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Fast Bayesian Factor Analysis via

Automatic Rotations to Sparsity

by

Veronika Ročková and Edward I. George 1

The University of Pennsylvania

August 30, 2014

Abstract

Rotational transformations have traditionally played a key role in enhancing the interpretability
of factor analysis via post-hoc modifications of the model orientation. Here, we propose a uni-
fied Bayesian approach that incorporates factor rotations within the model fitting process, greatly
enhancing the effectiveness of sparsity inducing priors. These automatic transformations are em-
bedded within a new PXL-EM algorithm, a Bayesian variant of parameter-expanded EM for fast
posterior mode detection. By iterating between soft-thresholding of small factor loadings and trans-
formations of the factor basis, we obtain dramatic accelerations yielding convergence towards better
oriented sparse solutions. For accurate recovery and estimation of factor loadings, we propose a
spike-and-slab LASSO prior, a two-component refinement of the Laplace prior. Our approach is au-
tomatic, because it does not require any pre-specification of the factor dimension. This assumption
is avoided by introducing infinitely many factors with the Indian Buffet Process (IBP) prior. The
specification of identifiability constraints is also completely avoided. The PXL-EM, made available
by the stick-breaking IBP representation, capitalizes on the very fast LASSO implementations and
converges quickly. Dynamic posterior exploration over a sequence of spike-and-slab priors is seen to
facilitate the search for a global posterior mode. For mode selection, we propose a criterion based
on an integral lower bound to the marginal likelihood. The potential of the proposed procedure
is demonstrated on both simulated and real high-dimensional data, which would render posterior
simulation impractical.

Keywords: Indian Buffet Process; Infinite-dimensional Factor Analysis; Factor Rotation; PXL-EM;
Spike-and-slab LASSO.
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1 Bayesian Factor Analysis Revisited

Latent factor models aim to find regularities in the variation among multiple responses, and relate

these to a set of hidden causes. This is typically done within a regression framework through a linear

superposition of unobserved factors. The traditional setup for factor analysis consists of an n × G

matrix Y = [y1, . . . ,yn]
′ of n independent G-dimensional vector observations. For a fixed factor

dimension K, the generic factor model is of the form

f(yi | ωi,B,Σ)
ind∼ NG(Bωi,Σ), ωi ∼ NK(0, IK), (1.1)

for 1 ≤ i ≤ n, where Σ = diag{σ2
j }Gj=1 is a diagonal matrix of unknown positive scalars, ωi ∈ R

K is the

ith realization of the unobserved latent factors, and B ∈ R
G×K is the matrix of factor loadings that

weight the contributions of the individual factors. Marginally, f(yi |B,Σ) = NG(0,BB′ +Σ), 1 ≤
i ≤ n, a decomposition which uses at most G×K parameters instead of G(G+1)/2 parameters in the

unconstrained covariance matrix. Note that we have omitted an intercept term, assuming throughout

that the responses have been centered.

Fundamentally a multivariate regression with unobserved regressors, factor analysis is made more

more challenging by the uncertainty surrounding the number and orientation of the regressors. A per-

sistent difficulty associated with the factor model (1.1) has been that B is unidentified. In particular,

any orthogonal transformation of the loading matrix and latent factors Bωi = (BP )(P ′ωi) yields

exactly the same distribution for Y . Although identifiability is not needed for prediction or estimation

of the marginal covariance matrix, non-sparse orientations diminish the potential for interpretability,

our principal focus here.

The main thrust of this paper is the development of a Bayesian approach for factor analysis that

can automatically identify interpretable factor orientations with a fast deterministic implementation.

Our approach does not make use of any of the usual identifiability constraints on the allocation of the

zero elements of B, such as lower-triangular forms (Lopes and West, 2004) and their generalizations

(Frühwirth-Schnatter and Lopes, 2009). Nor do we require prespecification of the factor cardinality

K. Instead, the loading matrix B is extended to include infinitely many columns, where the number

of “effective” factors remains finite with probability one.

Our approach begins with a prior on the individual elements in B = {βjk}G,∞
j,k=1 that induces

posterior zeroes with high-probability. Traditionally, this entails some variant of a spike-and-slab

prior that naturally segregates important coefficients from coefficients that are ignorable (George and

McCulloch, 1993; West, 2003; Carvalho et al., 2008; Rai and Daumé, 2008; Knowles and Ghahramani,

2011). The specification of such priors is facilitated by the introduction of a latent binary allocation

matrix Γ = {γjk}G,∞
j,k=1, γjk ∈ {0, 1}, where γjk = 1 whenever the jth variable is associated with kth
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factor. Given each γjk ∈ {0, 1} for whether βjk should be ignored, a particularly appealing spike-and-

slab variant has been

π(βjk | γjk, λ1) = (1− γjk)δ0(βjk) + γjkφ(βjk | λ1), (1.2)

where δ0(·) is the “spike distribution” (atom at zero) and φ(· | λ1) is the absolutely continuous “slab

distribution” with exponential tails or heavier, indexed by a hyper-parameter λ1. Coupled with a

suitable beta-Bernoulli prior on the binary indicators γjk, the point-mass generative model (1.2) has

been shown to yield optimal rates of posterior concentration, both in linear regression (Castillo and

van der Vaart, 2012; Castillo et al., 2014) and covariance matrix estimation (Pati et al., 2014). This

“methodological ideal”, despite being amenable to posterior simulation, poses serious computational

challenges in high-dimensional data. These challenges are even more pronounced with the infinite

factor models considered here, where a major difficulty is finding highly probable zero allocation

patterns within infinite loading matrices.

We will address this challenge by developing a tractable inferential procedure that does not rely

on posterior simulation and thereby is ideally suited for high-dimensional data. At the heart of

our approach is a novel spike-and-slab LASSO (SSL) prior, a feasible continuous relaxation of its

limiting special case (1.2). Such relaxations transform the obstinate combinatorial problem into one

of optimization in continuous systems, permitting the use of EM algorithms (Dempster et al., 1977),

a strategy we pursue here. The SSL prior will be coupled with the Indian Buffet Process (IBP) prior,

which defines a prior distribution on the allocation patterns of active elements within the infinite

loading matrix. Our EM algorithm capitalizes on the stick-breaking representation of the IBP, which

induces increasing shrinkage of higher-ordered factor loadings.

The indeterminacy of (1.1) due to rotational invariance is ameliorated with the SSL prior, which

anchors on sparse representations. This prior automatically promotes rotations with many zero load-

ings by creating ridge-lines of posterior probability along coordinate axes, thereby radically reducing

the posterior multimodality. Whereas empirical averages resulting from posterior simulation may ag-

gregate probability mass from multiple modes and are non-sparse, our EM algorithm yields sparse

modal estimates with exact zeroes in the loading matrix.

The search for promising sparse factor orientations is greatly enhanced with data augmentation

by expanding the likelihood with an auxiliary transformation matrix (Liu et al., 1998). Exploiting the

rotational invariance of the factor model, we propose a PXL-EM (parameter expanded likelihood EM)

algorithm that automatically rotates the loading matrix as a part of the estimation process, gearing

the EM trajectory along the orbits of equal likelihood. The SSL prior then guides the selection

from the many possible likelihood maximizers. Moreover, the PXL-EM algorithm is far more robust

against poor initializations, converging dramatically faster than the parent EM algorithm and inducing
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orthogonal latent factor featurizations.

As with many other sparse factor analyzers (Knowles and Ghahramani, 2011; Frühwirth-Schnatter

and Lopes, 2009; Carvalho et al., 2008), the number of factors will be inferred through the estimated

patterns of sparsity. In over-parametrized models with many redundant factors, this can be hampered

by the phenomenon of factor splitting, i.e. the smearing of factor loadings across multiple correlated

factors. Such factor splitting is dramatically reduced in our approach, because the IBP construction

prioritizes lower indexed loadings and the PXL-EM rotates towards independent factors.

To facilitate the search for a global maximum we implement dynamic posterior exploration, a

sequential reinitialization along a ladder of increasing spike penalties. Posterior modes will be evaluated

by a criterion motivated as an integral lower bound to a posterior probability of the implied sparsity

pattern.

The paper is structured as follows. Section 2 introduces our hierarchical prior formulation for

infinite factor loading matrices, establishing some of its appealing theoretical properties. Section 3

develops the construction of our basic EM algorithm, which serves as a basis for the PXL-EM algorithm

presented in Section 4. Section 5 describes the dynamic posterior exploration strategy for PXL-EM

deployment, demonstrating its effectiveness on simulated data. Section 6 derives and illustrates our

criterion for factor model comparison. Sections 7 and 8 present applications of our approach on real

data. Section 9 concludes with a discussion.

2 Infinite Factor Model with Spike-and-Slab LASSO

The cornerstone of our Bayesian approach is a hierarchically structured prior on infinite-dimensional

loading matrices, based on the spike-and-slab LASSO prior of Rockova and George (2014b). For

each loading βjk, we consider a continuous relaxation of (1.2) with two Laplace components: a slab

component with a common penalty λ1, and a spike component with a penalty λ0k that is potentially

unique to the kth factor. More formally,

π(βjk | γjk, λ0k, λ1) = (1− γjk)φ(βjk | λ0k) + γjkφ(βjk | λ1), (2.1)

where φ(β | λ) = λ
2 exp{−λ|β|} is a Laplace prior with mean 0 and variance 2/λ2 and λ0k >> λ1 >

0, k = 1, . . .∞. The prior (2.1) will be further denoted as SSL(λ0k, λ1). Coupled with a prior on γjk,

this mixture prior induces a variant of “selective shrinkage” (Ishwaran and Rao, 2005) that adaptively

segregates the active coefficients from the ignorable via differential soft-thresholding. The coefficients

βjk with active selection indicators (γjk = 1) are left relatively unaffected by keeping the slab penalty

λ1 small. The coefficients βjk that are ignorable (γjk = 0) are pulled towards zero by letting the
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spike penalty λ0k be substantially larger than λ1. The point-mass prior (1.2) is obtained as a limiting

special case of (2.1) when λ0k → ∞.

Despite its continuity at the origin, the SSL(λ0k, λ1) mixture prior thresholds smaller βjk to exact

zeroes, aligning posterior modes along the coordinate axes. This is in sharp contrast to existing spike-

and-slab priors with continuous Gaussian spike distributions (George and McCulloch, 1993; Rockova

and George, 2014a), whose non-sparse posterior modes must be thresholded for variable selection. The

exact sparsity of the posterior modes here will be crucial for anchoring interpretable factor orientations.

For the diagonal elements of Σ, we assume independent inverse gamma priors

σ2
1, . . . , σ

2
G

iid∼ IG(η/2, ηξ/2) (2.2)

with the relatively noninfluential choice η = 1 and ξ = 1.

The prior construction is completed with the specification of a prior distribution over the feature

allocation matrix Γ = {γjk}G,∞
j,k=1. As with similar sparse infinite factor analyzers (Knowles and

Ghahramani, 2011; Rai and Daumé, 2008), we consider the Indian Buffet Process (IBP) prior of

Griffiths and Ghahramani (2005), which defines an exchangeable distribution over equivalence classes

[Γ] of infinite-dimensional binary matrices. Formally, the IBP with intensity parameter α > 0 arises

from the beta-Bernoulli prior

π(γjk|θk) ind∼ Bernoulli(θk), (2.3)

π(θk)
ind∼ B

( α

K
, 1
)
,

by integrating out the θk’s and by taking the limit K → ∞ (Griffiths and Ghahramani, 2011). Each

equivalence class [Γ] contains all matrices Γ with the same left-ordered form, obtained by ordering the

columns from left to right by their binary numbers. Marginally,

π([Γ]) =
αK+

∏2G−1
h=1 Kh!

exp (−αHG)
K+∏

k=1

(G− |γk|)! (|γk| − 1)!

G !
, (2.4)

where |γk| =
∑G

j=1 γjk, HN =
∑N

j=1
1
j is the N -th harmonic number, K+ is the number of active

factors, i.e. K+ =
∑

k I(|γk| > 0), and Kh is the number of columns γk expressing the same binary

number h. Proceeding marginally over θk lends itself naturally to a Gibbs sampler (Knowles and

Ghahramani, 2011; Rai and Daumé, 2008). However, to obtain an EM algorithm, we will instead

proceed conditionally on a particular ordering of the θk’s. We will capitalize on the following stick-

breaking representation of the IBP (Teh et al., 2007).

Theorem 2.1. (Teh et al., 2007)) Let θ(1) > θ(2) > ... > θ(K) be a decreasing ordering of θ =

(θ1, . . . , θK)′, where each θk
iid∼ B

(
α
K , 1

)
. In the limit as K → ∞, the θ(k)’s obey the following stick-
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breaking law

θ(k) =
k∏

l=1

νl, where νl
iid∼ B(α, 1). (2.5)

Remark 2.1. Unlike the stick-breaking construction for the Dirichlet process prior, here we recurse

on the length of the remaining piece of the stick rather than the discarded piece.

Remark 2.2. The implicit ordering θ(1) > θ(2) > ... > θ(K) induces a soft identifiability constraint

against the permutational invariance of the factor model.

To sum up, our hierarchical prior Πλ0k
(B) on infinite factor loading matrices B ∈ R

G×∞ is:

π(βjk | γjk) ∼ SSL(λ0k, λ1), γjk | θ(k) ∼ Bernoulli[θ(k)], θ(k) =

k∏

l=1

νl, νl
iid∼ B(α, 1). (2.6)

The representation (2.5) naturally provides a truncated stick-breaking approximation to the IBP

under which θ(k) = 0 for all k > K⋆. By choosing K⋆ suitably large, and also assuming βjk = 0 for

all k > K⋆, this approximation will play a key role in the implementation of our EM algorithm. The

next section summarizes some of the properties of Πλ0k
(B), which justify its use as an implicit prior

on the marginal covariance matrix and also establish a suitable lower bound on K⋆.

2.1 Properties of the Prior

When dealing with infinite-dimensional loading matrices, the implied marginal covariance matrix

Λ = BB′ +Σ needs to have all entries finite with probability one (Bhattacharya and Dunson, 2011).

This property would be guaranteed under the point-mass prior Π∞(B), where the underlying IBP

process places zero probability on allocation matrices with bounded effective dimension K+ (Griffiths

and Ghahramani, 2011). In the next theorem, we show that this property continues to hold for the

continuous relaxation Πλ0k
(B) with λ0k < ∞.

Theorem 2.2. Let Πλ0k
(B) denote the prior distribution (2.6) on a loading matrix B with infinitely

many columns. Assuming k/λ0k = O(1), we have

(
max
1≤j≤G

∞∑

k=1

β2
jk

)
< ∞ Πλ0k

-almost surely. (2.7)

Proof. Appendix (Section 10.1).

Remark 2.3. The statement (2.7) is equivalent to claiming that entries in BB′ are finite, Πλ0k
-almost

surely.
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In our EM implementation, we will be relying on the truncated approximation to B, setting all

loadings βjk indexed by k > K⋆ to zero. The truncated loading matrix BK⋆
yields a marginal

covariance matrix ΛK⋆ = BK⋆
BK⋆′

+ Σ, which can be made arbitrarily close to Λ by considering

K⋆ large enough. The closeness of such approximation will be measured in the sup-norm metric

d∞(Λ,ΛK⋆
) = max1≤j,m≤G |Λjk − Λ⋆

mk|. In the next theorem we derive a lower bound on the order

of the approximation K⋆ so that d∞(Λ,ΛK⋆
) < ε with large probability. There we will assume that

the spike penalties increase exponentially, i.e. λ2
0k = (1/a)k, where 0 < a < 1. This assumption can

be relaxed, as noted at the end of this section.

Theorem 2.3. Assume λ2
0k = (1/a)k with 0 < a < 1. Then for any ε > 0, we have

P(d∞(Λ,ΛK⋆
) ≤ ε) > 1− ε,

whenever K⋆ > max
{
log
[
ε̃
2(1− a)

]
/ log(a); log

[
λ2
1ε̃
2 (1− µ)

]
/ log(µ)

}
, where µ =

(
α

1+α

)
and ε̃ =

ε[1− (1− ε)1/G].

Proof. Appendix (Section 10.2).

Remark 2.4. Theorem 2.3 shows that higher K⋆ values are needed when the reciprocal penalty decay

rate a and/or the mean breaking fraction µ = α
1+α are closer to one.

Remark 2.5. As an aside, it also follows from the proof of Theorem 2.3 (equation (10.1)) that the

probability P(d∞(Λ,ΛK⋆
) ≤ ε) converges to one exponentially fast with K⋆.

Theorem 2.3 can be further extended to show that the prior Πλ0k
(B) places positive probability in

an arbitrarily small neighborhood around any covariance matrix, and hence the posterior distribution

of Ω is weakly consistent. According to Bhattacharya and Dunson (2011) (proof of Proposition 2 and

Theorem 2), it suffices to show that the prior concentrates enough probability in a Frobenius-norm

neighborhood around any true loading matrix B0. This result is summarized in the next theorem.

Theorem 2.4. Let B0 denote any (G × ∞) loading matrix with K+ < ∞ nonzero columns and let

BF
ε (B0) be an ε-neighborhood of B0 under the Frobenious norm. Assume λ2

0k = (1/a)k with 0 < a < 1.

Then Πλ0k

[
BF

ε (B0)
]
> 0 for any ε > 0.

Proof. Follows directly from Theorem 2.3 and the proof of Proposition 2 of Bhattacharya and Dunson

(2011).

Pati et al. (2014) studied prior distributions that yield the optimal rate of concentration of the

posterior measures around any true covariance matrix in operator norm, when the dimension G = Gn

can be much larger than the sample size n. The authors considered a variant of the point-mass mixture

prior Π∞(B) and showed that it leads to consistent covariance estimation in high-dimensional settings,
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where the posterior concentrates at a rate that is minimax up to a factor of
√
log n (Theorem 5.1 of

Pati et al. (2014)). This result was shown for a slightly different hierarchical model for the binary

allocations. First, the effective factor dimension K+ is picked from a distribution πK+ , which decays

exponentially, i.e. πK+(K+ > k) ≤ exp(−C k) for some C > 0. Second, each binary indicator

is sampled from a Bernoulli prior with a common inclusion probability θ arising from a beta prior

B(1,K0nGn + 1) with expectation 1/(2 +K0nGn), where K0n is the true factor dimension.

The IBP prior instead uses factor-specific inclusion probabilities θ(1) > θ(2) > . . . obtained as a

limit of ordered sequences of K independent beta random variables with expectation 1/(1 + K/α),

when K → ∞. The stick-breaking law then yields E[θ(k)] =
(

1
1+1/α

)k
. The parallel between the

IBP and the prior of Pati et al. (2014) is instructive for choosing a suitable intensity parameter α.

Selecting α ∝ 1/G leads to an IBP formulation that is more closely related to a prior yielding the

desired theoretical properties. Moreover, in the next theorem we show that for such α, the IBP process

induces an implicit prior distribution on K+, which also decays exponentially.

Theorem 2.5. Let [Γ] be distributed according to the IBP prior (2.4) with an intensity 0 < α ≤ 1.

Let K+ denote the effective factor dimension, that is the largest index K+ ∈ N, so that γjk = 0 for all

k > K+, j = 1, . . . , G. Then

P(K+ > k) < 2

[
G(α+ 1) +

4

3

]
exp

[
−(k + 1) log

(
α+ 1

α

)]

Proof. Appendix (Section 10.3).

The properties discussed in Theorems 2.2, 2.3 and 2.4 were studied under the assumption of

increasing shrinkage for higher-indexed factors, i.e. λ2
0k = (1/a)k, 0 < a < 1. The discussed guarantees

will continue to hold also assuming λ01 = · · · = λ0K⋆ and λ0k = ∞ when k > K⋆ for some suitable

K⋆, i.e. K⋆ ≥ K+. This more practical variant of our prior Πλ0k
(B) will be used throughout our

simulated examples and for the data analysis.

3 The EM Approach to Bayesian Factor Analysis

We will leverage the resemblance between factor analysis and multivariate regression, and implement a

sparse variant of the EM algorithm for probabilistic principal components (Tipping and Bishop, 1999).

We will capitalize on EMVS, a fast method for posterior model mode detection in linear regression

under spike-and-slab priors (Rockova and George, 2014a). To simplify notation, throughout the section

we will denote the truncated approximation BK⋆
by B, for some pre-specified K⋆. Similarly, θ will be

the finite vector of ordered inclusion probabilities θ = (θ1, . . . , θK⋆)′ and λ0k = λ0 for k = 1, . . . ,K⋆.

Letting ∆ = (B,Σ,θ), the goal of the proposed algorithm will be to find parameter values ∆̂

which are most likely (a posteriori) to have generated the data, i.e. ∆̂ = argmax∆ log π(∆ | Y ).
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This task would be trivial if we knew the hidden factors Ω = [ω1, . . . ,ωn]
′ and the latent allocation

matrix Γ. In that case the estimates would be obtained as a unique solution to a series of penalized

linear regressions. On the other hand, if ∆ were known, then Γ and Ω could be easily inferred. This

“chicken-and-egg” problem can be resolved iteratively by alternating between two steps. Given ∆(m)

at the mth iteration, the E-step computes expected sufficient statistics of hidden/missing data (Γ,Ω).

The M-step then follows to find the a-posteriori most likely ∆(m+1), given the expected sufficient

statistics. These two steps form the basis of a vanilla EM algorithm with a guaranteed monotone

convergence to at least a local posterior mode.

More formally, the EM algorithm locates modes of π(∆|Y ) iteratively by maximizing the expected

logarithm of the augmented posterior. Given an initialization ∆(0), the (m+1)st step of the algorithm

outputs ∆(m+1) = argmax∆Q (∆), where

Q (∆) = E
Γ,Ω | Y ,∆(m) [log π (∆,Γ,Ω | Y )] , (3.1)

with E
Γ,Ω | Y ,∆(m)(·) denoting the conditional expectation given the observed data and current param-

eter estimates at the mth iteration. Note that we have parametrized our posterior in terms of the

ordered inclusion probabilities θ rather than the breaking fractions ν. These can be recovered using

the stick-breaking relationship νk = θ(k)/θ(k−1). This parametrization yields a feasible M-step, as will

be seen below.

We now take a closer look at the objective function (3.1). For notational convenience, let 〈X〉
denote the conditional expectation E

Γ,Ω | Y ,∆(m)(X). As a consequence of the hierarchical separation

of model parameters, (B,Σ) and θ are conditionally independent given (Ω,Γ). Thereby

Q(∆) = Q1(B,Σ) +Q2(θ),

where Q1(B,Σ) = 〈log π(B,Σ,Ω,Γ | Y )〉 and Q2(θ) = 〈log π(θ,Γ | Y )〉. The function Q2(θ) can be

further simplified by noting that the latent indicators γjk enter linearly and thereby can be directly

replaced by their expectations 〈γjk〉, yielding Q2(θ) = log π(〈Γ〉 | θ) + log π(θ). The term Q1(B,Σ) is

also linear in Γ, but involves quadratic terms ωiω
′
i, namely

Q1 (B,Σ) =C − 1

2

n∑

i=1

{
(yi −B〈ωi〉)′Σ−1 (yi −B〈ωi〉) + tr

[
B′Σ−1B(〈ωiω

′
i〉 − 〈ωi〉〈ωi〉′)

]}

−
G∑

j=1

K⋆∑

k=1

|βjk| (λ1〈γjk〉+ λ0(1− 〈γjk〉))−
n+ 1

2

G∑

j=1

log σ2
j −

G∑

j=1

1

2σ2
j

, (3.2)

where C is a constant not involving ∆. The E-step entails the computation of both first and second

conditional moments of the latent factors. The updates are summarized below.
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3.1 The E-step

The conditional posterior mean vector 〈ωi〉 is obtained as a solution to a ridge-penalized regression of

Σ(m)−1/2
yi on Σ(m)−1/2

B(m). This yields

〈Ω′〉 =
(
B(m)′Σ(m)−1

B(m) + IK⋆

)−1
B(m)′Σ(m)−1

Y ′. (3.3)

The conditional second moments are then obtained from 〈ωiω
′
i〉 = M + 〈ωi〉〈ωi〉′, where M =(

B(m)′Σ(m)−1
B(m) + IK⋆

)−1
is the conditional covariance matrix of the latent factors, which does

not depend on i. We note in passing that the covariance matrix M can be regarded as a kernel of a

smoothing penalty.

The E-step then proceeds by updating the expectation of the binary allocations Γ. The entries can

be updated individually by noting that conditionally on ∆(m), the γjk’s are independent. The model

hierarchy separates the indicators from the data through the factor loadings so that π(Γ | ∆,Y ) =

π(Γ |∆) does not depend on Y . This leads to rapidly computable updates

〈γjk〉 ≡ P
(
γjk = 1 |∆(m)

)
=

θ
(m)
k φ(β

(m)
jk |λ1)

θ
(m)
k φ(β

(m)
jk |λ1) + (1− θ

(m)
k )φ(β

(m)
jk |λ0)

. (3.4)

As shown in the next section, the conditional inclusion probabilities 〈γjk〉 serve as adaptive mixing

proportions between spike and slab penalties, determining the amount of shrinkage of the associated

βjk’s.

3.2 The M-step

Once the latent sufficient statistics have been updated, the M-step consists of maximizing (3.1) with

respect to the unknown parameters∆. Due to the separability of (B,Σ) and θ, these groups of param-

eters can be optimized independently. The next theorem explains how Q1(B,Σ) can be interpreted

as a log-posterior arising from a series of independent penalized regressions, facilitating the exposition

of the M-step. First, let us denote Y = [y1, . . . ,yG], 〈Ω〉 = [〈ω1〉, . . . , 〈ωn〉]′ and let β1, . . . ,βG be

the columns of B′.

Theorem 3.1. Denote by Ỹ =

(
Y

0K
⋆
×K

⋆

)
∈ R

(n+K
⋆)×G a zero-augmented data matrix with column

vectors ỹ1, . . . , ỹG. Let Ω̃ =

(
〈Ω〉

√
nML

)
∈ R

(n+K
⋆)×G, where ML is the lower Cholesky factor of M .

Then

Q1(B,Σ) =

G∑

j=1

Qj(βj , σj), (3.5)
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where

Qj(βj , σj) = − 1

2σ2
j

||ỹj − Ω̃βj ||2 −
K⋆∑

k=1

|βjk|λjk −
n+ 1

2
log σ2

j −
1

2σ2
j

(3.6)

with λjk = 〈γjk〉λ1 + (1− 〈γjk〉)λ0.

Proof. The statement follows by rearranging the terms in the first row of (3.2). Namely, in the likeli-

hood term we replace the row summation by a column summation. Then, we rewrite n
2 tr(B

′Σ−1BM) =
∑G

j=1
n

2σ2
j
β′
jMβj . This quadratic penalty can be embedded within the likelihood term by augmenting

the data rows as stated in the theorem.

Remark 3.1. The proof of Theorem 3.1 explains why M can be regarded as a kernel of a Markov

Random Field smoothing prior, penalizing linear combinations of loadings associated with correlated

factors.

Based on the previous theorem, each β
(m+1)
j (the jth row of the matrix B(m+1)) can be obtained

by deploying an “adaptive LASSO” computation (Zou, 2006) with a response ỹj and augmented data

matrix Ω̃. Each coefficient βjk is associated with a unique penalty parameter 2σ
(m)
j λjk, which is

proportional to λjk, an adaptive convex combination of the spike and slab LASSO penalties. Notably,

each λjk yields a “self-adaptive” penalty, informed by the data through the most recent β
(m)
jk at the

mth iteration.

The computation is made feasible with the very fast LASSO implementations (Friedman et al.,

2010), which scale very well with both K⋆ and n. First, the data matrix is reweighted by a vector

(1/λj1, . . . , 1/λjK⋆)′ and a standard LASSO computation is carried out with a penalty 2σ
(m)
j . The

resulting estimate is again reweighted by 1/λjk (Zou, 2006), yielding β
(m+1)
j . Note that the updates

β
(m+1)
j (j = 1, . . . , G) are obtained conditionally onΣ(m) and are independent of each other, permitting

the use of distributed computing. This step is followed by a closed form update Σ(m+1) with σ
(m+1)2
j =

1
n+1(||yj − Ω̃β

(m+1)
j ||2+1), conditionally on the new B(m+1). Despite proceeding conditionally in the

M-step, monotone convergence is still guaranteed (Meng and Rubin, 1993).

Now we continue with the update of the ordered inclusion probabilities θ from the stick-breaking

construction. To motivate the benefits of parametrization based on θ, let us for a moment assume that

we are actually treating the breaking fractions ν as the parameters of interest. The corresponding

objective function Q⋆
2(ν) = log π(〈Γ〉 | ν) + log π(ν) is

Q⋆
2(ν) =

G∑

j=1

K⋆∑

k=1

{
〈γjk〉

k∑

l=1

log νl + (1− 〈γjk〉) log
(
1−

k∏

l=1

νl

)}
+ (α− 1)

K⋆∑

k=1

log(νk), (3.7)
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a nonlinear function that is difficult to optimize. Instead, we use the stick-breaking law and plug

νk = θ(k)/θ(k−1) into (3.7). The objective function then becomes

Q2(θ) =
G∑

j=1

K⋆∑

k=1

[〈γjk〉 log θk + (1− 〈γjk〉) log(1− θk)] + (α− 1) log θK⋆ , (3.8)

whose maximum θ(m+1) can be found by solving a linear program with a series of constraints

θk − θk−1 ≤ 0, k = 2, . . . ,K⋆,

0 ≤ θk ≤ 1, k = 1, . . . ,K⋆.

Had we assumed the finite beta-Bernoulli prior (2.3), the update of the (unordered) occurrence prob-

abilities would simply become θ
(m)
k =

∑G
j=1〈γjk〉+a−1

a+b+G−2 .

Note that the the ordering constraint here induces increasing shrinkage of higher-indexed factor

loadings, thereby controlling the growth of the effective factor cardinality.

4 Rotational Ambiguity and Parameter Expansion

The EM algorithm outlined in the previous section is prone to entrapment in local modes in the

vicinity of initialization. This local convergence issue is exacerbated by the rotational ambiguity

of the likelihood, which induces highly multimodal posteriors, and by strong couplings between the

updates of loadings and factors. These couplings cement the initial factor orientation, which may be

suboptimal, and affect the speed of convergence with zigzagging update trajectories. These issues can

be alleviated with additional augmentation in the parameter space that can dramatically accelerate the

convergence (Liu et al., 1998; van Dyk and Meng, 2010, 2001; Liu and Wu, 1999; Lewandowski et al.,

1999). By embedding the complete data model within a larger model with extra parameters, we derive

a variant of a parameter expanded EM algorithm (PX-EM by Liu et al. (1998)). This enhancement

performs an “automatic rotation to sparsity”, gearing the algorithm towards orientations which best

match the prior assumptions of independent latent components and sparse loadings. A key to our

approach is to employ the parameter expansion only on the likelihood portion of the posterior, while

using the SSL prior to guide the algorithm towards sparse factor orientations. We refer to our variant

as parameter-expanded-likelihood EM (PXL-EM).

Our PXL-EM algorithm is obtained with the following parameter expanded version of (1.1)

yi | ωi,B,Σ,A
ind∼ NG(BA−1

L ωi,Σ), ωi |A ∼ NK(0,A) (4.1)

for 1 ≤ i ≤ n, where AL denotes the lower Cholesky factor of A, the newly introduced parameter. The

observed-data likelihood here is invariant under the parametrizations indexed by A. This is evident
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from the marginal distribution f(yi |B,Σ,A) = NG(0,BB′ +Σ), 1 ≤ i ≤ n, which does not depend

on A. Although A is indeterminate from the observed data, it can be identified with the complete

data. Note that the original factor model is preserved at the null value A0 = IK .

To exploit the invariance of the parameter expanded likelihood, we impose the SSL prior (2.6) on

B⋆ = BA−1
L rather than on B. That is,

β⋆
jk | γjk

ind∼ SSL(λ0k, λ1), γjk | θ(k) ind∼ Bernoulli[θ(k)], θ(k) =
k∏

l=1

νl, νl
iid∼ B(α, 1), (4.2)

where the β⋆
jk’s are the transformed elements of B⋆. This yields an implicit prior on B that depends

on AL and therefore is not transformation invariant, a crucial property for anchoring sparse factor

orientations. The original factor loadings B can be recovered from (B⋆,A) through the reduction

function B = B⋆AL. The prior (2.2) on Σ remains unchanged.

As the EM algorithm from Section 3, PXL-EM also targets (local) maxima of the posterior π(∆ |Y )

implied by (1.1) and (2.1), but does so in a very different way. PXL-EM proceeds indirectly in

terms of the parameter expanded posterior π(∆⋆ | Y ) indexed by ∆⋆ = (B⋆,Σ,θ,A) and implied by

(4.1) and (4.2). By iteratively optimizing the conditional expectation of the augmented log posterior

log π(∆⋆,Ω,Γ | Y ), PXL-EM yields a path in the expanded parameter space. This sequence corre-

sponds to a trajectory in the original parameter space through the reduction function B = B⋆AL. At

convergence, this trajectory yields a local mode of π(∆ |Y ) (as shown in Theorem 4.1). Importantly,

the E-step of PXL-EM is taken with respect to the conditional distribution of Ω and Γ under the

original model governed by B and A0, rather than under the expanded model governed by B∗ and

A. Such anchoring by the E-step is crucial and its implications are discussed later in this section.

The PXL-EM can lead to very different trajectories, with an M-step that updates A together

with the remaining parameters. Recall that A indexes continuous transformations yielding the same

marginal likelihood. Adding this extra dimension, each mode of the original posterior π(∆ | Y )

corresponds to a curve in the expanded posterior π(∆⋆ | Y ), indexed by A. These ridge-lines of

accumulated probability, or orbits of equal likelihood, serve as a bridges connecting remote posterior

modes. These are likely to be located along coordinate axes due to the SSL prior. By updating A and

using the reduction function, the PXL-EM trajectory is geared along the orbits, taking greater steps

and accelerating convergence.

More formally, the PXL-EM traverses the expanded parameter space and generates a trajec-

tory {∆⋆(1),∆⋆(2), . . .}, where ∆⋆(m) = (B⋆(m),Σ(m),θ(m),A(m)). This trajectory corresponds to

a sequence {∆(1),∆(2), . . .} in the reduced parameter space, where ∆(m) = (B(m),Σ(m),θ(m)) and

B(m) = B⋆(m)A(m)1/2. Beginning with the initialization ∆(0), every step of the PXL-EM algorithm
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outputs an update ∆⋆(m+1) = argmax∆⋆ Qpx(∆⋆), where

Qpx(∆⋆) = E
Ω,Γ | Y ,∆(m),A0

log π(∆⋆,Ω,Γ | Y ). (4.3)

Each such computation is facilitated by the separability of Qpx with respect to (B⋆,Σ), θ and A, a

consequence of the hierarchical structure of the Bayesian model. Thus we can write

Qpx(∆⋆) = Cpx +Qpx
1 (B⋆,Σ) +Qpx

2 (θ) +Qpx
3 (A). (4.4)

The function Qpx
1 is given by Q1 in (3.5), Qpx

2 is given by Q2 in (3.8) and

Qpx
3 (A) = −1

2

n∑

i=1

tr[A−1E
Ω |∆(m),A0

(ωiω
′
i)]−

n

2
log |A|. (4.5)

Recall that the expectation in (4.3) is taken with respect to the conditional distribution of Ω

and Γ under the original model governed by ∆(m) and A0. Formally, the calculations remain the

same as before (Section 3.1). However, the update B(m) = B⋆(m)A
(m)
L is now used throughout these

expressions. The implications of this substitution are discussed in Examples 4.1 and 4.2 later in this

section.

Conditionally on the imputed latent data, the M-step is then performed by maximizing Qpx(∆⋆)

over ∆⋆ in the augmented space. The updates of (B⋆(m+1),Σ(m+1)) and θ(m+1) are obtained by

maximizing (3.5) and (3.8) as described in Section 3.2. The update of A(m+1), obtained by maximizing

(4.5), requires only a fast simple operation,

A(m+1) = max
A=A′,A≥0

Qpx
3 (A) =

1

n

n∑

i=1

E
Ω | Y ,∆(m),A0

(ωiω
′
i) =

1

n
〈Ω′Ω〉 = 1

n
〈Ω〉′〈Ω〉+M . (4.6)

The new coefficient updates in the reduced parameter space are then obtained by the following step

B(m+1) = B⋆(m+1)A
(m+1)
L , a “rotation” along an orbit of equal likelihood. The additional computa-

tional cost is rather small because the transformations are performed in the lower-dimensional latent

subspace.

The following theorem shows that PXL-EM and EM from Section 3 have the same fixed points.

Theorem 4.1. A value (∆MAP ,A0) is a fixed point of the PXL-EM algorithm.

Proof. The proof is analogous to the one of Liu et al. (1998) for PX-EM.

Remark 4.1. According to the theorem, A(m+1) ≈ A0 near convergence, where PXL-EM approxi-

mately corresponds to the traditional EM algorithm. Equation (4.6) then yields 1
n〈Ω′Ω〉 ≈ IK , implying

that PXL-EM is ultimately enforcing an implicit identifiability constraint based on orthogonal features

Ω̃.
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Remark 4.2. Although AL is not strictly a rotation matrix in the sense of being orthonormal, we will

refer to its action of changing the factor model orientation as the “rotation by AL”. From the polar

decomposition of AL = UP , transformation by AL is the composition of a rotation represented by the

orthogonal matrix U = AL(A
′
LAL)

−1/2, and a dilation represented by the symmetric matrix P . Thus,

when we refer to the “rotation” by AL, what is meant is the rotational aspect of AL contained within

U . The result of applying the sequence of affine transformations AL throughout the computation will

be referred to as a “rotation to sparsity”. At convergence, these transformations are likely to yield

better oriented sparse representations.

Remark 4.3. Instead of AL, we could as well deploy the square root A1/2. We have chosen AL due

to its lower-triangular structure, whose benefits will be highlighted in Example 4.2.

To sum up, the default EM algorithm proceeds by finding B(m) at the M-step, and then using that

B(m) for the next E-step. In contrast, the PXL-EM algorithm finds B⋆(m) at the M-step, but then

uses the value of B(m) = B⋆(m)A
(m)
L for the next E-step. Each transformation B(m) = B⋆(m)A

(m)
L

decouples the most recent updates of the latent factors and factor loadings, enabling the EM trajectory

to escape the attraction of suboptimal orientations. In this, the “rotation” induced by A
(m)
L plays a

crucial role for the detection of sparse representations which are tied to the orientation of the factors.

In the following two intentionally simple examples, we convey the intuition of entries in A as

penalties that encourage featurizations with fewer and more informative factors. The first example

describes the scaling aspect of the transformation by AL, assuming AL is diagonal.

Example 4.1. (Diagonal A) We show that for A = diag{α1, . . . , αK}, each αk plays a role of a

penalty parameter, determining the size of new features as well as the amount of shrinkage. This is

seen from the E-step, which (a) creates new features 〈Ω〉, (b) determines penalties for variable selection

〈Γ〉, (c) creates a smoothing penalty matrix Cov (ωi | B,Σ). Here is how inserting B instead of B⋆

affects these three steps. For simplicity, assume Σ = IK , B⋆′B⋆ = IK and θ = (0.5, . . . , 0.5)′. From

(3.3), the update of latent features is

EΩ | Y ,B(Ω′) = A−1
L (IK +A−1)−1B⋆′Y ′ = diag

{ √
αk

1 + αk

}
B⋆′Y ′. (4.7)

Note that (4.7) with αk = 1 (k = 1, . . . ,K) corresponds to no parameter expansion. The function

f(α) =
√
α

1+α steeply increases up to its maximum at α = 1 and then slowly decreases. Before the

convergence (which corresponds to αk ≈ 1), PXL-EM performs shrinkage of features, which is more

dramatic if the kth variance αk is close to zero. Regarding the Markov-field kernel smoothing penalty,

the coordinates with higher variances αk are penalized less. This is seen from Cov (ωi | B,Σ) =

A−1
L (IK +A−1)−1A−1

L = diag{1/(1 + αk)}. The E-step is then completed with the update of variable
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selection penalty mixing weights 〈Γ〉. Here

EΓ |B,θ(γjk) =

[
1 +

λ0

λ1
exp

(
−|β⋆

jk|αk(λ0 − λ1)
)]−1

.

This probability is exponentially increasing in αk. Higher variances αk > 1 increase the inclusion

probability as compared to no parameter expansion αk = 1. The coefficients of the newly created

features with larger αk are more likely to be selected.

The next example illustrates the rotational aspect of AL, where the off-diagonal elements perform

linear aggregation.

Example 4.2. (Unit lower-triangular AL) Suppose that A = (αjk)
K
j,k=1 with αjk = min{j, k}. This

matrix has a unit-lower-triangular Cholesky factor with entries AL
jk = I(j ≥ k). For Σ = IK and

B⋆′B⋆ = IK , we have again EΩ | Y ,B(Ω′) = A−1
L (IK +A−1)−1B⋆′Y ′, where now the matrix A−1

L (IK +

A−1)−1 has positive elements in the upper triangle and negative elements in the lower triangle. The

first feature thus aggregates information from all the columns Y B⋆, whereas the last feature correlates

negatively with all but the last column. The variable selection indicators are computed for linear

aggregates of the coefficients B⋆, as determined by the entires AL, i.e.

EΓ |B,θ(γjk) =


1 + λ0

λ1
exp


−

K⋆∑

l≥k

|β⋆
jl|(λ0 − λ1)





−1

,

where θ = (0.5, . . . , 0.5)′. The lower ordered inclusion indicators are likely to be higher since they aggre-

gate more coefficients, a consequence of the lower-triangular form AL. As a result, lower ordered new

features are more likely to be selected. The smoothness penalty matrix Cov (ωi |B,Σ) = (A′
LAL+IK)−1

has increasing values on the diagonal and all the off-diagonal elements are negative. The quadratic

penalty β′
jCov (ωi |B,Σ)βj thus forces the loadings to be similar (due to the positive covariances be-

tween the factors as given in A), where the penalty is stronger between coefficients of higher-ordered

factors.

Further insight into the role of the matrix AL can be gained by recasting the LASSO penalized

likelihood in the M-step of PXL-EM in terms of the original model parameters B = B⋆AL. From

(3.6), the PXL M-step yields

β
⋆(m+1)
j = argmax

β⋆
j

{
−||ỹj − Ω̃β⋆

j ||2 − 2σ
(m)2
j

K⋆∑

k=1

|β⋆
jk|λjk

}
,

for each j = 1, . . . , G. However, in terms of the columns of B(m)′ , where β
(m+1)
j = A′

Lβ
⋆(m+1)
j , these
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solutions become

β
(m+1)
j = argmax

βj



−||ỹj − (Ω̃A

′−1
L )βj ||2 − 2σ

(m)2
j

K⋆∑

k=1

∣∣∣∣∣∣

K⋆∑

l≥k

(A−1
L )lkβjl

∣∣∣∣∣∣
λjk



 . (4.8)

Thus, the β
(m+1)
j are solutions to modified penalized regressions of ỹj on Ω̃A

′−1
L under a series of

linear constraints. Here A−1
L serves to “rotate” the factor basis. The linear constraints are a bit more

general than those in the fused LASSO (Tibshirani et al., 2005), since they involve linear combinations

determined by A−1
L , which is not required to be a banded diagonal matrix. This illustrates how PXL-

EM cycles through “rotations” of the factor basis and sparsification by soft-thresholding.

The PXL-EM algorithm outlined in this section can be regarded as a one-step-late PX-EM (van

Dyk and Tang, 2003) or more generally as a one-step-late EM (Green, 1990). The PXL-EM differs

from the traditional PX-EM of Liu et al. (1998) by not requiring the SSL prior be invariant under

transformations AL. PXL-EM purposefully leaves only the likelihood invariant, offering (a) tremen-

dous accelerations without sacrificing the computational simplicity, (b) automatic rotation to sparsity

and (c) robustness against poor initializations. The price we pay is the guarantee of monotone con-

vergence. Let (∆(m),A0) be an update of ∆⋆ at the mth iteration. It follows from the information

inequality, that for any ∆ = (B,Σ,θ), where B = B⋆AL,

log π(∆ | Y )− log π(∆(m) | Y ) ≥ Qpx(∆⋆ |∆(m),A0)−Qpx(∆(m) |∆(m),A0)

+ E
Γ |∆(m),A0

log

(
π(B⋆AL)

π(B⋆)

)
. (4.9)

Whereas ∆⋆(m+1) = argmaxQpx(∆⋆) increases the Qpx function, the log prior ratio evaluated at

(B⋆(m+1),A(m+1)) is generally not positive. van Dyk and Tang (2003) proposed a simple adjustment

to monotonize their one-step-late PX-EM, where the new proposal B(m+1) = B⋆(m+1)A
(m+1)
L is only

accepted when the value of the right hand side of (4.9) is positive. Otherwise, the classical EM step is

performed with B(m+1) = B⋆(m+1)A0. Although this adjustment guarantees the convergence towards

the nearest stationary point (Wu, 1983), poor initializations may gear the monotone trajectories

towards peripheral modes. It may therefore be beneficial to perform the first couple of iterations

according to PXL-EM to escape such initializations, not necessarily improving on the value of the

objective, and then to switch to EM or to the monotone adjustment. Monitoring the criterion (6.6)

throughout the iterations, we can track the steps in the trajectory that are guaranteed to be monotone.

If convergent, PXL-EM converges no slower than EM algorithm (Green, 1990) and the accelerations

are dramatic, as will be illustrated in the next section.

The EM acceleration with parameter expansion is related to the general framework of parameter

expanded variational Bayes (VB) methods (Qi and Jaakkola, 2006), whose variants were implemented
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for factor analysis by Luttinen and Ilin (2010). The main difference here is that we use a parameteri-

zation that completely separates the update of auxiliary and model parameters, while breaking up the

dependence between factors and loadings. PXL-EM yields transformations that accelerate the conver-

gence towards sparse modes of the actual posterior, not only its lower bound. Parameter expansion

has already proven useful in accelerating convergence of sampling procedures, generally (Liu and Wu,

1999) and in factor analysis (Ghosh and Dunson, 2009). What we have considered here is an expansion

by a full prior factor covariance matrix, not only its diagonal, to obtain even faster accelerations (Liu

et al., 1998).

4.1 Anchoring Factor Rotation: A Synthetic Example

To illustrate the effectiveness of the symbiosis between factor model “rotations” and the spike-and-

slab LASSO soft-thresholding, we generated a dataset from model (1.1) with n = 100 observations,

G = 1956 responses and Ktrue = 5 factors. The true loading matrix Btrue (Figure 1 left) has a

block-diagonal pattern of nonzero elements Γtrue with overlapping response-factor allocations, where
∑

j γ
true
jk = 500 and

∑
j γ

true
jk γtruejk+1 = 136 is the size of the overlap. We set btruejk = γtruejk and Σtrue = IG.

The implied covariance matrix is again block-diagonal (Figure 1 middle). For the EM and PXL-EM

factor model explorations, we use λ0k = λ0, as advocated at the end of the Section 2.1. We set

λ1 = 0.001, λ0 = 20, α = 1/G and K⋆ = 20. The slab penalty λ1 was set small to ameliorate bias

in estimation. The spike penalty λ0 was set much larger to improve the accuracy of recovery. Its

tuning will be addressed in the next section. All the entries in the initialization B(0) were sampled

independently from the standard normal distribution, Σ(0) = IG and θ
(0)
(k) = 0.5, k = 1, . . . ,K⋆.

We compared the EM and PXL-EM implementations with regard to the number of iterations to

convergence and the accurateness of the recovery of the loading matrix. Convergence was claimed

whenever d∞(B⋆(m+1),B⋆(m)) < 0.05 in the PXL-EM and d∞(B(m+1),B(m)) < 0.05 in the EM

algorithm.

The results without parameter expansion were rather disappointing. Figure 2 depicts four snap-

shots of the EM trajectory, from the initialization to the 100th iteration. The plot depicts heat-maps of

|B(m)| (a matrix of absolute values of B(m)) for m ∈ {0, 1, 10, 100}, where the blank entries correspond

to zeroes. The EM algorithm did not converge even after 100 iterations, where the recovered factor

allocation pattern is nowhere close to the generating truth. On the other hand, parameter expansion

fared superbly. Figure 3 shows snapshots of |B⋆(m)| for the PXL-EM trajectory at m ∈ {0, 1, 10, 23},
where convergence was achieved after merely 23 iterations. Even at the first iteration, PXL-EM began

to gravitate towards a sparser and more structured solution. At convergence, PXL-EM recovers the

true pattern of nonzero elements in the loading matrix (up to a permutation) with merely 2 false
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positives and 2 false negative. In addition, we obtain a rather accurate estimate of the marginal

covariance matrix (Figure 1(c)). This estimate will be compared with the solution obtained using a

one-component Laplace prior in the next section.

The PXL-EM is seen to be robust against poor initializations. After repeating the experiment with

different random starting locations B(0) sampled element-wise from Gaussian distributions with larger

variances, PXL-EM yielded almost identical loading matrices, again with only a few false positives

and negatives. The computing time required for one iteration of PXL-EM was between 3-4 seconds in

R without parallelization on a 1.7 GHz machine.

Given the vastness of the posterior with its intricate multimodality, and the arbitrariness of the

initialization, the results of this experiment are very encouraging. There are some lingering issues,

such as the selection of the penalty parameter λ0. We shall show in the next section, that the selection

is avoided with a sequential deployment of PXL-EM over a sequence of increasing λ0 values. The

larger λ0, the closer we are to the methodological ideal, and so large values that are practically

indistinguishable from the limiting case are preferred.

5 Dynamic Posterior Exploration

Under our hierarchical SSL prior with λ0k = λ0, the character of the posterior landscape is regulated by

the two penalty parameters λ0 >> λ1, which determine the degree of multi-modality and spikiness. In

the context of simple linear regression, Y ∼ Nn(Xβ, In), β = (β1, . . . , βp)
′, the posterior distribution

True Factor Loadings

(a) Btrue

Theoretical Covariance Matrix

(b) BtrueB
′

true + I5

Estimated Covariance Matrix

(c) B̂B̂
′

+ diag{Σ̂}

Figure 1: The true pattern of nonzero values in the loading matrix (left), a heat-map of the theoretical

covariance matrix BtrueB
′
true + I5 (middle), estimated covariance matrix (right).

18



Initialization: B_0 Iteration 1 Iteration 10 Iteration 100

Figure 2: A trajectory of the EM algorithm, convergence not achieved even after 100 iterations

Initialization: B_0 Iteration 1 Iteration 10 Iteration 23 (Convergence)

Figure 3: A trajectory of the PXL-EM algorithm, convergence achieved after 23 iterations
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Iteration 16 (Convergence)

(a) λ0 = 5

Iteration 28 (Convergence)

(b) λ0 = 10

Iteration 23 (Convergence)

(c) λ0 = 20

Iteration 61 (Convergence)

(d) λ0 = 30

Figure 4: Recovered loading matrices of PXL-EM for different values of λ0. The computations are

independent, each initialized at the same B(0) used in the previous section.

induced by the SSL prior on β will be unimodal as long λ0 and λ1 are not too different.

Theorem 5.1. Assume p < n and denote by λmin the minimal eigen-value of n−1X ′X. Then for

a given θ ∈ (0, 1) the posterior distribution arising from a θ-weighted spike-and-slab LASSO mixture

prior with penalties λ0 and λ1 has a unique mode, whenever

(λ0 − λ1)
2 ≤ 4λmin. (5.1)

Proof. Shown by Rockova and George (2014b).

Remark 5.1. Under the PXL-EM regime, the estimated features Ω̃ are nearly orthogonal as the

algorithm converges. This is the most ideal scenario in the light of this theorem, where λmin(Ω̃) ≈ 1.

Priors with large differences (λ0−λ1), however, induce posteriors with many isolated sharp spikes,

a difficult environment for the EM trajectories to move around. The effect of this phenomenon is

illustrated in Figure 4, where the PXL-EM algorithm was run for a series of spike penalties λ0 ∈
I = {5, 10, 20, 30} using the same initialization and tuning as in the previous section. Clearly, larger

penalties λ0 are needed to shrink the redundant coefficients to zero. However, as λ0 approaches the

methodological ideal (λ0 → ∞), it becomes increasingly more difficult to find the optimal solution.
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Iteration 16 (Convergence)

(a) λ0 = 5

Iteration 15 (Convergence)

(b) λ0 = 10

Iteration 14 (Convergence)

(c) λ0 = 20

Iteration 9 (Convergence)

(d) λ0 = 30

Figure 5: Recovered loading matrices of PXL-EM for different values of λ0. The first computation

(λ0 = 5) initialized at β(0) from the previous section, then reinitialized sequentially.

In order to facilitate the search for the global maximum in the multimodal landscape, we build

on ideas from the deterministic annealing EM algorithm proposed by Ueda and Nakano (1998). The

idea there is to sequentially initialize the EM calculation at optima of a series of modified posteriors,

each raised to a power 1/t, an inverse temperature parameter. By starting with a high temperature

t1 >> 1, where the tempered posterior is nearly unimodal, and continuing along a temperature ladder

t1 > t2 > · · · > tT = 1 by sequentially reinitializing computations at ti with the solutions obtained at

ti−1, this algorithm is apt to be more successful in finding higher posterior modes. This approach was

successfully implemented by Rockova and George (2014a) in the EMVS method for variable selection

in linear regression and by Yoshida and West (2010) in the variational Bayesian approach to graphical

factor model. Here, we pursue a different strategy, sharing conceptual similarities with deterministic

annealing, to mitigate the multimodality associated with the variable selection priors.

We will regard λ0 as an analogue of the inverse temperature parameter, where small values (in

the range suggested by Theorem 5.1) yield unimodal posteriors (in linear regression). The solutions

obtained for these less interesting parameter pairs (λ0, λ1) can be used as warm starts for more

interesting choices (λ0, λ1), where λ0 >> λ1. By keeping the slab variance steady and gradually

increasing the spike variance λ0 over a ladder of values λ0 ∈ I = {λ1
0 < λ2

0 < · · · < λL
0 }, we perform
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a “dynamic posterior exploration”, sequentially reinitializing the calculations along the solution path.

Accelerated dynamic posterior exploration is obtained by reinitializing only the loading matrix B,

using the same Σ(0) and θ(0) as initial values throughout the solution path. This strategy was applied

on our example with λ0 ∈ I = {5, 10, 20, 30} (Figure 5). Compared to Figure 4, fewer iterations are

needed while factor splitting is reduced at λ0 = 30, evidently a result of the reinitialization at the

mode with λ0 = 20. The solution stabilizes after a certain value λ0, where further increase of λ0 did

not impact the solution. Thus, the obtained solution for sufficiently large λ0, if a global maximum,

can be regarded as an approximation to the MAP estimator under the point-mass prior.

Finally, we explored what would happen if we instead used the one-component Laplace prior

obtained by λ0 = λ1. With the absence of a slab distribution, this would correspond to a LASSO-like

solution path, but with automatic transformations due to the PXL-EM algorithm. We performed the

PXL-EM computation with sequential initialization for the one-component Laplace prior (λ0 = λ1)

assuming λ0 ∈ I = {0.1, 5, 10, 20} (Figure 6). In contrast to the SSL implementation above with

λ0 >> λ1, it was necessary to begin with λ0 = λ1 = 0.1. In terms of identifying the nonzero loadings,

PXL-EM with the one-component Laplace prior did reasonably well, generating 45 false positives in

the best case where λ0 = λ1 = 20. On this example, the PXL-EM implementation of a l1-penalized

likelihood method dramatically enhances the sparsity recovery over existing sparse PCA techniques,

which do not alter the factor orientation throughout the computation (Witten and Hastie, 2009).

However, the estimates of the non-zero loadings were quite poor as is evidenced by Figure 7, which

compares the estimated entries in the marginal covariance matrix obtained with the one-component

Laplace and the SSL priors. Whereas the SSL prior achieves great accuracy in both recovery and

estimation, the one-component Laplace prior must sacrifice unbiasedness to improve recovery.

6 Factor Mode Evaluation

The PXL-EM algorithm in concert with dynamic posterior exploration rapidly elicits a sequence of

loading matrices {B̂λ0 : λ0 ∈ I} of varying factor cardinality and sparsity. Each such B̂λ0 yields an

estimate Γ̂λ0 of the feature allocation matrix Γ, where γ̂λ0
ij = I(β̂λ0

ij 6= 0). The matrix Γ can be regarded

as a set of constraints imposed on the factor model, restricting the placement of nonzero values, both

in B and Λ = BB′+Σ. Each Γ̂λ0 provides an estimate of the effective factor dimension, the number

of free parameters and the allocation of response-factor couplings. Assuming Γ is left-ordered (i.e. the

columns sorted by their binary numbers) to guarantee uniqueness, Γ can be thought of as a “model”

index, although not a model per se.

For purpose of comparison and selection from {Γ̂λ0 : λ0 ∈ I}, a natural and appealing criterion is
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Iteration 8 (Convergence)

(a) λ0 = λ1 = 0.1

Iteration 10 (Convergence)

(b) λ0 = λ1 = 5

Iteration 5 (Convergence)

(c) λ0 = λ1 = 10

Iteration 13 (Convergence)

(d) λ0 = λ1 = 20

Figure 6: PXL-EM algorithm with sequential reinitialization along the solution path with one-

component Laplace prior.

the posterior model probability

π(Γ | Y ) ∝ π(Y | Γ)π(Γ). (6.1)

Whereas the continuous relaxation Πλ0(B) was useful for model exploration, the point-mass mixture

prior Π∞(B) will be of interest for model evaluation. Unfortunately, computing the marginal likelihood

π(Y | Γ) under these priors is hampered because tractable closed forms are unavailable and Monte

Carlo integration would be impractical. Instead, we replace π(Y |Γ) in (6.1) by a surrogate function,

which can be interpreted as an integral lower bound to the marginal likelihood (Minka, 2001).

Schematically, the lower bound integration is as follows (Minka, 2001). We begin with the particular

integral form for the marginal likelihood

π(Y | Γ) =
∫

Ω

π(Y ,Ω | Γ)dπ(Ω), (6.2)

for which analytical evaluation is intractable. We proceed to find an approximation to (6.2) by lower-

bounding the integrand

π(Y ,Ω | Γ) ≥ gΓ(Ω,φ), ∀(Ω,φ), (6.3)

so that GΓ(φ) =
∫
Ω
gΓ(Ω,φ)dΩ is easily integrable. The function GΓ(φ) ≤ π(Y |Γ) then constitutes

a lower bound to the marginal likelihood for any φ. The problem of integration is thus transformed
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Figure 7: Estimated covariances: LASSO prior vs spike-and-slab LASSO prior

into a problem of optimization, where we search for φ̂ = argmaxφGΓ(φ) to obtain the tightest bound.

In our context, a lower bound that satisfies (6.3) is

gΓ(Ω,φ) = C π(Y ,Ω,φ | Γ), where φ = (B,Σ), (6.4)

and C = 1/maxφ,Ω[π(B,Σ | Y ,Ω,Γ)]. This yields the closed form integral bound

GΓ(φ) = C π(B | Γ)π(Σ)(2π)−nG/2|Ψ|n/2 exp(−0.5

n∑

i=1

tr(Ψyiy
′
i), (6.5)

where Ψ = (BB′ +Σ)−1.

By treating GΓ(φ) as the “complete-data” likelihood, finding φ̂ = argmaxφ
∫
Ω
π(Y ,Ω,φ | Γ)dΩ

can be carried out with an EM algorithm. In particular, we can directly use the EM steps derived in

Section 3, but now with Γ no longer treated as missing. As would be done in a confirmatory factor

analysis, the calculations are now conditional on the particular Γ of interest. The EM calculations

here are also in principle performed assuming λ0 = ∞. As a practical matter, this will be equivalent

to setting λ0 equal to a very large number (λ0 = 1000 in our examples). Thus, our EM procedure

has two regimens: (a) exploration regime assuming λ0 < ∞ and treating Γ as missing to find Γ̂, (b)

evaluation regime assuming λ0 → ∞ and fixing Γ = Γ̂. The evaluation regime can be initialized at

the output values (B̂λ0 , Σ̂λ0 , θ̂λ0) from the exploratory run.

The surrogate criterion (6.5) is fundamentally the height of the posterior mode π(φ̂ | Y ,Γ) under

the point-mass prior Π∞(B), assuming Γ = Γ̂. Despite being a rather crude approximation to the
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Exploratory PXL-EM Regime Evaluation PXL-EM Regime

Figure 4: SSL prior

λ0 FDR FNR
∑

jk γ̂jk K̂+ Recovery Error λ0 Recovery Error G̃(Γ̂)

5 0.693 0 24150 20 459.209 1 000 410.333 -464171.3

10 0.616 0 10933 20 354.428 1 000 330.263 -367567.8

20 0.001 0.001 2500 5 290.074 1 000 255.104 -300765.3

30 0.169 0.102 2483 11 533.475 1 000 533.234 -310708.6

Figure 5: SSL prior

λ0 FDR FNR
∑

jk γ̂jk K̂+ Recovery Error λ0 Recovery Error G̃(Γ̂)

5 0.693 0 24150 20 459.209 1 000 410.333 -464171.3

10 0.629 0 11563 20 326.355 1 000 332.73 -372386.7

20 0.003 0.001 2502 5 256.417 1 000 255.054 -300774.0

30 0 0.002 2498 5 256.606 1 000 256.061 -300771.4

Figure 6: LASSO prior

λ0 FDR FNR
∑

jk γ̂jk K̂+ Recovery Error λ0 Recovery Error G̃(Γ̂)

0.1 0.693 0 36879 19 409.983 1 000 420.32 -536836.2

5 0.692 0 21873 19 365.805 1 000 398.78 -447489.0

10 0.64 0 11657 19 570.104 1 000 315.316 -373339.2

20 0.024 0 2533 5 892.244 1 000 233.419 -300933.3

Table 1: Table summarizes the quality of the reconstruction of the marginal covariance matrix Λ,

namely (a) FDR, (b) FNR, (c) the estimated number of nonzero loadings, (d) the estimated effective

factor cardinality, (d) the Frobenius norm dF (Λ̂,Λ0) (Recovery Error). The recovery error is computed

twice, once after the exploratory run of the PXL-EM algorithm (λ0 < ∞) and after the evaluation

run (λ0 ≈ ∞). The evaluation is run always with the SSL prior. For the exploration, we used both

the SSL prior as well as the LASSO (one-component Laplace) prior.

posterior model probability, the function

G̃(Γ) = GΓ(φ̂)π(Γ), (6.6)

is a practical criterion that can discriminate well between candidate models.

Using the sequential initialization from previous section, we hope to improve upon this criterion

at every step, until some sufficiently large value λ0 which is practically indistinguishable from the

limiting case. The stabilization of this criterion will be then indication, that no further increase in λ0

is needed. We now illustrate the use of this criterion on our models from from Section 5.

We computed the G̃(Γ) criterion for all the models discovered with the PXL-EM algorithm, both

using independent initialization (Figure 4) and sequential initialization (Figure 5 and Figure 6). We
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also evaluated the quality of the reconstructed marginal covariance matrix, namely the (a) the propor-

tion of falsely identified nonzero values (FDR), (b) the proportion of falsely non-identified nonzeroes

(FNR), (c) the estimated number of nonzero loadings, (d) the estimated effective factor cardinality,

(d) the Frobenius norm dF (Λ̂,Λ0) (Recovery Error). The recovery error is computed twice, once after

the exploratory run of the PXL-EM algorithm (λ0 < ∞) and then after the evaluation run of the EM

algorithm (λ0 ≈ ∞). The exploration was performed both using the SSL prior (Figures 4 and 5) as

well as the one-component Laplace (LASSO) prior (Figure 6). The evaluation is run always with the

SSL prior.

The results indicate that the criterion G̃(Γ) is higher for models with fewer false negative/positive

discoveries and effectively discriminates the models with the best reconstruction properties. It is

worth noting that the output from the exploratory run is greatly refined with the point-mass SSL

prior (λ0 ≈ ∞), reducing the reconstruction error. This is particularly evident for the one-component

LASSO prior, which achieves good reconstruction properties (estimating the pattern of sparsity) for

larger penalty values, at the expense of sacrificing the recovery of the coefficients (Figure 7).

Importantly, the sequential initialization of SSL (Figure 5) results in the stabilization of the esti-

mated loading pattern and thereby the criterion (6.6). This is an indication that further increase in

λ0 may not dramatically change the result and that the output obtained with such large λ0 is ready

for interpretation.

Lastly, to see how our approach would fare in the presence of no signal, a similar simulated ex-

periment was conducted with Btrue = 0G×K⋆ . The randomly initiated dynamic posterior exploration

soon yielded the null model B̂ = Btrue, where the criterion G̃(Γ) was also the highest. Our approach

did not find a signal where there was none.

7 Kendall’s Applicant Data

We first illustrate our method on a familiar dataset analysed previously by multiple authors including

(Kendall, 1975; Rowe, 2003; Frühwirth-Schnatter and Lopes, 2009). The data consists of scores on a

ten-point scale involving 15 characteristics of n = 48 applicants for a certain job. Kendall extracts four

factors on the basis of a principal component analysis with 4 eigenvalues greater than one, accounting

for 81.5% of explained variance.

After centering the scores, we run our PXL-EM algorithm assumingK⋆ = 10, λ1 = 0.001, α = 1/15.

For factor model exploration with sequential reinitialization, we consider a random starting point B(0)

(standard Gaussian entries) and a tempering schedule λ0 ∈ I = {1, 2, . . . , 50}. We used a convergence

margin ε = 0.01. We report a model obtained with λ0 = 50, confirmed by the highest value of

(6.6), which yielded K̂+ = 6 factors. The associated loading matrix together with estimated residual
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Application 0.88 -1.29 0.35 -0.71 -1.94 0 0.17

Appearance 0 0 0 0 0 0 1.93

Academic ability 0 0 0 0 0 0 1.95

Likability 1.40 0 2.35 0 0 0 0.20

Self-confidence 2.03 0 0 0 0 0 1.20

Lucidity 2.82 0 0 0 0 0 1.25

Honesty 0.94 0.63 1.40 1.70 0 0 2.49

Salesmanship 3.13 0 0 0 0 0 1.28

Experience 0.87 -2.17 0 -0.34 -0.50 -2.17 0.16

Drive 2.51 0 0 0 0 0 1.44

Ambition 2.61 0 0 0 0 0 1.18

Grasp 2.72 0 0 0 0 0 1.20

Potential 2.79 0 0 0 0 0 1.41

Keenness 1.67 0 0 0 0 0 0.19

Suitability 1.81 -2.68 0 0 0 0 0.17

Table 2: Kendall’s data: estimated loading matrix and residual variance parameters, in bold are

loading estimates that are greater than one in absolute value

variances is displayed in Table 2.

The loading matrix can be naturally interpreted as follows. Factor 1 is a “success precursor”,

involving abilities such as self-confidence, drive, ambition, and lucidity. A similar factor was found

also by Frühwirth-Schnatter and Lopes (2009) (Factor 3) and by Kendall (1975) (Factor 1). The Factor

2 can be interpreted as experience (Factor 2 of Kendall (1975) and Factor 1 of Frühwirth-Schnatter

and Lopes (2009)). The Factor 3 can be interpreted as a general likability of a person (Factor 3 in

Kendall (1975)).

8 The AGEMAP Data

We further illustrate our approach on a high-dimensional dataset extracted from AGEMAP (Atlas of

Gene Expression in Mouse Aging Project) database of Zahn and et al. (2007), which catalogs age-

related changes in gene expression in mice. Included in the experiment were mice of ages 1, 6, 16,

and 24 months, with ten mice per age cohort (five mice of each sex). For each of these 40 mice, 16

tissues were dissected and tissue-specific microarrays were prepared. From each microarray, values

from 8 932 probes were obtained. The collection of standardized measurements is available online

http://cmgm.stanford.edu/∼kimlab/aging mouse/. Factor analysis in genomic studies provides
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Figure 8: (Left) Dynamic posterior exploration, evolution of the G̃(·) function, one line for each of the

10 initializations; (Middle) Histogram of the newly created feature; (Right) Histogram of the factor

loadings of the new factor

an opportunity to look for groups of functionally related genes, whose expression may be affected by

shared hidden causes. In this analysis we will also focus on the ability to featurize the underlying

hidden variables. The success of the featurization is also tied to the orientation of the factor model.

The AGEMAP dataset was analyzed previously by Perry and Owen (2010), who verified the

existence of some apparent latent structures using rotation tests. Here we will focus only on one tissue,

cerebrum, which exhibited strong evidence for the presence of a binary latent variable, confirmed by

a rotation test Perry and Owen (2010). We will first deploy a series of linear regressions, regressing

out the effect of an intercept, sex and age on each of the 8 932 responses. Taking the residuals from

these regressions as new outcomes, we proceed to apply our infinite factor model, hoping to recover

the hidden binary variable.

We assume that there are at most K⋆ = 20 latent factors and run our PXL-EM algorithm with

the SSL prior and λ1 = 0.001, α = 1/G. For factor model exploration, we deploy dynamic posterior

exploration, i.e. sequential reinitialization of the loading matrix along the solution path. The solution

path will be evaluated along the following tempering schedule λ0 ∈ {λ1 + k× 2 : 0 ≤ k ≤ 9}, initiated
at the trivial case λ0 = λ1 to mitigate the multimodality associated with the variable selection priors

(as explained in Section 5). To investigate the sensitivity to initialization of the dynamic posterior

exploration, we consider 10 random starting matrices used to initialize the first computation with

λ1 = λ0. These matrices were each generated element-wise from a standard Gaussian distribution.

We will useΣ(0) = IG, θ
(0) = (0.5, . . . , 0.5)′ as starting values for every λ0 to accelerate the exploration.
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The margin ε = 0.01 is used to claim convergence.

The results of dynamic posterior exploration are summarized in Table 3. The table reports the

estimated factor dimension K̂+ (i.e. the number of factors with at least one nonzero estimated loading),

estimated number of nonzero factor loadings
∑

jk γ̂jk and the value of the surrogate criterion G̃(Γ̂).

The evolution of G̃(Γ̂) along the solution path is also depicted on Figure and shows a remarkably similar

pattern, despite the very arbitrary initializations. From both Table 3 and Figure 8(a) we observe that

the estimation has stabilized after λ0 = 12.001, yielding factor models of effective dimension K̂+ = 1

with a similar number of nonzero factor loadings (all nonzero factor loadings are associated with just

one factor). Such stabilization is an indication that further increase in λ0 will not affect very much

the solution. Based on this analysis, we would select just one factor. Using the output obtained at

λ0 = 18.001 from 6th initiation (the highest value G̃(Γ̂)), we investigate the pattern of the estimated

latent feature (histogram on Figure 8(b)). We discover a strikingly dichotomous pattern across the

40 mice, suggesting the presence of an underlying binary latent variable. A similar histogram was

reported also by Perry and Owen (2010). Their finding was also strongly supported by a statistical

test.

The data representation found by PXL-EM is sparse in terms of the number of factors, suggesting

the presence of a single latent variable. The representation is however not sparse in terms of factor

loadings, where the factor is loaded on the majority of considered genes (78%). The mechanism

underlying the binary latent variable thus cannot be attributed to only a few responsible genes. The

histogram of estimates loadings associated with this factor (Figure 8(c)) suggests the presence of a

few very active genes that could potentially be interpreted as leading genes for the factor.

The concise representation using just one latent factor could not obtained using, for instance,

sparse principal components that do not perform the rotation and thereby smear the signal across

multiple factors when the factor dimension is overfitted.

9 Discussion

We have presented a new paradigm for the discovery of interpretable latent factor models through

automatic rotations to sparsity. Rotational transformations have played a key role in enhancing the

interpretability of principal components via post-hoc modifications of the model orientation. Sparse

principal components have partially avoided the need for such transformations by penalizing non-

sparse orientations. Here we have combined the benefits of the two perspectives within an integrated

procedure. The new and crucial aspect here is that the modifications of the factor basis are per-

formed throughout the computation rather than after the model estimates have been obtained. These

automatic transformations provide an opportunity to find the right coordinate system for the latent
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λ0 G̃(Γ̂) K̂+
∑

jk γ̂jk G̃(Γ̂) K̂+
∑

jk γ̂jk G̃(Γ̂) K̂+
∑

jk γ̂jk G̃(Γ̂) K̂+
∑

jk γ̂jk G̃(Γ̂) K̂+
∑

jk γ̂jk

Init 1 Init 2 Init 3 Init 4 Init 5

0.001 -1372666.6 20 178626 -1372640.9 20 178623 -1372662.2 20 178624 -415766.0 20 178624 -1372657.5 20 178630

2.001 -1306835.9 20 163282 -1299649.4 20 161958 -1303685.7 20 162686 -175881.2.0 18 147234 -1304573.4 20 162908

4.001 -709828.9 11 85056 -649129.3 10 77327 -649686.7 10 77438 -126214.0 9 70548 -653144.7 10 77992

6.001 -401190.8 6 44856 -343720.6 5 37216 -345125.0 5 37437 -123184.9 6 44209 -346137.2 5 37596

8.001 -228202.7 3 21534 -228247.6 3 21541 -228293.2 3 21548 -120121.2 4 28510 -228720.5 3 21615

10.001 -175878.9 2 14310 -175862.5 2 14307 -175868.7 2 14308 -116653.7 2 14307 -175925.4 2 14319

12.001 -128111.9 1 7595 -128094.7 1 7592 -128111.9 1 7595 -112851.9 1 7602 -128100.5 1 7593

14.001 -126894.2 1 7380 -126567.9 1 7323 -126894.2 1 7380 -109596.9 1 7367 -126894.2 1 7380

16.001 -125623.1 1 7159 -125746.2 1 7180 -125746.3 1 7180 -106815.9 1 7145 -125722.7 1 7176

18.001 -124481.5 1 6961 -124398.2 1 6947 -124368.2 1 6942 -104005.2 1 6953 -124428.1 1 6952

Init 6 Init 7 Init 8 Init 9 Init 10

0.001 -1372649.5 20 178627 -1372674.4 20 178634 -1372668.6 20 178629 -1372722.8 20 178637 -1372751.8 20 178633

2.001 -1305285.1 20 163025 -1245378.2 19 155526 -1305644.2 20 163048 -1306693.6 20 163278 -1306569.3 20 163219

4.001 -592586 9 70291 -593542.5 9 70434 -592662.1 9 70294 -648525.8 10 77225 -651142.3 10 77673

6.001 -343951 5 37254 -346380.2 5 37630 -398551.3 6 44375 -291575.3 4 30435 -456168.5 7 51886

8.001 -228280.2 3 21546 -228485.1 3 21578 -228250.4 3 21541 -179853.2 2 14979 -281223.4 4 28721

10.001 -175891.6 2 14312 -175931.8 2 14319 -175885.2 2 14311 -129360.1 1 7819 -175872.2 2 14309

12.001 -128111.9 1 7595 -128094.7 1 7592 -128111.9 1 7595 -128094.7 1 7592 -128111.9 1 7595

14.001 -126882.6 1 7378 -126894.2 1 7380 -126870.8 1 7376 -126876.7 1 7377 -126876.7 1 7377

16.001 -125623.1 1 7159 -125576.8 1 7151 -125743.6 1 7181 -125758.2 1 7182 -125743.6 1 7181

18.001 -124326.5 1 6935 -124326.5 1 6935 -124404.3 1 6948 -124451.9 1 6956 -124422.2 1 6951

Table 3: Evolutions of the G̃(Γ̂) function together with estimated factor dimension K̂+ and estimated

number of model parameters
∑

jk γ̂jk in dynamic posterior exploration using 10 random initializations.

features that admits the sparse representation. By incorporating the rotational aspect of the factor

model we greatly enhance the search for sparse representations. Here, we introduce the rotation pa-

rameter indirectly, through parameter expansion in our PXL-EM algorithm, which iterates between

soft-thresholding and transformations of the factor basis.

Although we have proposed the PXL-EM algorithm in conjunction with the new spike-and-slab

LASSO prior and Indian Buffet Process, it can also be used to improve other methods, such as

penalized-likelihood variants of probabilistic principal components. By modifying the factor orienta-

tion throughout the computation, PXL-EM increases the sparsity recovery potential of such methods,

as seen in our simulated example.

Our approach does not require any pre-specification of the factor dimension and any identifiability

constraints. Deployed with the fast PXL-EM algorithm, the proposed methodology is suitable for

high dimensional data, eliminating the need for posterior simulation. Finally, our methodology can

be further extended to canonical correlation analysis or to latent factor augmentations of multivariate

regression (Rockova and Lesaffre, 2013; Bargi et al., 2014).
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10 Appendix

10.1 Proof of Theorem 2.2

Proof. We will prove the theorem by showing that random variables Mj =
∑∞

k=1 β
2
jk have finite

expectations. We can write E(Mj) =
∑∞

k=1 E[E(β
2
jk | θ(k))], where

E(β2
jk | θ(k)) =

2

λ2
1

θ(k) +
2

λ2
0k

(1− θ(k)) = 2

(
1

λ2
1

− 1

λ2
0k

)
θ(k) +

2

λ2
0k

.

From the stick-breaking construction we obtain

E[θ(k)] =

k∏

l=1

E νl =

(
α

α+ 1

)k

.

The sum
∑∞

k=1

(
2
λ2
1
+ 2

λ2
0k

)(
α

α+1

)k
is dominated by a convergent geometric series and hence converges.

The finiteness of
∑∞

k=1
2

λ2
0k

follows from the assumption that 1/λ0k goes to zero at least as fast as 1/k.

10.2 Proof of Theorem 2.3

Proof. By definition, d∞(Λ,ΛK⋆
) = max1≤j,m≤G |aK⋆

jm |, where aK
⋆

jm =
∑∞

k=K⋆+1 βjkβmk. By the

Cauchy-Schwartz inequality, we have d∞(Λ,ΛK⋆
) = max1≤j≤G aK

⋆

jj . By the Jensen and Chebyshev

inequalities, we obtain

P(d∞(Λ,ΛK⋆
) ≤ ε) ≥

(
1− E[a11]

ε

)G

, (10.1)

where

E[a11] = E

( ∞∑

k=K⋆+1

E[β2
jk | θ(k)]

)
= 2

[
1

λ2
1

µK⋆+1

(1− µ)
− (aµ)K

⋆+1

(1− aµ)
+

aK
⋆+1

(1− a)

]
. (10.2)

We will now find a lower bound on K⋆, so that
(
1− E[a11]

ε

)G
> 1 − ε. Such K⋆ will have to satisfy

E[a11] < ε̃, where ε̃ = ε[1− (1− ε)1/G]. This will be fulfilled by setting

K⋆ > max

{
log

[
ε̃

t
(1− a)

]
/ log(a); log

[
λ2
1ε̃

(
1− 1

t

)
(1− µ)

]
/ log(µ)

}

for any 0 < t < 1. The theorem follows by setting t = 1/2.
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10.3 Proof of Theorem 2.5

Proof. We can write

P(K+ ≤ k) = P(γjl = 0; l > k, j = 1, . . . , G) = E[P(γjl = 0; l > k, j = 1, . . . , G | θ)]

= E

(∏

l>k

(1− θ(l))
G

)

Now we use the inequality (1 − x/2) > exp(−x) if 0 < x ≤ 1.5 to get (1 − θ(l))
G > exp(−2Gθ(l)) for

θ(l) < 0.75. Denote the event E = {θ(l) ≤ 0.75 : l > k}. We can write

P(K+ ≤ k) > E

[(∏

l>k

(1− θ(l))
G

)
IE(θ)

]
= P(E)E

[(∏

l>k

(1− θ(l))
G

)
∣∣ θ ∈ E

]

> P(E)E
[
exp

(
−2G

∑

l>k

θ(l)

)
| θ ∈ E

]
> P(E) exp

(
−2G

∑

l>k

E[θ(l) | θ(l) ≤ 0.75]

)

≥ P(E) exp
(
−2G

∑

l>k

E[θ(l)]

)
= P(E) exp

[
−2G

∑

l>k

(
α

α+ 1

)l
]

= P(E) exp
[
−2G(α+ 1)

(
α

α+ 1

)k+1
]

Because 1 > θ(1) > θ(2) > . . . , we have P(E) = P(θ(k+1) ≤ 0.75). By Markov’s inequality, we obtain

P(EC) < 4
3

(
α

α+1

)k+1
and therefore

P(E) ≥ 1− 4

3

(
α

α+ 1

)k+1

> exp

[
−8

3

(
α

α+ 1

)k+1
]
.

The last inequality holds because 8
3

(
α

α+1

)k+1
< 1.5 for all 0 < α ≤ 1 and k ∈ N. Then we have

P(K+ > k) ≤ 1− exp

{
−2

[
G(α+ 1) +

4

3

](
α

α+ 1

)k+1
}

< 2

[
G(α+ 1) +

4

3

](
α

α+ 1

)k+1

.
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