap

acceleration [16,19]. We shall come back to this point in

Sec. IV. Clearly, the implementation of the compensating-

force approach is subjected to different limitations from the

ones applicable to the harmonic transport without compen-

sation. The main problem now is not anharmonicity, which

is included in the theory from the start by admitting an

arbitrary U , but the feasibility of the compensating-force term.

According to the mean-value theorem (see Sec. V) a lower

bound for the maximum of the absolute value of q̈0 is 2d/t2
f .

IV. BANG-BANG ACCELERATION METHODS

It should be clear from Sec. III A that there are infinitely

many functions q0(t) that, for harmonic transport, lead to the

ideal boundary conditions. A somewhat extreme case, which

has, however, been implemented experimentally because of its

relative simplicity, is to combine time segments with a constant

acceleration [16,19]. The simplest trap trajectory of this type

implies a constant positive acceleration 4d/t2
f from 0 to tf /2

and a deceleration −4d/t2
f from tf /2 to tf . The resulting q0

is formed by two parabolas matched at tf /2:

q0/d =

{

2s2, 0 < s < 1/2,

4
(

s − s2

2
− 1

4

)

, 1
2

< s < 1.
(30)

The corresponding velocity q̇0 increases linearly from 0 to

2d/tf and then decreases from there to 0.

The classical trajectory qc satisfying Eq. (15) with Eq. (30)

and the boundary conditions (21) at t = 0 is given by

qc − q0 =

⎧

⎨

⎩

−4d

ω2
0 t

2
f

(1 − cos ω0t)

4d

ω2
0 t

2
f

{

1 + cos ω0t − 2 cos
[

ω0

(

t −
tf
2

)]} (31)

for the first and second time segments. From this result one

can check that the boundary conditions at tf (22) are satisfied

only for a discrete set of times tf,N = 4πN/ω0, with N ∈ N,

i.e., for multiples of two oscillation periods. For all other times

this scheme will heat the atoms. A perturbation theory analysis

shows that, even for the selected discrete times, the bang-bang

method is slightly less stable than the inverse invariant method,

using the polynomial ansatz, with respect to an anharmonic

perturbation of the transporting trap potential. The details are

shown in Appendix B.

A variant of this method, using, e.g., the trap trajectory (30)

and the compensating forces as in case (ii), may be appealing

in practice because it is relatively simple to implement the

compensating force, at least approximately, as a piecewise

function.

013415-4
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V. TRANSIENT ENERGY EXCITATIONS

Whereas, ideally, nonadiabatic faithful transport can be

performed for arbitrary transport distances and times, in

practice, the process could be limited, apart from the

geometrical constraints discussed in Sec. IV, by the maximal

transient excitation energies allowed to neglect the effect of

anharmonicities of the actual potential in case (i) or by the dif-

ficulties to implement strong compensating forces in case (ii).

We shall analyze these effects from the point of view of

different bounds obtained for the average potential energy

using the Euler-Lagrange equations and for the instantaneous

potential energy and acceleration by means of the mean-value

theorem.

A. Quasioptimal trajectories for harmonic transport

The instantaneous average energy for a harmonically driven

transport mode can be calculated from Eqs. (14) and (16):

⟨ψn(t)|H (t)|ψn(t)⟩

= h̄ω0

(

n +
1

2

)

+
m

2
q̇2

c +
1

2
mω2

0(qc − q0)2. (32)

Moreover, the instantaneous average potential energy is

⟨V (t)⟩ =
h̄ω0

2

(

n + 1
2

)

+ EP . The first, “internal” contribution

remains constant for each n, and the second term has the

simple form of a potential energy for a classical particle,

EP ≡ 1
2
mω2

0(qc − q0)2. Its time average, using relation (15)

between q0 and qc, takes the form

EP =
m

2tf ω2
0

∫ tf

0

q̈2
c dt. (33)

We can use a generalized Euler-Lagrange equation d4qc/dt4 =

0 to minimize this integral subject to four boundary

conditions [39], the ones for qc and q̇c in Eqs. (21)

and (22). This results in a “quasioptimal” classical trajectory:

qc = d(3s2 − 2s3). (34)

Whereas Eq. (34) does not satisfy the six boundary

conditions (21) and (22), it provides, in any case, a lower

bound for the time average of EP , as the set of functions

satisfying the six conditions is smaller than the one satisfying

four of them. Substituting Eq. (34) into Eq. (33), one gets the

desired lower bound,

EP "
6md2

t4
f ω2

0

. (35)

This bound describes the relevant dependences, as shown by

numerical comparisons with actual time-averaged energies

for polynomial trajectories, Eq. (23) [see Fig. 4(a)], and

sets a rather strong t−4
f scaling, compared with the milder

dependence on t−2
f of the time-averaged transient energy in

invariant-based, inverse-engineered expansions [40].

As for the variance (+H )2 ≡ ⟨ψn|H
2|ψn⟩ − ⟨ψn|H |ψn⟩

2

for the nth transport mode, it takes, after a somewhat lengthy

calculation, a simple form:

(+H )2 = 2h̄ω0(n + 1/2)
[

1
2
mω2

0(qc − q0)2 + 1
2
mq̇2

c

]

. (36)
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1
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FIG. 4. (Color online) Dependences of time-averaged energies

on tf . The δ is the asymptotic exponent of tf . Parameters are ω0 =

2π × 8 Hz, E0 = h̄ω0/2, d = 2.25 mm, and rubidium-87 atoms that

begin and end in the ground vibrational state. (a) Bound (35) (solid

red line) and time average of EP for a polynomial trajectory (dotted

blue line). (b) AA bound (dot-dashed magenta line) and time average

of +H for a polynomial trajectory (dotted blue line).

Using again a Euler-Lagrange equation, we find the lower

bound (+H )2 > 12h̄(n + 1/2)md2/ω0t
4
f for its time average.

This does not establish a lower bound for the average of

the standard deviation +H but agrees with the scaling with

tf that we observe numerically as tf → 0, +H ∝ t−2
f ; see

Fig. 4(b). This should be contrasted with the Aharonov-

Anandan (AA) relation [41] +H " h/4tf , which is applied

to transport among orthogonal states. (The general expres-

sion for ground-state to ground-state transport allowing for

nonorthogonal initial and final states [40,42] is +Htf "

h̄ arccos[exp(−mω0d
2/4h̄)], which tends to the result for

orthogonal states when d ≫ (4h̄/mω0)1/2.) As it occurs

for harmonic trap expansions [40], it is certainly correct

as a bound, but it does not describe the dependences

found for the averaged standard deviation for fast processes

(small tf ).

B. Mean-value theorem

The mean-value theorem (MVT) sets another useful bound

since it applies to the instantaneous values rather than to a time

average. The argument may be applied to qc in case (i) or to

q0 in case (ii), so we shall formulate it in terms of a generic x,

assumed to be continuous in [0,tf ] and differentiable in (0,tf )
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x(t)

d

ttftm0

slope ẋmax

slope d/tf

ẋ(t)

ẋmax

ttftm0

slope ẍmax

slope ẋmax/tm

slope
ẋmax

tm − tf

FIG. 5. Graphical representation of the lower bound of Eq. (37)

for (top) the maximum velocity ẋmax and (bottom) the maximum

acceleration |ẍ|max of Eqs. (38) and (39).

and such that x(0) = ẋ(0) = ẋ(tf ) = 0 and x(tf ) = d . The

maximum of its time derivative must be

ẋmax " d/tf (37)

at some point tm in (0,tf ); see Fig. 5. We can now use that

point to divide [0,tf ] into two segments and apply the MVT

again, now to the derivative. In the first segment the derivative

goes from 0 to ẋmax, so

|ẍ|max " d/(tf tm). (38)

Similarly, in the second segment,

|ẍ|max " d/[tf (tf − tm)], (39)

and for the whole interval, |ẍ|max " d/[tf min(tm,tf − tm)].

Irrespective of the location of the point tm, min(tm,tf − tm) !

tf /2. We can thus set a lower bound for the (absolute value of)

the maximum of the second derivative,

|ẍ|max " 2d/t2
f . (40)

When x = qc, case (i), Eq. (40) gives a bound for the

instantaneous quasipotential energy:

EP " 2m

(
d

ωt2
f

)2

. (41)

In this case, however, we get a tighter lower bound directly

from the time average (35).

With x = q0, case (ii), we get a lower bound for the

maximum trap acceleration. In particular, the accelerations

of compensating forces, typically limited by experimental

constraints such as gradient magnetic fields or Stark electric

fields, should at the very least reach the value 2d/t2
f .

VI. DISCUSSION

We have applied the Lewis-Riesenfeld method [28]

for quadratic-in-p invariants [33] combined with inverse

engineering of trap trajectories to design fast and faithful

atomic transport. The limitations have been quantified, and

relations to other approaches that can be included in this

framework have been pointed out. Another approach to

accelerate adiabatic processes has been recently proposed by

Berry [43] and can also be applied formally to transport.

The central idea is to construct a Hamiltonian that drives the

system exactly along the adiabatic approximation defined for

some reference time-dependent Hamiltonian H0(t) without

transitions among the instantaneous eigenstates of H0. For

an arbitrary, rigid trap potential moving from 0 to d along a

path q0(t), the eigenvectors of the instantaneous (reference)

Hamiltonian H0 = p2/2m + U (q − q0) are simply displaced

from the original location,

|n(t)⟩ = e−ipq0(t)/h̄|n(0)⟩. (42)

The transitionless driving Hamiltonian H0 + ih̄
∑

n |∂n⟩⟨n|

becomes, in this case, H0 + pq̇0; compare with Eq. (20).

Note the freedom to choose H0. It could even be suppressed

during transport: the simple Hamiltonian pq̇0 would also

keep the same populations (of any H0) without generating

dynamical phases e−iEnt for each eigenvalue. This is a rather

intuitive result since the corresponding propagator is nothing

but the displacement operator e−ipq0(t)/h̄. This approach thus

provides a formal solution to fast and faithful transport, but

the practical realization of a q̇0p Hamiltonian term remains an

open question.

With respect to the general framework embraced by

Eqs. (1)–(11), the studied cases (i) and (ii) are very relevant but

not exhaustive. For U = 0, the most general case occurs when

transport is accompanied by expansions and contractions, so

that the time dependence of ω(t) and ρ(t) has to be considered

if the invariant-based inverse engineering method is applied.

For harmonic trap expansions or contractions in the gravity

field (q becomes a vertical coordinate), F = −mg, and

the center of the trap suffers a time-dependent translation

q0 = −2g/ω2. Again, α in Eq. (3) may be interpreted as

a classical trajectory, now of a time-dependent harmonic

oscillator subjected to the gravity field,

q̈c + ω2(t) qc = −g. (43)

This is admittedly not a proper transport problem, but its formal

treatment is the same and has recently been implemented

experimentally [44] and also for Bose-Einstein condensates

[45].

As for further extensions or open questions of the invariant

approach, one may investigate the use of more complex

invariants that are not restricted to being quadratic in p [46],

in particular, to tackle anharmonic transport. In the frame

of quadratic-in-p invariants, anharmonic traps can be dealt
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with by a compensating force [case (ii)], but this force might

be difficult to implement for large accelerations. If F = 0,

ω = 0, and U (q − α) ̸= 0 in Eq. (1), α should be the trap

trajectory q0, which is only consistent with the auxiliary

equation α̈ = 0 [see Eq. (3)] for constant-velocity trajectories

which are incompatible with the boundary conditions (29).

A way out, to be explored, may be to use the invariants to

implement minimization algorithms of the final vibrational

excitation.

Other research avenues from here include the analysis and

optimization of transport for specific, commonly found poten-

tials, such as periodic walking waves considering entangled

states that correlate internal and external degrees of freedom

(see, e.g., [47]) or the combination of invariant-based inverse

engineering with optimal control theory [48]. Finally, further

work will be devoted to understanding and mitigating the

effects of noise, for which the inversion method is intrinsically

robust [24], and of atom-atom interactions. Tonks-Girardeau

gases can be treated similarly to single particles, and for

Bose-Einstein condensates, scaling techniques may be used,

as in [45,49].
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APPENDIX A: DISPLACEMENT UNITARY

TRANSFORMATION

Consider the following (time-dependent) position and

momentum displacement unitary operator:

U = eipq0(t)/h̄e−imq̇0(t)q/h̄. (A1)

We could also use variants of U with different orderings

without affecting the final result. Starting from the Schrödinger

equation,

ih̄∂t |ψ⟩ = H |ψ⟩, (A2)

where [as in Eq. (20)] H = p2/2m + U (q − q0) − mqq̈0, the

corresponding equation for |-⟩ = U |ψ⟩ is

ih̄∂t |-⟩ = UHU †|-⟩ + ih̄(∂tU)U †|-⟩

=

[
p2

2m
+ U (q) +

mq̇2
0

2

]

|-⟩. (A3)

Any stationary state in this “trap frame” will remain so in spite

of the trap motion thanks to the compensating effect of the

term −mqq̈0 in H .

APPENDIX B : PERTURBATION THEORY ANALYSIS

OF THE EFFECT OF ANHARMONICITY

In this Appendix we shall use perturbation theory to

determine the effect of small anharmonicities using inverse

or bang-bang trap trajectories. For concreteness, we start from

the “cigar trap” potential associated with a Gaussian beam

with a moving focus,

V (+,r) = −V0e
−2r2/w2(+) 1

1 + +2

x2
R

, (B1)

where r and + are radial and longitudinal coordinates,

+ = q − q0(t),

w(+) = w0

√

1 +

(
+

xR

)2

(B2)

is the spot size, xR = πw2
0/λ is the Rayleigh length, and w0 is

the waist.

For a tight radial confinement we may ignore the radial

coordinate and set r = 0. The resulting longitudinal potential

can be expanded around the minimum. Retaining the first

correction to the harmonic term and ignoring the constant,

we split the Hamiltonian, considering the quartic term as a

perturbation,

H = H0 + V1 =
p2

2m
+ V0

[q − q0(t)]2

x2
R

− V0

[q − q0(t)]4

x4
R

,

(B3)

V1 = −V0

[q − q0(t)]4

x4
R

,

where V0 = mω2
0x

2
R/2. Using time-dependent perturbation

theory, we calculate the overlap ⟨ψ(tf )|ψ̃(tf )⟩ between the

state evolving with the harmonic oscillator |ψ(t)⟩ and the

perturbed state |ψ̃(t)⟩ at the final time t = tf . |ψ(t)⟩ is chosen

as the transport mode (16), with (21) satisfied.

We approximate the perturbed state in first order as

|ψ̃(t)⟩ = U0(t,0)|ψ̃(0)⟩

−
i

h

∫ t

0

dt ′U0(t,t ′)V (t ′)U0(t ′,0)|ψ̃(0)⟩, (B4)

where

U0(t,0) = exp

(

−
i

h̄

∫ t

0

dt ′H0(t ′)

)

, (B5)

so

⟨ψ(tf )|ψ̃(tf )⟩

= ⟨ψ(tf )|U0(tf ,0)|ψ̃(0)⟩

−
i

h̄

∫ tf

0

dt ′⟨ψ(tf )|U0(tf ,t ′)V (t ′)U0(t ′,0)|ψ̃(0)⟩. (B6)

At t = 0 the initial state is also an eigenstate of the harmonic

oscillator, |ψ̃(0)⟩ = |ψ(0)⟩, so the first term on the right-hand

side of Eq. (B6) is 1. Using the transport modes in Eq. (16),

we calculate the bracket term in Eq. (B6),

⟨ψ(tf )|U0(tf ,t ′)V (t ′)U0(t ′,0)|ψ̃(0)⟩

=
−V0

x4
R

⟨ψ(t ′)|[q − q0(t ′)]4|ψ(t ′)⟩. (B7)

013415-7



E. TORRONTEGUI et al. PHYSICAL REVIEW A 83, 013415 (2011)

Performing the time integral, we arrive, in first order, at

⟨ψ(tf )|ψ̃(tf )⟩ = 1 −
i

h̄
F . (B8)

The generic F becomes Fbb when substituting the functions

for the bang-bang method described in Sec. IV for q0 and qc;

see Eqs. (30) and (31).

Fbb =
2−(n+2)V0(2n)!!

x4
Rn!

{
h̄2tf

m2ω2
0

[3 + 6n(1 + n)] +
48d2h̄(1 + 2n)

mt4
f ω6

0

[

10ω0tf − 4ω0tf cos

(
ω0tf

2

)

− 28 sin

(
ω0tf

2

)

+12 sin(ω0tf ) − 4 sin

(
3ω0tf

2

)

+ sin(2ω0tf )

]

+
32d4

3t8
f ω9

0

[

144ω0tf

(

− 9 cos

(
ω0tf

2

)

+ cos(ω0tf )

)

− 6096 sin

(
ω0tf

2

)

+ 4632 sin(ω0tf ) + 4

(

393ω0tf − 530 sin

(
3ω0tf

2

)

+ 222 sin(2ω0tf )

− 84 sin

(
5ω0tf

2

)

+ 26 sin(3ω0tf ) − 6 sin

(
7ω0tf

2

))

+ 3 sin(4ω0tf )

]}

. (B9)

When tf → 0, then Fbb → 0, but this is not a very useful limit since the bang-bang procedure will not work for times smaller

than 4π/ω0. As a more interesting case, consider the discrete final times tf,N = 4πN/ω0 with N ∈ N [19]. Then Fbb takes the

form

Fbb =
−2−(10+n)(2n)!!

N7mπ7n!ω0x
2
R

{

1536N8h̄2[1 + 2n(1 + n)]π8 + 576d2N4h̄m(1 + 2n)π4ω0 + 35d4m2ω2
0

}

. (B10)

In the limit xR → ∞, Fbb → 0. Increasing the waist and keeping the other parameters constant, the potential is more harmonic.

In contrast, as xR → 0, Fbb → −∞. Also, Fbb → −∞ when ω0 → 0 and ω0 → ∞.

If instead of the bang-bang functions we choose the inverse-engineered polynomial qc in Eq. (23) and the corresponding q0,

for arbitrary parameters and, in particular, an arbitrary tf , F becomes

Finv =
−2−(n+2)V0(2n)!!

x4
Rn!

[

1728 000d4

1001t7
f ω8

0

+
1440d2h̄(1 + 2n)

7mt3
f ω5

0

+
h̄2[3 + 6n(1 + n)tf ]

m2ω2
0

]

.

For the final times tf,N ,

Finv =
−2−(8+n)3(2n)!!

1001N7mπ7n!ω0x
2
R

{

128128N8h̄2[1 + 2n(1 + n)]π8 + 34320d2N4h̄m(1 + 2n)π4ω0 + 1125d4m2ω2
0

}

. (B11)

Comparing the factors in (B10) and (B11), we see that |Finv| < |Fbb| for ω0 > 0.
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