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Km. 107 Carretera Tijuana-Ensenada
Ensenada, B.C. México, CP 22860

Leonardo Acho
CITEDI-IPN
2498 Roll Drive 757
Otay Mesa, San Diego, California

Marı́a Cristı́ na Chávez-Sánchez
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Abstract. We present a new algorithm to determine, quickly and accu-
rately, the best-in-focus image of biological particles. The algorithm is
based on a one-dimensional Fourier transform and on the Pearson cor-
relation for automated microscopes along the Z axis. We captured a set
of several images at different Z distances from a biological sample. The
algorithm uses the Fourier transform to obtain and extract the image
frequency content of a vector pattern previously specified to be sought in
each captured image; comparing these frequency vectors with the fre-
quency vector of a reference image (usually the first image that we cap-
ture or the most out-of-focus image), we find the best-in-focus image via
the Pearson correlation. Numerical experimental results show the algo-
rithm has a fast response for finding the best-in-focus image among the
captured images, compared with related autofocus techniques pre-
sented in the past. The algorithm can be implemented in real-time sys-
tems with fast response, accuracy, and robustness; it can be used to get
focused images in bright and dark fields; and it offers the prospect of
being extended to include fusion techniques to construct multifocus final
images. © 2005 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1925119]
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1 Introduction

Every day researchers in biological areas analyze a larg
number of microbiological samples. The need for fast,
powerful, and reliable automated systems increases as the
analyses deal with higher-resolution images. Some such d
velopments have been described in the literature, e.g., a
automatic system for identifying phytoplanktonic algae.1

One step in an automatic system to capture microbiologica
images is to obtain the best-in-focus image from a biologi-
cal sample. This is a challenging task.

Many autofocusing methods have been developed.2–8

These methods use different approaches to obtain the be
in-focus image from a set of captured microscopic images
Among the algorithms developed for this purpose are the
analysis of the global and local variance of the images’ gray
levels to get a measure of their contrast,1,2 the use of first-
and second-derivative operators to obtain a measure of th
relative sharpness of images,2,7,9–12,15the analysis of gradi-
ent variance,13 and the analysis of spatial frequency
spectra.14–16All these algorithms have proven to be effec-
tive in obtaining the best-in-focus image; however, they
require considerable time when the images have high reso
lution.
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In the next sections we describe every algorithm
volved in our computer experimentation. Section 2 p
vides a mathematical review of autofocus algorithm dev
opment based on global and local variance analysis or
image contrast. Section 3 describes autofocus algorith
based on first- and second-derivative operators to im
ment the image sharpness approach. Section 4 desc
algorithms based on gradient variance analysis using
derivative operators described in Sec. 3. Section 5 in
duces our new autofocus algorithm based on the analys
spatial frequency spectra and exploiting the Fourier tra
form and Pearson correlation. Section 6 describes the c
putational experiments and provides the graphical result
those experiments, where we illustrate the performance
proposed algorithm compared with algorithms described
Secs. 2 to 4. And finally, Sec. 7 summarizes our conc
sions and planned future work.

2 Autofocus Algorithm Based on Global
Variance „GBL VAR …

Let us introduce some useful notation, definitions, a
functions:f 1 , f 2 , f 3 ,...,f K is a stack ofK captured images
of sizeN3M pixels from biological samples taken by ste
ping of the microscope in theZ direction in incrementsDz;
-1 June 2005/Vol. 44(6)
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Bueno-Ibarra et al.: Fast autofocus algorithm . . .
f (x,y)k is the captured image matrix with pixels (x,y) in
the k’th image in the stack, wherex51,...,N, y51,...,M ,
andk51,...,K.

Let ĤPRL be a vector of real numbers withL elements
sorted in ascending order. The maximum function MAX~Ĥ!
and minimum function MIN~Ĥ! can be defined respectivel
as

MAX ~Ĥ!5$hLuhi<hi 11 , hiPĤ, i 51,2,...,L21%, ~1!

MIN ~Ĥ!5$h1uhi<hi 11 , hiPĤ, i 51,2,...,L21%. ~2!

The normalized transformation functionN(Ĥ) can be ex-
pressed as

N~Ĥ!5H hi2MIN ~Ĥ!

MAX ~Ĥ!2MIN ~Ĥ!
UhiPĤ,i 51,2,...,LJ , ~3!

whereN(Ĥ)→@0,1# results in a vector of normalized va
ues. The greatest-integer functionbvc of a number can be
expressed as

bv c5$dudPZ, vPR, d<v,d11%, ~4!

whereZ represent the set of whole numbers.
In this approach, the best-in-focus image can be

pected to have a strong variation in pixel intensity level1,2

the image with highest contrast will be the best-in-foc
image in the stack. In this context, if we calculate the g
bal variance GVk of each f k , then GVk can be used to
construct a focus measure, such that the best-in-focus
age f BF will have the maximum calculated value ofGVk :

f BF5$ f k where MAX~N~GVFMk!!, ~5!

where GVFMk is a vector of GVk values, calculated for
each f k . Here GVFMk can be obtained by calculating th
local variance LV(n,m)k of a moving window of sizevx

3vy for each pixelf (n,m)k . Therefore,vx5$2j111uj1

PZ1, 2j111<N% and vy5$2j211uj2PZ1, 2j211
<M %, whereZ15$tutPZ,t.0% and j1 , j2 are the di-
mensions of the moving window. The variance LV(n,m)k
can be computed for each displacement of the moving w
dow across imagef (n,m)k :

LV ~n,m!k5
1

vxvy21 (
i 5vx1

vx2

(
j 5vy1

vy2

@ f ~ i , j !k2LV ~n,m!k#
2,

~6!

whereLV( n,m)k is the mean value of the pixel intensity i
the moving window centered on (n,m), given by

LV ~n,m!k5
1

vxvy
(

i 5vx1

vx2

(
j 5vy1

vy2

f ~ i , j !k , ~7!
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and wherevx1 , vx2 , vy1 , vy2 are values to delimit the
pixels of the moving window to be processed by Eq.~6!
and Eq.~7!. Let us defineb15 bvx/2c, b25 bvy/2c. Then
vx1 , vx2 , vy1 , vy2 can be expressed as

vx15n2b1 , vy15m2b2 ,
~8!

vx25n1b1 , vy25m1b2 ,

and the moving window is processed for each pixel (n,m)
inside f (n,m)k . Thereforen and m can be listed across
f (n,m)k as

nP$b111, b112,...,N2~b111!, N2b1%, ~9!

mP$b211, b212,...,M2~b211!, M2b2%. ~10!

The global variance focus measure vector GVFMk can
be expressed as

GVFMk5
1

a1a221 (
p5nI

nF

(
q5mI

mF

@LV ~p,q!k2LV k#
2, ~11!

wherea1a2 is the number of moving windows processe
inside f (n,m)k , anda1 , a2 are defined by

a15N22b1 , a25M22b2 . ~12!

From Eq.~9! and Eq.~10! we can obtain

nI5b111, nF5N2b1 ,
~13!

mI5b211, mF5M2b2 ,

andLV k, the mean value of all local variances of the mo
ing windows processed inside the imagef (n,m)k , can be
expressed by

LV k5
1

a1a2
(

p5nI

nF

(
q5mI

mF

LV ~p,q!k . ~14!

3 Autofocus Algorithms Based on
Differentiation

These methods are based on the use of first and se
derivatives. The objective of this approach is to find t
image with the sharpest edges; hence image gradients
applied for calculating the focus measure.2,15

3.1 Tenenbaum’s Algorithm (SOB-TEN)

This algorithm belongs to the first-derivative methods.
1970, Tenenbaum developed a focus measure method b
on obtaining the gradient magnitude from the Sob
operator.9 The resulting algorithm was called the Tenengr
method, and it was considered the benchmark in t
field.7,10 The best-focused imagef BF in the stack can be
obtained for the expression

f BF5$ f k where MAX~N~STFMk!!, ~15!
-2 June 2005/Vol. 44(6)
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Bueno-Ibarra et al.: Fast autofocus algorithm . . .
where STFMk is a vector of normalized maximum magn
tudes calculated by the Tenengrad method forf k :

STFMk5 (
n52

N21

(
m52

M21

@¹S~n,m!k#
2 for ¹S~n,m!k.T,

~16!

whereT is a discrimination threshold value, and¹S(n,m)k
is the Sobel gradient magnitude value expressed by

¹S~n,m!k5@¹Sx~n,m!k
21¹Sy~n,m!k

2#1/2, ~17!

where¹Sx(n,m)k , ¹Sy(n,m)k are the outcome values ob
tained from the Sobel convolution masksSx , Sy , respec-
tively, defined by

Sx5S 21 0 1

22 0 2

21 0 1
D , Sy5S 1 2 1

0 0 0

21 22 21
D . ~18!

Thus,¹Sx(n,m)k , ¹Sy(n,m)k can be expressed by

¹Sx~n,m!k5$2@ f ~n21,m21!12 f ~n21,m!

1 f ~n21,m11!#1@ f ~n11,m21!

12 f ~n11,m!1 f ~n11,m11!#%k ,
~19!

¹Sy~n,m!k5$1@ f ~n21,m21!12 f ~n,m21!

1 f ~n11,m21!#2@ f ~n21,m11!

12 f ~n,m11!1 f ~n11,m11!#%k .

3.2 Boddeke’s Algorithm (BOD)

This algorithm also belongs to the first-derivative metho
In 1994, Boddeke proposed a new focus-measure algor
based on calculating a gradient magnitude value usin
one-dimensional convolution mask along thex image direc-
tion only. The convolution mask was defined byBx

5@21 0 1#.11 This method is considered extremely simp
and provides a sharp, well-formed peak.12 Therefore, the
best-in-focus imagef BF in the stack can be obtained as

f BF5$ f k where MAX~N~BFMk!!, ~20!

where BFMk is a vector with normalized values. After us
ing Boddeke’s convolution maskBx on f k , BFMk can be
expressed as

BFMk5 (
n52

N21

(
m51

M

@¹Bx~n,m!k#
2, ~21!

where¹Bx(n,m)k is a value obtained by applyingBx to the
pixel location (n,m) in the image:

¹Bx~n,m!k5 f ~n11,m!2 f ~n21,m!. ~22!
063601Optical Engineering
3.3 Second-Derivative Algorithm (LAP)

Another methodology for analyzing high spatial freque
cies associated with image border sharpness is the app
tion of the second-derivative methods. The simpl
second-derivative operator, as shown by Rosenfeld
Kak in 1982, is the Laplacian operator.15 By applying this
operator to each imagef k in the stack, one can find th
best-in-focus imagef BF :

f BF5$ f k where MAX~N~LFMk!!, ~23!

where LFMk is a vector with normalized values found b
applying the Laplacian operatorL with convolution mask,
defined by

L5
1

6 S 0 21 0

21 4 21

0 21 0
D . ~24!

Thus, LFMk can be expressed as

LFMk5 (
n52

N21

(
m52

M21

u¹L~n,m!ku, ~25!

where u¹L(n,m)ku is an absolute value of the Laplacia
gradient defined by

¹L~n,m!k5
1

6
$4 f ~n,m!2@ f ~n21,m!1 f ~n,m21!

1 f ~n11,m!1 f ~n,m11!#%. ~26!

4 Autofocus Algorithms Based on the Gradient
Variance

A complementary strategy is to calculate a gradient mag
tude variance, such as the Sobel-Tenengrad or the Lap
ian magnitude gradient variance. This methodology defi
a highly discriminating focus measure, increasing the
bustness to noise.13

4.1 Sobel-Tenengrad Gradient Magnitude Variance
(SOB VAR)

This new strategy was proposed by Pech-Pacheco
Cristóbal.13 The best-in-focus imagef BF in the stack based
on the Sobel-Tenengrad gradient magnitude variance
be the image with highest variance in the sense

f BF5$ f k where MAX~N~STVFMk!!, ~27!

where STVFMk is a vector containing normalized value
After applying the Sobel-Tenengrad gradient algorithm a
calculating its variance, defined in Sec. 3.1, STVFMk can
be expressed as

STVFMk5 (
n52

N21

(
m52

M21

@¹S~n,m!k2¹S~n,m!k#
2

for ¹S~n,m!k.T, ~28!
-3 June 2005/Vol. 44(6)



se
t

age
g-
,

s.
u-

e

-in-
to
age
nor-
es
atial
ad

Bueno-Ibarra et al.: Fast autofocus algorithm . . .
whereT is a discrimination threshold value,¹S(n,m)k is
the Sobel-Tenengrad gradient magnitude value expres
by Eq.~17!, and¹S(n,m)k is the Sobel-Tenengrad gradien
magnitude mean value, defined by

¹S~n,m!k5
1

~N22!~M22! (
n52

N21

(
m52

M21

¹S~n,m!k . ~29!

Fig. 1 Scan process pattern defined by vectors Vq across one
sample captured image.
063601Optical Engineering
d

4.2 Laplacian Gradient Magnitude Variance
(LAP VAR)

Continuing with these approaches, the best-in-focus im
f BF in the stack, according to the Laplacian gradient ma
nitude variance, will be the image with highest variance13

in this context

f BF5$ f k where MAX~N~LPVFMk!!, ~30!

where LPVFMk is a vector containing normalized value
After applying the Laplacian gradient algorithm and calc
lating its variance, defined in Section 3.3, LPVFMk can be
expressed as

LPVFMk5 (
n52

N21

(
m52

M21

@¹L~n,m!k2¹L~n,m!k#
2, ~31!

where¹L(n,m)k is the Laplacian gradient magnitude valu
expressed by Eq.~26!, and¹L(n,m)k is Laplacian magni-
tude mean value, defined by

¹L~n,m!k5
1

~N22!~M22! (
n52

N21

(
m52

M21

¹L~n,m!k . ~32!

5 New Autofocus Algorithm Based on
One-Dimensional Fourier Transform
and Pearson Correlation „P.CORR…

We propose here a new, fast algorithm to get the best
focus imagef BF , based on use of the Fourier transform
obtain the spatial frequency content of each captured im
in the stack, and the Pearson correlation to construct a
malized focus measure. When we work with digital imag
captured by CCD, these images are functions on the sp
domain, so that we will work in the spatial domain inste
Fig. 2 General proposed algorithm diagram.
-4 June 2005/Vol. 44(6)
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Bueno-Ibarra et al.: Fast autofocus algorithm . . .
of the time domain. Let us review some useful definition
The spatial-frequency one-dimensional Fourier transfo
integral pair can be defined by the expressions

H~ f !5E
2`

`

h~x!exp~2 j 2p f x!dx ~33!

and

h~x!5E
2`

`

H~ f !exp~ j 2p f x!df . ~34!

Thus, in Eq.~33!, H( f ) is the spatial one-dimensional Fou
rier transform ofh(x), and in Eq.~34!, h(x) is the spatial
one-dimensional inverse Fourier transform ofH( f ). Typi-
cally, h(x) is termed a function of the space variable a
H( f ) is termed a function of the spatial frequency variab

The linear correlation coefficient isr sometimes referred
to as the simple correlation coefficient, the Pearson prod

Fig. 3 Bright-field curves of 12r with D540 to 60 pixels, showing
the best-in-focus image and its index from the captured image stack.

Fig. 4 Bright-field images with similar Pearson coefficient values
12r.
063601Optical Engineering
t

moment correlation coefficient, or just the Pearson corre
tion. It is a measure of intensity of association between t
variablesX andY,17 and can be obtained from the expre
sion

r 5

( XY2
( X( Y

h

H F( X22
~( X!2

h GF( Y22
~( Y!2

h G J 1/2, ~35!

whereh represents the number of pairs of data present
The Pearson coefficientr can never be greater than 1.

nor less than21.0; therefore we useur u to measure the
intensity of association~correlation! between the two vari-
ablesX and Y. Obtaining a value ofr close to 0.0 means
that no correlation exists between the variables; obtainin
value close to 1.0 means that a strong correlation ex
between them.

Fig. 5 Dark-field curves of 12r with D540 to 60 pixels, showing the
best-in-focus image and its index from the captured image stack.

Fig. 6 Dark-field images with similar Pearson coefficient values
12r.
-5 June 2005/Vol. 44(6)
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Fig. 7 Images inside the best-focus region obtained from the tested algorithms.
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5.1 Fourier Transform and Pearson Correlation
Algorithm

Once we have built a stack of captured images, the p
posed algorithm processes a group ofQ vectors Vq , q
51,...,Q, which are spatially equidistant. They constitute
scan process pattern corresponding to each captured im
f (x,y)k . In Fig. 1,D denotes the distance between adjac
vectors. Thus the algorithm does not process the entire
age, only the pattern defined. The number of vectors,Q,
can be calculated asQ5 bN/D c11, wherebN/D c is, accord-
ing to Eq. ~4!, a whole number. The vectorsVq can be
computed by

V15 f ~1,y0 ,...,yM !k ,

V25 f ~11D,y0 ,...,yM !k ,..., ~36!

Vq5 f ~~q21!D11,y0 ,...,yM !k .

Computing the Fourier power spectrum of theVq , we
get uH1( f )u2, uH2( f )u2,...,uHq( f )u2, respectively. With
these Fourier spectrum vectors, containing the high and
frequencies of the vectorsVq , we build a unique concat
enated Fourier power spectrum vector FSVk for the cap-
tured imagef (x,y)k . We compute FSVk from each cap-
063601
e

-

tured image and compare them by Pearson correlation
FSV1 for the first captured imagef 1(x,y), which is called
the image reference and chosen to be the most out-of-fo
image. Thus we obtainf BF that minimizes the Pearson co
relation coefficientr. The most out-of-focus image wil
have a lower correlation value thanf BF . In this context,f BF
can be obtained as

f BF5$ f k where MIN~N~r k!!, ~37!

where r k is a vector containing normalized values of th
correlationr.

In Eq. ~35! we takeX5FSV1 and Y5FSVk for each
computation of the Pearson coefficientr, and h as the
length of the vectorsX and Y. Figure 1 shows the sca
process pattern defined by vectorsVq according to Eq.~36!.
We can control the spacing of theVq by changing the value
of variableD. Letting D→1, we will have more vectors to
compute; lettingD→N, we will have fewer, and the algo
rithm will be less sensitive to details of the sample. In t
experiments we use differentD values and obtain graphs o
the corresponding algorithm sensitivities for use in dec
ing on the final focused image. Finally, Fig. 2 shows
general diagram of the algorithm proposed.
Table 1 Execution-time performance results and fBF image indices obtained.

Algorithm

Res. 5223387 10443775 156631162 208831550

Best-in-
focus
image

Execution
time
(s)

Best-in-
focus
image

Execution
time
(s)

Best-in-
focus
image

Execution
time
(s)

Best-in-
focus
image

Execution
time
(s)

GBL VAR 30 1603 31 6762 31 15513 32 27703

SOB TEN 32 365 34 1474 34 3354 34 5997

BOD 33 72 34 282 34 659 34 1181

LAP 41 130 41 509 41 1174 44 2103

SOB VAR 33 374 41 1461 34 3303 34 5843

LAP VAR 34 150 34 560 35 1281 34 2311

P.CORR
(this study)

29 5 30 13 30 52 30 111
-6 June 2005/Vol. 44(6)
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Fig. 8 Graphs of execution time for the tested algorithms.
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6 Computational Experiments

Two kinds of computer experiments were developed. T
first kind were related to gettingf BF with the proposed
algorithm. To test the algorithm, independent images
biological samples were used for measurement of com
tational process times; namely dark- and bright-field i
ages were captured from the same biological organism.
second kind of experiments were to measure the comp
tional process times of every algorithm described in
preceding section. For these, an entirely new set of biolo
cal images were captured.

6.1 Experiments Related to Getting fBF from the
Proposed Algorithm

Generally, when we are manually focusing on a sam
under a microscope, several images close to the focus p
can be suitable candidates for the best focus. Our ch
will depend on external factors, such as our vision,
microscope lenses, the illumination, and the sample its
but at last we select one as best. The method propo
operates in the same way that we do: it decides w
is the best image to display, by checking the Pearson c
ficient r.

Figure 3 shows the curves of 12r when we change the
D value in the range 40 to 60 pixels with increments o
pixels. It is important to mention thatD560 means that jus
nine vectorsVq were processed. We observe that all pea
of the graphs are inside the best-in-focus image reg
WhenD→N the algorithm runs faster but we lose sensit
ity, so that we cannot find the best-in-focus image. T
graphics from the experiments show that 36th image in
has the best decorrelation value.

The difference between the images shown in the b
focus region~Fig. 4! is not noticeable. These images are
063601ineering
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inside the region where we seek the best-in-focus imag
Figures 5 and 6 show similar results to those we o

tained before. The main difference is that we work w
dark-field images. We observe that the algorithm can fi
the best-in-focus image with the same values of the v
ables. In this situation, we can declare that this algorit
works automatically in both types of fields without an
change. To determine the best-focus region, we propos
include all images with normalized focus measure 12r k

greater than a thresholdTBFR. The imagesf k selected from
the stack to be inside the focusing region can be determ
by the heuristic discrimination rule 12r k>TBFR, namely,
12r k>0.95.

6.2 Experiments Related to Measuring the
Computational Process Times of Algorithms

To measure the proposed algorithm’s performance
compare it with that of the algorithms cited in Sec. 5, w
captured four stacks with 60 images per stack of a n
biological sample, where every image in the stack w
taken at different pixel resolution: 5223387, 10443775,
156631162, and 208831550. Thus, we have images wit
sizes of 0.2, 0.8, 1.8, and 3.2 megapixels, respectively.

The moving-window size used in the global varian
algorithm was 25325 pixels to increase the algorithm se
sitivity. In this case, the control moving-window size var
ablesj1 , j2 were both initialized at 12. Finally, the spacin
D of the vectorsVq in our proposed algorithm was initial
ized at 35 pixels to be compatible with the moving-windo
size in the global variance algorithm. No more initialize
variables were needed to get the final results. The eq
ment used for the tests was a 2.5-GHz PC Pentium 4 w
1-Gbyte RAM and 80-Gbyte hard disk.
-7 June 2005/Vol. 44(6)
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Bueno-Ibarra et al.: Fast autofocus algorithm . . .
Figure 7 shows the images inside the best-focus reg
obtained from the tested algorithms. Table 1 summari
the execution-time performance results and thef BF image
index obtained from the algorithms tested. We can
clearly that the proposed algorithm has the best execu
time and that the resultingf BF is inside the best-focus re
gion. One exception was the Laplacian algorithm, wh
f BF was out of the best-focus region. However, when
Laplacian gradient magnitude variance algorithm was us
the f BF found was inside the best-focus region. Finally, F
8 shows graphs of the execution time, where we can
clearly that the proposed algorithm~P.CORR! is the fastest
among the tested algorithms.

7 Conclusions and Future Work

The proposed focusing method offers significant impro
ments in accuracy, robustness, and speed, and is suitab
implementation in real-time processing; besides, it can p
cess different types of environments with respect to illum
nation, bright or dark field, and image resolution. Furth
work will include incorporating fusion techniques in th
proposed algorithm to improve the final image quality; th
can be done by finding the optimum threshold va
whereby we can combine the images inside the focus
region to construct a new, final high-quality image. For t
purpose, studies are needed to design and test new
process patterns and kernels, based on the Fourier tr
form, for incorporation in the proposed algorithm.

Acknowledgments

Part of this work was supported by the Mexican Nation
Council of Science and Technology~CONACYT, project
36075-B!. Thanks are due to Marı´a Amparo Rodrı´guez-
Santiago for the samples shown in Fig. 7.

References
1. J. L. Pech-Pacheco, G. Cristo´bal, J. Alvarez-Borrego, and L. Cohen

‘‘Automatic system for phytoplanktonic algae identification,’’Lim-
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Marı́a Cristı́ na Chávez-Sánchez received
her biological degree in 1971, her MSc in
1983, and her PhD in aquaculture and fish-
eries management in 1987 from the Stirling
University. Currently she is a researcher in
the Mazatlan Unit on Aquaculture and En-
vironmental Management of the Research
Center of Feeding and Development
(CIAD, A.C.). Her research interest is
aquatic pathology.
-8 June 2005/Vol. 44(6)


