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Abstract  30 

Phenotypic variations between individual microbial cells play a key role in the resistance of microbial 31 

pathogens to pharmacotherapies. Nevertheless, little is known about cell individuality in antibiotic 32 

accumulation. Here we hypothesize that phenotypic diversification can be driven by fundamental cell-to-33 

cell differences in drug transport rates. To test this hypothesis, we employed microfluidics-based single-cell 34 

microscopy, libraries of fluorescent antibiotic probes and mathematical modelling. This approach allowed 35 

us to rapidly identify phenotypic variants that avoid antibiotic accumulation within populations of Escherichia 36 

coli, Pseudomonas aeruginosa, Burkholderia cenocepacia and Staphylococcus aureus. Crucially, we found 37 

that fast growing phenotypic variants avoid macrolide accumulation and survive treatment without genetic 38 

mutations. These findings are in contrast with the current consensus that cellular dormancy and slow 39 

metabolism underlie bacterial survival to antibiotics. Our results also show that fast growing variants display 40 

significantly higher expression of ribosomal promoters before drug treatment compared to slow growing 41 

variants. Drug-free active ribosomes facilitate essential cellular processes in these fast growing variants, 42 

including efflux that can reduce macrolide accumulation. Using this new knowledge, we phenotypically 43 

engineered bacterial populations by eradicating variants that displayed low antibiotic accumulation through 44 

the chemical manipulation of their outer membrane inspiring new avenues to overcome current antibiotic 45 

treatment failures.  46 
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Introduction 47 

Phenotypic heterogeneity between genetically identical cells has been observed across all three domains 48 

of life(1,2). This heterogeneity is characterized by individual cells that display differing phenotypic traits(3,4) 49 

and permit genotypes to persist in fluctuating environments(2). Phenotypic heterogeneity in the bacterial 50 

response to antibiotics contributes to antimicrobial resistance(5–11) and the failure to effectively treat 51 

bacterial infections(12–14). Therefore, it is imperative to develop new diagnostics capable of rapidly 52 

identifying phenotypic variants that survive antibiotic treatment(15) and develop new antibiotic therapies 53 

against such phenotypic variants(16). 54 

Here we hypothesize that this phenotypic diversification is driven by fundamental cell-to-cell 55 

differences in membrane transport mechanisms and their underpinning regulatory networks. In order for an 56 

antibiotic to be effective, it needs to reach its cellular target at a concentration that is inhibitory for 57 

microorganism growth(17). In gram-negative bacteria, intracellular antibiotic accumulation(17–19) is a 58 

complex biophysical phenomenon involving different physicochemical pathways and a combination of 59 

exquisitely regulated active and passive transport processes(17,20). These processes include diffusion 60 

through the outer membrane lipid bilayer(17) and porins(21,22); self-promoted uptake through the outer 61 

membrane(23); diffusion through the inner membrane lipid bilayer which displays orthogonal selection 62 

properties compared to the outer membrane(24,25); active transport via inner membrane transporters(24); 63 

efflux out of the cell(26–29); enzymatic modification or degradation(17); and eventually binding to the 64 

intracellular target.  65 

Learning the rules that permit antibiotics to accumulate in gram-negative bacteria is vitally important 66 

in order to combat phenotypic and genotypic resistance to antibiotics(24,30,31). However, most 67 

permeability data are sequestered in proprietary databases(17). Moreover, such experimental datasets 68 

have often been generated via cell-free methods that permit the measurement of the diffusion rate of a 69 

compound through simplified membrane pathways(32), but care should be taken when projecting these 70 

data to the more complex accumulation dynamics in live cells(17). Live or fixed cell methodologies including 71 

radiometric, fluorometric or biochemical assays(33–35), mass spectrometry(36–42), Raman 72 

spectroscopy(43) and microspectroscopy(44–46) have also been employed to carry out antibiotic 73 

accumulation assays. These techniques generally rely on ensemble measurements that average the results 74 

obtained from a large population of microorganisms, or are derived from examining only a handful of 75 

individual bacteria. Therefore, little is known about the variability in individual drug accumulation across 76 

many single cells within a clonal population. 77 

Here, we fill this fundamental gap in our knowledge by harnessing the power of microfluidics-78 

microscopy(47,48) combined with fluorescent antibiotic-derived probes(49–51) as well as unlabelled 79 

antibiotics. This approach allows us to examine the interactions between the major classes of antibiotics 80 

and hundreds of live individual bacteria in real-time whilst they are being dosed with the drugs. Combined 81 

with mathematical modelling these data allow us to rapidly identify phenotypic variants that avoid antibiotic 82 

accumulation and are able to sustain growth in the presence of drugs without acquiring genetic mutations. 83 
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We show that bacteria close to the antibiotic source accumulate faster membrane-targeting antibiotics but 84 

more slowly antibiotics with intracellular targets compared to bacteria further away from the antibiotic 85 

source. In contrast with the current consensus that slow cell growth leads to reduced antibiotic efficacy, we 86 

discover that fast growing phenotypic variants avoid macrolide accumulation due to a higher abundance of 87 

both ribosomes (i.e. the drug target) and efflux pumps. We further demonstrate that chemically manipulating 88 

the bacterial outer membrane permits us to phenotypically engineer bacterial populations by eradicating 89 

variants that display low antibiotic accumulation. Adopting our novel approach in clinical settings to inform 90 

the design of improved drug therapies could radically transform our one health approach to antimicrobial 91 

resistance. 92 

 93 

Results 94 

Experimental assessment of single-cell real-time drug accumulation dynamics 95 

We combined our recently developed single-cell microfluidics-microscopy platform(47,48,52) with 96 

a library of fluorescent derivatives representing most major classes of antibiotics, including macrolides 97 

(roxithromycin)(52), oxazolidinones (linezolid)(53), glycopeptides (vancomycin)(54), fluoroquinolones 98 

(ciprofloxacin)(55), antifolates (trimethoprim)(56), and membrane-targeting lipopeptides/peptides 99 

(polymyxin B, octapeptin, tachyplesin)(54) (Fig. 1A).  100 

Each antibiotic was functionalised at a site that minimises any changes in biological activity, adding 101 

a substituent that allows for facile coupling with a small fluorophore, nitrobenzoxadiazole (NBD, Table S1) 102 

as previously reported(52–56). We confirmed that the majority of fluorescent derivatives retained the 103 

antibiotic activity of the parent drug via minimum inhibitory concentration (MIC) assays (Table S1). Next we 104 

used each probe in our microfluidics-microscopy platform(47,48,52) to quantify the dynamics of the 105 

accumulation of each antibiotic in individual bacteria in real-time (Fig. 1B). Briefly, we loaded an aliquot of 106 

a stationary phase clonal bacterial culture in a microfluidic device equipped with small parallel channels, 107 

each hosting between one to six bacteria(47,48,52). Then we continuously flowed lysogeny broth (LB) 108 

medium into the device for 2 h to stimulate cell growth and reproduction. At this point, we injected one of 109 

the antibiotic probes and imaged the real-time intracellular probe accumulation in hundreds of individual 110 

live bacteria (Video S1 and S2). Typically, upon onset (t0), the uptake was initially linear (with rate constant 111 

k1), before reaching steady-state saturation levels (Fmax, Fig. 1B) due to probe efflux, compound 112 

transformation(17), or target saturation(24), although several bacteria displayed divergent accumulation 113 

dynamics (Fig. 1B, S1 and S2). 114 
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 115 

Figure 1. Phenotypic heterogeneity in the accumulation of the major classes of antibiotics. A) 116 

Illustration depicting the eight antibiotics employed in this study alongside their bacterial targets. B) 117 

Accumulation of the fluorescent derivative of roxithromycin in 265 individual E. coli (continuous lines) after 118 

adding the probe at 46 µg mL-1 extracellular concentration in M9 minimal medium from t=0 onwards. 119 

Fluorescence values were background subtracted and normalised first by cell size and then to the maximum 120 

value in the dataset (see Methods). The circles and shaded areas represent the mean and standard 121 

deviation of the values from 265 bacteria collated from biological triplicate. The squares represent the 122 

fluorescent values of a representative bacterium that does not accumulate the fluorescent derivative of 123 

roxithromycin, whereas the triangles represent the fluorescent values of a representative bacterium that 124 

accumulates the drug. Insets: representative brightfield and fluorescence images after 7,000 s incubation 125 

in the fluorescent derivative of roxithromycin, the symbols indicate the two representative bacteria above. 126 

Scale bar: 5 µm. t0, k1 and Fmax indicate the time point at which single-cell fluorescence becomes 127 

distinguishable from the background, the rate of uptake and the final levels of accumulation at steady-state, 128 

respectively. C) Population average (symbols) and standard deviation (shaded areas) of the accumulation 129 
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of the fluorescent derivatives of polymyxin B (triangles), trimethoprim (stars), roxithromycin (circles) and 130 

vancomycin (squares) probes added at 46 µg mL-1 extracellular concentration in M9 minimal medium from 131 

t=0 onwards. Data are obtained by averaging at least one hundred single-cell values (i.e. N=103, 175, 265 132 

and 236, respectively) collated from biological triplicate. Corresponding single-cell data along with data for 133 

the fluorescent derivatives of linezolid, tachyplesin, octapeptin and ciprofloxacin probes are reported in Fig. 134 

S1. 135 

 136 

Heterogeneity in antibiotic accumulation in gram-negative and gram-positive bacteria 137 

These single-cell measurements revealed hitherto unrecognised phenotypic heterogeneity in 138 

intracellular drug accumulation in clonal populations of E. coli as evident from the microscopy images in 139 

Fig. 1B and Fig. S1. In contrast, standard techniques measure population averages of drug accumulation 140 

across thousands or millions of cells(19,33,35–39,42). In our single-cell assay, population averages (circles 141 

in Fig. 1B) did not reflect the fact that some phenotypic variants displayed a remarkably delayed onset, 142 

slower uptake rate or reduced saturation with respect to other cells (e.g. compare the accumulation 143 

trajectories reported by the squares - no accumulation - vs triangles - high accumulation - in Fig. 1B). These 144 

phenotypic variants have thus far remained unrecognised in population-based experiments and give rise 145 

to large coefficients of variation (CV, the ratio of the standard deviation over the mean) in the accumulation 146 

of each of the eight investigated antibiotics (Fig. 1C and S3). In the following we will therefore use CV as a 147 

reporter for phenotypic heterogeneity within bacterial populations as previously reported(57). 148 

All bacteria within each experiment were exposed to the same concentration of probe (46 µg mL-1) 149 

for the same duration and to the same drug milieu, i.e. minimal medium M9 to avoid dilution of probes due 150 

to cell growth(17). In accordance with previous studies about phenotypic responses to antibiotics(58,59), 151 

we found that bacterial variants displaying delayed or reduced antibiotic accumulation were genuine 152 

phenotypic variants, since DNA sequencing of the device outflow did not reveal any genetic mutations 153 

compared to untreated bacteria. Furthermore, these variants did not display significant differences in cell 154 

size (Fig. S4) and we further normalised each single-cell fluorescence value to the corresponding single-155 

cell size (see Methods)(60). 156 

Due to the presence of these phenotypic variants, not all the bacteria were stained by each 157 

antibiotic probe, thus we found drug-dependent dynamics in the fraction of stained bacteria (Fig. S5). The 158 

lipopeptide/peptide probes targeting the outer bacterial membrane (polymyxin B, octapeptin and 159 

tachyplesin) stained 90% of the investigated bacteria within 1,000 s post-addition to the microfluidic device. 160 

At this time, the trimethoprim and ciprofloxacin probes targeting intracellular components had stained only 161 

50% of the bacteria, whereas the number of bacteria stained by roxithromycin and vancomycin probes, with 162 

a large molecular weight (1064 and 1650 g mol-1, respectively), was close to zero. However, the 163 

roxithromycin probe did stain 50% and 90% of the bacteria around 7,500 s and 9,000 s, respectively, post-164 

addition to the device, by which time only 15% of the bacteria had been stained by vancomycin. The lack 165 

of vancomycin staining was expected since vancomycin cannot cross the gram-negative double membrane 166 

to access its peptidoglycan target(61). 167 
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Next, we verified that this hitherto unrecognised heterogeneity in antibiotic accumulation is not a 168 

phenotypic feature exclusive to E. coli. When we compared and contrasted roxithromycin-NBD 169 

accumulation in E. coli against uptake in the gram-positive bacterium S. aureus, we found that although the 170 

latter displayed more rapid accumulation dynamics (Fig. S6A and S6B, respectively), also S. aureus 171 

displayed phenotypic variants with delayed or reduced accumulation. In fact, roxithromycin-NBD reached 172 

saturation levels 3,000 s post-addition in some S. aureus cells, whereas other bacteria accumulated the 173 

drug at very low levels and only by 5,000 s post-addition (with a CV in range 53-372% and 29-73% for E. 174 

coli and S. aureus, respectively). In contrast, the gram-positive targeting vancomycin-NBD readily and 175 

homogeneously accumulated in S. aureus within 2,500 s post-addition (CV in range 12-14%, Fig. S7B), but 176 

did not accumulate in E. coli (within this same timeframe, Fig. S7A). Finally, we found phenotypic variants 177 

with delayed or reduced accumulation of ciprofloxacin-NBD in three clinically-relevant gram-negative 178 

bacteria: E. coli, Pseudomonas aeruginosa and Burkholderia cenocepacia (CV in range 12-329%, 24-534% 179 

and 31-90%, Fig. S8A, S8B and S8C, respectively). Furthermore, ciprofloxacin-NBD accumulated more 180 

slowly and to a lower extent in P. aeruginosa compared to E. coli and B. cenocepacia (Fig. S8) in 181 

accordance with previous measurements at the whole population level(35) and possibly due to the high 182 

porin impermeability in P. aeruginosa(62).  183 

Finally, in order to verify that neither the drug milieu nor the concentration nor the labelling underpin 184 

the observed heterogeneity in antibiotic accumulation, we run separate controls using E. coli and both sub-185 

inhibitory and inhibitory concentrations of roxithromycin-NBD dissolved either in M9 or LB (Fig. S9), as well 186 

as unlabelled ciprofloxacin, ciprofloxacin-NBD, roxithromycin-NBD and roxithromycin-DMACA 187 

(dimethylaminocoumarin-4-acetate, Fig. S10). In all cases we identified phenotypic variants with delayed 188 

or reduced antibiotic accumulation, leading to large CVs as shown in Fig. S9 and Fig. S10. We can also 189 

exclude possible effects of variations in magnesium availability(23,63) on the measured heterogeneity in 190 

antibiotic accumulation since all bacteria were exposed to the same medium within the microfluidic device. 191 

 192 

Single-cell coupling between kinetic accumulation parameters 193 

Prompted by these novel findings, we moved on to an in-depth examination of antibiotic 194 

accumulation dynamics and the underlying cellular and molecular mechanisms. Firstly, we developed and 195 

implemented a mathematical model to rationalise these markedly heterogeneous single-cell accumulation 196 

dynamics, including phenotypic variants with delayed or reduced antibiotic accumulation (see Methods). 197 

Briefly, this model describes drug accumulation based on two coupled ordinary differential equations. The 198 

first equation describes drug accumulation in terms of uptake, which proceeds at a time-varying rate, and 199 

drug loss (due to efflux or degradation(17)), which we assume to be a first order reaction with rate constant 200 

dc. The second equation describes how the uptake rate changes over time. Here we assume a state of 201 

uptake (parameter k1, which switches on with a time delay; parameter t0); a linear decay term (parameter 202 

dr); as well as an adaptive inhibitory effect (parameter k2) of the intracellular drug concentration on the 203 

uptake rate (allowing us to capture the dip we observe in some single-cell trajectories in Fig. S2). We used 204 
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this model to fit our single-cell E. coli data on the accumulation of all the above investigated drugs apart 205 

from vancomycin. This allowed us to compare and contrast the accumulation kinetic parameters above for 206 

the different antibiotics, since we used the same probe concentration for each drug (46 µg mL-1) and all 207 

drugs were tested against the same clonal E. coli population. For vancomycin we found poor fitting for the 208 

majority of cells (195 out of 241 cells), as the fluorescent signal remained indistinguishable from the 209 

background, due to low cellular uptake (Fig. S1H). 210 

Membrane targeting antibiotic probes displayed on average faster accumulation onset (t0 = 306, 211 

364 and 571 s for tachyplesin, polymyxin B and octapeptin, respectively) compared to antibiotics with an 212 

intracellular target (t0 = 437, 2,525, 3,608 and 6,614 s for linezolid, trimethoprim, ciprofloxacin and 213 

roxithromycin, respectively, Fig. S11). Remarkably, we found notable cell-to-cell differences in t0 across all 214 

investigated drugs with a maximum CV of 209% for polymyxin B, and a minimum CV of 25% for 215 

roxithromycin (Fig. S11), further confirming the presence of phenotypic variants with delayed antibiotic 216 

accumulation.  217 

Membrane targeting antibiotic probes also displayed, on average, steeper rates of uptake (k1 = 218 

260, 229 and 93 a.u. s-2 for tachyplesin, polymyxin B and octapeptin, respectively) compared to antibiotics 219 

with an intracellular target (k1 = 4.4, 1.6, 0.9 and 0.3 a.u. s-2 for roxithromycin, linezolid, ciprofloxacin and 220 

trimethoprim, respectively, Fig. S11). Also, k1 was heterogeneous across all drugs investigated with a 221 

maximum CV of 124% for roxithromycin and a minimum CV of 37% for trimethoprim (Fig. S11), further 222 

confirming the presence of phenotypic variants with slow antibiotic uptake. 223 

Membrane targeting antibiotic probes also displayed, on average, higher steady-state saturation 224 

levels (Fmax = 2,597, 2,357 and 2,264 a.u. for tachyplesin, octapeptin and polymyxin B, respectively) 225 

compared to antibiotics with an intracellular target (Fmax = 1,034, 512, 253 and 180 a.u. for roxithromycin, 226 

linezolid, trimethoprim and ciprofloxacin, respectively, Fig. S11). Fmax was also heterogeneous with a 227 

maximum CV of 55% for roxithromycin and a minimum CV of 9% for octapeptin (Fig. S11) further confirming 228 

the presence of phenotypic variants with reduced antibiotic accumulation. For brevity, the second order 229 

kinetic parameters k2, dr, and dc are reported and discussed only in Fig. S12. 230 

The finding that accumulation of membrane targeting probes happens earlier, faster and to a 231 

greater extent than probes with an intracellular target can be easily rationalised considering that the latter 232 

probes need to cross the gram-negative double membrane. This represents a very good validation of our 233 

combined experimental and theoretical approach. However, the large heterogeneity in the kinetic 234 

parameters describing the accumulation of all probes, due to phenotypic variants with delayed or reduced 235 

accumulation, was instead unexpected. Additionally, the finding that roxithromycin simultaneously 236 

displayed the most delayed accumulation onset but also the steepest rate of uptake and highest steady-237 

state saturation levels, across antibiotic probes with intracellular targets, was also unexpected. These data 238 

corroborate the hypothesis that multiple mechanisms must be involved in intracellular antibiotic 239 

accumulation at the level of the individual cell(17), a point which we expand on below. 240 
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Next, we used the inferred accumulation kinetic parameters to test the hypothesis that phenotypic 241 

variants within a clonal population specialise to reduce antibiotic accumulation. When we pooled together 242 

the single-cell values for all the antibiotics tested against E. coli, we found a strong negative correlation 243 

between t0 and k1 and t0 and Fmax, but a strong positive correlation between k1 and Fmax (Fig. 2A-C, Pearson 244 

coefficients r = -0.40, -0.27 and 0.65, respectively, p<0.0001; the relationship between k1 and Fmax is 245 

partially imposed by the definition of Fmax in the model, whereas the ones between t0 and k1 or Fmax are not). 246 

 247 

Figure 2. Single-cell coupling between key kinetic accumulation parameters. Correlation between A) 248 

t0 and k1, B) t0 and Fmax, C) k1 and Fmax describing the accumulation of the fluorescent derivatives of 249 

polymyxin B (downward triangles), tachyplesin (upward triangles), octapeptin (crosses), linezolid 250 

(hexagons), trimethoprim (stars), ciprofloxacin (diamonds) or roxithromycin (circles) in N = 103, 106, 88, 251 

178, 175, 122, 265 individual E. coli, respectively. Each data point represents the values of two kinetic 252 

parameters inferred for an individual bacterium from the data in Fig. S1 using our mathematical model. 253 

Statistical classification of the accumulation of D) membrane- (i.e. polymyxin B, tachyplesin and octapeptin) 254 

vs intracellular-targeting antibiotics (i.e. linezolid, trimethoprim, ciprofloxacin, roxithromycin), E) polymyxin 255 

B, F) tachyplesin or G) octapeptin vs the remaining membrane-targeting antibiotics, H) linezolid, I) 256 

trimethoprim, J) ciprofloxacin or K) roxithromycin vs remaining antibiotics with an intracellular target. These 257 

confusion tables are predictions generated using only the two kinetic parameters that can be rapidly 258 

measured experimentally, namely t0 and k1. Similar statistical classifications were obtained when using the 259 

full set of kinetic parameters, i.e. k2, dr, and dc in addition to t0 and k1. 260 

 261 

These strong correlations show that the bacteria which start accumulating drugs later also display 262 

slow uptake and low saturation levels. This statistical analysis also reveals that i) it is possible to rapidly 263 

identify phenotypic variants displaying reduced antibiotic accumulation by inferring the whole set of kinetic 264 

parameters from a smaller subset (e.g. by inferring Fmax from t0 and k1, the latter two can be measured 265 
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significantly faster); ii) within a clonal bacterial population some phenotypic variants specialise to reduce 266 

antibiotic accumulation in multiple ways, from delaying accumulation to reducing accumulation levels. To 267 

further test this latter hypothesis, we measured the correlation between different kinetic parameters for each 268 

drug data set (Fig. 2 and Table S2). We found a significantly negative correlation between t0 and k1 for the 269 

accumulation of polymyxin B, octapeptin and roxithromycin probes; we also found a significantly negative 270 

correlation between t0 and Fmax for the accumulation of polymyxin B, octapeptin, linezolid and trimethoprim 271 

probes and a significantly positive correlation between k1 and Fmax for the accumulation of polymyxin B, 272 

ciprofloxacin and roxithromycin probes (Fig. 2 and Table S2). Taken together these data suggest that within 273 

a clonal population some phenotypic variants specialise to reduce accumulation of a wide range of 274 

commonly employed antibiotics.  275 

Furthermore, we also used our mathematical framework to test the hypothesis that treatment with 276 

each antibiotic gives rise to a unique accumulation profile that permits identifying and classifying the 277 

antibiotic in use, which is important in the context of drug development. Using statistical classification with 278 

only two kinetic parameters (t0 and k1, i.e. the two parameters that can be rapidly measured experimentally), 279 

we found that treatment with membrane targeting probes is correctly classified against treatment with 280 

intracellular targeting probes with 99% accuracy (1,075 cells analysed, Fig. 2D). Moreover, treatment with 281 

polymyxin B, tachyplesin or octapeptin was correctly classified among treatments with the other two 282 

membrane targeting probes with 77%, 76% and 64%, respectively (Fig. 2E-G). Finally, treatment with 283 

linezolid, trimethoprim, ciprofloxacin or roxithromycin was correctly classified among treatments with the 284 

other three intracellular targeting probes with 97%, 84%, 64% and 86% accuracy, respectively (Fig. 2H-K). 285 

It is worth noting that we obtained similar levels of accuracy when we run such statistical classifications 286 

using the full set of kinetic accumulation parameters (i.e. t0, k1, k2, dr and dc), further demonstrating that 287 

measuring only t0 and k1 provides a good description of the antibiotic accumulation process. 288 

 Taken together, these data strongly suggest the existence of a unique accumulation pattern for 289 

the specific antibiotic in use. Therefore our novel experimental and theoretical framework will enable the 290 

classification of novel antibiotic compounds according to their kinetic accumulation parameters. As such 291 

this platform could be utilized for rapid phenotyping of bacterial populations ultimately in clinical antibiotic 292 

testing. 293 

 294 

Phenotypic variants with reduced antibiotic accumulation survive antibiotic treatment 295 

Next, we hypothesised that phenotypic variants displaying reduced antibiotic accumulation also 296 

better survive antibiotic treatment, the correlation between antibiotic uptake and efficacy remaining poorly 297 

investigated(17). We decided to focus on the macrolide roxithromycin since a large number of phenotypic 298 

variants displayed reduced roxithromycin accumulation (Fig. S2). When we measured the elongation rate 299 

of individual cells while they were being dosed with roxithromycin-NBD dissolved in LB, we found two 300 

distinct cellular responses. While the majority of cells stopped growing during drug exposure (Fig. 3A), 301 
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some phenotypic variants within the same clonal E. coli population continued elongating for the entire 302 

duration of drug treatment (Fig. 3B).  303 

 304 

Figure 3. Correlation between antibiotic efficacy and antibiotic accumulation. Temporal patterns of 305 

elongation rate during exposure to the fluorescent derivative of roxithromycin for A) five representative E. 306 

coli bacteria that accumulated the drug and B) five representative E. coli bacteria that did not accumulate 307 

the drug. The fluorescent derivative of roxithromycin was delivered at t = 0 at a concentration of 46 µg mL-308 
1 and was dissolved in LB, circles and arrows indicate t0, the time point at which each bacterium started to 309 

accumulate the drug (i.e. bacterial fluorescence signal became distinguishable from the background). C) 310 

Correlation between each bacterium t0 and its average elongation rate throughout exposure to the 311 

fluorescent derivative of roxithromycin (i.e. 0 < t < 8100 s). r is the Pearson coefficient quantifying the 312 

correlation above, ***: p-value < 0.001, N = 52 bacteria. D) Average elongation rates for bacteria that had 313 

not yet started (before uptake) or had started (after uptake) accumulating the fluorescent derivative of 314 

roxithromycin, as well as for bacteria that did not accumulate the drug (no uptake). The red dashed and 315 

blue dotted lines within each violin plot represent the median and quartiles of each data set, respectively. 316 

Paired t-test between elongation rates before and after onset in accumulation: ****, p-value < 0.0001, N = 317 

36 pairs. Unpaired t-test between the elongation rates of bacteria that did not take up the drug compared 318 

to the elongation rate of bacteria that had not yet started taking up the drug: not significant, p-value = 0.07, 319 

N = 13 and 36 bacteria, respectively. Unpaired t-test between the elongation rates of bacteria that did not 320 

take up the drug compared to the elongation rate of bacteria that had started taking up the drug: ****, p-321 

value < 0.0001, N = 13 and 36 bacteria, respectively. 322 

 323 

Furthermore, there were significant cell-to-cell differences in the time at which cells stopped 324 

growing (Fig. 3A). Notably, this time coincided with the onset in roxithromycin-NBD accumulation (t0, 325 

indicated by circles and arrows in Fig. 3A), whereas phenotypic variants that continued growing did not 326 
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accumulate roxithromycin-NBD for the entire duration of the treatment (Fig. 3B). These data suggest a 327 

strong link between reduced antibiotic accumulation and survival to antibiotic treatment. In fact, we found a 328 

strong positive correlation between the onset of roxithromycin-NBD accumulation and the average 329 

elongation rate during exposure to roxithromycin-NBD (r = 0.49, ***, Fig. 3C). Moreover, individual bacteria 330 

that accumulated roxithromycin-NBD displayed a drastically reduced elongation rate after roxithromycin-331 

NBD accumulation started compared to their elongation rate before uptake (**** paired t-test, Fig. 3D). 332 

Phenotypic variants that did not accumulate roxithromycin-NBD instead displayed an elongation rate that 333 

was not significantly different compared to the elongation rate of bacteria that had not yet started taking up 334 

roxithromycin-NBD (ns unpaired t-test, Fig. 3D). Finally, phenotypic variants that did not accumulate 335 

roxithromycin-NBD displayed an elongation rate that was significantly higher compared to the elongation 336 

rate of bacteria that had started taking up roxithromycin-NBD (**** unpaired t-test, Fig. 3D).  337 

Taken together these data demonstrate that cell-to-cell differences in drug accumulation have 338 

important consequences on the outcome of antibiotic therapy, prompting us to investigate the mechanisms 339 

underlying phenotypic variants with delayed or reduced antibiotic accumulation. 340 

 341 

The microcolony architecture affects heterogeneity in antibiotic accumulation 342 

Firstly, we tested the hypothesis that these phenotypic variants reduced antibiotic accumulation 343 

because of the presence of other bacteria (i.e. screening cells) between them and the main microfluidic 344 

chamber, where the drug is injected. To test this hypothesis, we classified our data in subpopulations of 345 

bacteria that had zero, one, two, three or four screening cells between themselves and the main microfluidic 346 

chamber (see Inset in Fig. 4E where the drug diffuses from left to right).   347 

For polymyxin B we observed that increasing the number of screening cells increased t0 while 348 

reducing k1 and Fmax (Pearson correlation coefficient r = 0.50, -0.48 and -0.40,****, **** and ***, respectively, 349 

Fig. 4A-C). Moreover, octapeptin and tachyplesin displayed strong negative correlation between k1 and the 350 

number of screening cells (r = -0.63 and -0.67, respectively, ****); octapeptin also displayed a strong positive 351 

correlation between t0 and the number of screens (r = 0.71, ****). These data were in accordance with our 352 

hypothesis that screening cells transiently decrease the pool of drug molecules available for screened cells 353 

until the bacteria closer to the main chamber reach antibiotic accumulation saturation levels. These data 354 

provide a mechanistic understanding for the large heterogeneity in t0 measured for such membrane-355 

targeting probes (Fig. S11). In contrast with our hypothesis, for roxithromycin we found that increasing the 356 

number of screens in front of a cell reduced t0 and increased Fmax (r = -0.16 and 0.15, ** and *, respectively, 357 

Fig. 4D-F). Moreover, both ciprofloxacin and linezolid displayed a strong negative correlation between t0 358 

and the number of screens (r = -0.53 and -0.28, **** and ***, respectively); ciprofloxacin also displayed a 359 

strong positive correlation between k1 and the number of screens (r = 0.32, ***). These novel findings were 360 

unexpected and were not dictated by oxygen limitation or low metabolic activity as in the case of 361 

biofilms(64). In fact, we(47) and others(65) have previously demonstrated that nutrients, including oxygen 362 
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and metabolites, uniformly distribute across the whole length of bacteria hosting channels in our microfluidic 363 

device.  364 

Taken together these findings suggest non-trivial and drug-specific effects of the bacterial 365 

microcolony architecture on the dynamics of drug accumulation in individual bacteria, a novel phenotypic 366 

feature that should be taken into account when designing and optimising new drugs and therapies. 367 

Moreover, mechanisms other than the microcolony architecture must underlie phenotypic variants with 368 

reduced antibiotic accumulation. In fact, we registered significant cell-cell differences in antibiotic 369 

accumulation even within the same subpopulation of bacteria with the same number of screening cells; 370 

these differences were more pronounced for antibiotic with intracellular targets compared to membrane 371 

targeting antibiotics (e.g. roxithromycin and polymyxin B, respectively, in Fig. 4) 372 

 373 

 374 

Figure 4. Effect of the presence of screening cells on the accumulation of antibiotics in single cells. 375 

Dependence of the kinetic parameters t0 , k1, and Fmax for the accumulation of fluorescent derivatives of 376 

polymyxin B A-C) and roxithromycin D-F) on the number of screening cells between the bacterium under 377 
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investigation and the main microfluidic chamber where the drug is continuously injected. Each data point is 378 

the value of a kinetic parameter inferred for an individual bacterium from the data in Fig. S1 using our 379 

mathematical model, N = 103 and 265 for polymyxin B and roxithromycin, respectively. The red dashed 380 

and blue dotted lines within each violin plot represent the median and quartiles of each data set, 381 

respectively. r is the Pearson coefficient quantifying the correlation between each inferred kinetic parameter 382 

and the number of screening cells in front of each bacterium. ns: not significant correlation, *: p-value < 383 

0.05, **: p-value < 0.01, ***: p-value < 0.001, ****: p-value < 0.0001. Inset: representative brightfield and 384 

fluorescence images illustrating, from left to right, a bacterium screened by 0, 1, 2, 3, and 4 cells, 385 

respectively; roxithromycin-NBD was injected in the main microfluidic chamber in the left-hand side of the 386 

image and diffused from left to right. The fluorescence image shows early roxithromycin-NBD accumulation 387 

in the bacterium screened by the highest number of cells.  388 

 389 

Cell-to-cell differences in growth rate before treatment underlie heterogeneity in antibiotic 390 

accumulation 391 

In order to further dissect the mechanisms underlying phenotypic variants with reduced antibiotic 392 

accumulation, we took advantage of continuous live-cell imaging to track individual bacteria for the two-393 

hour growth period in LB before incubation in each antibiotic. This permitted us to investigate links between 394 

each bacterium's growth and its capability to avoid or delay antibiotic accumulation. We investigated the 395 

correlation between elongation rate before treatment and the kinetic parameters describing the 396 

accumulation of two representative membrane-targeting antibiotics, i.e. octapeptin and tachyplesin, and 397 

two representative antibiotics with intracellular targets, i.e. trimethoprim and roxithromycin. 398 

We did not find any significant correlation between single-cell elongation rate before treatment and 399 

any of the kinetic parameters describing the accumulation of octapeptin and trimethoprim (Fig. S13A-C and 400 

S13G-I, respectively). However, we found a positive correlation between single-cell elongation rate before 401 

treatment and k1 for tachyplesin (r = 0.59, **, Fig. S13E), suggesting that the latter accumulated faster in 402 

fast growing cells. On the contrary, for roxithromycin, we found a significantly positive correlation between 403 

single-cell elongation rate before treatment and t0 and a significantly negative correlation between single-404 

cell elongation rate before treatment and Fmax (r = 0.66 and -0.54, **** and ***, respectively, Fig. 5A and 405 

5C), but no correlation with cell size (Fig. S4). Furthermore, we found that, as expected, the average 406 

elongation rate significantly decreased after roxithromycin-NBD addition (5.2 ± 3.7 µm h-1 vs 3.7 ± 2.3 µm 407 

h-1, before and after drug addition, respectively, ****, Fig. S14A). Moreover, we also found a significantly 408 

positive correlation between single-cell elongation rate before treatment and single-cell elongation rate 409 

during treatment (r = 0.34, *, Fig. S14A). Finally, to further verify that these findings were not due to drug 410 

labelling, we performed these experiments with unlabelled roxithromycin confirming a significantly positive 411 

correlation between single-cell elongation rate before treatment and single-cell elongation rate during 412 

treatment (r = 0.47, ***, Fig. S14B). 413 
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 414 

Figure 5. Differential cell growth and expression of key molecular pathways underlie heterogeneity 415 

in roxithromycin accumulation. A-C) Correlation between the single-cell kinetic parameters t0, k1 and 416 

Fmax describing the accumulation of roxithromycin-NBD and the bacterial elongation rate during the two-417 

hour growth period preceding antibiotic treatment (see Methods). Measurements were carried out on N = 418 

50 individual E. coli, collated from biological triplicate, before and after exposure to 192 µg mL-1 419 

roxithromycin-NBD dissolved in M9. D-F) Correlation between the single-cell GFP fluorescence as a proxy 420 

for the expression of tolC, ompC and rrnB promoters and the bacterial elongation rate during the two hour 421 

growth period preceding antibiotic treatment (see Methods). r is the Pearson coefficient quantifying the 422 

correlation between each inferred kinetic parameter and the corresponding elongation rate of each cell. ns: 423 

not significant correlation, **: p-value < 0.01, ***: p-value < 0.001, ****: p-value < 0.0001. Dashed lines are 424 

linear regressions to the data. Measurements were carried out on N = 34, 30 and 35 individual E. coli 425 

collated from biological triplicate for the tolC, ompC and rrnB reporter strains, respectively. 426 

 427 

These data demonstrate that phenotypic variants displaying reduced roxithromycin accumulation 428 

are fast growing bacteria that also better survive roxithromycin treatment, thus establishing, for the first 429 

time, a strong link between heterogeneity in antibiotic efficacy and cell-to-cell differences in antibiotic 430 

accumulation. These novel findings are surprising considering that phenotypic survival to antibiotics has 431 

traditionally been linked to slow growth, low metabolic activity and bacterial dormancy(66–68). In contrast, 432 

here we show that fast growth facilitates delayed roxithromycin accumulation as well as reducing the 433 

amount of macrolide accumulating in individual bacteria at steady state this decreasing roxithromycin 434 

efficacy. 435 

 436 

Single-cell ribosome and efflux pump abundance underlies heterogeneity in macrolide 437 

accumulation 438 

In order to determine the molecular mechanisms underpinning phenotypic variants with reduced 439 

roxithromycin accumulation, we investigated whether heterogeneity in bacterial growth rate could be linked 440 

to heterogeneity in the expression of key molecular pathways underlying roxithromycin accumulation. We 441 

hypothesised that heterogeneity in t0 could be linked to cell-to-cell differences in the capability to pump 442 
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antibiotics out from the cell, thus delaying the onset of accumulation. tolC, which encodes the outer 443 

membrane channel of the multi-drug efflux pump AcrAB-TolC and the macrolide efflux pump MacAB-444 

TolC(17), was the most highly expressed efflux pump related gene according to our transcriptomic data of 445 

E. coli cultures growing on LB for a period of two hours after dilution of an overnight culture (Table S3 446 

and(69)). Therefore, we used a tolC transcriptional reporter strain(8) to establish a link between the kinetic 447 

parameter t0, single-cell elongation rate and tolC expression during the two hour growth period before 448 

exposure to roxithromycin. In line with our hypothesis above, we found a positive correlation between the 449 

expression of tolC and single-cell elongation rate during the two-hour growth period before exposure to 450 

roxithromycin (r = 0.53, **, Fig. 5D). 451 

Next, we hypothesised that heterogeneity in the rate of drug uptake k1 could be ascribed to cell-to-452 

cell differences in the expression of outer membrane porins allowing antibiotic passage across the outer 453 

membrane. ompC, which encodes the outer membrane protein OmpC facilitating influx of several 454 

antibiotics(17,70), was the most highly expressed outer membrane protein encoding gene according to our 455 

transcriptomic data at the population level (Table S3 and(69)). In contrast with our hypothesis, we did not 456 

find a significant correlation between ompC expression and single-cell elongation rate during the two-hour 457 

growth period before drug exposure (r = 0.31, ns, Fig. 5E). These data demonstrate that bacteria growing 458 

at different rates do not display significantly different levels of ompC expression and accordingly we did not 459 

find significant correlation between cell growth and k1 (Fig. 5B). 460 

Finally, we hypothesised that cell growth and saturation levels in roxithromycin accumulation could 461 

depend on the ribosomal content (i.e. the drug target) at the single-cell level. Accordingly, we found a strong 462 

positive correlation between the expression of the ribosomal promoter rrnB and single-cell elongation rate 463 

during the two-hour growth period before exposure to roxithromycin (r = 0.72, ****, Fig. 5F).  464 

Taken together these data shed light on the molecular mechanisms underpinning the observed 465 

heterogeneity in the intracellular accumulation of the macrolide roxithromycin: fast growing variants reduce 466 

the intracellular accumulation of roxithromycin, and thus better survive treatment with this drug, via elevated 467 

ribosomal content and, to a lesser extent, higher expression of efflux pumps. These data call into question 468 

the current consensus that metabolically inactive or dormant bacteria better survive antibiotic challenge(66–469 

68,71). 470 

 471 

External manipulation of the heterogeneity in antibiotic accumulation 472 

Building on the molecular understanding gained above, we then set out to establish whether 473 

phenotypic variants displaying reduced roxithromycin accumulation could be suppressed either genetically 474 

or chemically. In order to do so, we employed a DtolC knock-out mutant and found that, when investigating 475 

roxithromycin accumulation, t0 was significantly lower and k1 was significantly higher in the DtolC mutant 476 

compared to the parental strain (Fig. 6A and 6B, respectively). 477 
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 478 

Figure 6. Genetic and chemical manipulation of heterogeneity in drug accumulation. Distributions of 479 

single-cell values for the kinetic parameters A) t0, B) k1 and C) Fmax describing the accumulation of the 480 

fluorescent derivative of roxithromycin (at 46 µg mL-1 in M9) in the E. coli BW25113 parental strain (PS), 481 

the knock-out mutant DtolC and the parental strain co-treated with unlabelled polymyxin B at 1 µg mL-1 482 

extracellular concentration. The red dashed and blue dotted lines within each violin plot represent the 483 

median and quartiles of each data set, respectively. ****: p-value<0.0001. N = 262, 241 and 116 individual 484 

parental strain E. coli treated with the roxithromycin probe, DtolC E. coli treated with the roxithromycin probe 485 

and parental strain E. coli co-treated with the roxithromycin probe and 1 µg mL-1 unlabelled polymyxin B. 486 

 487 

However, we also found DtolC phenotypic variants with reduced roxithromycin accumulation and 488 

even higher levels of heterogeneity in the three kinetic parameters for the DtolC mutant compared to the 489 

parental strain (CV of 27% vs 25%, 114% vs 80%, 72% vs 62% for t0, k1, and Fmax, respectively, Fig. 6). 490 

These data demonstrate that targeting efflux might not be a promising avenue to reduce heterogeneity in 491 

drug accumulation and confirm that the observed heterogeneity in roxithromycin accumulation is not 492 

exclusively underpinned by cell-to-cell differences in efflux pump expression. 493 
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Since we demonstrated that heterogeneity in porin expression does not underpin cell-to-cell differences in 494 

roxithromycin accumulation, we hypothesised that the composition and permeability of the lipid bilayer 495 

making up the bacterial outer membrane could underlie heterogeneity in roxithromycin accumulation. If this 496 

were true, the heterogeneity in roxithromycin accumulation could be chemically manipulated by using 497 

agents that permeabilise the outer membrane, such as polymyxin B(72). Accordingly, when we treated the 498 

parental strain with roxithromycin-NBD at 46 µg mL-1 in combination with unlabelled polymyxin B at 1 µg 499 

mL-1 extracellular concentration, we found a significant decrease in the heterogeneity of k1 and Fmax 500 

compared to roxithromycin-NBD treatment alone (CV of 59% vs 80%, 14% vs 62%, respectively, Fig. 6B 501 

and 6C). Additionally, the accumulation dynamics of roxithromycin-NBD in the presence of unlabelled 502 

polymyxin B was significantly earlier and faster compared to that measured in the absence of polymyxin B 503 

(Fig. 6). Taken together, these data suggest that phenotypic variants displaying reduced roxithromycin 504 

accumulation might have a significantly more impermeable outer membrane than phenotypically 505 

susceptible bacteria, possibly due to differences in lipid composition and packing and that targeting the 506 

outer membrane might be a viable avenue for suppressing variants with reduced intracellular antibiotic 507 

accumulation. 508 

 509 

Discussion 510 

Bacterial slow growth has often been associated with decreased antibiotic susceptibility(66,73,74) 511 

with few exceptions(75,76). Moreover, a recent paper suggested that phenotypic variants accumulate lower 512 

levels of phenoxymethylpenicillin while being in a dormant state before treatment(59). In striking contrast, 513 

here we provide compelling evidence that fast growth and elevated ribosomal content better prepare 514 

phenotypic variants for avoiding the intracellular accumulation of macrolides, a finding that needs to be 515 

considered when designing antibiotic therapy.  516 

A linear correlation between ribosomal abundance and growth rate has previously been found via 517 

ensemble measurements obtained on exponentially growing E. coli supplied with nutrients of increasing 518 

quality in the absence of antibiotics(77). Our findings enrich the current understanding of the 519 

interdependence of cell growth and ribosomal content demonstrating that this correlation holds within an 520 

isogenic population homogeneously exposed to the same medium.  521 

Previous ensemble measurements have demonstrated that fast growth on high quality nutrients 522 

decreases E. coli growth inhibition by antibiotics that irreversibly bind to ribosomes (such as roxithromycin 523 

(78)) compared to slower growth on poor quality nutrients(79). Here, we offer a mechanistic understanding 524 

of this unexpected finding, showing that reduced growth inhibition in fast growing cells is dictated by growth-525 

dependent transport rates, as fast growing variants displayed reduced macrolide accumulation. Importantly, 526 

we demonstrated that this phenotypic response is found not only at the population-level(79), but also within 527 

an isogenic population.  528 
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These new data can be rationalised by considering that in fast growing variants a fraction of leading 529 

actively translating ribosomes(80) escapes roxithromycin binding, while other ribosomes stall after 530 

accumulating roxithromycin. Drug-free active ribosomes continue to facilitate essential cellular processes 531 

including efflux that can reduce macrolide accumulation. Accordingly, we found that before antibiotic 532 

treatment fast growing variants also displayed a significantly higher expression of the efflux promoter tolC 533 

compared to slow growing cells. Moreover, the deletion knockout DtolC displayed significantly earlier and 534 

faster accumulation of roxithromycin compared to the parental strain, confirming that roxithromycin is a 535 

substrate of the AcrAB- and MacAB-TolC efflux pumps(24). However, this mutant exhibited accumulation 536 

heterogeneity levels comparable to the parental strain. These data suggest that phenotypic variants reduce 537 

antibiotic accumulation using processes other than efflux alone, in contrast with previous findings(59), and 538 

in accordance with our data on the key role played by heterogeneity in ribosomal abundance.  539 

Our data also revealed a strong correlation between the accumulation of roxithromycin and the 540 

effect of this antibiotic on cell growth down to the scale of the individual cell. This suggests that phenotypic 541 

variants with reduced antibiotic accumulation could be an important factor contributing to phenotypic 542 

resistance to antibiotics(2,8,73,81). This fundamentally new knowledge calls for a major rethink about 543 

phenotypic resistance to antibiotics that is currently centred around target deactivation or 544 

modification(73,82,83) with very little known about the correlation between antibiotic accumulation and 545 

antibiotic efficacy(17,59). 546 

Experimental evidence suggests that both macrolides and polymyxins use the self-promoted 547 

uptake pathway. Moreover, polymyxins have a higher affinity to the LPS compared to macrolides and 548 

increase the permeability of the outer membrane to other freely diffusing antibiotic molecules (23). 549 

Accordingly, we observed that growth-dependent transport rates were not dictated by heterogeneity in the 550 

expression of OmpC, which is a major route of antibiotic influx via the hydrophilic pathway(84). Our data 551 

show instead that the phenotypic variants that avoid roxithromycin accumulation can be suppressed by 552 

delivering roxithromycin in combination with polymyxin B. Moreover, roxithromycin accumulated at lower 553 

saturation levels in the presence of polymyxin B as expected due to competitive binding to the LPS.  554 

These data suggest that heterogeneity in roxithromycin accumulation could also be due to cell-to-555 

cell differences in LPS composition. It is conceivable that phenotypic variants within the clonal population 556 

might have a decreased ethanolamine content. This would result in an increased negative charge of the 557 

LPS core and a decreased permeability to roxithromycin but not to polymyxin B(85) in accordance with our 558 

data. It is also conceivable that phenotypic variants within the clonal population might display esterification 559 

of the core-lipid A phosphates(63). However, this would result in decreased permeability to both 560 

roxithromycin and polymyxin B in contrast with our data showing i) comparatively smaller cell-to-cell 561 

differences in polymyxin B accumulation (beyond the heterogeneity generated by the microcolony 562 

architecture) and ii) that adding polymyxin B suppresses the heterogeneity in roxithromycin accumulation. 563 

Finally, it has been suggested that macrolides use the hydrophobic pathway (86). It is conceivable that 564 
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phenotypic variants within the clonal population might display a higher expression of lpxA and thus reduced 565 

permeability to roxithromycin; however, this hypothesis remains to be tested. 566 

We further demonstrate that the presence of phenotypic variants that avoid antibiotic accumulation 567 

is not dictated by the microcolony architecture (as represented by bacterial cell position within a microfluidic 568 

channel). However, our data offer a mechanistic understanding of previous work in clinical settings 569 

suggesting that macrolides, quinolones, and oxazolidinones are more effective within infecting biofilms 570 

compared to glycopeptides and polymyxins(64,87). In fact, we demonstrate that antibiotics with intracellular 571 

targets accumulate more readily and to higher saturation levels in bacteria within the inner core of the 572 

colony. In contrast, membrane targeting drugs accumulate more readily, faster and at higher saturation 573 

levels in bacteria at the outer rim of the colony. This drug-specific effect of colony architecture on drug 574 

accumulation must rely on growth- and efflux-independent mechanisms. In fact, we did not find significant 575 

correlations between the position of a cell within the colony and neither the expression of tolC, ompC or 576 

rrnB nor the bacterial elongation rate (p-value = 0.13, 0.13, 0.46 and 0.34, respectively). 577 

In conclusion, this work reveals hitherto unrecognised phenotypic variants that avoid antibiotic 578 

accumulation within bacterial populations. In contrast with the current consensus, we demonstrate that fast 579 

growing phenotypic variants avoid macrolide accumulation and survive treatment due to elevated ribosomal 580 

content. We show that it is possible to phenotypically engineer clonal bacterial populations by eradicating 581 

phenotypic variants currently avoiding antibiotic accumulation. These data give strength to recent evidence 582 

that administered doses of polymyxins can be lowered in combination therapies(40) and demonstrating that 583 

roxithromycin could be repurposed against gram-negative bacteria. Finally, our novel single-cell approach 584 

reveals that each antibiotic is characterised by a unique accumulation pattern and thus will in future allow 585 

to classify new leading antibiotic compounds(88–91) using their kinetic accumulation parameters, guiding 586 

medicinal chemistry(24) whilst avoiding biases previously introduced by activity-dependent screenings(31). 587 

 588 

Materials and Methods 589 

Chemicals and cell culture 590 

All chemicals were purchased from Fisher Scientific or Sigma-Aldrich unless otherwise stated. Lysogeny 591 

broth (LB) medium (10 g L-1 tryptone, 5 g L-1yeast extract, and 0.5 g L-1 NaCl) and LB agar plates (LB with 592 

15 g L-1 agar) were used for planktonic growth and setting up overnight cultures. Glucose-free M9-minimal 593 

media, used to dissolve fluorescent antibiotic derivatives was prepared using 5´ M9 minimal salts (Merck), 594 

diluted as appropriate, with additional 2 mM MgSO4, 0.1 mM CaCl2, 3 µM thiamine HCl in Milli-Q water. 595 

Stock solutions of polymyxin B, octapeptin, tachyplesin, vancomycin, linezolid, roxithromycin and 596 

trimethoprim were obtained by dissolving these compounds in dimethyl sulfoxide; ciprofloxacin instead was 597 

dissolved in 0.1 M HCl in Milli-Q water. These stock solutions were prepared at a concentration of 640 µg 598 

mL-1. Escherichia coli BW25113 was purchased from Dharmacon (GE Healthcare). ompC, tolC and rrnB 599 

reporter strains of an E. coli K12 MG1655 promoter library(92) were purchased from Dharmacon (GE 600 
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Healthcare). Plasmids were extracted and transformed into chemically competent E. coli BW25113 as 601 

previously reported(93). Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa PA14 602 

flgK::Tn5(Tcr) (the deletion of the flagellum FlgK facilitated holding cells in the hosting channel thanks to 603 

the reduced bacterial motility) and Burkholderia cenocepacia K56-2 were kindly provided by A. Brown and 604 

S. van Houte. All strains were stored in 50% glycerol stock at -80 °C. Streak plates for each strain were 605 

produced by thawing a small aliquot of the corresponding glycerol stock every 2 weeks and plated onto LB 606 

agar. Overnight cultures were prepared by picking a single bacterial colony from a streak plate and growing 607 

it in 100 mL fresh LB medium on a shaking platform at 200 rpm and 37 °C for 17 h. 608 

 609 

Synthesis of fluorescent derivatives of antibiotics 610 

Fluorescent antibiotic derivatives from trimethoprim(56) (antifolate), linezolid(53) (oxazolidinone), 611 

ciprofloxacin(55) (fluoroquinolone) and roxithromycin(52) (macrolide) were prepared as previously 612 

described. Vancomycin(94) (glycopeptide), polymyxin(95) and octapeptin(96) (both lipopeptides) and 613 

tachyplesin(97) (antimicrobial peptide) analogues were designed and synthesised based on structure-614 

activity-relationship studies and synthetic protocols reported in prior publications, introducing an azidolysine 615 

residue for the subsequent ‘click’ reactions with nitrobenzoxadiazole (NBD)-alkyne. Additionally, a 616 

fluorescent derivative of roxithromycin using the fluorophore dimethylamino-coumarin-4-acetate (DMACA) 617 

was synthesised and used only to determine the impact of labelling on single-cell antibiotic accumulation. 618 

 619 

 620 

Determination of minimum inhibitory concentration  621 

Single colonies of E. coli BW25113 were picked and cultured overnight in cation-adjusted Mueller Hinton 622 

broth (CAMHB) at 37 °C, then diluted 40-fold and grown to OD600 = 0.5. 60 µL of each antibiotic or 623 

fluorescent antibiotic derivative stocks were added to the first column of a 96-well plate. 40 µL CAMHB was 624 

added to the first column, and 30 µL to all other wells. 70 µL solution was then withdrawn from the first 625 

column and serially transferred to the next column until 70 µL solution withdrawn from the last column was 626 

discharged. The mid-log phase cultures (i.e. OD600 = 0.5) were diluted to 106 colony forming units (c.f.u.) 627 

ml-1 and 30 µL was added to each well, to give a final concentration of 5´105 c.f.u. ml-1. Each plate contained 628 

two rows of 12 positive control experiments (i.e. bacteria growing in CAMHB without antibiotics) and two 629 

rows of 12 negative control experiments (i.e. CAMHB only). Plates were covered with aluminium foil and 630 

incubated at 37 °C overnight. The minimum inhibitory concentrations (MICs) of fluorescent derivatives of 631 

polymyxin B, octapeptin, tachyplesin, vancomycin, linezolid, roxithromycin, ciprofloxacin, trimethoprim and 632 

each corresponding parental antibiotic against E. coli BW25113 were determined visually, with the MIC 633 

being the lowest concentration well with no visible growth (compared to the positive control experiments). 634 

 635 
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Fabrication of the microfluidic devices 636 

The mould for the mother machine microfluidic device(65) was obtained by pouring epoxy onto a 637 

polydimethylsiloxane (PDMS, Dow Corning) replica of the original mould containing 12 independent 638 

microfluidic chips (kindly provided by S. Jun). Each of these chips is equipped with approximately 6000 639 

lateral microfluidic channels with width and height of 1 μm each and a length of 25 μm. These lateral 640 

channels are connected to a main microfluidic chamber that is 25 μm and 100 μm in height and width, 641 

respectively. PDMS replicas of this device were realised as previously described(98). Briefly, a 10:1 642 

(base:curing agent) PDMS mixture was cast on the mould and cured at 70 °C for 120 min in an oven. The 643 

cured PDMS was peeled from the epoxy mould and fluidic accesses were created by using a 0.75 mm 644 

biopsy punch (Harris Uni-Core, WPI). The PDMS chip was irreversibly sealed on a glass coverslip by 645 

exposing both surfaces to oxygen plasma treatment (10 s exposure to 30 W plasma power, Plasma etcher, 646 

Diener, Royal Oak, MI, USA). This treatment temporarily rendered the PDMS and glass hydrophilic, so 647 

immediately after bonding the chip was filled with 2 μL of a 50 mg/mL bovine serum albumin solution and 648 

incubated at 37 °C for 30 min, thus passivating the internal surfaces of the device and preventing 649 

subsequent cell adhesion. We have also made available a step-by-step experimental protocol for the 650 

fabrication and handling of microfluidic devices for investigating the interactions between antibiotics and 651 

individual bacteria(99).   652 

 653 

Imaging single-cell drug accumulation dynamics 654 

An overnight culture was prepared as described above and typically displayed an optical density at 595 nm 655 

(OD595) around 5. A 50 mL aliquot of the overnight culture above was centrifuged for 5 min at 4000 rpm and 656 

37 °C. The supernatant was filtered twice (Medical Millex-GS Filter, 0.22 μm, Millipore Corp.) to remove 657 

bacterial debris from the solution and used to resuspend the bacteria in their spent LB to an OD600 of 75. A 658 

2 μL aliquot of this suspension was injected in the microfluidic device above described and incubated at 37 659 

°C. The high bacterial concentration favours bacteria entering the narrow lateral channels from the main 660 

microchamber of the mother machine(8). We found that an incubation time between 5 and 20 min allowed 661 

filling of the lateral channels with, typically, between one and three bacteria per channel. Shorter incubation 662 

times were required for motile or small bacteria, such as P. aeruginosa and S. aureus, respectively. An 663 

average of 80% of lateral channels of the mother machine device were filled with bacteria. The microfluidic 664 

device was completed by the integration of fluorinated ethylene propylene tubing (1/32" × 0.008"). The inlet 665 

tubing was connected to the inlet reservoir which was connected to a computerised pressure-based flow 666 

control system (MFCS-4C, Fluigent). This instrumentation was controlled by MAESFLO software (Fluigent). 667 

At the end of the 20 min incubation period, the chip was mounted on an inverted microscope (IX73 Olympus, 668 

Tokyo, Japan) and the bacteria remaining in the main microchamber of the mother machine were washed 669 

into the outlet tubing and into the waste reservoir by flowing LB at 300 μL h-1 for 8 min and then at 100 μL 670 

h-1 for 2 h. Bright-field images were acquired every 20 min during this 2 h period of growth in LB. Images 671 

were collected via a 60´, 1.2 N.A. objective (UPLSAPO60XW, Olympus) and a sCMOS camera (Zyla 4.2, 672 
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Andor, Belfast, UK). The region of interest of the camera was adjusted to visualise 23 lateral channels per 673 

image and images of 10 different areas of the microfluidic device were acquired at each time point in order 674 

to collect data from at least 100 individual bacteria per experiment. The device was moved by two 675 

automated stages (M-545.USC and P-545.3C7, Physik Instrumente, Karlsruhe, Germany, for coarse and 676 

fine movements, respectively). After this initial 2 h growth period in LB, the microfluidic environment was 677 

changed by flowing minimal medium M9 (unless otherwise stated) with each of the NBD (unless otherwise 678 

stated) fluorescent antibiotic derivatives at a concentration of 46 μg mL-1 (unless otherwise stated, also 679 

unlabelled ciprofloxacin was delivered at 200 µg mL-1) at 300 μL h-1 for 8 min and then at 100 μL h-1 for 4 680 

h. During this 4 h period of exposure to the fluorescent antibiotic derivative in use, upon acquiring each 681 

bright-field image the microscope was switched to fluorescent mode and FITC filter using a custom built 682 

Labview software. A fluorescence image was acquired by exposing the bacteria to the blue excitation band 683 

of a broad-spectrum LED (CoolLED pE300white, maximal power = 200 mW Andover, UK) at 20% of its 684 

intensity (with a power associated with the beam light of 7.93 mW at the sample plane). In the case of 685 

unlabelled ciprofloxacin the UV excitation band of such LED was used at 100% of its intensity. These 686 

parameters were adjusted in order to maximise the signal to noise ratio. Bright-field and fluorescence 687 

imaging during this period was carried out every 5 min. The entire assay was carried out at 37 °C in an 688 

environmental chamber (Solent Scientific, Portsmouth, UK) surrounding the microscope and microfluidics 689 

equipment. 690 

 691 

 692 

 693 

Image and data analysis 694 

Images were processed using ImageJ software as previously described(47,48,100), tracking each 695 

individual bacterium throughout the initial 2 h period of growth and the following 4 h period treatment with 696 

each fluorescent antibiotic derivative. Briefly, during the initial 2 h growth in LB, a rectangle was drawn 697 

around each bacterium in each bright-field image at every time point, obtaining its width, length and relative 698 

position in the hosting microfluidic channel. Each bacterium's average elongation rate was calculated as 699 

the average of the ratios of the differences in bacterial length over the lapse of time between two 700 

consecutive time points. During the following 4 h incubation in the presence of the fluorescent antibiotic 701 

derivative, a rectangle was drawn around each bacterium in each bright-field image at every time point 702 

obtaining its width, length and relative position in the hosting microfluidic channel. The same rectangle was 703 

then used in the corresponding fluorescence image to measure the mean fluorescence intensity for each 704 

bacterium that is the total fluorescence of the bacterium normalised by cell size (i.e. the area covered by 705 

each bacterium in our 2D images), to account for variations in antibiotic accumulation due to the cell 706 

cycle(60). The same rectangle was then moved to the closest microfluidic channel that did not host any 707 

bacteria in order to measure the background fluorescence due to the presence of extracellular fluorescent 708 
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antibiotic derivative in the media. This mean background fluorescence value was subtracted from the 709 

bacterium’s fluorescence value. Background subtracted values smaller than 20 a.u. were set to zero since 710 

this was the typical noise value in our background measurements. All data were then analysed and plotted 711 

using GraphPad Prism 8. Statistical significance was tested using either paired or unpaired, two-tailed, 712 

Welch’s t-test. Pearson correlation, means, standard deviations, coefficients of variation and medians were 713 

also calculated using GraphPad Prism 8.  714 

 715 

Inferring single-cell kinetic parameters of antibiotic accumulation via mathematical modelling 716 

We constructed a minimal model of antibiotic accumulation in order to infer key kinetic parameters 717 

quantifying the accumulation of each antibiotic. We modelled antibiotic accumulation using the following set 718 

of ordinary differential equations (ODEs): 719 

𝑑𝑐(𝑡)
𝑑𝑡 = 𝑟(𝑡) − 𝑑!𝑐(𝑡)

𝑑𝑟(𝑡)
𝑑𝑡 = 𝑘"𝑈(𝑡 − 𝑡#) − 𝑑$𝑟(𝑡) − 𝑘%𝑐(𝑡)

 720 

where 𝑈(𝑡 − 𝑡#) represents the dimensionless step function: 721 

𝑈(𝑡 − 𝑡#) = +0, 𝑡 < 𝑡#
1,≥ 𝑡#  722 

Variable 𝑐(𝑡) represents the intracellular antibiotic concentration (in arbitrary units [a.u.] of fluorescence 723 

levels), and 𝑟(𝑡) [a.u. s-1] describes the antibiotic uptake rate. With the first equation we described how 724 

antibiotic accumulation, 𝑐(𝑡), changes over time as a result of two processes: (i) drug-uptake, which 725 

proceeds at a time-varying rate, 𝑟(𝑡); and (ii) drug loss (efflux or antibiotic transformation), which we 726 

modelled as a first order reaction with rate constant 𝑑![s-1]. With the second equation we described the 727 

dynamics of time-varying antibiotic uptake rate, 𝑟(𝑡). The uptake rate starts increasing with a characteristic 728 

time-delay (parameter 𝑡#), parameter 𝑘"[a.u. s-2] is the associated rate constant of this increase. We also 729 

assumed a linear dampening effect (with associated rate constant 𝑑$[s-1]) to constrain the increase in uptake 730 

rate, which allowed us to recapitulate the measured saturation in antibiotic accumulation. In this model the 731 

maximum saturation is given by 𝐹&'( = )!

*"*#

. Finally, we introduced an adaptive inhibitory term (rate 732 

constant 𝑘%[a.u. s-2]) to describe the dip we observed in some single-cell trajectories in Fig. S1 and S2 733 

which we assumed is due to the fact that the presence of drugs intracellularly inhibits further drug uptake. 734 

We note that in this model we did not make any a priori assumptions about the mechanisms underlying 735 

antibiotic accumulation but rather aimed to capture the dynamics of the measured accumulation data. 736 

Model parameters were inferred from single-cell fluorescence time-traces (see Image and data analysis 737 

section) using the probabilistic programming language Stan through its python interface pystan(101). Stan 738 

provides full Bayesian parameter inference for continuous-variable models using the No-U-Turn sampler, 739 

a variant of the Hamiltonian Monte Carlo method. All No-U-Turn parameters were set to default values 740 
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except parameter adapt_delta which was set to 0.999 to avoid divergent runs of the algorithm. For each 741 

single-cell fluorescence time-trace the algorithm produced 4 chains, each one consisting of 3000 warmup 742 

iterations followed by 1000 sampling iterations, giving in total 4000 samples from the parameters’ posterior 743 

distribution. For each parameter, the median of the sampled posterior is used for subsequent analysis. For 744 

parameter inference, model time was rescaled by the length of the time-trace T, i.e. 𝑡+ = ,

-
 so that time runs 745 

between 0 and 1, and model parameters were re-parameterised (and made dimensionless) according to 746 

the rules (𝑑!+ = 𝑑!/𝑑$ , 𝑑$+ = 𝑑$𝑇, 𝑘"+ = 𝑘"/𝑑$ , 𝑘%+ = 𝑘%/𝑑$ , 𝑡#+ = 𝑡#/𝑇). The following diffuse priors were used 747 

for the dimensionless parameters, where 𝑈(𝑎, 𝑏) denotes the uniform distribution in the range 748 

[𝑎, 𝑏]:	𝑑!+~𝑈(0, 1) so that uptake rate dynamics are always faster than drug-accumulation dynamics, i.e., 749 

𝑑! < 𝑑$; log"# 𝑑$+ ~𝑈(0, 3) constraining the timescale associated with 𝑑$ to be shorter than the timescale of 750 

the experiment, i.e., 1/𝑑$ < 𝑇 ;	log"# 𝑘"+ ~𝑈(0, 3) and log"# 𝑘%+ ~𝑈(−3, 0), so that the parameter controlling 751 

adaptive inhibition is small enough and there is no oscillatory behaviour in the model i.e, 𝑘% < 𝑘"; 𝑡#+~𝑈(0, 1), 752 

since the transformed time 𝑡+ runs from 0 to 1. 753 

 754 

Statistical classification of the accumulation of antibiotics 755 

For each cell, the marginal posterior distributions of all model parameters (t0, k1, k2, dr, dc) were summarised 756 

using the corresponding first (Q1), second (Q2) and third (Q3) quantiles. For each classification task, a 757 

statistical model (classification decision tree) was developed for predicting the drug class for each cell using 758 

the summarised parameter posterior distributions as input. Depending on the classification task, either all 759 

5 parameters were considered (5x3=15 predictors) or just parameters t0 and k1 (2x3=6 predictors). 760 

Statistical classification was performed using Matlab (method fitctree) and the results presented were 761 

obtained using 10-fold cross-validation. 762 
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Figure S1. Accumulation of the fluorescent derivatives of A) polymyxin B, B) octapeptin, C) tachyplesin, D) 

linezolid, E) ciprofloxacin, F) trimethoprim, G) roxithromycin and H) vancomycin in 103, 104, 128, 115, 122, 

175, 265 and 236 individual E. coli, respectively (continuous lines), after adding each probe at 46 µg mL-1 

extracellular concentration in M9 minimal medium from t = 0 onwards. Data were collated from biological 

triplicate. Fluorescence values were background subtracted and normalised by cell size (see Methods). 

The symbols and shaded areas represent the mean and standard deviation of the corresponding single-

cell values. Insets: representative fluorescence images showing the accumulation of each probe at the 

specific time point. Scale bar: 5 µm. The vertical dotted lines represent the time point at which the median 
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of each dataset became larger than zero. The median remained zero throughout the entire experiments 

carried out with vancomycin-NBD, hence the dotted line has been arbitrarily set at 11,500 s in H) for 

comparison purposes only.  
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Figure S2. Normalised accumulation of the fluorescent derivatives of A) polymyxin B, B) octapeptin, C) 

tachyplesin, D) linezolid, E) ciprofloxacin, F) trimethoprim, G) roxithromycin and H) vancomycin. These data 

are reproduced from Fig. S1 after normalising all fluorescent values to the maximum fluorescence value in 

each dataset. 

 

 

 

 

 

 

Figure S3. Population averages (symbols) and standard deviations (shaded areas) of the accumulation of 

the fluorescent derivatives of tachyplesin (triangles), octapeptin (crosses), linezolid (hexagons) and 

ciprofloxacin (diamonds) added at 46 µg mL-1 extracellular concentration in M9 minimal medium from t = 0 

onwards. Data were obtained by averaging N = 128, 104, 115 and 122 single-cell values, respectively, 

collated from biological triplicate presented in Fig. S1. 

 

 

 

 

 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2021. ; https://doi.org/10.1101/2021.10.18.464851doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.18.464851
http://creativecommons.org/licenses/by/4.0/


 

 

5 

 

 

Figure S4. Absence of correlation between the area of each single bacterium before antibiotic treatment 

and the kinetic parameters A) t0, B) k1 and C) Fmax describing the onset, uptake rate and level of saturation 

of the fluorescent derivative of roxithromycin in N = 104 E. coli after adding the probe at 192 µg mL-1 

extracellular concentration in M9 minimal medium from t = 0 onwards. Data were collated from biological 

triplicate. We also found no correlation between cell area and the three kinetic accumulation parameters 

above for the other seven antibiotic probes investigated. 

 

 

 

 

Figure S5. Temporal dependence of the fraction of E. coli stained by fluorescent derivatives of polymyxin 

B (downwards triangles), tachyplesin (upwards triangles), octapeptin (crosses), linezolid (hexagons), 

trimethoprim (stars), ciprofloxacin (diamonds), roxithromycin (circles) or vancomycin (squares). The stained 

fraction at each time point is defined as the ratio of the number of bacteria displaying a fluorescence 

distinguishable from the background over the total number of bacteria at that time point. Symbols and error 

bars are the mean and standard error of the mean values calculated by averaging the N = 103, 128, 104, 

115, 175, 122, 265, 236 individual bacteria, respectively, from biological triplicate presented in Fig. S1. 
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Figure S6. Accumulation of the fluorescent derivative of roxithromycin in A) N = 265 individual E. coli and 

B) N = 195 individual S. aureus (continuous lines), after adding the probe at 46 µg mL-1 extracellular 

concentration in M9 minimal medium from t = 0 onwards. Data were collated from biological triplicate. 

Fluorescence values were background subtracted and normalised by cell size. The symbols and shaded 

areas are the mean and standard deviation of the corresponding single-cell values. Insets: representative 

fluorescence images showing the accumulation of the fluorescent derivative of roxithromycin 3,600 s post 

addition to the bacteria hosting channels. Scale bar: 5 µm. The vertical dotted lines represent the time 

points at which the median of each dataset became larger than zero. 
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Figure S7. Accumulation of the fluorescent derivative of vancomycin in A) N = 236 individual E. coli and B) 

N = 63 individual S. aureus (continuous lines) cells, after adding the probe at 46 µg mL-1 extracellular 

concentration in M9 minimal medium from t = 0 onwards. Data were collated from biological triplicate. 

Fluorescence values were background subtracted and normalised by cell size. The symbols and shaded 

areas are the mean and standard deviation of the corresponding single-cell values. Insets: representative 

fluorescence images showing the accumulation of the fluorescent derivative of roxithromycin 1,800 s post 

addition to the bacteria hosting channels. Scale bar: 5 µm. The vertical dotted lines represent the time 

points at which the median of each dataset became larger than zero. 
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Figure S8. Accumulation of the fluorescent derivative of ciprofloxacin in A) N = 122 individual E. coli, B) N 

= 84 individual P. aeruginosa and C) N = 86 individual B. cenocepacia (continuous lines) cells, after adding 

the probe at 46 µg mL-1 extracellular concentration in M9 minimal medium from t = 0 onwards. Data were 

collated from biological triplicate. Fluorescence values were background subtracted and normalised by cell 

size. The symbols and shaded areas are the mean and standard deviation of the corresponding single-cell 

values. The vertical dotted lines represent the time points at which the median of each dataset became 

larger than zero. As expected ciprofloxacin-NBD accumulated to a significantly lower extent in P. 

aeruginosa since it lacks general porins, thus displaying a lower permeability compared to E. coli and B. 

cenocepacia(1). 

 

 

 

 

 

Figure S9. A) Accumulation of the fluorescent derivative of roxithromycin in LB (circles) or M9 medium 

(squares) drug milieu delivered to N = 46 and 265 individual E. coli, respectively, at an extracellular 

concentration of 46 µg mL-1. B) Accumulation of the fluorescent derivative of roxithromycin delivered at a 

concentration of 192 (triangles) and 46 (squares) µg mL-1 in a M9 medium drug milieu to N = 110 and 265 

individual E. coli, respectively. In both figures data were collated from biological triplicate and fluorescence 

values were background subtracted and normalised by cell size. The symbols and shaded areas represent 

the mean and standard deviation of the corresponding single-cell values. 
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Figure S10. A) Accumulation of unlabelled ciprofloxacin (triangles) and of the fluorescent derivative 

ciprofloxacin-NBD (diamonds) delivered to N = 48 and 122 individual E. coli, respectively, at an extracellular 

concentration of 200 and 46 µg mL-1 in M9 medium, respectively. It is worth noting that unlabelled 

ciprofloxacin was not detectable neither extracellularly nor intracellularly at concentrations below 200 µg 

mL-1. B) Accumulation of the fluorescent derivatives roxithromycin-NBD (squares) and roxithromycin-

DMACA (hexagons) at an extracellular concentration of 46 µg mL-1 in a M9 medium drug milieu delivered 

to N = 265 and 77 individual E. coli, respectively. In both figures data were collated from biological triplicate 

and fluorescence values were background subtracted and normalised by cell size. The symbols and shaded 

areas are the mean and standard deviation of the corresponding single-cell values normalised to the 

maximum mean fluorescence value in each dataset.  
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Figure S11. Distributions of t0, k1 and Fmax kinetic parameters describing the accumulation of the fluorescent 

derivatives of polymyxin B, octapeptin, tachyplesin, linezolid, ciprofloxacin, trimethoprim and roxithromycin 

(from top to bottom, respectively). These parameters were inferred by fitting the single-cell data reported in 

Fig. S1 using our mathematical model (see Methods). Data for which the fitting algorithm returned divergent 

transitions were not reported and typically represented less than 1% of the data (compare N here and in 

Fig. S1). t0 is the inferred accumulation onset, i.e. the time at which each bacterium fluorescence became 

distinguishable from background fluorescence, k1 is the inferred rate of uptake, Fmax is the inferred 

fluorescence saturation level at steady-state. CV is the coefficient of variation of the single-cell values in 

each dataset. 
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Figure S12. Distributions of k2, dr and dc kinetic parameters describing the accumulation of fluorescent 

antibiotic derivatives of polymyxin B, octapeptin, tachyplesin, linezolid, ciprofloxacin, trimethoprim and 

roxithromycin (from top to bottom, respectively). These parameters were inferred by fitting the single-cell 

data reported in Fig. S1 using our mathematical model (see Methods). Data for which the fitting algorithm 

returned divergent transitions were not reported and typically represented less than 1% of the data 

(compare N here and in Fig. S1). k2 is the inferred adaptive inhibitory rate constant that describes the dip 

we observed in some single-cell trajectories in Fig. S1, dr is the drug loss rate constant, dc is the dampening 

rate constant. CV is the coefficient of variation of the single-cell values in each dataset. Membrane targeting 

antibiotic probes displayed, on average, a higher adaptive inhibitory rate constant (k2 = 0.006, 0.007 and 

0.006 a.u. s-2 for tachyplesin, polymyxin B and octapeptin, respectively) compared to antibiotics with 

intracellular targets (k2 = 0.0001, 0.00005, 0.0003 and 0.0001 s for linezolid, trimethoprim, ciprofloxacin and 

roxithromycin, respectively). Remarkably, we found notable cell-to-cell differences in k2 across all 

investigated drugs with a maximum CV of 251% for roxithromycin and a minimum CV of 67% for 

trimethoprim. Membrane targeting antibiotic probes also displayed, on average, a higher drug loss rate 

constant (dr = 0.09, 0.09 and 0.03 s-1 for tachyplesin, polymyxin B and octapeptin, respectively) compared 

to antibiotics with  intracellular targets (dr = 0.0003, 0.001, 0.0005 and 0.001 s for linezolid, trimethoprim, 

ciprofloxacin and roxithromycin, respectively). Remarkably, we found notable cell-to-cell differences in dr 

across all investigated drugs with a maximum CV of 208% for roxithromycin and a minimum CV of 44% for 

trimethoprim. Membrane targeting antibiotic probes also displayed, on average, a higher dampening rate 

constant (dc = 0.009, 0.01 and 0.009 s-1 for tachyplesin, polymyxin B and octapeptin, respectively) 

compared to antibiotics with intracellular targets (dc = 0.0006, 0.0005, 0.002 and 0.0003 s for linezolid, 

trimethoprim, ciprofloxacin and roxithromycin, respectively). Remarkably, we found notable cell-to-cell 

differences in dc across all investigated drugs with a maximum CV of 187% for tachyplesin and a minimum 

CV of 28% for linezolid. 
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Figure S13. Interdependence between single-cell elongation rate before treatment and the onset t0, the 

rate k1, and the saturation Fmax in the accumulation of fluorescent derivatives of A-C) octapeptin, D-F) 

tachyplesin and G-I) trimethoprim, respectively. r is the Pearson correlation coefficient, **: p-value < 0.01, 

ns: not significant, p-value > 0.05. N = 28, 27 and 61 individual E. coli investigated for the accumulation of 

the fluorescent derivatives of octapeptin, tachyplesin, and trimethoprim, respectively, and collated from 

biological triplicate. In each experiment E. coli were grown for 2 h in the microfluidic device with continuous 

supply of fresh LB. During this 2 h growth period the elongation rate of each bacterium was measured 

between consecutive time points and the average elongation rate for each bacterium was calculated. At 

the end of this 2 h growth period one of the three fluorescent antibiotic derivatives above was continuously 

delivered for a 4 h treatment period in the microfluidic device at a concentration of 46 µg mL-1 in M9 minimal 

medium. During this 4 h treatment period single-cell fluorescence data were obtained and dynamic 

accumulation parameters t0, k1 and Fmax were inferred by fitting these single-cell data to our mathematical 

model (see Methods). 
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Figure S14. Interdependence between single-cell elongation rate before treatment and single-cell 

elongation rate during exposure to A) roxithromycin-NBD and B) unlabelled roxithromycin. r is the Pearson 

correlation coefficient, *: p-value < 0.05, ***: p-value < 0.001. N = 46 and 51 individual E. coli investigated 

and collated from biological triplicate. In each experiment E. coli were grown for 2 h in the microfluidic 

device with continuous supply of fresh LB. During this 2 h growth period the elongation rate of each 

bacterium was measured between consecutive time points and the average elongation rate for each 

bacterium was calculated. At the end of this 2 h growth period, 46 µg mL-1 roxithromycin-NBD or unlabelled 

roxithromycin dissolved in LB was continuously delivered for a 4 h treatment period in the microfluidic 

device. During this 4 h treatment period the elongation rate of each bacterium was measured as indicated 

above. 
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Table S1. List of fluorescent antibiotic derivatives (obtained by linking the parental antibiotic to 

nitrobenzoxadiazole, NBD, see Methods), the bacterial compartment where their target is located, their 

molecular weight (MW) after linkage to NBD, their partition coefficient (logP), their measured minimum 

inhibitory concentration (MIC) against E. coli BW25113, and the fold-change compared to the MIC 

measured for each corresponding parental antibiotic (see Methods). MIC data were collated from biological 

triplicate. 

 

 

 

 

Table S2. Pearson correlation coefficients and significance of the correlation between t0 and k1, t0 and Fmax 

and k1 and Fmax for the accumulation in single E. coli of all the fluorescent antibiotic derivatives investigated 

Antibiotics t 0  vs k 1 t 0  vs Fmax k 1  vs Fmax

Polymyxin B -0,51, **** -0,54, **** 0,56, ****

Octapeptin -0,46, **** -0,61, **** 0,20, ns

Tachyplesin -0,13, ns -0,10, ns -0,01, ns

Linezolid 0.03, ns -0,21, ** 0,05, ns

Ciprofloxacin -0,12, ns -0,11, ns 0,29, ***

Trimethoprim 0,06, ns -0,32, **** 0,11, ns

Roxithromycin -0,22, *** -0,10, ns 0,41, ****

All antibiotics -0,40, **** -0,27, **** 0,65, ****

Pearson correlation cofficients and significance

 

Antibiotic probe Compartment 
MW 

(g/mol) 
logP 

MIC 

(µg/mL) 

Fold 

change 

Polymyxin B-NBD Membrane 1449 -2.5 1 1 

Octapeptin-NBD Membrane 1304 -0.4 4 1 

Tachyplesin-NBD Membrane 2523 -2.7 1 1 

Vancomycin-NBD Cell wall 1650 -2.6 >192 1 

Linezolid-NBD Cytoplasm 638 0.7 134 1.4 

Roxithromycin-NBD Cytoplasm 1064  3.1 192 3 

Ciprofloxacin-NBD Cytoplasm 633 -1.1 8 256 

Trimethoprim-NBD Cytoplasm 577 0.9 64 64 
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(apart from vancomycin) in individual E. coli. Data from Fig. S11 were used for these statistical comparisons. 

****: p-value < 0.0001, ***: p- value < 0.001, **: p-value < 0.01, *: p-value < 0.05, ns: not significant, p-value 

> 0.05.  

 

 

 

Table S3. List of genes encoding outer membrane proteins (i.e. porins) and efflux pumps compiled using 

EcoCyc as previously reported(2), alongside their transcript reads after a 2 h growth period in LB (i.e. the 

time point at which antibiotic treatment starts in our microfluidic experiments) measured via RNA-

sequencing as previously reported(3). Note that it has been reported that permeability of solutes through 

Membrane genes Transcript reads Membrane genes Transcript reads Membrane genes Transcript reads Membrane genes Transcript reads

ompA 60955 mltA 398 acrZ 47 yaiO 6

ompC 57458 yncD 388 yfiB 39 cusB 6

ompX 19210 lolB 345 cusA 39 yehB 5

lptD 10977 nlpD 326 macb 36 bglH 5

tolC 4722 mdtK 312 yhcD 33 wza 5

fhuA 4360 yiaD 292 fimD 31 blc 5

bamA 4237 nplE 291 acrF 30 acrE 5

acrB 4044 fepA 289 pgaA 29 yfgH 4

bamB 3796 yraP 256 mdtL 28 nanC 4

ompF 3650 emtA 252 mdtG 28 yqhH 4

slyB 3516 ydiY 241 mdtF 27 phoE 4

nlpI 3367 tamA 236 yfaL 25 mdtQ 3

fadL 2612 yjgL 222 gfcD 24 yliI 3

ompT 2601 mdfA 220 gspD 23 ompN 3

mipA 2289 ynfB 220 yraJ 22 mdtO 3

mltD 2045 ypjA 220 gfcE 22 cusC 2

fecA 2009 pgpB 193 flgG 22 cusF 2

tsx 1971 mltC 187 mdtJ 21 mdtP 2

pal 1945 mdtC 166 mdtD 19 yfeN 2

skp 1553 lpoB 155 ydeT 17 mdtN 2

bamD 1544 macA 153 slp 16 csgF 2

acrA 1505 loiP 137 yceK 16 yjbF 1

mepS 1303 mltF 134 mdtI 13 csgB 1

lpp 1168 yaiW 131 chiP 12 envY 1

borD 1167 bhsA 119 pagP 11 ybgQ 1

nmpC 1146 pqiC 114 yedS 11 acrS 1

cirA 1127 rsxG 107 yjbH 10 uidC 1

bamC 1123 rcsF 105 rhsD 9 csgE 0

ygiB 1115 yfaZ 101 elfC 9 ompL 0

flu 1064 cusR 99 rhsB 9 ompG 0

lptA 1052 nfrA 98 yfcU 8 rzoD 0

mlaA 1042 cusS 92 lamB 8 rzoR 0

ybhC 1021 acrR 85 pgaB 8 yddL 0

lptE 924 yghG 83 sfmD 8 appX ND

bamE 732 fhuE 81 htrE 8 bcsC ND

rlpA 637 amiD 80 mdtH 7 epcC ND

lpoA 620 yddB 76 yiaT 7 qseG ND

fiu 607 acrD 72 mliC 7 ychO ND

btuB 489 ecnB 69 mdtE 7 ypjB ND

tamB 408 mdtB 64 flgH 7 yzcX ND

mltB 406 mdtA 54 csgG 6

pldA 404 ecnA 51 hofQ 6

ppk 404 mdtM 49 ompW 6
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OmpA (with the most highly expressed transcripts) is a hundred fold lower compared to that through 

OmpC(4) (with the second most highly expressed transcripts), hence we decided to investigate the role 

played by OmpC in the heterogeneity in the intracellular accumulation of roxithromycin (Fig. 5E). 
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Movie S1. 

Real-time accumulation of the fluorescent derivative of roxithromycin in individual Escherichia coli and 

Staphylococcus aureus bacteria (top and bottom panels, respectively). 

Movie S2. 

Real-time accumulation of the fluorescent derivatives of vancomycin and roxithromycin in individual 

Staphylococcus aureus bacteria (top and bottom panels, respectively). 
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