
Fast Backface Culling Using Normal Masks

Hansong Zhang∗ Kenneth E. Hoff III∗

Department of Computer Science
University of North Carolina at Chapel Hill

Abstract

This paper presents a novel method for fast and efficient backface
culling: we reduce the backface test to one logical operation per
polygon while requiring only two bytes extra storage per
polygon. The normal mask is introduced, where each bit is
associated with a cluster of normals in a normal-space
partitioning. A polygon's normal is approximated by the cluster of
normals in which it falls; the cluster's normal mask is stored with
the polygon in a preprocessing step. Although conceptually the
normal masks require as many bits as the number of clusters, we
observe that only two bytes are actually necessary. For each
frame (and for each viewing volume), we calculate the backface
mask by ORing the normals masks of all normal clusters that are
backfacing. The backface test finally reduces to a single logical
AND operation between the polygon's normal mask and the
backface mask.
CR Categories and Subject Descriptors: I.3.3 [Computer
Graphics]: Methodology and Techniques - Graphics Data
Structures and Data Types.
Additional Keywords: visibility, backface culling

1 INTRODUCTION

In the rendering of polygonal models we have traditionally
attempted to quickly remove or cull away portions of the model
that are invisible with respect to a particular viewpoint. By
removing these polygons early in the rendering process, we can
substantially reduce the required workload. For a solid (closed),
opaque model, polygons with normals facing away from the
viewer must be invisible and can thus be omitted from further
graphics processing. Each polygon is subjected to this backface
test and culled as necessary, forming the well-known process
called backface culling.

∗ CB #3175, Sitterson Hall, UNC-CH, Chapel Hill, NC 27514.
Email: {zhangh, hoff}@cs.unc.edu

Typically, the backface test involves calculating the dot product
between the polygon's normal and the vector formed from the
viewing point to any point on the polygon. If the result is
negative then the polygon is facing towards the viewer; if the
result is positive then the polygon is facing away from the viewer
and is considered to be backfacing.

 [KUMA96] has proposed a backface culling method that, in
theory, can achieve sublinear performance. This method groups
polygons and then uses frame-to-frame coherence to identify,
track, and cull entire backfacing patches. This method achieves
sublinear performance since it culls away polygons by groups. In
practice, however, the application of this method is limited due to
its model partitioning requirements and complexity (further
explained in Section 4).

This paper introduces an efficient and lightweight approach to
backface culling which requires very little effort to integrate into
existing graphics systems. The key idea is a bitmask encoding
scheme for the polygon normals and the normal space
partitioning so that the backface culling operation is reduced to a
single logical AND operation per polygon, with some
inexpensive per-frame computational overhead. As a result, we
are able to cull over 40 percent of the polygons and achieve a 60-
80 percent speedup over hardware-only backface culling.

The rest of the paper is organized as follows: Section 2 describes
the polygon normal bitmask, called the normal mask, and its
encoding scheme; in Section 3 we explain how the bitmask
encodings are used in backface culling; in Section 4 we show
experimental results; Section 5 includes a comparison of our
method with existing or possible alternatives; and then we
conclude with section 6.

2 NORMAL MASKS

The core idea of this paper is to use a bitmask (the normal mask)
to represent groups of normals in the normal space partitioning;
this forms the basis for performing the backface culling test with
only a single logical operation. This section briefly describes our
normal clustering scheme and then focuses on the method by
which these clusters are encoded with normal masks.

2.1 Normal Clustering

Grouping normals into clusters is not a new idea. Previously,
normal clustering has been used for various purposes, including
hierarchical backface culling [KUMA96] and backface culling of
curved surfaces [SHIR93]. In these papers, the authors clustered
the normal directions in a variety of ways; for example, Shirman

partitioned the normal space into "normal cones". Our method is a
simple alternative.

We partition the normal space by subdividing the surface of the
unit sphere (illustrated in 2D in figure 1 below). This can be
simplified by surrounding the sphere with an axis-aligned
bounding cube and subdividing the six faces into two-
dimensional grids of NxN rectangular cells. Each cell on the
surface of the cube is then projected onto the sphere's surface by
normalizing the vector formed from the sphere's center to points
in the cell (in practice, of course, we only project the four corner
vertices of the cell as an approximation). This forms a convenient
surface subdivision of resolution NxNx6.

Clearly this does not result in a uniform subdivision of the normal
directions; however, it does offer the advantage of efficient
classification of a normal into a normal cluster by requiring only
a simple intersection test between a ray (defined by the normal)
and a face of the cube.

2.2 Normal Encoding

The key component of our method is encoding into bitmasks the
normal clusters in the normal space subdivision. Conceptually,
imagine the bitmask as a long sequence of bits that has one bit for
each normal cluster. The bit corresponding to the cluster occupied
by a given normal will be set. We approximate a polygon’s
normal by the normal cluster in which it falls, and this
approximation (i.e. membership information) can be stored with
the polygon by storing the cluster’s bitmask. Although
conceptually this bitmask can have as many bits as the number of
clusters, we do not require such an excessive representation since
only one bit is set for a given normal mask (since a normal
belongs to only one normal cluster). So we can represent a normal
mask in a much more compact form, e.g. by treating the bitmask

as a byte sequence and storing only the non-zero byte and its
offset into the virtual byte array. We find it enough to use one
byte for the offset, which means we can represent at most 256 * 8
or 2048 bits, i.e. the maximum number of clusters is 2048. In
practice, we usually subdivide each face of the bounding cube
(see the previous section) into a 16x16 grid which leads to
16x16x6 or 1536 normal clusters. In short, we have a two-byte
representation for the normal of each polygon:

 typedef struct {
 Byte byteOffset, bitMask;
 } PolygonNormalMask;

3 BACKFACE CULLING

We now have a normal encoding scheme that allows for a very
fast and efficient backface culling test. For each frame, we first
find all of the normal clusters that are backfacing with respect to
the current viewing direction. A normal cluster is considered
backfacing only when all of the normals it contains are
backfacing. In practice, we approximate this requirement by
testing only the four corner normals of the cluster. If they are all
backfacing, then the cluster is marked as backfacing. The
backfacing clusters are recorded in a backface mask, which has as
many physical bits as the number of clusters, by setting their
corresponding bits to one. In other words, the backface mask is
the OR of all the backfacing clusters’ normal masks. Clearly, if a
polygon’s normal belongs to a backfacing normal cluster, the
polygon is backfacing. Let the backface mask be a byte array
BackMask[] and let the two-byte normal representation for a
polygon be (byteOffset, bitMask), and then the backface
test is simply a logical AND operation:

 BackMask[byteOffset] & bitMask

3.1 Determination of Backfacing Normals

First we discuss how to decide whether a normal points away
from the viewer regardless of the viewer’s position. In the parallel
projection case, this does not present a problem since we can
easily cull away the backfacing 180 degrees; however, in the
perspective case, the amount we can cull is very dependent on
both direction and position. In fact, in the perspective case, we
can often cull away more than 180 degrees. To be able to find
backfacing normals without positional information, it is necessary
to allow ourselves to be somewhat conservative in our culling; we
must find backfacing normals that will remain backfacing
regardless of viewer position (or polygon translation). We will
explain this in two dimensions, but this extends to the three
dimensional generalization in a similar manner.

Again in a parallel projection, the normal and the viewing
direction are sufficient to cull away polygons with the backfacing
180 degrees of normals. For perspective projection, the
conclusion is that if the field-of-view is FOV degrees, we can
safely identify 180-FOV degrees around the viewing direction to
be backfacing, regardless of the polygon’s spatial position. To
see this is the case, it helps to think of a perspective projection as
a “cone” of parallel projections whose directions are distributed
throughout the field-of-view. A normal is backfacing for the

Figure 1: Normal space partitioning in 2D. The axis-aligned
bounding box of the unit circle is partitioned by projecting each box
side grid cell (line segment in 2D) onto the surface of the sphere.
Each cell’s projection forms a normal clustering.

Projected
grid cell

perspective projection only when it is backfacing for all of its
“corresponding” parallel projections.

As a summary, backfacing normal determination is illustrated in
the following figure:

3.2 Improving the Rate of Culling

From the discussion above, clearly the amount we can cull
depends largely on the field-of-view. Simply put, a larger field-
of-view results in a lower culling rate. So, in order to improve the
culling rate, we can subdivide the model spatially into smaller
groups and form a viewing volume to each group which subtends
a much smaller angle than the total field-of-view. In so doing, we
make the culling rate and the total field-of-view (as one would set
in a OpenGL call) independent. We can do this rather
conveniently by utilizing any existing bounding-volume
hierarchies,

Now for each frame, we form a viewing volume (a viewing cone
actually) to each object group and calculate its field-of-view,
compute a backface mask for each, and cull the corresponding
polygons. The normal masks are calculated exactly as before, but
now we have a much tighter range of possible projection
directions, thereby increasing the culling in each group. Clearly
there is a tradeoff between the number of viewing volumes and
the percentage of culling since we must now compute backface
masks for each group, and there will be a point beyond which the
expense of finding backfacing clusters exceeds the advantage of
increased culling.

4 IMPLEMENTATION AND RESULTS

The implementation requirements are quite modest; we
implemented the algorithm in around 80 lines of C code. The
interface need only consist of two functions and one macro: a
function for encoding a normal (Encode(N)), a function for
determining backfacing clusters (BuildBackfaceMask
(VDIR,FOV)), and a macro for the fast backface test
(ISBACKFACING(NMASK)). Given a polygon's normal, Encode

simply returns a corresponding normal mask to be stored with the
polygon. BuildBackfaceMask fills the bits in the BackMask
byte array corresponding to the current backfacing clusters, given
the viewing direction and a field-of-view. Finally, the
ISBACKFACING macro performs the previously described
backface test consisting of a logical AND operation between the
normal mask and the backface mask.

We tested the algorithm for a scene consisting of two copies of
the 70,000 polygon bunny model. To increase the culling rate,
we used the bounding spheres of the bunnies to form the viewing
cones. The results are encouraging: we generally obtain over 40%
culling and 80% speedup on an SGI Indigo2 Maximum Impact.
Hardware backface culling is used in all of the performance tests.

We did performance tests for different resolutions of the normal
space subdivision. The scene is made up of two copies of a bunny
model, each of which has a bounding sphere. We compute the
angles subtended by these spheres as field-of-views for backface
culling. The results are summarized below:

Table 1: Performance Statistics
Normal
Clusters

Front-
facing
Polys

Back-
facing
Polys

% Polys
Culled

Frame Time
(ms/Frame)

24 100749 38152 27.5 469.5
96 90137 48764 35.1 425.1

216 85867 53034 38.2 396.3
384 83462 55439 39.9 388.3
600 82073 56828 40.9 391.3
864 81129 57772 41.6 393.8

1176 80299 58602 42.2 386.2
1536 79665 59236 42.6 378.6
1944 79135 59766 43.0 371.9

Graph 1: Percentage of Culling and Speedup

25

35

45

55

65

75

24 96 216 384 600 864 1176 1536 1944

Number of Clusters

P
er

ce
nt

ag
e

of
 C

ul
lin

g

Culling Rate

Speedup

Parallel Projection Perspective Projection
180 degrees backfacing 180-FOV degrees backfacing

Figure 2: The areas marked with arrows indicate the backfacing
normal direction region with respect to a given viewing direction. If
a normal cluster is completely inside the backfacing region, then it
is marked as a backfacing cluster.

Viewing Direction

FOV/2 FOV/2

5 DISCUSSION

[KUMA96] achieves sublinear speedup by discarding groups of
polygons as a whole instead of visiting each polygon. An
important assumption for this type of method is that polygons can
be reorganized into groups according to their normals — i.e., one
can reshuffle the database of polygons — without any negative
effect on rendering. In practice, this is often not the case because
there are other conflicting criteria for polygon grouping. For
example, polygons sharing a texture are often grouped together
because setting the current texture for each polygon individually
can be an expensive operation. Also, visual simulation
applications require polygons to be grouped into a spatial
hierarchy. One can always reconcile two grouping criteria into
one application, but data structures become quite complex and
sublinear performance can be lost.

Our method is easily integrable into existing rendering systems
since it performs culling operations per polygon, and thus does
not impose structural requirements on the database. The strength
of this method comes from the fact that even if the backface face
test is done per polygon, the cost is still trivial.

Since our backface culling method is currently performed on the
host CPU, we are limited to immediate mode graphics; however,
it is readily applicable for use in graphics hardware. An
implementation of this method has been planned for the geometry
processors of PixelFlow [MOLN92]; so, when in retained mode,
the hardware will perform our backface test when rendering a
display list, while requiring only two bytes of extra storage per
polygon in the display list.

Currently, our method does not support dynamic scenes in which
an object’s normals are allowed to change throughout the course
of interaction. This is a common problem for any static database
preprocessing method, and we do not address it here further.

6 CONCLUSION

We have devised a faster method for backface culling which
reduces the backface test to one logical AND operation per
polygon, while requiring only two bytes extra storage per
polygon. The normal mask is introduced as an efficient bitmask
encoding scheme for the polygon’s normals and for the clusters in
the normal space partitioning. We have shown that although
conceptually the bitmasks may require a great deal of storage,
they actually only require the two bytes per polygon. The
preprocessing stage simply involves normal cluster classification
of all polygons by their normals. The per-frame overhead in
finding backfacing clusters and building the backface mask is
very low. Our technique requires little or no modification to
existing data structures and does not affect existing object
hierarchies. In short, our system is elegant, simple, and easy to
integrate into existing complex, high-performance graphics
systems and hardware.

Acknowledgments

Special thanks go to Sarah Hoff for extensive editing support.
This work is supported in part by ARO Contract P34982-MA,
NSF Grant CCR-9319957, NSF Grant CCR-9625217, ONR
Contract N00014-94-1-0738, ARPA Contract DABT63-93-C-
0048 and NSF/ARPA Center for Computer Graphics and
Scientific Visualization

References

[KUMA96] S. Kumar, D. Manocha, B. Garrett, and M. Lin.
Hierarchical Back-face Culling. In 7th Eurographics
Workshop on Rendering. pages 231-240, 1996.

[MOLN92] S. Molnar, J. Eyles, and J. Poulton. PixelFlow:
High Speed Rendering Using Image Composition.
In SIGGRAPH 92, pages 231-240, 1992.

 [SHIR93] L.A. Shirman and S.S. Abi-Ezzi. The cone of
normals technique for fast processing of curved
patches. In EUROGRAPHICS, pages 261-272,
1993.

