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ABSTRACT 
In this paper, we consider efficient authenticated key 
establishment protocols between a sensor and a security manager 
in a self-organizing sensor network. We propose a hybrid 
authenticated key establishment scheme, which exploits the 
difference in capabilities between security managers and sensors, 
and put the cryptographic burden where the resources are less 
constrained. The hybrid scheme reduces the high cost public-key 
operations at the sensor side and replaces them with efficient 
symmetric-key based operations. Meanwhile, the scheme 
authenticates the two identities based on public-key certificates to 
avoid the typical key management problem in pure symmetric-key 
based protocols and maintain a good amount of scalability. The 
proposed scheme can be efficiently implemented on Mitsubishi’s 
M16C microprocessor in 5.2Kbyte code/data size, and achieve a 
total processing time of 760 ms on sensor side, which is better 
than all the other public-key based key establishment protocols we 
have studied.  We also present its modified version with a faster 
speed but more communication overhead. 

Categories and Subject Descriptors 
C.2.0 [Computer-Communications Networks]: Security and 
Protection; C.2.1 [Network Architecture and Design]: Wireless 
Communication 

General Terms 
Design, Security, Performance 

Keywords 
Key Establishment, Sensor Network, Security, Elliptic Curve 
Cryptography 

1. INTRODUCTION 
Self-organizing sensor networks have been proposed to support 
dynamic scenarios and facilitate large-scale, real-time data 
processing in complex environments. Self-organizing sensor 
networks can be quickly and inexpensively set up as needed since 
they do not require any centralized administration or fixed 
infrastructure like a base station or access points. The IEEE 
802.15.4 Low-Rate Wireless Personal Area Network Standard 

[13] specifies the physical layer and medium access control layer 
of a low data rate, ultra low power and low cost sensor network.  
Target applications include natural disaster control, health care, 
battlefield service, oil site operation, rescue missions, etc. In these 
and other vital or security-sensitive deployments, secure and fast 
transmission of sensitive digital information over the sensor 
network is essential. The use of encryption or authentication 
primitives between two sensor devices require an initial link key 
establishment process, which must satisfy the low power and low 
complexity requirement. The very ad hoc nature of sensor 
networks and the cost constraints that are often imposed on them 
make these networks difficult to secure. Communications cannot 
rely on the online availability of a fixed infrastructure or central 
administrator, thus decentralized online key management becomes 
a necessity. 

The IEEE 802.15.4 standard defines two physical device 
types, a Full-Functional Device (FFD) and a Reduced-Functional 
Device (DRF).  An RFD takes on the logical role of an end 
device, e.g. a sensor, while an FFD can also take the role of 
coordinator, router or security manager. A security manager is an 
FFD granted special capabilities to assist in provisioning link keys 
to other devices. A security manager may be portable, so it is used 
to configure sensors on-site. The security manager should first 
establish a link key with a sensor before it can install link keys 
into that sensor for secure communicating with other devices 
inside the cluster.  There is also an off-site central authority (CA), 
which is kept physically secure and used to preload initial 
authentication data (certificates) to security managers and sensors 
offline.  

This paper focuses on the initial link key establishment 
between a sensor node (RFD) and a security manager (FFD). 
RFDs will have less computational resources and memory 
capacity than FFDs. Implementing security solutions in an RFD 
poses the largest challenge, due to strict implementation 
constraints.  One way to accomplish the initial link key 
establishment task is to pre-install a link key table into each 
device, and a sensor needs to keep a different link key for each 
different security manager. However, sensor networks may be 
highly versatile, involving temporary communications between 
devices that may have never met before. Thus we cannot predict 
and install all link keys for devices before they join the network, 
especially for large-scale sensor networks. An alternative way is 
to use a shared group key that is pre-loaded into each device [3]. 
However, a common group key poses a security risk if any one 
device is compromised.  The use of asymmetric keys along with 
digital certificates to establish individual link keys can help 
reduce this risk. Public-key based techniques, along with digital 
certificates, restrict the impact of key compromise to the 
compromised node itself, rather than to all its key-sharing parties.   

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
WSNA’03, September 19, 2003, San Diego, California, USA. 
Copyright 2003 ACM 1-58113-764-8/03/0009…$5.00. 
 

141



 

 

Public-key operations are quite expensive though, which 
remains a problem for portable devices with limited computation 
resources and power supplies. In recent years, symmetric-key 
based key agreement protocols have gained popularity due to the 
small computation overhead. However, the key management for 
pure symmetric-key based system is complicated, either a key 
distribution center (KDC) is online involved or a large number of 
symmetric keys need to be pre-loaded into devices. Both methods 
reduce the scalability of self-organizing sensor networks. Section 
2 gives an introduction on prior key establishment protocols. 

In section 3 of this paper, we propose a hybrid authenticated 
key establishment scheme, which is based on a combination of 
elliptic curve cryptography (ECC) and symmetric-key operations. 
The motivation is to exploit the difference in capabilities between 
security managers and sensors, and put the cryptographic burden 
where the resources are less constrained. Sensors are much more 
battery and computational resources limited. However, the 
security manager means powered and more computational 
powerful. The hybrid key establishment protocol reduces the high 
cost elliptic curve random point scalar multiplications at the 
sensor side and replaces them with low cost and efficient 
symmetric-key based operations. On the other hand, it 
authenticates the two identities based on elliptic curve implicit 
certificates [7] to avoid the typical key management problem in 
pure symmetric-key based protocols. 

Section 4 provides the security analysis of the proposed 
hybrid key establishment protocol. Section 5 analyzes the 
computation complexity, communication complexity, storage 
requirements and code size for our protocol. In section 6, we 
present a modified version of our hybrid protocol, with even less 
computation cost on sensor side, but more communication 
overhead. In section 7, we compare our hybrid protocol and its 
modified version to other public-key based key establishment 
protocols in processing time and bandwidth requirements. The 
paper concludes in section 8. The appendices provide the detail 
analysis of the computation complexity of integer modular 
multiplication and elliptic curve point multiplication. 

2. RELATED WORK 
Various public-key based key establishment protocols are 

used to set up symmetric link keys, such as Shamir's three-pass 
protocol, U.S. Patent No. 4748668, the Diffie-Hellman public-key 
protocol, U.S. Patents No. 4,200,770, the Aziz-Diffie protocol 
[2], the Beller-Chang-Yacobi’s protocol [4], etc. Boyd and 
Mathuria survey the previous work on key distribution and 
authentication for low power devices in wireless environments 
[6]. Hubaux et al. [11] consider an ad hoc network with nodes 
powerful enough for performing asymmetric cryptographic 
operations and propose a peer-to-peer authentication protocol 
based on public-key certificates. Zhou and Hass propose to secure 
ad hoc networks using asymmetric cryptography [30], focusing on 
distributing the role of the CA over some or all devices in the 
network. The main approach is based on threshold cryptography 
[25] and allowing specific coalitions of devices to act together as 
a source of trust to issue public-key certificates. Their approach 
decentralized the online key management, as necessary in mobile 
ad hoc networks. Unfortunately, all above schemes use 
asymmetric cryptography and hence, are expensive for the sensor 
network environments. 

The computation complexity and power consumption of 
symmetric-key based protocols are negligible when compared 
with public-key operations. However, the key management for 
symmetric key based protocols is complicated, and is always 
subject to attack by adversaries. Basagni et al. propose to use a 
network-wide symmetric key to secure an ad hoc network [3]. 
While this group key approach is efficient, it does not protect 
against compromise of a single node. Perrig et al. present the 
security protocol SPINS [21], and a trusted third party is involved 
to assist node-to-node key agreement. However, how to 
establishment a master key between a sensor node and the trusted 
third party is left as an open problem. If a single trusted third 
party is used, e.g. a KDC, then it must be online involved as a 
central administrator, which reduces the scalability and self- 
organizing ability of the sensor networks. If multiple trusted 
devices are involved to configure sensors on site, they are 
functioning similarly as security managers in our system. 
However, we cannot pre-load all master keys needed for the 
sensor to communicate to all security managers, due to the high 
mobility and a limited memory space. Public-key based protocols 
give more flexibility and scalability especially in large sensor 
networks where new devices keep entering the cluster.  

Recently several schemes have been proposed to offload 
certain public-key cryptographic computation to servers and have 
the low-end devices to do less work. Modadugu et al. propose to 
offload the heavy computation for finding an RSA key pair to 
untrusted servers [19]. In [28], Wong and Chan proposed two key 
exchange protocols to reduce computation on the mobile client 
side, the server-specific MAKEP and the linear MAKEP. In the 
server-specific MAKEP scheme, a server can impersonate a client 
once they run the key exchange protocol. In the linear MAKEP, 
the number of times that the client is able to run the protocol is 
determined by how many public-private key pairs it stores, and 
hence the protocol does not scale well. The same authors present a 
modified scheme with a better scalability [29], but the client has 
to perform modular exponentiation to generate the ephemeral 
public key β=gb mod p, where g and p should be greater than 512 
bits for security reason, and b is 160 bits. The processing time to 
generate an ephemeral key on Palm V is 36 sec for 512-bit 
modulus and 144 sec for 1024-bit modulus. A sensor node cannot 
afford to do such expensive computation. Also, the certificate of 
the server needs to be verified online, and the computation cost is 
not negligible. A solution may be to preload some ephemeral keys 
(e.g. in [28]) or offload the computation to an untrusted server. 
Then the scalability of the protocol is reduced.  Jakobsson and 
Pointcheval [14] proposed to improve efficiency by using pre-
computation. However, the protocol is shown to be susceptible to 
a variant of interleaving attacks in [29]. Furthermore, the pre-
computation is not applicable in the self-organizing sensor 
networks we envision, where a sensor can in general not predict 
which party it deals with. 

In recent years, ECC based key agreement protocols are 
designed to use in constrained mobile environments, due to the 
property of small key sizes, such as the ECMQV protocol with 
ECC X509 certificates [27] and implicit certificates [7], the 
ECDSA authenticated key exchange protocol [1], the Elliptic-
Curve Diffie-Hellman Ephemeral (ECDHE) protocol [24], etc. 
However, the computation load of all the above ECC based 
protocols consists of at least two expensive elliptic curve random 
point scalar multiplications on each participating entity. In this 
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paper, we focus on reducing the elliptic curve random point scalar 
multiplications on sensor nodes by offloading the computation 
burden to more powerful security managers, and replacing the 
expensive public-key operations by efficient symmetric-key 
operations. We also use the elliptic curve implicit certificate to 
avoid the typical key management problem in pure symmetric-key 
based protocols.  

3. A HYBRID AUTHENTICATED KEY 
ESTABLISHMENT PROTOCOL 

ECC is used in our protocol to perform security functions on 
sensors with limited computing resources. Compared with other 
public key crypto algorithms, much smaller key lengths are 
required with ECC to provide a desired level of security, which 
means faster processing speed, smaller communication 
complexity, in addition to smaller key storage requirements. 

To prevent the impersonation attack, we use certificates in our 
key-establishment protocol, which provide a mechanism to check 
cryptographically to whom the public key belongs and if the 
device is a legitimate member of a particular network. A 
certificate is simply a public key together with the device ID and 
certification expiration date, signed by CA. The use of a trusted 
interface to pre-establish a certificate and root key in a device 
thwarts both active and passive attacks in subsequent key 
establishment protocols. The certificates are acquired before each 
device joins the network through an out-of-band interface. We use 
the elliptic curve implicit certificate scheme [27], because of the 
resulting low communication complexity, which is a dominant 
factor for low bit transmission channels in sensor networks. 

First, an elliptic curve E defined over GF(p) (where p is the 
characteristic of the base field) with suitable coefficients and a 
base point P of large order n is selected and made public to all 

users. CA selects a random integer CAq  as its static private key, 
and computes the static public key PqQ CACA ×= . To obtain a 
certificate and the static private-public key pair, the sensor U 
randomly selects a temporary key pair ),( UU Gg  and sends UG  
to CA via a secure out-of-band interface. CA verifies U’s identity 
and the authenticity of the request received from U. CA also 
selects a temporary key pair ),( CACA Gg  and computes the elliptic 
curve point CAUU GGB += . The implicit certificate UIC  for U is 
constructed as the concatenation of CA’s static public key CAQ , 

the device identity UID , the elliptic curve point UB  and the 

certification expiration date Ut , i.e., ),,,( UUUCAU tBIDQIC = . 
CA then applies a one-way hash function H on UIC  and derives 
an integer ]2,2[ −∈ neU  from )( UICH  following the conversion 
routine described in Section 4.1.3 of [7]. Finally, CA computes 
U’s private-key reconstruction data )(mod nqegs CAUCAU += , 
U’s public key CAUUU QBeQ += , and sends Us  and UIC  back to 
U.  After U receives the implicit certificate from CA, it computes 
the hash value )( UICH  and derives an integer Ue  from )( UICH  
following the conversion routine described in Section 4.1.3 of [7]. 
U also computes its static private key )(mod negsq UUUU ⋅+=  
and its public key PqQ UU ×= . U then reconstructs the public 

key CAUUU QBeQ +=ˆ . If UU QQ =ˆ , U accepts the certificate and 
outputs the static key pair ),( UU Qq ; otherwise it rejects the 
certificate. By repeating the very same process, the security 
manager V acquires its certificate VIC  and static key pair 

),( VV Qq . 

The certificate generation processes for sensor U and security 
manager V are performed offline as shown in Figure 1, before they 
join the network, and may be assisted by a trusted computation 
server. When they first communicate to each other, they execute 
our hybrid key establishment protocol as shown in Figure 2: 

1. U and V send to each other their implicit certificates. The 
content of the certificate is verified at the other side, including the 
device identity and the validity period. If any check fails, the 
protocol is terminated. 

2. V computes the hash value )( UICH  and derives an integer 

Ue  from )( UICH  following the conversion routine described in 
Section 4.1.3 of [7]. V then obtains U’s public key 

CAUUU QBeQ += . After performing the certificate processing 
operation, V can conclude that UQ  is genuine, provided that U 
later evidences knowledge of the corresponding private key Uq . 

3. U selects a k-bit random number Uc  as its link key 
contribution and a random k−160 bit integer r. U calculates its 
ephemeral private key )||( rcHd UU = and ephemeral public key 

PdD UU ×= , where H is a cryptographic hash function to map a 
binary string to a random integer ]2,2[ −∈ n . U verifies V’s 
certificate and obtains V’s public key the same way as V does, but 
instead of computing VQ  directly, U computes 

CAUVUVU QdBedQdR ×+×=×= )( . U can conclude that R is 

U  CA ( CACA Qq , ) 
]2,2[ −∈ ngU   ]2,2[ −∈ ng CA  

PgG UU ×=   PgG CACA ×=  
Send →UU IDG ,
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Figure 1. Implicit certificate generation process. 
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calculated from genuine VQ , provided that V later evidences 
knowledge of the corresponding private key Vq . U then encrypts 

Uc  by using the provably secure elliptic cure encryption [9], and 
sends to V the ciphertext ),().)||(,( 21 eExRrcDE UU =⊕= , 
where xR.  is the x coordinate of R. 

4. V decrypts the received message and obtains R by 
calculating RQdPdqEq VUUVV =×=×=× 1 . V then computes 

xReu .2 ⊕= , and checks if PuHE ×= )(1 . It yes, V obtains Uc  
as the most significant k bits of u. Otherwise, the protocol is 
terminated. V then selects a k-bit random number Vc  as its link 
key contribution, and encrypts Vc  concatenated with its identity 

VID  using symmetric key encryption under key Uc , generating 
)||( VVc cIDEy

U
= . Note that proper encryption mode needs to be 

used, such as the Cipher Block Chaining (CBC) mode, where the 
results of encrypting previous blocks affect the encryption of the 
current block. This ensures that there is no way for any device W 
to derive )( Vc cE

U
 from )||( VVc cIDE

U
and change this value. 

5. V sends y to U. V also computes 
)||||||(|| VUVU IDIDccKDFLinkKeyMacKey = , where KDF is the 

specified key derivation function, LinkKey is the established link 
key, and MacKey is for explicit key confirmation use. V then 
destroys Uc  and Vc  from its memory. 

6. U decrypts the incoming message under Uc  and checks if 
the decrypted message contains a proper coding of VID  
concatenated with some number. If the check fails, U terminates 
the protocol. Otherwise, U denotes the number as Vc , and U has 
verified that V has the knowledge of the private key Vq  
associated with VQ . U computes LinkKeyMacKey ||  

)||||||( VUVU IDIDccKDF= , and )(mod)( ndMacKeyHqz UU += . 

U then sends z to V and destroys Uc  and Vc  from its memory. 

7. V verifies if 1)( EQMacKeyhPz U +×=× . If it is false, V 
terminates the protocol. Otherwise, V believes that U has the 
knowledge of the private key Uq  associated with UQ , and U has 
provided the explicit key confirmation to V. V sends 

)||(' UVMacKey IDIDMACz = to U, where MAC is a message 
authentication code function. 

8. U checks if 'z  is valid. If yes, V provides the explicit key 
confirmation to U and both sides take LinkKey as the final 
established link key and accept the connection. 

4. SECURITY ANALYSIS 
Since we use the public key certification strategy to bind a 

device’s public key with its unique identity, there is no need to 
protect and maintain a large online database for every device’s 
secret key at KDC.  

Authentication is accomplished by sending the challenge pairs 
(E, y) and (y, z). It is infeasible for an adversary to compute the 
correct response y without knowing Vq . Thus U can be sure that 
only V can produce the response and U verifies that V has the 
knowledge of the private key Vq  associated with the certified 

VQ .  Also, 1)( EQMacKeyHPz U +×=×  can be satisfied only if 
z  is calculated by the correct private key Uq  associated with the 

certified public key UQ . Therefore, V can be sure that only U can 
produce the correct response. However, we should note that the 
symmetric key encryption ),( VVc cIDE

U
 must be properly 

implemented. For example, if it is implemented, e.g., in ECB 
mode or in stream cipher mode, then any adversary could derive 
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),( UU Qq  ),( VV Qq  
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Receive     ),,,( VVVCAV tBIDQIC =←         Send 
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Figure 2. Hybrid key establishment protocol. 
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)( Vc cE
U

 from ),( VVc cIDE
U

, arbitrarily modify the value of 

)( Vc cE
U

 sent to U and leave )( Vc IDE
U

unchanged. This can be 
avoided by using Cipher Block Chaining (CBC) mode. In 
addition, an adversary cannot obtain any information of Uc  and 

Vc  if both the symmetric and ECC encryption schemes are secure, 
which implies the link key contribution of each side is transferred 
securely to the other part. 

We observe that both U and V supply their contributions Uc  
and Vc  to the link key respectively. The final link key is 
established using the key generation function. In this way, no 
single party has the full control on the selection of the link key, 
and both U and V can ensure the freshness of the final link key. 

To establish the link key, we include the names of the entities 
in the scope of the key derivation function to avoid the unknown 
key-share attack [23]. 

The protocol provides both implicit and explicit key 
confirmation. If U does not terminate the protocol in the 6th step, 
V knows Uc  is received correctly and it can compute the link key 
correctly. If V does not terminate the protocol in the 8th step, U 
knows Vc  is received correctly and it can compute the link key 
correctly. Therefore, if there is no “run with failure” message, 
both U and V confirm to each other implicitly that the key is 
generated correctly. Furthermore, we use MacKey to provide 
explicit key confirmation. If both z and 'z  authenticated by 
MacKey are verified as valid, then both U and V know that the 
other side actually has computed the link key correctly. 

To reveal the sensor’s static private key Uq , two sessions 
i and j  with the same values of Ud  and with the values of 

)(),( ji MacKeyHMacKeyH known are necessary to an adversary.  

However, note that both Uc  and r are chosen randomly, therefore, 
the ephemeral private key )||( rcHd UU = ]2,2[ −∈ n  is 
randomly chosen for each session. Since n is 160 bits large, the 
probability that jUiU dd =  is negligible for different sessions 

i and j . Since no single party has the full control on the 
selection of the link key, we also conclude that for ji ≠ , 

ji MacKeyMacKey ≠  hence )()( ji MacKeyHMacKeyH ≠ . If an 

adversary wants to obtain Uq , he needs to solve the following 
equations: )(mod)( ndMacKeyHqz iUiUi +=  )0( ni <<  with 

unknown Uq  and iUd . It is not easier than solving the elliptic-
curve discrete logarithm problem. 

If the security manager's private key is compromised, then all 
the link keys from earlier runs can be recovered from the 
transcripts. However, the corruption of the sensor node does not 
help to reveal the link keys. Therefore, our scheme provides half 
forward secrecy. To provide full forward secrecy, Vc should be 
sent to U in a secure way that only U with its ephemeral private 
key can reconstruct it. However, this requires additional expensive 
elliptic curve random point multiplications on sensor side, and is 
opposite to our purpose of offloading the computation burden of 
sensors.  Since the sensor may be a weak device while the security 

manager can support much stronger security features, we believe 
that forward secrecy on the sensor side is more important than that 
on the security manager side.  

5. PERFORMANCE ANALYSIS 
The performance evaluation given here is based on the 

cryptographic operation complexity and the number of times they 
have to be performed, the sizes of the messages, the total number 
of messages sent in each protocol run and the memory 
requirement. Since sensors are much more battery and 
computational resources limited while the security manager is 
much more powerful, we restrict our attention to the efficiency of 
the sensor side only. Throughout this section, we mainly use the 
measurement results given by implementation of our protocol on 
the 16-bit single-chip microprocessor M16C [10] [17] [18] with 
10 MHz clock rate designed by Mitsubishi Electric Corporation. 

5.1 Computation Complexity 
Note that the base point P and CA’s public key CAQ  are fixed 

parameters. We can hence reduce the scalar multiplication of 
fixed points P and CAQ  by having a pre-computed look-up table 
in the ROM area. Since we verify the binding of the sensor’s 
private key Uq to its public key UQ  in step 6 and 7 through a 
linear combination of the static key and the ephemeral key, rather 
than a multiplicative combination as in other ECC based 
protocols, at least one expensive elliptic-curve scalar 
multiplication of a random point is moved to the security manager 
side, and is replaced by one low cost modular multiplication, one 
modular addition and one symmetric key decryption. In real-time 
execution, the sensor is required to compute only one elliptic-
curve scalar multiplication of a random point ( VB ), two elliptic-
curve scalar multiplication of fixed points (P and CAQ ), one 
symmetric key decryption, one modular multiplication, one 
modular addition, one hash, one key derivation and two random 
number generations. 

On the average, SHA-1 only takes 2 msec to digest a 128-bit 
binary string on the M16C. Hash functions are also used to 
generate pseudo-random numbers. Thus their generation speed is 
comparable to that of hashing and can be ignored. The Rijndael 
[8] (AES) algorithm in Cipher Block Chaining mode takes less 
than three milliseconds to decrypt a 256-bit ciphertext. Therefore 
we can ignore the time taken for hashing, symmetric key 
operation, key derivation and random number generation in our 
evaluation. 

The sensor also needs to do one 160-bit modular 
multiplication and modular addition, which takes less than 3 
msec. Using Karatsuba-Ofman algorithm [15] and Montgomery 
product algorithm [20] to implement the 160-bit modular 
multiplication in 16-bit word fashion, the calculation has a 
complexity of (Appendix): 

)16(3.1640)16(4.115)16(
16

160)160(Pr AddMulAddT oMon +≈+ , 

where )16(Add denotes the computation cost of an 

“addition” operation of two 16-bit numbers and )16(Mul denotes 
that of “multiplication”. 
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Therefore, the main computation cost at the sensor side is the 
elliptic-curve scalar multiplication of a random point and two 
fixed points, as can be shown by their computation complexity as:  

)16(9.1749703)16(6.123831 AddMulT RPEC +≈− , and 

)16(5.341144)16(3.24143 AddMulT FPEC +≈−  (Appendix).   

The implementation result on M16C is 480 msec for a random 
point scalar multiplication and 130 msec for a fixed point 
multiplication. The whole protocol execution time on M16C is 
about 760 msec. 

5.2 Communication Complexity 
During the real-time execution of the hybrid protocol, a total 

of 6 massages are exchanged, two for mutual authentication and 
implicit certificates, two for the afterwards link key generation 
process and another two for the explicit key confirmation.  If we 
assume the device ID is 64 bits, the certificate expiration time and 
the random number k are also 64 bits each, and the modulus for 
ECC is 160 bits, the total communication cost is 1437 bits or 180 
bytes. 

5.3 Code Space 
The non-volatile (FLASH) memory required for a sensor to 

store its static public and private key pair ( UU Qq , ) and the 
implicit certificate ),,,( UUUCAU tBIDQIC =  is 96 bytes. The 
program memory (ROM) needed is a total size of 5.2K byte 
code/data (lots of room for optimizations), including 200 bytes for 
ECC implicit certificate generation and verification, 720 bytes of 
elliptic arithmetic library, 630 bytes modular p integer library, 790 
bytes of general integer library, 410 bytes of SHA-1, 1K bytes of 
AES symmetric key algorithm and 1400 bytes of pre-computed 
data table, 20 byte base prime p and the 20 byte curve order n.  

6. FURTHER ENHANCEMENT 
We can further reduce the computation complexity on sensor 

side, by using the Modular Square Root (MSR) technique [26] to 
encrypt sensor’s link key contribution Uc  instead of using ECC 
cryptography.  The attractiveness of MSR for wireless network 
application arises from its asymmetry. MSR requires the sending 
party to perform only a single modular multiplication, while the 
receiver performs exponentiation (needed to calculate the modular 
square root). Since our program includes the general integer 
library, it is easy to implement MSR operations using the library. 

We call the modified protocol an MSR-combined hybrid key 
establishment protocol. First, an elliptic curve E defined over 
GF(p) (where p is the characteristic of the base field) with suitable 
coefficients and a base point P of large order n is selected and 
made public to all users. The sensor U randomly chooses integer 

]2,2[ −∈ nqU  as its private key and computes the public key 
PqQ UU ×= .  For the more powerful security manager V, we use 

VN  to denote the corresponding public key, i.e. the MSR 
modulus. VVV qpN = , where Vp  and Vq  are large prime 
numbers. Since MSR is used at the security manager side, we use 
the elliptic curve digital signature algorithm (ECDSA) [1] as the 
signature scheme of CA.  

In order to receive a certificate, the sensor sends its public key 
UQ  together with its user identity through an out-of-band secure 

interface to CA. CA uses its private key CAq to sign the hashed 
value of the concatenation of the public key, the device identity 

UID , and the certification expiration date Ut . The CA then sends 

the signed message ),( UU sr together with its public key CAQ  
through the secure channel to the terminal as shown in Figure 3. 
By repeating the very same process, the security manager V 
acquires its certificate ),( VV sr as shown in Figure 4. The 
certificate generation processes for sensor U and security manager 
V are performed offline and before they join the network. At the 
beginning of our MSR-combined hybrid key establishment 
protocol, they both send to the other side their public key, device 
ID, certificate and the expiration time. Then the mutual certificate 
authentication between the sensor and the security manager is 
executed in real-time, as shown in Figure 5. 
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Figure 3. ECDSA certificate generation for sensor U. 
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Figure 4. ECDSA certificate generation for security 
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The MSR-combined hybrid key establishment protocol now 
proceeds as below and shown in Figure 6: 

1. Both the sensor U and the security manager V send to the 
other side the public key, device ID together with the certificate. 
Then the mutual authentication and certificate verification is 
performed. If any check fails, the protocol is terminated. 

2. U randomly selects a k-bit integer Uc , as its link key 
contribution, and encrypts it using V’s public key VN , generating 

VUU Ncrx mod)||( 2=  ( Ur  is the proper padding). U then 
randomly chooses an integer ]2,2[ −∈ ndU  and computes 

.PdD UU ×=  ( UU Dd , ) is used as U’s ephemeral key pair.  

3. U sends UD  and x to V.  

4. V decrypts x and obtains Uc  as the least significant k bits of 

VNx mod . V then selects a k-bit random number Vc  as its link 
key contribution, and encrypts Vc  concatenated with its identity 

VID  under key Uc , generating )||( VVc cIDEy
U

= . Note that 
proper encryption mode needs to be used, such as the Cipher 
Block Chaining (CBC) mode. V sends y to U. 

5. V computes )||||||(|| VUVU IDIDccKDFLinkKeyMacKey = , 
where KDF is the specified key derivation function, LinkKey is 
the established link key, and MacKey is for explicit key 
confirmation use. V then destroys Uc  and Vc  from its memory. 

6. U decrypts the incoming message under Uc  and checks if 
the decrypted message contains a proper coding of VID  
concatenated with some number. If the check fails, U terminates 
the protocol. Otherwise, U denotes the number as Vc , and U has 
verified that V has the knowledge of the private key associated 
with the certified public modulus VN . U computes 

)||||||(|| VUVU IDIDccKDFLinkKeyMacKey = , )(MacKeyHqz U=  
)(mod ndU+ . U then sends z to V and destroys Uc  and Vc  from 

its memory. 

7. V verifies if UU DQMacKeyhPz +×=× )( . If it is false, V 
terminates the protocol. Otherwise, V believes that U has the 
knowledge of the private key Uq  associated with UQ , and U has 
provided the explicit key confirmation to V. V sends 

)||(' UVMacKey IDIDMACz = to U, where MAC is a message 
authentication code function. 

8. U checks if 'z  is valid. If yes, V provides the explicit key 
confirmation to U and both sides take LinkKey as the final 
established link key and accept the connection. 

Note that by using MSR to encrypt sensor’s link key 
contribution Uc , only one 1024-modulus squaring is performed 
instead of doing the much more expensive random point elliptic-
curve scalar multiplication in our previous scheme. The MSR 
encryption process comprises one modular addition and one 
modular multiplication and it takes only 45 msec to perform a 
1024-bit MSR encryption. The computation complexity of using 
Karatsuba-Ofman algorithm [15] and Montgomery product 
algorithm [20] to implement the 1024-bit modular multiplication 
in 16-bit word fashion, is approximately (Appendix): 

)16(8.30718)16(3.2187)1024(Pr AddMulT oMon +≈ , which is much 
less than the complexity of elliptic-curve scalar multiplications. 
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Figure 6. MSR-combined Hybrid key establishment.  
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Table 1. Comparison of the hybrid key establishment protocol and its MSR-combined version with other public-key 
based key establishment protocols 

Computation complexity on sensor side  
EC-RP EC-FP  Large modular 

exponentiation 
Small modular 
exponentiation 

Processing time 
on sensor  

Communication 
complexity 

er-C-Y   1 2 10.4 sec 4352 bits 
-Diffie   2 3 20.4 sec 5120 bits 
MQV 
509  

1.5 3   1110 msec 1796 bits 

MQV 
plicit  

2 1.5   1155 msec 1478 bits 

DSA 2 3   1350 msec 1730 bits 
DHE 2 3   1350 msec 1796 bits 

ybrid  1 2   760 msec 1437 bits 
-Hybrid  3  1 455 msec 3682 bits 
l-time execution of the MSR-combined hybrid key 
ent protocol, the sensor is required to compute three 
rve scalar multiplication of fixed points (two for 
the ECDSA signature and another one for generating the 
 key), one symmetric key decryption, one modular 
tion, one modular squaring, one modular addition, one 
 key derivation and two random number generations. 
nsive public key decryption and elliptic-curve scalar 
tion of a random point are all moved to the security 
ide, which is more computational powerful. The total 
 time on M16C at the sensor side is approximately 455 

ver, the communication overhead is increased due to a 
 size used by the security manager. If we assume the 
 is 64 bits, the certificate expiration time and the random 
 are also 64 bits each, and the modulus for ECC and 
ptosystem are 160 bits and 1024 bits respectively, the 

unication cost is 3682 bits or 460 bytes. If we assume 
ing battery drain: transmit-12.96 µJ/byte, receive-16.2 
ased on Motorola figures on a 900 MHz transceiver), 

W as the power consumption of M16C chip, the MSR-
 hybrid protocol saves 3.23 mJ on sensor side compared 
uting our first hybrid key establishment protocol. 

 if the message is sent multi-hops, the MSR-combined 
tocol consumes more energy at intermediate routers. 

PARISON TO OTHER PUBLIC-
ASED PROTOCOLS 
s section, we compare our hybrid key establishment 
and its MSR-combined version to other ECC based 
 including the ECMQV protocol with ECC X509 
s [27] and implicit certificates [7], the ECDSA 
ted key exchange protocol [1] running in ephemeral key 
 the Elliptic-Curve Diffie-Hellman Ephemeral (ECDHE) 
24]. We also compare our protocols to the Aziz-Diffie 
2] based on RSA (1024-bit key) and the Beller-Chang-
protocol [4] based on Rabin cryptosystem (1024-bit 
 compare the sensor side computation complexity, 
 time on M16C and the bandwidth requirements. We 
omparison results of our hybrid key establishment 
with other public-key based key establishment protocols 

in Table 1, where computation complexity on sensor side is 
expressed in numbers of performing the cryptographic operations, 
including elliptic curve scalar multiplication of a random point 
(EC-RP) and a fixed point (EC-FP), modular exponentiation of a 
large number and that of a small number.  

Table 1 shows that both our hybrid protocol and its MSR-
combined version require less processing time hence less power 
consumption of computing the link key. The hybrid key 
establishment protocol also achieves the least bandwidth 
requirements, while its MSR-combined version has the least 
processing time but requires modest communication complexity 
compared with other public-key based key establishment 
protocols. 

8. CONCLUSION 
Sensors have rigid constraints on computational resources, 

processing power, and parameter storage space. In this paper, we 
propose a hybrid authenticated key-establishment protocol, in 
which we reduce the computation intensive elliptic curve scalar 
multiplication of a random point at the sensor side, and use 
symmetric key cryptographic operations instead. On the other 
hand, it authenticates the two identities based on elliptic curve 
implicit certificates, solves the key distribution and storage 
problems, which are typical bottlenecks in pure symmetric-key 
based protocols. The hybrid key establishment protocol has less 
sensor side computation complexity and less communication 
complexity as compared to other public-key based key 
establishment protocols. We also present an MSR-combined 
version of the hybrid key establishment protocol, which combines 
the use of MSR, ECC and symmetric cryptography. The MSR-
combined hybrid protocol achieves the fast processing time on 
sensor side, while has a modest communication overhead. 
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APPENDIX: COMPLEXITY ANALYSIS OF 
MODULAR EXPONENTIATION AND 
ELLPTIC CURVE MULTIPLICATION 
The Montgomery method [20] is an efficient way for modular 

multiplication with an arbitrary modulus. Assuming the modulus 
n is an N-bit number, let r be N2 . The Montgomery algorithm 
transforms an integer m in the range ]1,0[ −n  to another integer 
in the same range, which is called the image or the n-residue of 
the integer, and is defined as nmrm mod= . It is easy to show 
that the Montgomery multiplication over the images a  and 
b computes the image nrbac mod1−=  which is the same as the 
integer nabc mod=  [16]. Assume a, b and n are N-bit integers. 
Let n′ be the integer so that 11 =′−− nnrr . The average 
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complexity of Montgomery product algorithm, which computes 
nabnrbac modmod1 == − , is given below: 

Function MonPro( ba , ) 

Step 1. bat ⋅=: )(// NMul  
Step 2. rntu mod: ′⋅= )(// NMul  
Step 3. rnutc /)(: ⋅+=                                        

)(),2(2)(// NAddNNShiftNMul ++  
Step 4.  if  nc >  then return nc −                       

                    else return c  )(
2
1// NAddcondition +  

Here ),( yxShift  means the computation cost of shifting an x-
bit integer by y bits. )(NAdd  denotes the computation cost of an 
“addition” operation of two N-bit numbers and )(NMul denotes 
that of “multiplication”. The average complexity of Montgomery 
product algorithm is approximately:  

)(
2
3)(3)(Pr NAddNMulNT oMon +≈ .  

In practice, primitive arithmetic operations such as 
multiplication and addition are limited to a certain word size k. 
Karatsuba-Ofman algorithm [15] is an efficient way to perform 
the NN *  bit multiplication in k bit fashion, which keeps on 
dividing the long integer into two shorter ones of equal sizes until 
their lengths are k, and gets the multiplication of two long integers 
by doing multiplications and additions on their divided parts of 
the half length. Let 1a  and 0a  denote the higher and the lower 

halves of a, respectively, and 1b , 0b denote the higher and the 
lower halves of b. Karatsuba-Ofman algorithm is as follows: 

KORMA (a, b) 
Step 1. if (a and b are of more than 2k bits) do 
Step 2. =:0t KORMA ),( 00 ba  )2/(// NTKO   
Step 3. =:2t KORMA ),( 11 ba   )2/(// NTKO   
Step 4. =:0u  KORMA ),( 1010 bbaa ++   

 )2/(2)12/(// NAddNTKO ++  
Step 5. 2001 : ttut −−=   )(2// NAdd  
Step 6. else do 
Step 7.  000 : bat ⋅=  
Step 8.  112 : bat ⋅=  
Step 9.  )()(: 01010 bbaau +⋅+=  
Step 10.  2001 : ttut −−=  
Step 11. return ( 01

2/
2 22 ttt NN ++ )  

 ),2()
2

,(),(// NNAddNNShiftNNShift ++  

)(NTKO  denotes the arithmetic/logic operations needed for 

NN *  bit multiplication, and +≈ )
2

(2)( NTNT KOKO  

)
2

(2),2()(2)
2

(2)1
2

( NTNNAddNAddNAddNT KOKO ≈++++

)(5)1
2

( NAddNTKO +++ . If we implement the )1
2

(*)1
2

( ++ NN  

bit multiplication by: 

=+′+′=++ )}
2

(2*{*)}
2

(2*{)1
2

(*)1
2

( 22 NbbNaaNbNa
NN

 

N
NN

baNabNbaNbNa 2**2*)
2

(*2*)
2

(*)
2

(*)
2

( 22 ′′+′+′+ , 

where a ′  and b′  are the highest bit of )1
2

( +Na  and )1
2

( +Nb , 

and if the recurrence stops when a and b are k bits, we have 

∑ = −
−+≈ )(log

1 1
1)(log

22 )
2

(37)(3)( k
N

i i
ik

N

KO
NAddkMulNT . 

Assuming )
2

(2)( NAddNAdd = , then we conclude that 

using Karatsuba-Ofman algorithm to implement the NN *  
multiplication on k-bit processors, the average complexity of 
Montgomery product algorithm to compute nabc mod=  
(where a, b and n are N-bit integers) is: 

).(
2
3)]()(14)()[(3)( 3log3log

Pr
22 kAdd

k
NkAdd

k
NkMul

k
NNT oMon ++≈

 The average computation cost of the binary scalar 
multiplication algorithm of a random point is 

]
2
1[

2
1160

addECdoubECRPEC TTT −−− ⋅+−≈ , where doubECT −  denotes the 

computation complexity of doing an elliptic curve point doubling 
and addECT −  denotes that of doing an elliptic curve point addition. 
Note that the base point P is a fixed system parameter. We can 
hence reduce the scalar multiplication of the base point by having 
a pre-computed look-up table in the ROM area. The standard 
window method is adopted for the fixed point multiplication and 
the average computation cost of this window scalar multiplication 

of a fixed point is ]
2
1[

2
31

addECdoubECFPEC TTT −−− ⋅+≈ .  

The IEEE-P1363 document [12] describes a detailed 
implementation algorithm that realizes the elliptic addition and 
doubling, and we can estimate the computation complexity by the 
number of modular multiplications.  The elliptic addition 
normally involves 11 modular multiplications, except at the last 
step of ECDSA verification, where 16 modular multiplications are 
needed. The elliptic doubling can be performed by 8 modular 
multiplications. Therefore, we can readily estimate that 

);(2640)]()160(14)()160[(33 3log3log 22 kAdd
k

kAdd
k

kMul
k

T additionEC ++≈

).(1920)]()160(14)()160[(24 3log3log 22 kAdd
k

kAdd
k

kMul
k

T doubEC ++≈−  

Hence, the average computation complexity of the random 
point scalar multiplication is approximately: 

)].(80)()160(14)()160[(
4

12879 3log3log 22 kAdd
k

kAdd
k

kMul
k

T RPEC ++≈−

The average computation complexity of a fixed point scalar 
multiplication is approximately: 

)].(80)()160(14)()160[(
4

2511 3log3log 22 kAdd
k

kAdd
k

kMul
k

T FPEC ++≈−  
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