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Abstract In the paper, a new approach to the impulsive

noise removal in color images is presented. The new fil-

tering design is based on the peer group concept, which

determines the membership of a central pixel of the fil-

tering window to its local neighborhood, in terms of the

number of close pixels. Two pixels are declared as close if

their distance in a given color space does not exceed a

predefined threshold value. A pixel is treated as not cor-

rupted by the impulsive noise process, if its peer group

consists of at least two close pixels, otherwise this pixel is

replaced by a weighted average of uncorrupted samples

from the local neighborhood. The peer group size assigned

to each pixel is used for the averaging operation, so that

pixels which have many peers are taken with higher

weight. The new filtering design proved to restore effi-

ciently color images corrupted by even strong impulsive

noise, while preserving tiny image details. The beneficial

property of the proposed filter is its very low computational

complexity, which allows its application in real-time image

processing tasks.

Keywords Impulsive noise removal � Color image

enhancement and restoration

1 Introduction

Noise reduction in digital images, despite many years of

active research, still remains a challenging problem. The

rapid proliferation of portable image capturing devices,

combined with the miniaturization of the imaging sensors

and increasing data throughput capacity of communication

channels, results in the need to create novel fast and effi-

cient denoising algorithms.

Color images are very often corrupted by impulsive noise,

which is introduced into the image by faulty pixels in the

camera sensors, transmission errors in noisy channels, poor

lighting conditions and aging of the storage material [1–6].

The suppression of the disturbances introduced by the im-

pulsive noise is indispensable for the success of further

stages of the image processing pipeline [7–12] and, there-

fore, we present a novel, very fast denoising algorithm.

In this paper, the color image will be considered as a

two-dimensional array, consisting of N pixels

xj ¼ ðxj1; xj2; xj3Þ, with index j ¼ 1; . . .;N indicating the

position of a pixel on the image domain. The vector

components xjq 2 ½0; 1�, for q ¼ 1; 2; 3 represent the color

channel values in a given color space, quantified into the

integer domain. To simplify the notation, we will also as-

sign indexes to pixels belonging to the local filtering

window W , so that the central pixel will be denoted as x1
and the neighboring pixels will be x2; . . .; xn, where n is the

window size.

The most popular filters applied for reduction of im-

pulsive noise in color images are based on order statistics

[13–24]. Mostly, these techniques rely on the reduced

vector ordering of a set of pixels belonging to W . For each

pixel from the sliding window the cumulative sum of dis-

tances is assigned and then sorted to produce a corre-

sponding, ordered sequence of color pixels.
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The vector corresponding to the minimum cumulative

distance is the output of the very popular Vector Median

Filter (VMF) [13, 25–27]. The VMF output is always a

pixel from the filtering window, and when all pixels are

corrupted by a noise process, the vector median output is

also noisy. To circumvent this unwanted behavior, the

pixels with the lowest ranks can be averaged, which leads

to a better filtering performance [25, 28–34]. The dis-

similarity of color pixels is usually defined in terms of the

Euclidean distance in the RGB color space, however, other

measures of vector dissimilarity, like the angular distance

can be also applied [31, 35–41].

For the calculation of the most centrally located pixel in

the group of color samples, instead of the sum of all dis-

tances, only a few smallest distances to nearest pixels can

be taken as a dissimilarity measure. Such a trimming

procedure leads to a better robustness to outliers introduced

by the noise process and produces images with enhanced,

sharp edges [23, 42–45].

The filters based on the reduced ordering concept were

also modified using the methods derived from the fuzzy

sets theory [46–52]. The simulation results prove that ap-

plication of the fuzzy concepts offers substantial flexibility

and yields excellent performance both in the case of color

images and video sequences [53–58].

The drawback of the filters based on vector ordering lies

in introducing too much smoothing, which results in an

extensive blurring of the output image. This effect is

caused by uniform processing of every image pixel, re-

placing their color channels not taking into account whe-

ther they are noisy or not disturbed. Therefore, alternative

approaches to noise cancelation by means of the so-called

switching filters have been developed. Their aim is to de-

tect the pixels corrupted by the impulsive noise and replace

their values with an estimate calculated using the infor-

mation from the local neighborhood [30, 59–68].

The Sigma Vector Median Filter (SVMF) calculates the

sum of distances from the central pixel of W to all other

pixels and if it exceeds a threshold value, which is fixed or

made adaptive, then the pixel is replaced with the VMF

output, otherwise it is retained [30, 69–75]. The Fast

Modified Vector Median Filter (FMVMF) is based on the

design of the VMF and is utilizing fuzzy similarity mea-

sures [76–78]. This approach has been further extended to

improve its denoising properties using fuzzy metrics in

[79–83].

An interesting type of filters based on the concept of a

peer group was proposed in [84, 85] and widely used in

numerous designs [86–90]. The peer group associated with

central pixel of an operating window denotes a set of close

pixels whose distance to central pixel is not exceeding a

predefined threshold. The Fast Peer Group Filter (FPGF)

replaces the center of the filtering window with the VMF

output when a specified number of smallest distances be-

tween the central pixel and its neighbors differ not more

than a predefined threshold [38, 70, 84, 85, 88].

The Fast Averaging Peer Group Filter (FAPGF) pro-

posed in this paper is based on the idea of expressing the

degree of membership of the central pixel to the local

neighborhood by its peer group size. The structure of this

filter can be divided into two main parts: pixel inspection

and replacement. The first one evaluates the degree of

membership of the central pixel of the local window to its

neighborhood and the second part uses Weighed Average

Filter (WAF) to replace pixels which were classified as

outliers. The weights of the WAF are determined by

analyzing the size of the peer groups of the samples which

are in neighborhood relation with the processed pixel.

In the remainder of this paper in Sect. 2 the proposed

algorithm is presented and followed by an analysis of its

properties and recommendations for the setting of its pa-

rameters in Sect. 3. In the next section, the efficiency of the

proposed filtering technique is evaluated using three im-

pulsive noise models. Section 5 is focused on the com-

parison with the standard, reference denoising techniques.

In the next Section the computational complexity of the

proposed filtering technique is addressed and finally in the

last Section some conclusions are drawn.

2 Proposed filter design

The proposed FAPGF filter shows some similarity to the

Fast Peer Group Filter [88] and the Sigma Vector Median

Filter [30, 69–72] briefly outlined in the previous Section.

In the first step, the size of the peer group, or in other

words, the number of close neighbors (CN) of the central

pixel of the filtering window x1 is determined. A pixel

xi 6¼ x1 belonging to W is a close neighbor of x1, if the

normalized Euclidean distance qðxi; x1Þ in a given color

x1

x2

x3

x4x5

x6

d

B

G

R

Fig. 1 The color pixels x2, x4 and x5 are close neighbors, whereas x3
and x6 are outliers. The size of the peer group is 3
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space is less than a predefined threshold value d. This

threshold 0� d� 1 is the primary parameter of this step,

and d ¼ 0 refers to two identical pixels, while d ¼ 1 refers

to maximum Euclidean distance in the color space.

In the RGB color space, the peer group size denoted as

mk is the number of pixels from W contained in a sphere

with radius d centered at pixel xk

mk ¼ #fxj 2 W : kxk � xjk\dg; ð1Þ

where # denotes the cardinality and k�k stands for the

Euclidean norm. In this way d is a parameter which de-

termines how many pixels can be considered as close to the

given pixel. For d ¼ 1 all neighbors belong to a peer group

and for d ¼ 0 the set of close pixels contains no elements.

The concept of the peer group is explained in Fig. 1. The

pixels x2, x4, x5 are CNs of x1, whereas x3, x6 are outside

of the sphere and do not belong to the peer group.

The peer group size will be treated as a measure of pixel

distortion caused by the noise process. If the m value is too

low, then a pixel will be treated as corrupted, otherwise it

will be declared as not disturbed. The parameter d plays a

5 5 0 4 0 4 0 4 5 0

0 4 0 0 5 4 0 0 6 5

4 0 3 3 0 6 6 6 7 7

5 5 0 4 7 7 8 8 8 6

7 5 0 5 8 7 7 7 8 6

8 6 0 6 7 7 0 5 6 5

6 5 5 6 6 4 4 0 0 5

5 0 4 0 6 6 0 0 0 4

5 5 0 6 6 0 5 3 0 4

6 6 6 7 7 7 7 6 0 4

(a) Number of close neighbors for d = 0.1.

5 5 1 5 6 6 1 7 7 0

0 5 1 5 6 6 1 7 7 0

4 3 5 4 0 6 8 8 8 8

5 7 0 5 7 7 8 8 8 7

7 6 3 5 8 7 7 8 8 6

8 7 0 6 8 7 4 6 6 5

6 6 5 6 7 7 6 0 1 5

6 1 5 0 6 6 0 4 3 5

5 6 1 6 6 0 6 5 0 5

6 6 6 7 7 7 7 6 0 5

(b) Number of close neighbors for d = 0.2.

Fig. 2 Illustration of the influence of the parameter d on the number

of close neighbors, (peer group size). Pixels in green circles are

outliers for d ¼ 0:1 but are considered as uncorrupted (red circles) for
d ¼ 0:2. As can be seen the classification of pixels is dependent on

the value of d

(a) Girl (GIR) (b) Lena (LEN)

(c) Monarch (MON) (d) Motocross (MOT)

(e) Parrots (PAR) (f) Peppers (PEP)

Fig. 3 Benchmark images used for the selection of the proposed filter

parameters
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crucial role in the proposed algorithm. A simple example

presented in Fig. 2 shows the impact of d on the corre-

sponding peer group sizes m of a color image. As can be

observed, if the d parameter is too high, the evidently noisy

pixels, highlighted by green circles, may be declared as

uncorrupted (red circles), and will be not rectified by the

proposed noise removal algorithm. Therefore, the threshold

parameter d has to be carefully selected.

The second part of the FAPGF is the pixel replacement

step. When all m values of the image pixels are calculated,

the filtering is performed as follows:

– if the peer group size of the central pixel x1 of W is

m1 � 1, then this pixel is treated as an outlier and

replaced with the output of Weighted Average Filter

(WAF) applied to the pixels belonging to the same

operating window. The weights wi, i ¼ 2; . . .; n of the

corresponding pixels xi are computed in the following

way [91]

wi ¼
li

Pn
i¼2 li

; li ¼ m
c

i ; ð2Þ

where n is the size of W , and c[ 0 is the secondary

parameter influencing the quality of results. The output

y1 of WAF, replacing x1 is then

y1 ¼
1

Pn
i¼2 wi

X

n

i¼2

wi � xi: ð3Þ

The neighbors with more CNs are treated as more

credible and have greater relative impact (greater

weight) on the filter output. The pixels, which do not

have any CNs (m ¼ 0), are not taken into the average.

The c parameter provides the possibility to further

regulate the degree of membership of the neighboring

pixels. If 0\c\1 the differences in peer group sizes of

the neighboring pixels are decreased and for c[ 1 they

are increased.

– If the peer group size m of a pixel is greater than 1, then

it is preserved. We assume that if x1 has 2 or more close

neighbors, then its degree of membership is sufficient to

treat it as uncorrupted and leave it without any changes.

– In rare situations occurring in highly contaminated

images, all of the pixels within W may have no CNs. In

that case the size of the filtering window has to be

increased until at least 2 uncorrupted pixels are found.

This procedure is widely used when denoising gray-

scale images contaminated by strong salt & pepper

noise [92–94].

3 Filter parameters

To ensure a proper selection of d and c parameters, the

simulation-based approach has been undertaken. The

commonly used color benchmark images: Girl (GIR), Lena

(LEN), Monarch (MON), Motocross (MOT), Parrots

(PAR) and Peppers (PEP), exhibited in Fig. 3 have been

corrupted by random-valued impulsive noise of various

intensities.

Table 1 Recommended ranges

of d and c optimizing the

respective quality measures for

CT noise model

Image p PSNR NCD MAE

d c d c d c

GIR 0.1 0.10–0.11 0.20–0.40 0.09–0.10 0.60–0.80 0.12–0.12 0.80–0.80

0.2 0.09–0.10 0.40–0.60 0.08–0.08 0.80–1.00 0.11–0.11 1.20–1.20

0.3 0.08–0.09 0.60–0.80 0.08–0.08 1.40–1.60 0.10–0.10 1.40–1.40

LEN 0.1 0.09–0.10 0.20–0.40 0.09–0.10 0.80–1.00 0.10–0.10 0.60–0.80

0.2 0.08–0.10 0.40–0.80 0.09–0.09 1.00–1.00 0.09–0.10 0.80–1.00

0.3 0.08–0.09 0.60–0.80 0.08–0.09 1.00–1.40 0.09–0.10 1.00–1.40

MON 0.1 0.11–0.12 0.20–0.20 0.10–0.11 0.40–0.60 0.13–0.13 0.60–0.60

0.2 0.09–0.11 0.20–0.40 0.09–0.09 0.80–0.80 0.10–0.11 0.60–0.80

0.3 0.09–0.09 0.40–0.40 0.07–0.08 0.60–1.00 0.09–0.10 0.80–1.00

MOT 0.1 0.14–0.15 0.20–0.20 0.12–0.12 0.40–0.40 0.15–0.15 0.40–0.40

0.2 0.12–0.13 0.20–0.20 0.11–0.11 0.60–0.80 0.14–0.15 0.80–0.80

0.3 0.11–0.12 0.20–0.40 0.10–0.11 1.00–1.40 0.13–0.13 1.00–1.00

PAR 0.1 0.10–0.11 0.20–0.20 0.08–0.09 0.40–0.60 0.11–0.12 0.40–0.60

0.2 0.09–0.10 0.20–0.40 0.07–0.07 0.60–0.80 0.09–0.10 0.60–1.00

0.3 0.07–0.09 0.40–0.60 0.07–0.07 1.00–1.20 0.08–0.09 0.80–1.20

PEP 0.1 0.08–0.09 0.40–0.60 0.09–0.09 1.00–1.20 0.09–0.10 0.80–1.00

0.2 0.08–0.08 0.60–0.60 0.08–0.08 1.00–1.20 0.08–0.09 0.80–1.00

0.3 0.07–0.08 0.60–0.80 0.07–0.08 1.20–1.60 0.08–0.08 1.00–1.20
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Each image pixel xj, j ¼ 1; . . .;N was corrupted with

probability p (noise intensity level), so that every channel

of a corrupted pixel was replaced by a random value vq 2

½0; 1� (q ¼ 1; 2; 3) drawn from a uniform distribution

yj ¼
ðv1; v2; v3Þ : with probability p;

xi : with probability 1� p:

�

ð4Þ

This kind of noise will be denoted as CT, (channels cor-

rupted together) [95].

Each benchmark image has been corrupted with 3

different noise intensities (p 2 f0:1; 0:2; 0:3g) and every

contamination was performed 10 times with different

seed of random number generator, to ensure that results

are statistically relevant. For each corrupted image the

FAPGF was applied using every d within the set

f0:05; 0:06; . . .; 0:15g and c within the set of values

f0:2; 0:4; . . .; 2:0g.

After image denoising, the PSNR, MAE, NCD [38, 96,

97] restoration quality measures were calculated:

MSE ¼
1

3N

X

N

j¼1

X

3

q¼1

ðxj;q � x̂j;qÞ
2; ð5Þ

PSNR ¼ 10 log10
1

MSE

� �

¼ �10 log10 MSE; ð6Þ

MAE ¼
1

3N

X

N

j¼1

X

3

q¼1

jxj;q � x̂j;qj; ð7Þ

.
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Fig. 4 Influence of the parameters d and c on the quality metrics for the test image PEP contaminated with CT impulse noise of intensity p ¼ 0:3
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where xj;q, q ¼ 1; 2; 3 are the channels of the original image

pixels and x̂j;q are the restored components.

The NCD image restoration quality measure requires the

conversion to the CIE Lab color space and it is defined as

[1, 96]:

NCD ¼

PN
j¼1 Lj�L̂j

� �2
þ aj�âj
� �2

þ bj�b̂j
� �2

h i1
2

PN
u¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2j þ a2j þ b2j

q ; ð8Þ

where Lj; aj; bj are the Lab coordinates of the original and

L̂j; âj; b̂j of the restored image pixels.

Additionally, we used the FSIMc [98] and SR-SIM

[99] quality metrics which are based on the structural

similarity index SSIM [100]. These metrics were ex-

tended so that they can be used for the inspection of

color images.

The obtained restoration results show a slight depen-

dence of the best possible values of the utilized quality

measures on the filter parameters d and c and also on the

contamination intensity and the structure of the analyzed

benchmark images. The ranges of the optimal values of d

and c parameters obtained for various test images and

contamination levels are presented in Table 1 and also

visualized in Fig. 4.

Analyzing the optimal d values in Table 1 following

conclusions can be drawn:

1. Parameter d seems to be slightly image dependent.

2. The most common threshold (median of best possible

results) is d ¼ 0:10 for low noise intensity (p ¼ 0:1)

and this value decreases to d ¼ 0:08 for stronger noise

pollution (p ¼ 0:3).
3. Different quality measures seem to favor slightly

different values of d. The MAE seems to be optimized

for higher d values while PSNR and NCD seem to be

optimized by medium d values.

Finally, the setting 0:07� d� 0:11 can be recommended as

a range for the threshold d. Moreover, lower values from

this range should be chosen if stronger noise is to be

suppressed.

The results for the secondary parameter c can be sum-

marized as follows:

1. The optimal c parameter, ensuring the best possible

restoration quality metrics, is also slightly image

dependent.

2. The recommended value of c, (median of best results

obtained for used test images and performing 10

realizations of noise contamination) is c ¼ 0:5 for

weaker noise (p ¼ 0:1) and it rises to c ¼ 1:1 for more

intensive image corruption (p ¼ 0:3). This effect can

be easily explained. When the noise intensity is low,

there is a lot of pixels with high peer group size m and

those which have low m value are not necessarily

affected by noise, but may represent the tiny image

details. Therefore, the use of high c value might

introduce too strong changes of the uncorrupted pixels.

On the other hand, when the image is corrupted by

Table 2 Influence of c parameter on image restoration quality

measures for color test image PEP (d ¼ 0:1, CT noise model)

p c PSNR NCD (10�4) MAE

0.1 0.1 40.66 39.40 0.41

0.5 40.99 37.95 0.40

1.0 40.94 37.12 0.39

1.5 40.67 37.05 0.40

2.0 40.33 37.39 0.41

0.2 0.1 36.77 87.42 0.90

0.5 37.39 81.53 0.84

1.0 37.51 77.66 0.82

1.5 37.30 76.42 0.82

2.0 37.01 76.65 0.84

0.3 0.1 33.21 159.77 1.61

0.5 34.20 143.43 1.46

1.0 34.65 131.19 1.37

1.5 34.62 125.48 1.35

2.0 34.42 123.77 1.36

0.5 0.1 26.18 450.26 4.46

0.5 27.09 398.45 3.96

1.0 27.84 350.51 3.54

1.5 28.22 319.26 3.30

2.0 28.36 300.69 3.18

Table 3 Efficiency of the

proposed filter in terms of

PSNR using test image PAR for

different noise models applying

the recommended parameters

(rec) and those yielding the

optimal (opt) results

Noise type p ¼ 0:1 p ¼ 0:2 p ¼ 0:3

PSNR [dB] d (opt) PSNR [dB] d (opt) PSNR [dB] d (opt)

rec opt rec opt rec opt

CT 37.13 37.21 0.11 34.75 34.75 0.10 32.40 32.56 0.09

CI 36.47 36.47 0.10 33.85 34.08 0.08 31.78 32.32 0.08

CC 36.21 36.24 0.09 33.52 33.74 0.09 31.34 32.17 0.07
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high-intensity noise, only a few pixels with high m

values belong to the peer group, and their influence on

the filter output should be reinforced by the high c

value setting.

3. Different quality measures are optimized by different c

values. The PSNR measure seems to promote

lower values, while other measures show no explicit

preferences.

The influence of the c parameter on the quality metrics is

shown in Table 2 for the color test image PEP and for

various contamination levels. The recommended value of

the c for contamination ratios not exceeding p ¼ 0:3 should

be drawn from the range 0:45� c� 1:3 and lower value

from this range should be chosen for weak noise pollution.

As can be observed the effectiveness of the proposed filter

is increased by the proper setting of c, especially for high

contamination levels.

4 Impact of noise model on the filtering efficiency

A comparison of the efficiency of FAPGF to restore images

corrupted by different types of random-valued impulsive

noise has been also performed. We evaluated the proposed

filter performance using following noise models [95]:

– All channels of the color image are contaminated

simultaneously by a random impulsive noise, (all

channels together—CT).

– Every channel of noisy pixels is corrupted indepen-

dently—CI.

– The corruption of one channel results in contamination

of others with probability represented by correlation

factor which was set at 0:5, (channels correlated—CC).

For each noise model and noise intensity p, the test image

PAR was contaminated. The FAPGF was used to enhance

noisy images using recommended d ¼ 0:1 value of the

Original image

Noisy image - model CT Noisy image - model CI Noisy image - model CC

Filtered with recommended d = 0.1

Filtered using optimal d parameter

Fig. 5 Comparison of the efficiency of FAPGF to restore the test image PAR corrupted by CT, CI and CC impulsive noise with intensity p ¼ 0:2
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threshold parameter and setting c ¼ 0:8. Also filtering re-

sults were obtained for d 2\0:05; 0:20[ and the optimal

settings of d, in terms of PSNR quality measure, were

found. The values of PSNR metric achieved for recom-

mended and optimal d values are presented in Table 3. A

visual comparison of the results achieved using different

noise models is shown in Fig. 5. As can be observed, the

new filter is able to cope with impulsive noise irrespec-

tively on the applied noise model. The differences in the

restoration efficiency are visually and also objectively not

significant.

5 Comparison with state-of-the-art filters

To evaluate the efficiency of the Fast Averaging Peer

Group Filter (FAPGF), it is mandatory to compare it with

other commonly used filters, dedicated for impulsive noise

removal. The following filtering techniques have been

chosen for comparison [38]:

– Sigma Vector Median Filter (SVMFr) [69],

– Fast Fuzzy Noise Reduction Filter (FFNRF) [48],

– Peer Group Filter (PGF) [85],

– Fast Modified Vector Median Filter (FMVMF) [101],

– Adaptive Vector Median Filter (AVMF) [30],

– Adaptive Center-Weighed VMF (ACWVMF) [102],

– Fuzzy Ordered Vector Median Filter (FOVMF) [91],

– Fast Peer Group Filter (FPGF) [88].

For the comparison we have chosen a set of test images:

Caps (CAP), Flower (FLO), Rafting (RAF) and Six-

Shooter (SIX), depicted in Fig. 6. They were corrupted by

impulsive noise of intensity p ¼ 0:1; 0:2; . . .; 0:5. The

FAPGF and other reference filters were applied to remove

the impulses in those images using the default settings

recommended by their authors. For all of the performed

tests, the threshold parameter was set at d ¼ 0:1 and the

parameter c at 0.8, as those values are in the middle of the

recommended ranges of parameters provided by the ana-

lysis in Sect. 3. The filtering results are presented in Fig. 7

in terms of quality metrics PSNR, NCD, MAE, FSIMc, SR-

SIM and also summarized in Tables 4, 5, 6 and 7. The best

values of quality measures are depicted with bold font.

The analysis of the achieved filtering results leads to the

following conclusions:

1. The denoising efficiency of the proposed FAPGF filter

is comparable with the PGF for low contamination

levels.

2. FAPGF is very efficient for strong contamination,

(p� 0:3), and outperforms the reference filters.

3. FAPGF is always the best one from the FSIMc and SR-

SIM point of view.

The quality of the results obtained with the new and ref-

erence filters is presented using the test images CAP and

RAF contaminated with impulsive noise of intensity p ¼

0:3 in Figs. 8 and 9. The filter effectiveness for strong

impulsive noise is also confirmed by Fig. 10, which shows

the filter output for the PEP image distorted by very high-

intensity noise. The example is unrealistic, however, it

clearly shows the ability of the proposed filter to cope with

very strong noise degradation.

6 Computational complexity

Beside the denoising efficiency, the important feature of

any filtering design is its computational efficiency, which

very often plays a crucial role in image enhancement tasks,

determining its practical usability. As the comparison with

all state-of-the-art filters falls out of the scope of this paper,

we compare the computational burden of the new filtering

design with the FPGF, described already in Sect. 1. The

FPGF belongs to the fastest filters known from the lit-

erature and its efficiency is comparable for low noise

contamination levels with the novel noise reduction

method [22, 27, 34, 38, 60, 76, 87, 88].

As the analyzed techniques belong to the class of

switching filters [2, 21, 22, 38], to exclude the effect of the

(a) Caps (CAP) (b) Flower (FLO)

(c) Rafting (RAF) (d) Six-Shooter (SIX)

Fig. 6 Benchmark color images used for the evaluation of denoising

efficiency of the proposed filter
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(c) RAF test image
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(d) SIX test image

Fig. 7 Comparison of PSNR

achieved by different filters

when restoring the color test

images contaminated by CT

noise model
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image corruption intensity on the computational load, our

analysis will focus on the number of elementary op-

erations performed by impulse detection process and the

number of elementary operations needed to perform the

pixel replacement separately. The computational burden

of switching filters is increasing with rising noise in-

tensity as the replacement of corrupted pixels requires

additional, time-consuming operations [14, 16, 27, 38,

76, 87, 88].

We assume a color image with L channels and the filter

operating window of size n. The elementary operations will

be labeled as follows: Additions—ADDS, Multiplica-

tions—MULTS, Divisions—DIVS, Exponentiations—

EXPS, Extractions of roots—SQRTS, Comparisons—

COMPS.

The impulse detection process of FAPGF and FPGF

algorithms is almost the same and requires:

– Computation of ðn2 � 1Þ Euclidean distances. Each

distance requires:

L�MULTSþ 2L� ADDSþ 1� SQRTS.

– Computation of ðn2 � 1Þ � COMPS.

– Additionally FAPGF requires ðn2 � 1Þ � ADDS for

counting the number of its CNs in operating window

and 1� DIVS for distance normalization, which could

be omitted, but was introduced to simplify the filter

analysis.

The FPGF replaces the pixels found to be corrupted with

the output of the VMF. The VMF requires: ½ð2Lþ 3Þn3 �

ðLþ 2Þn2 � ðLþ 1Þn� � ADDS þ Lðn3 � nðnþ 1Þ=2Þ �

MULTS þ ðn3 � nðn þ 1Þ=2Þ � SQRTS þ ðn2 � 1Þ �
COMPS.

The FAPGF uses the weighted average Filter (WAF) for

the replacement of noisy pixel. The computation of weights

Table 4 Quality measures obtained using all tested filters for image CAP contaminated by CT noise model

Quality

measures

p Filtering techniques

FAPGF SVMFr FFNRF FOVMF PGF FMVMF AVMF ACWVMF FPGF

PNSR 0.1 40.10 37.27 39.62 34.52 39.72 38.58 31.94 39.17 38.47

0.2 36.75 30.25 35.23 33.16 34.40 34.96 28.51 32.36 34.50

0.3 34.11 24.34 30.22 30.23 29.65 30.06 25.67 26.66 29.83

0.4 31.37 19.92 25.17 25.93 24.91 25.00 22.52 22.12 24.83

0.5 27.77 16.60 20.92 21.95 20.92 20.91 19.44 18.65 20.79

NCD (10�4) 0.1 29.92 44.48 27.91 161.03 29.78 29.19 108.89 29.37 33.84

0.2 64.00 111.84 65.05 179.76 71.16 61.68 229.19 85.55 72.51

0.3 109.95 314.64 139.00 229.69 146.38 132.53 387.47 217.81 147.07

0.4 184.37 737.68 307.06 374.19 314.84 304.14 643.92 497.16 327.40

0.5 328.31 1438.90 663.08 689.83 657.44 653.62 1079.92 985.51 691.19

MAE 0.1 0.39 0.64 0.36 2.21 0.38 0.42 0.97 0.38 0.45

0.2 0.80 1.29 0.79 2.47 0.88 0.84 2.06 1.01 0.96

0.3 1.32 3.26 1.56 3.02 1.74 1.64 3.53 2.38 1.83

0.4 2.08 7.40 3.25 4.47 3.56 3.48 6.02 5.24 3.81

0.5 3.48 14.40 6.76 7.66 7.19 7.17 10.34 10.25 7.69

FSIMc 0.1 0.9963 0.9710 0.9741 0.9635 0.9744 0.9730 0.9618 0.9739 0.9729

0.2 0.9913 0.9549 0.9689 0.9583 0.9667 0.9676 0.9436 0.9623 0.9656

0.3 0.9830 0.9031 0.9518 0.9422 0.9450 0.9482 0.9138 0.9259 0.9440

0.4 0.9670 0.8105 0.9078 0.8990 0.8947 0.8976 0.8564 0.8548 0.8898

0.5 0.9281 0.7000 0.8215 0.8177 0.8055 0.8099 0.7660 0.7561 0.7986

SR-SIM 0.1 0.9983 0.9922 0.9931 0.9888 0.9932 0.9925 0.9886 0.9930 0.9924

0.2 0.9962 0.9853 0.9910 0.9863 0.9902 0.9900 0.9812 0.9879 0.9891

0.3 0.9928 0.9606 0.9838 0.9794 0.9814 0.9819 0.9681 0.9719 0.9800

0.4 0.9868 0.9084 0.9639 0.9589 0.9580 0.9574 0.9399 0.9341 0.9539

0.5 0.9688 0.8143 0.9116 0.9048 0.8953 0.8987 0.8758 0.8524 0.8899

Bold values indicate the best result obtained in a coresponding row
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requires ðn2 � 1Þ � EXPS, then ðn2 � 1Þ � ADDS and 1�

COMPS is needed to check if the pixels have at least two

CNs needed to compute the mean. Finally, the computation

of the filter output requires: ðn2 � 1Þ �MULTS, ðn2 �
1Þ � ADDS and 1� DIVS.

The number of elementary mathematical operations for

both filters is presented in Table 8 for the window size

n ¼ 3 and n ¼ 5, using the notation: impulse detection (ID)

and pixel replacement (PR) for the two filtering stages. As

can be observed, both filters require comparable amount of

elementary operations for the impulse detection. The pixel

replacement step of the FPGF is, however, much more

computationally expensive and the difference between the

two analyzed filters is significant for high contamination

ratios. Therefore, we can conclude that the proposed filter

is computationally very efficient.

Table 9 shows the average execution times when

restoring the test images GIR, LEN and MON corrupted by

the CT noise using unoptimized code. The images were

filtered using Matlab and Intel i5 processor (2.5 GHz, 8 GB

RAM, Windows 7). Each image was filtered 100 times and

the average execution time is provided with the corre-

sponding standard deviations. As expected, the computa-

tional complexity slightly increases for higher

contamination levels, due to increasing number of cor-

rupted pixels replacements.

7 Summary and conclusions

In this paper, a new efficient technique of impulsive noise

removal was proposed. The described technique has the

ability to restore images while preserving edges and tiny

image details. The performed extensive simulations show

that the new method outperforms the state-of-the-art tech-

niques especially for high noise contamination levels.

The very fast impulse detection technique coupled with

computationally efficient pixel replacement scheme makes

Table 5 Quality measures obtained using all tested filters for image FLO contaminated by CT noise model

Quality measures p Filtering techniques

FAPGF SVMFr FFNRF FOVMF PGF FMVMF AVMF ACWVMF FPGF

PNSR 0.1 38.22 36.07 37.26 33.33 37.86 36.39 30.88 36.93 36.26

0.2 35.05 30.35 33.29 31.57 33.19 33.40 27.54 31.91 32.87

0.3 32.67 25.08 29.29 29.27 29.43 29.64 25.02 27.31 29.42

0.4 30.25 21.03 25.22 26.30 25.76 25.76 22.49 23.41 25.72

0.5 27.16 17.87 21.61 23.24 22.41 22.32 20.00 20.19 22.40

NCD (10�4) 0.1 32.41 45.42 35.13 170.47 34.70 35.48 119.04 38.06 41.00

0.2 70.02 116.51 82.89 207.47 84.74 75.42 252.77 99.02 88.33

0.3 119.10 286.00 164.91 261.69 158.53 144.35 414.46 210.45 160.40

0.4 192.86 611.43 319.25 362.17 283.35 273.66 641.56 411.06 288.03

0.5 328.12 1144.79 603.83 550.18 502.66 501.47 976.52 742.43 510.70

MAE 0.1 0.49 0.67 0.49 2.51 0.49 0.56 1.20 0.53 0.64

0.2 1.02 1.47 1.07 3.14 1.19 1.13 2.57 1.30 1.35

0.3 1.68 3.30 2.03 3.96 2.20 2.07 4.28 2.64 2.41

0.4 2.59 6.74 3.75 5.25 3.81 3.73 6.72 4.95 4.13

0.5 4.12 12.32 6.83 7.47 6.49 6.50 10.34 8.69 6.90

FSIMc 0.1 0.9969 0.9757 0.9769 0.9690 0.9768 0.9761 0.9672 0.9764 0.9752

0.2 0.9931 0.9653 0.9725 0.9623 0.9706 0.9713 0.9527 0.9687 0.9691

0.3 0.9868 0.9361 0.9610 0.9504 0.9578 0.9585 0.9310 0.9492 0.9555

0.4 0.9756 0.8830 0.9347 0.9282 0.9320 0.9319 0.8959 0.9118 0.9281

0.5 0.9504 0.8072 0.8844 0.8883 0.8863 0.8863 0.8421 0.8534 0.8829

SR-SIM 0.1 0.9982 0.9929 0.9931 0.9886 0.9934 0.9925 0.9891 0.9932 0.9923

0.2 0.9959 0.9885 0.9911 0.9856 0.9905 0.9902 0.9824 0.9898 0.9894

0.3 0.9925 0.9744 0.9861 0.9798 0.9844 0.9842 0.9725 0.9810 0.9826

0.4 0.9871 0.9490 0.9738 0.9690 0.9723 0.9713 0.9556 0.9630 0.9693

0.5 0.9755 0.9106 0.9498 0.9506 0.9501 0.9503 0.9284 0.9336 0.9472

Bold values indicate the best result obtained in a coresponding row
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(a) Noisy image (b) FAPGF

(c) SVMFr (d) FFNRF

(e) FOVMF (f) PGF

(g) FMVMF (h) AVMF

(i) ACWVMF (j) FPGF

Fig. 8 Comparison of the proposed FAPGF with the state-of-the-art

filters using the test image CAP contaminated with CT noise of

intensity p ¼ 0:3

(a) Noisy image (b) FAPGF

(c) SVMFr (d) FFNRF

(e) FOVMF (f) PGF

(g) FMVMF (h) AVMF

(i) ACWVMF (j) FPGF

Fig. 9 Comparison of the proposed FAPGF with the state-of-the-art

filters using the test image RAF contaminated with CT noise of

intensity p ¼ 0:3
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that the proposed denoising design belongs to the fastest

available switching filters. Future work will be focused on

the application of the proposed denoising scheme for video

enhancement.
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