

Fast Authenticated Key Establishment Protocols
for Self-Organizing Sensor Networks

Qiang Huang1, Johnas Cukier2, Hisashi Kobayashi1, Bede Liu1 and Jinyun Zhang2
1. Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA

2. Mitsubishi Electric Research Laboratories, 201 Broadway, Cambridge, MA 02139, USA

ABSTRACT
In this paper, we consider efficient authenticated key
establishment protocols between a sensor and a security manager
in a self-organizing sensor network. We propose a hybrid
authenticated key establishment scheme, which exploits the
difference in capabilities between security managers and sensors,
and put the cryptographic burden where the resources are less
constrained. The hybrid scheme reduces the high cost public-key
operations at the sensor side and replaces them with efficient
symmetric-key based operations. Meanwhile, the scheme
authenticates the two identities based on public-key certificates to
avoid the typical key management problem in pure symmetric-key
based protocols and maintain a good amount of scalability. The
proposed scheme can be efficiently implemented on Mitsubishi’s
M16C microprocessor in 5.2Kbyte code/data size, and achieve a
total processing time of 760 ms on sensor side, which is better
than all the other public-key based key establishment protocols we
have studied. We also present its modified version with a faster
speed but more communication overhead.

Categories and Subject Descriptors
C.2.0 [Computer-Communications Networks]: Security and
Protection; C.2.1 [Network Architecture and Design]: Wireless
Communication

General Terms
Design, Security, Performance

Keywords
Key Establishment, Sensor Network, Security, Elliptic Curve
Cryptography

1. INTRODUCTION
Self-organizing sensor networks have been proposed to support
dynamic scenarios and facilitate large-scale, real-time data
processing in complex environments. Self-organizing sensor
networks can be quickly and inexpensively set up as needed since
they do not require any centralized administration or fixed
infrastructure like a base station or access points. The IEEE
802.15.4 Low-Rate Wireless Personal Area Network Standard

[13] specifies the physical layer and medium access control layer
of a low data rate, ultra low power and low cost sensor network.
Target applications include natural disaster control, health care,
battlefield service, oil site operation, rescue missions, etc. In these
and other vital or security-sensitive deployments, secure and fast
transmission of sensitive digital information over the sensor
network is essential. The use of encryption or authentication
primitives between two sensor devices require an initial link key
establishment process, which must satisfy the low power and low
complexity requirement. The very ad hoc nature of sensor
networks and the cost constraints that are often imposed on them
make these networks difficult to secure. Communications cannot
rely on the online availability of a fixed infrastructure or central
administrator, thus decentralized online key management becomes
a necessity.

The IEEE 802.15.4 standard defines two physical device
types, a Full-Functional Device (FFD) and a Reduced-Functional
Device (DRF). An RFD takes on the logical role of an end
device, e.g. a sensor, while an FFD can also take the role of
coordinator, router or security manager. A security manager is an
FFD granted special capabilities to assist in provisioning link keys
to other devices. A security manager may be portable, so it is used
to configure sensors on-site. The security manager should first
establish a link key with a sensor before it can install link keys
into that sensor for secure communicating with other devices
inside the cluster. There is also an off-site central authority (CA),
which is kept physically secure and used to preload initial
authentication data (certificates) to security managers and sensors
offline.

This paper focuses on the initial link key establishment
between a sensor node (RFD) and a security manager (FFD).
RFDs will have less computational resources and memory
capacity than FFDs. Implementing security solutions in an RFD
poses the largest challenge, due to strict implementation
constraints. One way to accomplish the initial link key
establishment task is to pre-install a link key table into each
device, and a sensor needs to keep a different link key for each
different security manager. However, sensor networks may be
highly versatile, involving temporary communications between
devices that may have never met before. Thus we cannot predict
and install all link keys for devices before they join the network,
especially for large-scale sensor networks. An alternative way is
to use a shared group key that is pre-loaded into each device [3].
However, a common group key poses a security risk if any one
device is compromised. The use of asymmetric keys along with
digital certificates to establish individual link keys can help
reduce this risk. Public-key based techniques, along with digital
certificates, restrict the impact of key compromise to the
compromised node itself, rather than to all its key-sharing parties.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WSNA’03, September 19, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-764-8/03/0009…$5.00.

141

Public-key operations are quite expensive though, which
remains a problem for portable devices with limited computation
resources and power supplies. In recent years, symmetric-key
based key agreement protocols have gained popularity due to the
small computation overhead. However, the key management for
pure symmetric-key based system is complicated, either a key
distribution center (KDC) is online involved or a large number of
symmetric keys need to be pre-loaded into devices. Both methods
reduce the scalability of self-organizing sensor networks. Section
2 gives an introduction on prior key establishment protocols.

In section 3 of this paper, we propose a hybrid authenticated
key establishment scheme, which is based on a combination of
elliptic curve cryptography (ECC) and symmetric-key operations.
The motivation is to exploit the difference in capabilities between
security managers and sensors, and put the cryptographic burden
where the resources are less constrained. Sensors are much more
battery and computational resources limited. However, the
security manager means powered and more computational
powerful. The hybrid key establishment protocol reduces the high
cost elliptic curve random point scalar multiplications at the
sensor side and replaces them with low cost and efficient
symmetric-key based operations. On the other hand, it
authenticates the two identities based on elliptic curve implicit
certificates [7] to avoid the typical key management problem in
pure symmetric-key based protocols.

Section 4 provides the security analysis of the proposed
hybrid key establishment protocol. Section 5 analyzes the
computation complexity, communication complexity, storage
requirements and code size for our protocol. In section 6, we
present a modified version of our hybrid protocol, with even less
computation cost on sensor side, but more communication
overhead. In section 7, we compare our hybrid protocol and its
modified version to other public-key based key establishment
protocols in processing time and bandwidth requirements. The
paper concludes in section 8. The appendices provide the detail
analysis of the computation complexity of integer modular
multiplication and elliptic curve point multiplication.

2. RELATED WORK
Various public-key based key establishment protocols are

used to set up symmetric link keys, such as Shamir's three-pass
protocol, U.S. Patent No. 4748668, the Diffie-Hellman public-key
protocol, U.S. Patents No. 4,200,770, the Aziz-Diffie protocol
[2], the Beller-Chang-Yacobi’s protocol [4], etc. Boyd and
Mathuria survey the previous work on key distribution and
authentication for low power devices in wireless environments
[6]. Hubaux et al. [11] consider an ad hoc network with nodes
powerful enough for performing asymmetric cryptographic
operations and propose a peer-to-peer authentication protocol
based on public-key certificates. Zhou and Hass propose to secure
ad hoc networks using asymmetric cryptography [30], focusing on
distributing the role of the CA over some or all devices in the
network. The main approach is based on threshold cryptography
[25] and allowing specific coalitions of devices to act together as
a source of trust to issue public-key certificates. Their approach
decentralized the online key management, as necessary in mobile
ad hoc networks. Unfortunately, all above schemes use
asymmetric cryptography and hence, are expensive for the sensor
network environments.

The computation complexity and power consumption of
symmetric-key based protocols are negligible when compared
with public-key operations. However, the key management for
symmetric key based protocols is complicated, and is always
subject to attack by adversaries. Basagni et al. propose to use a
network-wide symmetric key to secure an ad hoc network [3].
While this group key approach is efficient, it does not protect
against compromise of a single node. Perrig et al. present the
security protocol SPINS [21], and a trusted third party is involved
to assist node-to-node key agreement. However, how to
establishment a master key between a sensor node and the trusted
third party is left as an open problem. If a single trusted third
party is used, e.g. a KDC, then it must be online involved as a
central administrator, which reduces the scalability and self-
organizing ability of the sensor networks. If multiple trusted
devices are involved to configure sensors on site, they are
functioning similarly as security managers in our system.
However, we cannot pre-load all master keys needed for the
sensor to communicate to all security managers, due to the high
mobility and a limited memory space. Public-key based protocols
give more flexibility and scalability especially in large sensor
networks where new devices keep entering the cluster.

Recently several schemes have been proposed to offload
certain public-key cryptographic computation to servers and have
the low-end devices to do less work. Modadugu et al. propose to
offload the heavy computation for finding an RSA key pair to
untrusted servers [19]. In [28], Wong and Chan proposed two key
exchange protocols to reduce computation on the mobile client
side, the server-specific MAKEP and the linear MAKEP. In the
server-specific MAKEP scheme, a server can impersonate a client
once they run the key exchange protocol. In the linear MAKEP,
the number of times that the client is able to run the protocol is
determined by how many public-private key pairs it stores, and
hence the protocol does not scale well. The same authors present a
modified scheme with a better scalability [29], but the client has
to perform modular exponentiation to generate the ephemeral
public key β=gb mod p, where g and p should be greater than 512
bits for security reason, and b is 160 bits. The processing time to
generate an ephemeral key on Palm V is 36 sec for 512-bit
modulus and 144 sec for 1024-bit modulus. A sensor node cannot
afford to do such expensive computation. Also, the certificate of
the server needs to be verified online, and the computation cost is
not negligible. A solution may be to preload some ephemeral keys
(e.g. in [28]) or offload the computation to an untrusted server.
Then the scalability of the protocol is reduced. Jakobsson and
Pointcheval [14] proposed to improve efficiency by using pre-
computation. However, the protocol is shown to be susceptible to
a variant of interleaving attacks in [29]. Furthermore, the pre-
computation is not applicable in the self-organizing sensor
networks we envision, where a sensor can in general not predict
which party it deals with.

In recent years, ECC based key agreement protocols are
designed to use in constrained mobile environments, due to the
property of small key sizes, such as the ECMQV protocol with
ECC X509 certificates [27] and implicit certificates [7], the
ECDSA authenticated key exchange protocol [1], the Elliptic-
Curve Diffie-Hellman Ephemeral (ECDHE) protocol [24], etc.
However, the computation load of all the above ECC based
protocols consists of at least two expensive elliptic curve random
point scalar multiplications on each participating entity. In this

142

paper, we focus on reducing the elliptic curve random point scalar
multiplications on sensor nodes by offloading the computation
burden to more powerful security managers, and replacing the
expensive public-key operations by efficient symmetric-key
operations. We also use the elliptic curve implicit certificate to
avoid the typical key management problem in pure symmetric-key
based protocols.

3. A HYBRID AUTHENTICATED KEY
ESTABLISHMENT PROTOCOL

ECC is used in our protocol to perform security functions on
sensors with limited computing resources. Compared with other
public key crypto algorithms, much smaller key lengths are
required with ECC to provide a desired level of security, which
means faster processing speed, smaller communication
complexity, in addition to smaller key storage requirements.

To prevent the impersonation attack, we use certificates in our
key-establishment protocol, which provide a mechanism to check
cryptographically to whom the public key belongs and if the
device is a legitimate member of a particular network. A
certificate is simply a public key together with the device ID and
certification expiration date, signed by CA. The use of a trusted
interface to pre-establish a certificate and root key in a device
thwarts both active and passive attacks in subsequent key
establishment protocols. The certificates are acquired before each
device joins the network through an out-of-band interface. We use
the elliptic curve implicit certificate scheme [27], because of the
resulting low communication complexity, which is a dominant
factor for low bit transmission channels in sensor networks.

First, an elliptic curve E defined over GF(p) (where p is the
characteristic of the base field) with suitable coefficients and a
base point P of large order n is selected and made public to all

users. CA selects a random integer CAq as its static private key,
and computes the static public key PqQ CACA ×= . To obtain a
certificate and the static private-public key pair, the sensor U
randomly selects a temporary key pair),(UU Gg and sends UG
to CA via a secure out-of-band interface. CA verifies U’s identity
and the authenticity of the request received from U. CA also
selects a temporary key pair),(CACA Gg and computes the elliptic
curve point CAUU GGB += . The implicit certificate UIC for U is
constructed as the concatenation of CA’s static public key CAQ ,

the device identity UID , the elliptic curve point UB and the

certification expiration date Ut , i.e.,),,,(UUUCAU tBIDQIC = .
CA then applies a one-way hash function H on UIC and derives
an integer]2,2[−∈ neU from)(UICH following the conversion
routine described in Section 4.1.3 of [7]. Finally, CA computes
U’s private-key reconstruction data)(mod nqegs CAUCAU += ,
U’s public key CAUUU QBeQ += , and sends Us and UIC back to
U. After U receives the implicit certificate from CA, it computes
the hash value)(UICH and derives an integer Ue from)(UICH
following the conversion routine described in Section 4.1.3 of [7].
U also computes its static private key)(mod negsq UUUU ⋅+=
and its public key PqQ UU ×= . U then reconstructs the public

key CAUUU QBeQ +=ˆ . If UU QQ =ˆ , U accepts the certificate and
outputs the static key pair),(UU Qq ; otherwise it rejects the
certificate. By repeating the very same process, the security
manager V acquires its certificate VIC and static key pair

),(VV Qq .

The certificate generation processes for sensor U and security
manager V are performed offline as shown in Figure 1, before they
join the network, and may be assisted by a trusted computation
server. When they first communicate to each other, they execute
our hybrid key establishment protocol as shown in Figure 2:

1. U and V send to each other their implicit certificates. The
content of the certificate is verified at the other side, including the
device identity and the validity period. If any check fails, the
protocol is terminated.

2. V computes the hash value)(UICH and derives an integer

Ue from)(UICH following the conversion routine described in
Section 4.1.3 of [7]. V then obtains U’s public key

CAUUU QBeQ += . After performing the certificate processing
operation, V can conclude that UQ is genuine, provided that U
later evidences knowledge of the corresponding private key Uq .

3. U selects a k-bit random number Uc as its link key
contribution and a random k−160 bit integer r. U calculates its
ephemeral private key)||(rcHd UU = and ephemeral public key

PdD UU ×= , where H is a cryptographic hash function to map a
binary string to a random integer]2,2[−∈ n . U verifies V’s
certificate and obtains V’s public key the same way as V does, but
instead of computing VQ directly, U computes

CAUVUVU QdBedQdR ×+×=×=)(. U can conclude that R is

U CA (CACA Qq ,)
]2,2[−∈ ngU]2,2[−∈ ng CA

PgG UU ×= PgG CACA ×=
Send →UU IDG ,

Receive

CAUUU

CAUCAU

UU

UUUCAU

CAUU

QBeQ
nqegs

neICH
tBIDQIC

GGB

+=
+=

−∈→
=

+=

)(mod
]2,2[)(
),,,(

Receive),(UU ICs←

Send

?ˆ

ˆ

)(mod

)(

UU

CAUUU

UU

UUUU

UU

QQ

QBeQ

PqQ
n

egsq
eICH

=

+=

×=

+=
→

Figure 1. Implicit certificate generation process.

143

calculated from genuine VQ , provided that V later evidences
knowledge of the corresponding private key Vq . U then encrypts

Uc by using the provably secure elliptic cure encryption [9], and
sends to V the ciphertext),().)||(,(21 eExRrcDE UU =⊕= ,
where xR. is the x coordinate of R.

4. V decrypts the received message and obtains R by
calculating RQdPdqEq VUUVV =×=×=× 1 . V then computes

xReu .2 ⊕= , and checks if PuHE ×=)(1 . It yes, V obtains Uc
as the most significant k bits of u. Otherwise, the protocol is
terminated. V then selects a k-bit random number Vc as its link
key contribution, and encrypts Vc concatenated with its identity

VID using symmetric key encryption under key Uc , generating
)||(VVc cIDEy

U
= . Note that proper encryption mode needs to be

used, such as the Cipher Block Chaining (CBC) mode, where the
results of encrypting previous blocks affect the encryption of the
current block. This ensures that there is no way for any device W
to derive)(Vc cE

U
 from)||(VVc cIDE

U
and change this value.

5. V sends y to U. V also computes
)||||||(|| VUVU IDIDccKDFLinkKeyMacKey = , where KDF is the

specified key derivation function, LinkKey is the established link
key, and MacKey is for explicit key confirmation use. V then
destroys Uc and Vc from its memory.

6. U decrypts the incoming message under Uc and checks if
the decrypted message contains a proper coding of VID
concatenated with some number. If the check fails, U terminates
the protocol. Otherwise, U denotes the number as Vc , and U has
verified that V has the knowledge of the private key Vq
associated with VQ . U computes LinkKeyMacKey ||

)||||||(VUVU IDIDccKDF= , and)(mod)(ndMacKeyHqz UU += .

U then sends z to V and destroys Uc and Vc from its memory.

7. V verifies if 1)(EQMacKeyhPz U +×=× . If it is false, V
terminates the protocol. Otherwise, V believes that U has the
knowledge of the private key Uq associated with UQ , and U has
provided the explicit key confirmation to V. V sends

)||(' UVMacKey IDIDMACz = to U, where MAC is a message
authentication code function.

8. U checks if 'z is valid. If yes, V provides the explicit key
confirmation to U and both sides take LinkKey as the final
established link key and accept the connection.

4. SECURITY ANALYSIS
Since we use the public key certification strategy to bind a

device’s public key with its unique identity, there is no need to
protect and maintain a large online database for every device’s
secret key at KDC.

Authentication is accomplished by sending the challenge pairs
(E, y) and (y, z). It is infeasible for an adversary to compute the
correct response y without knowing Vq . Thus U can be sure that
only V can produce the response and U verifies that V has the
knowledge of the private key Vq associated with the certified

VQ . Also, 1)(EQMacKeyHPz U +×=× can be satisfied only if
z is calculated by the correct private key Uq associated with the

certified public key UQ . Therefore, V can be sure that only U can
produce the correct response. However, we should note that the
symmetric key encryption),(VVc cIDE

U
 must be properly

implemented. For example, if it is implemented, e.g., in ECB
mode or in stream cipher mode, then any adversary could derive

Sensor U Security manager V
),(UU Qq),(VV Qq

Send →=),,,(UUUCAU tBIDQIC Receive
Receive),,,(VVVCAV tBIDQIC =← Send

Randomly choose k-bit integer
Uc and 160-k bit integer r

]2,2[)||(−∈= nrchd UU
Check validity of Vt

VV eICH →)(

VU

CAUVVU

Qd
QdBedR

×=
×+×=)(

PdD UU ×=
),().)||(,(21 eExRrcDE UU =⊕=

Check validity of Ut

UU eICH →)(

CAUUU QBeQ +=

Send →=),(21 eEE Receive
 REqV =× 1

rcxReu U ||.2 =⊕=
Check if PuhE ×=)(1
If yes, get Uc as the most
significant k bits of u.

Choose a random k-bit
integer Vc

)||(VVc cIDEy
U

= .

Receive y← Send

)(mod)(
)||||||(

||

)||(1

ndMacKeyHqz
IDIDccKDF

LinkKeyMacKey
cIDE

UU

VUVU

VVcU

+=
=

−

)||||||(
||

VUVU IDIDccKDF
LinkKeyMacKey

=

 Send →z Receive

?)(1EQMacKeyH
Pz

U +×=
×

)||(' UVMacKey IDIDMACz =
Receive 'z← Send

)||(' UVMacKey IDIDMACz = ?

Figure 2. Hybrid key establishment protocol.

144

)(Vc cE
U

 from),(VVc cIDE
U

, arbitrarily modify the value of

)(Vc cE
U

 sent to U and leave)(Vc IDE
U

unchanged. This can be
avoided by using Cipher Block Chaining (CBC) mode. In
addition, an adversary cannot obtain any information of Uc and

Vc if both the symmetric and ECC encryption schemes are secure,
which implies the link key contribution of each side is transferred
securely to the other part.

We observe that both U and V supply their contributions Uc
and Vc to the link key respectively. The final link key is
established using the key generation function. In this way, no
single party has the full control on the selection of the link key,
and both U and V can ensure the freshness of the final link key.

To establish the link key, we include the names of the entities
in the scope of the key derivation function to avoid the unknown
key-share attack [23].

The protocol provides both implicit and explicit key
confirmation. If U does not terminate the protocol in the 6th step,
V knows Uc is received correctly and it can compute the link key
correctly. If V does not terminate the protocol in the 8th step, U
knows Vc is received correctly and it can compute the link key
correctly. Therefore, if there is no “run with failure” message,
both U and V confirm to each other implicitly that the key is
generated correctly. Furthermore, we use MacKey to provide
explicit key confirmation. If both z and 'z authenticated by
MacKey are verified as valid, then both U and V know that the
other side actually has computed the link key correctly.

To reveal the sensor’s static private key Uq , two sessions
i and j with the same values of Ud and with the values of

)(),(ji MacKeyHMacKeyH known are necessary to an adversary.

However, note that both Uc and r are chosen randomly, therefore,
the ephemeral private key)||(rcHd UU =]2,2[−∈ n is
randomly chosen for each session. Since n is 160 bits large, the
probability that jUiU dd = is negligible for different sessions

i and j . Since no single party has the full control on the
selection of the link key, we also conclude that for ji ≠ ,

ji MacKeyMacKey ≠ hence)()(ji MacKeyHMacKeyH ≠ . If an

adversary wants to obtain Uq , he needs to solve the following
equations:)(mod)(ndMacKeyHqz iUiUi +=)0(ni << with

unknown Uq and iUd . It is not easier than solving the elliptic-
curve discrete logarithm problem.

If the security manager's private key is compromised, then all
the link keys from earlier runs can be recovered from the
transcripts. However, the corruption of the sensor node does not
help to reveal the link keys. Therefore, our scheme provides half
forward secrecy. To provide full forward secrecy, Vc should be
sent to U in a secure way that only U with its ephemeral private
key can reconstruct it. However, this requires additional expensive
elliptic curve random point multiplications on sensor side, and is
opposite to our purpose of offloading the computation burden of
sensors. Since the sensor may be a weak device while the security

manager can support much stronger security features, we believe
that forward secrecy on the sensor side is more important than that
on the security manager side.

5. PERFORMANCE ANALYSIS
The performance evaluation given here is based on the

cryptographic operation complexity and the number of times they
have to be performed, the sizes of the messages, the total number
of messages sent in each protocol run and the memory
requirement. Since sensors are much more battery and
computational resources limited while the security manager is
much more powerful, we restrict our attention to the efficiency of
the sensor side only. Throughout this section, we mainly use the
measurement results given by implementation of our protocol on
the 16-bit single-chip microprocessor M16C [10] [17] [18] with
10 MHz clock rate designed by Mitsubishi Electric Corporation.

5.1 Computation Complexity
Note that the base point P and CA’s public key CAQ are fixed

parameters. We can hence reduce the scalar multiplication of
fixed points P and CAQ by having a pre-computed look-up table
in the ROM area. Since we verify the binding of the sensor’s
private key Uq to its public key UQ in step 6 and 7 through a
linear combination of the static key and the ephemeral key, rather
than a multiplicative combination as in other ECC based
protocols, at least one expensive elliptic-curve scalar
multiplication of a random point is moved to the security manager
side, and is replaced by one low cost modular multiplication, one
modular addition and one symmetric key decryption. In real-time
execution, the sensor is required to compute only one elliptic-
curve scalar multiplication of a random point (VB), two elliptic-
curve scalar multiplication of fixed points (P and CAQ), one
symmetric key decryption, one modular multiplication, one
modular addition, one hash, one key derivation and two random
number generations.

On the average, SHA-1 only takes 2 msec to digest a 128-bit
binary string on the M16C. Hash functions are also used to
generate pseudo-random numbers. Thus their generation speed is
comparable to that of hashing and can be ignored. The Rijndael
[8] (AES) algorithm in Cipher Block Chaining mode takes less
than three milliseconds to decrypt a 256-bit ciphertext. Therefore
we can ignore the time taken for hashing, symmetric key
operation, key derivation and random number generation in our
evaluation.

The sensor also needs to do one 160-bit modular
multiplication and modular addition, which takes less than 3
msec. Using Karatsuba-Ofman algorithm [15] and Montgomery
product algorithm [20] to implement the 160-bit modular
multiplication in 16-bit word fashion, the calculation has a
complexity of (Appendix):

)16(3.1640)16(4.115)16(
16

160)160(Pr AddMulAddT oMon +≈+ ,

where)16(Add denotes the computation cost of an

“addition” operation of two 16-bit numbers and)16(Mul denotes
that of “multiplication”.

145

Therefore, the main computation cost at the sensor side is the
elliptic-curve scalar multiplication of a random point and two
fixed points, as can be shown by their computation complexity as:

)16(9.1749703)16(6.123831 AddMulT RPEC +≈− , and

)16(5.341144)16(3.24143 AddMulT FPEC +≈− (Appendix).

The implementation result on M16C is 480 msec for a random
point scalar multiplication and 130 msec for a fixed point
multiplication. The whole protocol execution time on M16C is
about 760 msec.

5.2 Communication Complexity
During the real-time execution of the hybrid protocol, a total

of 6 massages are exchanged, two for mutual authentication and
implicit certificates, two for the afterwards link key generation
process and another two for the explicit key confirmation. If we
assume the device ID is 64 bits, the certificate expiration time and
the random number k are also 64 bits each, and the modulus for
ECC is 160 bits, the total communication cost is 1437 bits or 180
bytes.

5.3 Code Space
The non-volatile (FLASH) memory required for a sensor to

store its static public and private key pair (UU Qq ,) and the
implicit certificate),,,(UUUCAU tBIDQIC = is 96 bytes. The
program memory (ROM) needed is a total size of 5.2K byte
code/data (lots of room for optimizations), including 200 bytes for
ECC implicit certificate generation and verification, 720 bytes of
elliptic arithmetic library, 630 bytes modular p integer library, 790
bytes of general integer library, 410 bytes of SHA-1, 1K bytes of
AES symmetric key algorithm and 1400 bytes of pre-computed
data table, 20 byte base prime p and the 20 byte curve order n.

6. FURTHER ENHANCEMENT
We can further reduce the computation complexity on sensor

side, by using the Modular Square Root (MSR) technique [26] to
encrypt sensor’s link key contribution Uc instead of using ECC
cryptography. The attractiveness of MSR for wireless network
application arises from its asymmetry. MSR requires the sending
party to perform only a single modular multiplication, while the
receiver performs exponentiation (needed to calculate the modular
square root). Since our program includes the general integer
library, it is easy to implement MSR operations using the library.

We call the modified protocol an MSR-combined hybrid key
establishment protocol. First, an elliptic curve E defined over
GF(p) (where p is the characteristic of the base field) with suitable
coefficients and a base point P of large order n is selected and
made public to all users. The sensor U randomly chooses integer

]2,2[−∈ nqU as its private key and computes the public key
PqQ UU ×= . For the more powerful security manager V, we use

VN to denote the corresponding public key, i.e. the MSR
modulus. VVV qpN = , where Vp and Vq are large prime
numbers. Since MSR is used at the security manager side, we use
the elliptic curve digital signature algorithm (ECDSA) [1] as the
signature scheme of CA.

In order to receive a certificate, the sensor sends its public key
UQ together with its user identity through an out-of-band secure

interface to CA. CA uses its private key CAq to sign the hashed
value of the concatenation of the public key, the device identity

UID , and the certification expiration date Ut . The CA then sends

the signed message),(UU sr together with its public key CAQ
through the secure channel to the terminal as shown in Figure 3.
By repeating the very same process, the security manager V
acquires its certificate),(VV sr as shown in Figure 4. The
certificate generation processes for sensor U and security manager
V are performed offline and before they join the network. At the
beginning of our MSR-combined hybrid key establishment
protocol, they both send to the other side their public key, device
ID, certificate and the expiration time. Then the mutual certificate
authentication between the sensor and the security manager is
executed in real-time, as shown in Figure 5.

U CA
]2,2[−∈ nqU]2,2[−∈ nkU

PqQ UU ×= PkR UU ×=
Send →UU IDQ ,

Receive

n
k

rqe
s

tIDxQHe
nxRr

U

UCAU
U

UUUU

UU

mod

),,.(
mod.

⋅+
=

=
=

Receive, Store

UUUU

CAUU

tsrID
QQq

),,(,
,,,

 UCA

UU

tQ
sr

,
),,(←

Send

Figure 3. ECDSA certificate generation for sensor U.

V CA
 VVV qpN =]2,2[−∈ nkV

PkR VV ×=

Send →VV IDN ,

Receive

n
k

rqe
s

tIDNHe
nxRr

V

VCAV
V

VVVV

VV

mod

),,(
mod.

⋅+
=

=
=

Receive, Store

VVVV

CAVVV

tsrID
QqpN

),,(,
,,=

VCA

VV

tQ
sr

,
),,(←

Send

Figure 4. ECDSA certificate generation for security
manager V.

146

The MSR-combined hybrid key establishment protocol now
proceeds as below and shown in Figure 6:

1. Both the sensor U and the security manager V send to the
other side the public key, device ID together with the certificate.
Then the mutual authentication and certificate verification is
performed. If any check fails, the protocol is terminated.

2. U randomly selects a k-bit integer Uc , as its link key
contribution, and encrypts it using V’s public key VN , generating

VUU Ncrx mod)||(2= (Ur is the proper padding). U then
randomly chooses an integer]2,2[−∈ ndU and computes

.PdD UU ×= (UU Dd ,) is used as U’s ephemeral key pair.

3. U sends UD and x to V.

4. V decrypts x and obtains Uc as the least significant k bits of

VNx mod . V then selects a k-bit random number Vc as its link
key contribution, and encrypts Vc concatenated with its identity

VID under key Uc , generating)||(VVc cIDEy
U

= . Note that
proper encryption mode needs to be used, such as the Cipher
Block Chaining (CBC) mode. V sends y to U.

5. V computes)||||||(|| VUVU IDIDccKDFLinkKeyMacKey = ,
where KDF is the specified key derivation function, LinkKey is
the established link key, and MacKey is for explicit key
confirmation use. V then destroys Uc and Vc from its memory.

6. U decrypts the incoming message under Uc and checks if
the decrypted message contains a proper coding of VID
concatenated with some number. If the check fails, U terminates
the protocol. Otherwise, U denotes the number as Vc , and U has
verified that V has the knowledge of the private key associated
with the certified public modulus VN . U computes

)||||||(|| VUVU IDIDccKDFLinkKeyMacKey = ,)(MacKeyHqz U=
)(mod ndU+ . U then sends z to V and destroys Uc and Vc from

its memory.

7. V verifies if UU DQMacKeyhPz +×=×)(. If it is false, V
terminates the protocol. Otherwise, V believes that U has the
knowledge of the private key Uq associated with UQ , and U has
provided the explicit key confirmation to V. V sends

)||(' UVMacKey IDIDMACz = to U, where MAC is a message
authentication code function.

8. U checks if 'z is valid. If yes, V provides the explicit key
confirmation to U and both sides take LinkKey as the final
established link key and accept the connection.

Note that by using MSR to encrypt sensor’s link key
contribution Uc , only one 1024-modulus squaring is performed
instead of doing the much more expensive random point elliptic-
curve scalar multiplication in our previous scheme. The MSR
encryption process comprises one modular addition and one
modular multiplication and it takes only 45 msec to perform a
1024-bit MSR encryption. The computation complexity of using
Karatsuba-Ofman algorithm [15] and Montgomery product
algorithm [20] to implement the 1024-bit modular multiplication
in 16-bit word fashion, is approximately (Appendix):

)16(8.30718)16(3.2187)1024(Pr AddMulT oMon +≈ , which is much
less than the complexity of elliptic-curve scalar multiplications.

U V

),(UU Qd VVV qpN =

Mutual authentication and certificate verification
Choose random k-bit Uc .

VUU Ncrx mod)||(2= .
]2,2[−∈ ndU .

.PdD UU ×=

Send →UDx, Receive

UV cNx →mod , as the
least significant k bits.

Choose random k-bit Vc .

)||(VVc cIDEy
U

= .

Receive y← Send

)(mod)(
)||||||(

||

)||(1

ndMacKeyHqz
IDIDccKDF

LinkKeyMacKey
cIDE

UU

VUVU

VVcU

+=
=

−

)||||||(
||

VUVU IDIDccKDF
LinkKeyMacKey

=

 Send →z Receive

?)(UU DQMacKeyH
Pz

+×=
×

)||(' UVMacKey IDIDMACz =

Receive 'z← Send
)||(' UVMacKey IDIDMACz = ?

Figure 6. MSR-combined Hybrid key establishment.

U V
Send

→),(
,,

UU

UUU

sr
tIDQ

Receive and check if
Ut is valid

Receive and check
if Vt is valid),(,

,,

VVV

VV

srt
IDN←

Send

nsc V mod1−=
),,(VVVV tIDNHe =

CA

V

V

QvPvR
nrcv
necv

×+×=
⋅=
⋅=

21

2

1

mod
mod

if VrxR ≠. , abort

 nsc U mod1−=
),,.(UUUU tIDxQHe =

CA

U

U

QuPuR
nrcu
necu

×+×=
⋅=
⋅=

21

2

1

mod
mod

if UrxR ≠. , abort

Figure 5. Mutual authentication and certificate
verification.

147

In rea
establishm
elliptic-cu
verifying
ephemeral
multiplica
hash, one
The expe
multiplica
manager s
processing
msec.

Howe
larger key
device ID
number k
Rabin cry
total comm
the follow
µJ/byte (b
and 66 m
combined
with exec
However,
hybrid pro

7. COM
KEY B

In thi
protocol
protocols,
certificate
authentica
mode and
protocol [
protocol [
Yacobi’s
key). We
processing
list the c
protocols

Bell
Aziz
EC

X
EC
im
EC
EC
H

MSR
Table 1. Comparison of the hybrid key establishment protocol and its MSR-combined version with other public-key
based key establishment protocols

Computation complexity on sensor side
EC-RP EC-FP Large modular

exponentiation
Small modular
exponentiation

Processing time
on sensor

Communication
complexity

er-C-Y 1 2 10.4 sec 4352 bits
-Diffie 2 3 20.4 sec 5120 bits
MQV
509

1.5 3 1110 msec 1796 bits

MQV
plicit

2 1.5 1155 msec 1478 bits

DSA 2 3 1350 msec 1730 bits
DHE 2 3 1350 msec 1796 bits

ybrid 1 2 760 msec 1437 bits
-Hybrid 3 1 455 msec 3682 bits
l-time execution of the MSR-combined hybrid key
ent protocol, the sensor is required to compute three
rve scalar multiplication of fixed points (two for
the ECDSA signature and another one for generating the
 key), one symmetric key decryption, one modular
tion, one modular squaring, one modular addition, one
 key derivation and two random number generations.
nsive public key decryption and elliptic-curve scalar
tion of a random point are all moved to the security
ide, which is more computational powerful. The total
 time on M16C at the sensor side is approximately 455

ver, the communication overhead is increased due to a
 size used by the security manager. If we assume the
 is 64 bits, the certificate expiration time and the random
 are also 64 bits each, and the modulus for ECC and
ptosystem are 160 bits and 1024 bits respectively, the

unication cost is 3682 bits or 460 bytes. If we assume
ing battery drain: transmit-12.96 µJ/byte, receive-16.2
ased on Motorola figures on a 900 MHz transceiver),

W as the power consumption of M16C chip, the MSR-
 hybrid protocol saves 3.23 mJ on sensor side compared
uting our first hybrid key establishment protocol.

 if the message is sent multi-hops, the MSR-combined
tocol consumes more energy at intermediate routers.

PARISON TO OTHER PUBLIC-
ASED PROTOCOLS
s section, we compare our hybrid key establishment
and its MSR-combined version to other ECC based
 including the ECMQV protocol with ECC X509
s [27] and implicit certificates [7], the ECDSA
ted key exchange protocol [1] running in ephemeral key
 the Elliptic-Curve Diffie-Hellman Ephemeral (ECDHE)
24]. We also compare our protocols to the Aziz-Diffie
2] based on RSA (1024-bit key) and the Beller-Chang-
protocol [4] based on Rabin cryptosystem (1024-bit
 compare the sensor side computation complexity,
 time on M16C and the bandwidth requirements. We
omparison results of our hybrid key establishment
with other public-key based key establishment protocols

in Table 1, where computation complexity on sensor side is
expressed in numbers of performing the cryptographic operations,
including elliptic curve scalar multiplication of a random point
(EC-RP) and a fixed point (EC-FP), modular exponentiation of a
large number and that of a small number.

Table 1 shows that both our hybrid protocol and its MSR-
combined version require less processing time hence less power
consumption of computing the link key. The hybrid key
establishment protocol also achieves the least bandwidth
requirements, while its MSR-combined version has the least
processing time but requires modest communication complexity
compared with other public-key based key establishment
protocols.

8. CONCLUSION
Sensors have rigid constraints on computational resources,

processing power, and parameter storage space. In this paper, we
propose a hybrid authenticated key-establishment protocol, in
which we reduce the computation intensive elliptic curve scalar
multiplication of a random point at the sensor side, and use
symmetric key cryptographic operations instead. On the other
hand, it authenticates the two identities based on elliptic curve
implicit certificates, solves the key distribution and storage
problems, which are typical bottlenecks in pure symmetric-key
based protocols. The hybrid key establishment protocol has less
sensor side computation complexity and less communication
complexity as compared to other public-key based key
establishment protocols. We also present an MSR-combined
version of the hybrid key establishment protocol, which combines
the use of MSR, ECC and symmetric cryptography. The MSR-
combined hybrid protocol achieves the fast processing time on
sensor side, while has a modest communication overhead.

9. REFERENCES
[1] M. Aydos, T. Yan and C. K. Koc. A High-speed ECC-based

Wireless Authentication Protocol on an ARM
Microprocessor. 16th Annual Computer Security
Applications Conference (ACSAC'00), Dec. 2000, New
Orleans, Louisiana.

[2] A. Aziz, and W. Diffie. A secure communications protocol to
prevent unauthorized access - privacy and authentication for

148

wireless local area networks. IEEE Personal
Communications, First Quarter (1994).

[3] S. Basagni, K. Herrin, E. Rosti and D. Bruschi. Secure
pebblenets. Proceedings of ACM International Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc
2001) (2001), 156-163.

[4] M. J. Beller, L.-F. Chang, and Y. Yacobi. Privacy and
authentication on a portable communications system. IEEE
Journal on Selected Areas in Communications, vol.11, no.6
(1993).

[5] Simon Blake-Wilson and Alfred Menezes. Authenticated
Diffie-Hellman key agreement protocols. In 5th annual
international workshop, SAC'98, 339-361.Springer-Verlag
(1998).

[6] C. Boyd and A. Mathuria. Key establishment protocols for
secure mobile communications: A selective survey.
Proceeding of Australasian Conference on Information
Security and Privacy (1998), 344-355.

[7] Certicom Research, Standard for efficient cryptography, SEC
1: Elliptic Curve Cryptography. Version 1.0, September 20,
2000. Certicom Corporation. URL: www.secg.org.

[8] J. Daemen and V. Rijmen. AES Proposal: Rijndael. AES
Algorithm Submission, Sep 1999. http://www.nist.gov/aes.

[9] E. Fujisaki, T. Kobayashi, H. Morita, H. Oguro, T. Okamoto,
S. Okazaki, and D. Pointcheval. PSEC: Provably secure
elliptic curve encryption scheme. Primitive submitted to
NESSIE by NTT Corp., September 2000.

[10] T. Hasegawa, J. Nakajima and M. Matsui. A small and fast
software implementation of elliptic curve cryptosystems over
GF(p) on a 16-bit microcomputer. IEICE Trans.
Fundamentals, vol. E82-A, no.1 (1999).

[11] J.-P. Hubaux, L. Buttyan and S. Capkun. The quest for
security in mobile ad hoc networks. Proceeding of ACM
Symposium on Mobile Ad Hoc Networking and Computing
(2001).

[12] IEEE P1363 Working Draft Appendices, Feb. 6, 1997.

[13] IEEE Std. 802.15.4-2003, IEEE Standard for Information
Technology-Telecommunications and Information Exchange
Between Systems-Local and Metropolitan Area Networks-
Specific Requirements-Part 15.4: Wireless Medium Access
Control (MAC) and Physical Layer (PHY) Specifications for
Low Rate Wireless Personal Area Networks (WPANs). New
York: IEEE Press. 2003.

[14] M. Jakobsson and D. Pointcheval. Mutual authentication for
low-power mobile devices. In Proceedings of Financial
Cryptography 2001. Springer-Verlag (2001).

[15] D. E. Knuth. The art of computer programming:
seminumerical algorithms. volume 2. Reading, MA:
Addison-Wesley, Second edition (1981).

[16] C. K. Koc, T. Acar and B. S. Kaliski Jr. Analyzing and
comparing montgomery multiplication algorithms. IEEE
Micro, n.16, v.3, 26-33 (1996).

[17] User Manual of M16C/60 Series. Mitsubishi Electric
Corporation, 1996.

[18] Software Manual of M16C/60 Series. Mitsubishi Electric
Corporation, 1996.

[19] N. Modadugu, D. Boneh and M. Kim. Generating RSA keys
on a handheld using an untrusted server. RSA 2000 (2000).

[20] P. L. Montgomery. Modular multiplication without trail
division. Mathematics of Computation, vol.44, no.170, 519-
521 (1985).

[21] A. Perrig, R. Szewczyk, V. Wen, D. Culler and D. Tygar.
SPINS: Security protocols for sensor networks. Wireless
Networks Journal (2002).

[22] R. Rivest, A. Shamir and L. Adleman. A method for
obtaining digital signatures and public-key cryptosystems,
Communications of the ACM, vol. 21, 120-126 (1978).

[23] P. Rogaway, M. Bellare and D. Boneh. Evaluation of
security level of cryptography: ECMQVS (from SEC 1), Jan.
2001.

[24] SECG, Elliptic Curve Cryptography, Standards for Efficient
Cryptography Group, 2000. Available from
http://www.secg.org/collateral/sec1.pdf.

[25] V. Shoup. Practical threshold signatures. Advances in
Cryptology, Eurocrypt’00 (2000), 207-220.

[26] D.R. Stinson. Section 4.7 The Rabin Cryptosystem,
Cryptography: Theory and Practice, CRC Press (1995).

[27] Rene Struik and Gregg Rasor, “Mandatory ECC Security
Algorithm Suite”, submissions to IEEE P802.15 Wireless
Personal Area Networks, March 2002.

[28] D. S. Wang and A. H. Chan. Mutual authentication and key
exchange for low power wireless communications. In IEEE
MILCOM 2001 Conference Proceedings (2001).

[29] D. S. Wang and A. H. Chan. Efficient and mutually
authenticated key exchange for low power computing
devices. In Asiacrypt’01, LNCS. Springer-Verlag (2001).

[30] L. Zhou and Z. J. Hass. Secure ad hoc networks. IEEE
Network Magazine, vol. 13, no. 6 (1999), 24-30.

APPENDIX: COMPLEXITY ANALYSIS OF
MODULAR EXPONENTIATION AND
ELLPTIC CURVE MULTIPLICATION
The Montgomery method [20] is an efficient way for modular

multiplication with an arbitrary modulus. Assuming the modulus
n is an N-bit number, let r be N2 . The Montgomery algorithm
transforms an integer m in the range]1,0[−n to another integer
in the same range, which is called the image or the n-residue of
the integer, and is defined as nmrm mod= . It is easy to show
that the Montgomery multiplication over the images a and
b computes the image nrbac mod1−= which is the same as the
integer nabc mod= [16]. Assume a, b and n are N-bit integers.
Let n′ be the integer so that 11 =′−− nnrr . The average

149

complexity of Montgomery product algorithm, which computes
nabnrbac modmod1 == − , is given below:

Function MonPro(ba ,)

Step 1. bat ⋅=:)(// NMul
Step 2. rntu mod: ′⋅=)(// NMul
Step 3. rnutc /)(: ⋅+=

)(),2(2)(// NAddNNShiftNMul ++
Step 4. if nc > then return nc −

 else return c)(
2
1// NAddcondition +

Here),(yxShift means the computation cost of shifting an x-
bit integer by y bits.)(NAdd denotes the computation cost of an
“addition” operation of two N-bit numbers and)(NMul denotes
that of “multiplication”. The average complexity of Montgomery
product algorithm is approximately:

)(
2
3)(3)(Pr NAddNMulNT oMon +≈ .

In practice, primitive arithmetic operations such as
multiplication and addition are limited to a certain word size k.
Karatsuba-Ofman algorithm [15] is an efficient way to perform
the NN * bit multiplication in k bit fashion, which keeps on
dividing the long integer into two shorter ones of equal sizes until
their lengths are k, and gets the multiplication of two long integers
by doing multiplications and additions on their divided parts of
the half length. Let 1a and 0a denote the higher and the lower

halves of a, respectively, and 1b , 0b denote the higher and the
lower halves of b. Karatsuba-Ofman algorithm is as follows:

KORMA (a, b)
Step 1. if (a and b are of more than 2k bits) do
Step 2. =:0t KORMA),(00 ba)2/(// NTKO
Step 3. =:2t KORMA),(11 ba)2/(// NTKO
Step 4. =:0u KORMA),(1010 bbaa ++

)2/(2)12/(// NAddNTKO ++
Step 5. 2001 : ttut −−=)(2// NAdd
Step 6. else do
Step 7. 000 : bat ⋅=
Step 8. 112 : bat ⋅=
Step 9.)()(: 01010 bbaau +⋅+=
Step 10. 2001 : ttut −−=
Step 11. return (01

2/
2 22 ttt NN ++)

),2()
2

,(),(// NNAddNNShiftNNShift ++

)(NTKO denotes the arithmetic/logic operations needed for

NN * bit multiplication, and +≈)
2

(2)(NTNT KOKO

)
2

(2),2()(2)
2

(2)1
2

(NTNNAddNAddNAddNT KOKO ≈++++

)(5)1
2

(NAddNTKO +++ . If we implement the)1
2

(*)1
2

(++ NN

bit multiplication by:

=+′+′=++)}
2

(2*{*)}
2

(2*{)1
2

(*)1
2

(22 NbbNaaNbNa
NN

N
NN

baNabNbaNbNa 2**2*)
2

(*2*)
2

(*)
2

(*)
2

(22 ′′+′+′+ ,

where a ′ and b′ are the highest bit of)1
2

(+Na and)1
2

(+Nb ,

and if the recurrence stops when a and b are k bits, we have

∑ = −
−+≈)(log

1 1
1)(log

22)
2

(37)(3)(k
N

i i
ik

N

KO
NAddkMulNT .

Assuming)
2

(2)(NAddNAdd = , then we conclude that

using Karatsuba-Ofman algorithm to implement the NN *
multiplication on k-bit processors, the average complexity of
Montgomery product algorithm to compute nabc mod=
(where a, b and n are N-bit integers) is:

).(
2
3)]()(14)()[(3)(3log3log

Pr
22 kAdd

k
NkAdd

k
NkMul

k
NNT oMon ++≈

 The average computation cost of the binary scalar
multiplication algorithm of a random point is

]
2
1[

2
1160

addECdoubECRPEC TTT −−− ⋅+−≈ , where doubECT − denotes the

computation complexity of doing an elliptic curve point doubling
and addECT − denotes that of doing an elliptic curve point addition.
Note that the base point P is a fixed system parameter. We can
hence reduce the scalar multiplication of the base point by having
a pre-computed look-up table in the ROM area. The standard
window method is adopted for the fixed point multiplication and
the average computation cost of this window scalar multiplication

of a fixed point is]
2
1[

2
31

addECdoubECFPEC TTT −−− ⋅+≈ .

The IEEE-P1363 document [12] describes a detailed
implementation algorithm that realizes the elliptic addition and
doubling, and we can estimate the computation complexity by the
number of modular multiplications. The elliptic addition
normally involves 11 modular multiplications, except at the last
step of ECDSA verification, where 16 modular multiplications are
needed. The elliptic doubling can be performed by 8 modular
multiplications. Therefore, we can readily estimate that

);(2640)]()160(14)()160[(33 3log3log 22 kAdd
k

kAdd
k

kMul
k

T additionEC ++≈

).(1920)]()160(14)()160[(24 3log3log 22 kAdd
k

kAdd
k

kMul
k

T doubEC ++≈−

Hence, the average computation complexity of the random
point scalar multiplication is approximately:

)].(80)()160(14)()160[(
4

12879 3log3log 22 kAdd
k

kAdd
k

kMul
k

T RPEC ++≈−

The average computation complexity of a fixed point scalar
multiplication is approximately:

)].(80)()160(14)()160[(
4

2511 3log3log 22 kAdd
k

kAdd
k

kMul
k

T FPEC ++≈−

150

