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Fast Bayesian Inference in Dirichlet Process
Mixture Models

Lianming WANG and David B. DUNSON

There has been increasing interest in applying Bayesian nonparametric methods in

large samples and high dimensions. As Markov chain Monte Carlo (MCMC) algo-

rithms are often infeasible, there is a pressing need for much faster algorithms. This

article proposes a fast approach for inference in Dirichlet process mixture (DPM) mod-

els. Viewing the partitioning of subjects into clusters as a model selection problem, we

propose a sequential greedy search algorithm for selecting the partition. Then, when

conjugate priors are chosen, the resulting posterior conditionally on the selected par-

tition is available in closed form. This approach allows testing of parametric models

versus nonparametric alternatives based on Bayes factors. We evaluate the approach

using simulation studies and compare it with four other fast nonparametric methods in

the literature. We apply the proposed approach to three datasets including one from a

large epidemiologic study. Matlab codes for the simulation and data analyses using the

proposed approach are available online in the supplemental materials.

Key Words: Clustering; Density estimation; Efficient computation; Large samples;

Nonparametric Bayes; Pólya urn scheme; Sequential analysis.

1. INTRODUCTION

In recent years, there has been an explosion of interest in Bayesian nonparametric meth-

ods due to their flexibility and to the availability of efficient and easy to use algorithms for

posterior computation. Most of the focus has been on Dirichlet process mixture (DPM)

models (Lo 1984; Escobar 1994; Escobar and West 1995), which place a Dirichlet process

(DP) prior (Ferguson 1973, 1974) on parameters in a hierarchical model. For DPMs, there

is a rich literature on Markov chain Monte Carlo (MCMC) algorithms for posterior com-

putation, proposing marginal Gibbs sampling (MacEachern 1994; West, Müller, and Esco-

bar 1994; Bush and MacEachern 1996), conditional Gibbs sampling (Ishwaran and James
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2001), and split-merge (Jain and Neal 2004) algorithms. These approaches are very use-

ful in small to moderate sized datasets when one can devote several hours (or days) for

computation.

However, there is clearly a pressing need for dramatically faster alternatives to MCMC,

which can be executed within seconds (or at most minutes) even for very large datasets.

Such algorithms are absolutely required in large-scale data analyses, in which computa-

tional speed is paramount. In the pregnancy outcome application considered in Section 6,

data were available for 34,178 pregnancies and it was infeasible to implement MCMC.

Even in smaller applications, it is very desirable to obtain results quickly. Speed also has

the advantage of allowing detailed simulation studies of operating characteristics and sen-

sitivity analyses for different prior specifications. In addition to obtaining results quickly

for one DPM, it is typically of interest to compare DPMs to simpler parametric models.

Typical MCMC algorithms do not allow such comparisons, as marginal likelihoods are not

estimated, though there has been some recent work to address this gap (Basu and Chib

2003).

The focus of this article is on extremely fast alternatives to MCMC, which allow accu-

rate approximate Bayes inferences under one DPM, while also producing marginal like-

lihood estimates to be used in model comparison. For example, one may be interested in

comparing a DPM to a simpler parametric model. For simplicity in exposition, we focus

throughout the article on Gaussian DPMs, though the methods can be trivially modified to

other cases in which a conjugate prior is chosen.

For DPM models, a number of alternatives to MCMC have been proposed, including

predictive recursion (PR) (Newton and Zhang 1999; Newton 2002; Ghosh and Tokdar

2006; Tokdar, Martin, and Ghosh 2009), weighted Chinese restaurant (WCR) sampling

(Lo, Brunner, and Chan 1996; Ishwaran and Takahara 2002; Ishwaran and James 2003),

sequential importance sampling (SIS) (MacEachern, Clyde, and Liu 1999; Quintana and

Newton 2000), and variational Bayes (VB) (Blei and Jordan 2006; Kurihara, Welling, and

Vlassis 2006; Kurihara, Welling, and Teh 2007). The WCR and SIS approaches are compu-

tationally intensive because they are based on a large number of particles. For a Gaussian

mixture model with unknown mean and variance, the recursive algorithm (Newton 2002;

Ghosh and Tokdar 2006; Tokdar, Martin, and Ghosh 2009) needs to estimate a bivariate

mixing density and involves approximating a normalizing constant in each sequential up-

dating step. VB relies on maximization of a lower bound on the marginal likelihood using

a factorization approximation to the posterior. Wang and Titterington (2005) showed a ten-

dency of VB to underestimate uncertainty in mixture models. Also, VB is sensitive to the

starting values, motiving the use of a short SIS run to choose initial values.

We propose an alternative sequential updating and greedy search (SUGS) algorithm.

This algorithm relies on factorizing the DP prior as a product of a prior on the partition of

subjects into clusters and independent priors on the parameters within each cluster. Adding

subjects one at a time, we allocate subjects to the cluster that maximizes the conditional

posterior probability given their data and the allocation of previous subjects, while also

updating the posterior distribution of the cluster-specific parameters. Hence, viewing se-

lection of the partition as a model selection problem, we implement a sequential greedy
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search for a good partition, with the exact posterior given this partition then available in

closed form. The algorithm is very fast involving only a single cycle of simple calculations

for each subject. In addition, a marginal likelihood is produced that can be used for model

selection and for eliminating sensitivity to the order in which subjects are added through

model averaging or selection over random orders. Existing methods related to SUGS in-

clude those of Daumé III (2007), Fearnhead (2004), Minka and Ghahramani (2003), and

Zhang, Ghahramani, and Yang (2005).

Section 2 describes the prior structure. Section 3 proposes the fast SUGS posterior up-

dating algorithm, with Section 4 providing details for normal DPMs. Section 5 evaluates

the approach and compares it with four other fast nonparametric methods through simula-

tion studies. Section 6 contains three real data applications and Section 7 concludes with

some remarks.

2. DIRICHLET PROCESS MIXTURES AND PARTITION

MODELS

DPM models have a well-known relationship to partition models (Quintana and Iglesias

2003; Park and Dunson 2009). For example, consider a DP mixture of normals (Lo 1984):

yi ∼ N(μ̃i, τ̃
−1
i ), (μ̃i, τ̃i)

iid
∼ P, i = 1, . . . , n, P ∼ DP(αP0), (2.1)

where θ̃ i = (μ̃i, τ̃i) are parameters specific to subject i, α is the DP precision parameter,

and P0 is a base probability measure. Then, upon marginalizing out the random mixing

measure P , one obtains the DP prediction rule (Blackwell and MacQueen 1973):

(̃θ i |̃θ1, . . . , θ̃ i−1) ∼

(
α

α + i − 1

)
P0 +

(
1

α + i − 1

) i−1∑

j=1

δ̃θ j
, i = 1, . . . , n, (2.2)

where δθ is a probability measure concentrated at θ . Sequential application of the DP pre-

diction rule for subjects 1, . . . , n creates a random partition of the integers {1, . . . , n}. Com-

monly used algorithms for posterior computation in DPM models rely on marginalizing out

P to obtain a random partition, so that one bypasses computation for the infinitely-many

parameters characterizing P (Bush and MacEachern 1996).

Taking advantage of a characterization of Lo (1984), one can express the posterior dis-

tribution in DPMs after marginalizing out P as a product of the posterior for the partition

multiplied by independent posteriors for each cluster, obtained by updating the prior P0

with the data for the subjects allocated to that cluster. Instead of obtaining this structure

indirectly through marginalization of P , one could directly specify a model for the ran-

dom partition, while assuming conditional independence given the allocation to clusters.

This possibility was suggested by Quintana and Iglesias (2003), who focused on product

partition models (PPMs) (Barry and Hartigan 1992).

We assume that there is an infinite sequence of clusters, with θh representing the pa-

rameters specific to cluster h, for h = 1, . . . ,∞. We use the DP prediction rule in (2.2)

for sequentially allocating subjects to a sparse subset of these clusters. The first subject
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will be automatically allocated to cluster h = 1, with additional clusters occupied as sub-

jects are added as needed to improve predictive performance, obtaining an online updating

approach. Sensitivity to ordering will be discussed later in the article.

Let γi be a cluster index for subject i, with γi = h denoting that subject i is allocated to

cluster h. Relying on the DP prediction rule, the conditional prior distribution of γi given

γ (i−1) = (γ1, . . . , γi−1) is assumed to be multinomial with

Pr
(
γi = h|γ (i−1)

)
=

⎧
⎨
⎩

∑i−1
j=1 1(γj =h)

α+i−1
, h = 1, . . . , ki−1

α
α+i−1

, h = ki−1 + 1,
(2.3)

where α > 0 is a DP precision parameter controlling sparseness and ki−1 = max{γh}
i−1
h=1,

the number of clusters after i − 1 subjects have been sequentially added. As α increases,

there is an increasing tendency to allocate subjects to new clusters instead of clusters oc-

cupied by previous subjects. The prior probabilities in (2.3) favor allocation of subject i to

clusters having large numbers of subjects.

To complete a Bayesian specification, it is necessary to choose priors for the parameters

within each of the clusters:

π(θ) =

∞∏

h=1

p0(θh), (2.4)

where p0 is the prior distribution on the cluster-specific coefficients θh and independence

across the clusters is implied by the result of Lo (1984).

3. SEQUENTIAL UPDATING AND GREEDY SEARCH

3.1 PROPOSED ALGORITHM

Suppose that a measurement yi is obtained for subjects i = 1, . . . , n. Updating (2.3) one

can obtain the conditional posterior probability of allocating subject i to cluster h given

the data for subjects 1, . . . , i [y(i) = (y1, . . . , yi)
′] and the cluster assignment for subjects

1, . . . , i − 1 [γ (i−1) = (γ1, . . . , γi−1)
′]:

Pr
(
γi = h|y(i),γ (i−1)

)
=

πihLih(yi)
∑ki−1+1

l=1 πilLil(yi)
, h = 1, . . . , ki−1 + 1, (3.1)

where πih = Pr(γi = h|γ (i−1)) is the conditional prior probability in expression (2.3),

and Lih(yi) =
∫

f (yi |θh)π(θh|y
(i−1),γ (i−1)) dθh is the conditional likelihood of yi

given allocation to cluster h and the cluster allocation for subjects 1, . . . , i − 1, with

f (yi |θh) denoting the likelihood of yi given parameters θh and π(θh|y
(i−1),γ (i−1)) ∝

p0(θh)
∏

{j :γj =h,1≤j≤i−1} f (yj |θh), the posterior distribution of θh given y(i−1) and γ (i−1).

For a new cluster h = ki−1 + 1, π(θh|y
(i−1),γ (i−1)) = p0(θh), as none of the first i − 1

subjects have been allocated to cluster ki−1 + 1.

For conjugate p0, the posterior π(θh|y
(i−1),γ (i−1)) and likelihood Lih(yi) are available

in closed form. Hence, the joint posterior distribution for the cluster-specific coefficients
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θ = {θh}
∞
h=1 given the data and cluster allocation for all n subjects,

π(θ |y,γ ) =

∞∏

h=1

π(θh|y,γ ) =

{
kn∏

h=1

π(θh|{yi :γi = h})

}{
∞∏

h=kn+1

p0(θh)

}
,

is similarly available in closed form. Note that the first kn clusters are occupied in that they

have at least one member from the sample.

The real challenge is addressing uncertainty in the partition of subjects to clusters, γ .

MCMC algorithms attempt to address this uncertainty by generating samples from the joint

posterior distribution of γ and θ . As highlighted in Section 1, such MCMC algorithms are

quite expensive computationally. This is particularly true if sufficient numbers of samples

are collected to adequately explore the posterior distribution of γ . The multimodal nature

of the posterior and the tendency to remain for long intervals in local modes make this ex-

ploration quite challenging. In addition, γ ∈ Ŵ can be viewed as a model index belonging

to the high-dimensional space Ŵ. As for other high-dimensional stochastic search proce-

dures, for sufficiently large n, it is for all practical purposes infeasible to fully explore Ŵ or

to draw enough samples to accurately represent the posterior of γ .

An additional issue is that, even if one could obtain iid draws from γ , problems in inter-

pretation often arise due to the label switching issue. Viewing γ as a model index, samples

from the joint posterior of γ and θ can be used to obtain model-averaged predictions and

inferences, allowing for uncertainty in selection of γ . Although it is well known that model

averaging is most useful for prediction, the ability to obtain interpretable inferences may

be lost in averaging across models. This is certainly true in mixture models, because the

meaning of the cluster labels changes across the samples, making it difficult to summa-

rize cluster-specific results. There has been some work on postprocessing algorithms to

align the clusters (Stephens 2000), though this can add considerably to the computational

burden.

Motivated by these issues, there has been some recent work on obtaining an optimal

estimate of γ (Lau and Green 2007; Dahl 2009). These approaches are quite expensive

computationally, so will not be considered further. We instead propose a very fast se-

quential updating and greedy search (SUGS) algorithm, which cycles through subjects,

i = 1, . . . , n, sequentially allocating them to the cluster that maximizes the conditional

posterior allocation probability. This proceeds as follows:

1. Let γ1 = 1 and calculate π(θ1|y1, γ1).

2. For i = 2, . . . , n,

(a) Choose γi to maximize the conditional probability of γi = h given y(i) and

γ (i−1) using (3.1).

(b) Update π(θγi
|y(i−1),γ (i−1)) using the data for subject i.

This algorithm only requires a single cycle of simple deterministic calculations for each

subject under study, and can be implemented within a few seconds even for very large

datasets. In addition, the algorithm is online so that additional subjects can be added as

they become available without additional computations for the past subjects. Hence, the
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algorithm is particularly suited for large-scale real-time prediction. The proposed method is

similar to the hard decision method by Zhang, Ghahramani, and Yang (2005) in the field of

online document clustering and the “trivial” algorithm by Daumé III (2007). However, we

also propose methods to remove order dependence in sequential updating, allow unknown

DP precision parameter α, use empirical Bayes for estimation of key hyperparameters, and

conduct model comparison associated with SUGS.

3.2 REMOVING ORDER DEPENDENCE

The SUGS approach for selecting γ ∈ Ŵ is sequentially optimal, but will not in gen-

eral produce a global maximum a posteriori (MAP) estimate of γ . Producing the global

MAP is in general quite challenging computationally given the multimodality and size of

Ŵ. In addition, as noted by Stephens (2000), there are in general very many choices of γ

having identical or close to identical marginal likelihoods. Hence, SUGS seems to provide

a reasonable strategy for rapidly identifying a good partition without spending an enor-

mous amount of additional time searching for alternative partitions that may provide only

minimal improvement.

One aspect that is unappealing is dependence of the selection of γ on the order in which

subjects are added. As this order is typically arbitrary, one would prefer to eliminate this

order dependence. To address this issue, we recommend repeating the SUGS algorithm of

Section 3.1 for multiple permutations of the ordering {1, . . . , n}. The marginal likelihood

given an ordering γ is calculated as

L
(
y(n)|γ

)
=

kn∏

h=1

∫ { ∏

i:γi=h

f (yi |θh)

}
p0(θh) dθh. (3.2)

Selecting an ordering with the largest marginal likelihood works fine in eliminating

the ordering effect in general. However, this marginal likelihood criterion is not perfectly

reliable and sometimes leads to poor predictive density estimation. This is because the

ordering with the largest marginal likelihood occasionally overfits the data in assigning

subjects to more clusters than is necessary. As an alternative, we propose to use pseudo-

marginal likelihood (PML) and base inferences on the ordering having the largest PML.

The pseudo-marginal likelihood is defined as the product of conditional predictive ordi-

nates (Geisser 1980; Pettiti 1990; Gelfand and Dey 1994) as follows:

PMLγ (y) =

n∏

i=1

π
(
yi |y

(−i),γ (−i)
)
=

n∏

i=1

∫
π(yi |θ)π

(
θ |y(−i),γ (−i)

)
dθ

=

n∏

i=1

kn+1∑

h=1

Pr
(
γi = h|y(−i),γ (−i)

)∫
f (yi |θh)π

(
θh|y

(−i),γ (−i)
)
dθh, (3.3)

where y(−i) is the set of all the data but yi for i = 1, . . . , n. The PMLγ (y) criterion is

appealing in favoring a partition resulting in good predictive performance and has been

used for assessing goodness of fit and Bayesian model selection by Geisser and Eddy

(1979), Gelfand and Dey (1994), Sinha, Chen, and Ghosh (1999), and Mukhopadhyay,
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Ghosh, and Berger (2005), among others. To speed up computation, we use π(θ |y,γ )

instead of π(θ |y(−i),γ (−i)) in practice, approximating PML with a product of predictive

densities defined in (3.8) over all subjects. This approximation is accurate, particularly for

large samples. We use PML criteria in all the implementation of SUGS in the simulation

studies and real data analyses unless mentioned otherwise. Because SUGS is extremely

fast, repeating it for a modest number of random orderings and selecting a good ordering

does not take much time.

A variety of strategies have been suggested to limit order dependence in other non-

parametric sequential algorithms. The recursive algorithm (Newton 2002; Tokdar, Mar-

tin, and Ghosh 2009) and the expectation propagation method (Minka and Ghahramani

2003) proposed to take an unweighted average over a number of permutations. Daumé III

(2007) proposed to present the data in ascending order of individual marginal likelihood,∫
f (yi |θ)p0(θ) dθ , prior to the online updating.

3.3 ALLOWING THE DP PRECISION PARAMETER α TO BE UNKNOWN

In the above development, we have assumed that the DP precision parameter α is fixed,

which is not recommended because the value of α plays a strong role in the allocation of

subjects to clusters. To allow unknown α, we choose the prior:

π(α) =

T∑

t=1

ηtδα∗
t
(α), (3.4)

with α∗ = (α∗
1 , . . . , α∗

T )′ a prespecified grid of possible values with a large range and ηt =

Pr(α = α∗
t ).

We can easily modify the SUGS algorithm to allow simultaneous updating of α. Let-

ting φ
(i−1)
t = Pr(α = α∗

t |y(i−1),γ (i−1)) and πiht = Pr(γi = h|α = α∗
t ,y(i−1),γ (i−1)), we

obtain the following modification to (3.1):

Pr
(
γi = h|y(i),γ (i−1)

)
=

∑T
t=1 φ

(i−1)
t πihtLih(yi)

∑T
t=1 φ

(i−1)
t

∑ki−1+1

l=1 πiltLil(yi)
,

h = 1, . . . , ki−1 + 1, (3.5)

which is obtained marginalizing over the posterior for α given the data and allocation for

subjects 1, . . . , i − 1. Then we obtain the following updated probabilities:

φ
(i)
t = Pr

(
α = α∗

t |y(i),γ (i)
)
=

φ
(i−1)
t πiγi t∑T

s=1 φ
(i−1)
s πiγis

, t = 1, . . . , T . (3.6)

Note that we obtain a closed-form joint posterior distribution for the cluster-specific para-

meters θ and DP precision α given γ .

In our proposed approach, we handle the DP precision parameter α from a fully

Bayesian perspective and we can obtain the posterior distribution. This is more appeal-

ing than most of the fast DP mixture algorithms, which use fixed value of α, for example,

the particle filter by Fearnhead (2004), the fast DPM model by Daumé III (2007), and

the accelerated and collapsed variational DP mixture models by Kurihara, Welling, and
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Vlassis (2006) and Kurihara, Welling, and Teh (2007), respectively. The online document

clustering method by Zhang, Ghahramani, and Yang (2005) employed an empirical Bayes

method to estimate α, whereas Blei and Jordan (2006) adopted a gamma prior for α in their

variational DP mixture approach. We found the Blei and Jordan (2006) approach to have

better performance than the newer VB variants in simulations (results not shown).

3.4 ESTIMATING PREDICTIVE DISTRIBUTIONS

From applying SUGS, we obtain a selected partition γ and posterior distributions in

closed form for the parameters within each cluster, π(θh|y,γ ), and for DP precision para-

meter α as in (3.6). From these posterior distributions, we can conduct inferences on the

cluster-specific coefficients, θ1, . . . , θkn .

In addition, we can conduct fast online predictions for new subjects. The predicted

probability of allocation of subject i = n + 1 to cluster h is

πn+1,h =

⎧
⎨
⎩

∑T
t=1 φ

(n)
t

∑n
i=1 1(γi=h)

α∗
t +n

, h = 1, . . . , kn

∑T
t=1 φ

(n)
t

α∗
t

α∗
t +n

, h = kn + 1.
(3.7)

The predictive density is then

f̂ (yn+1) =

kn+1∑

h=1

πn+1,h

∫
f (yn+1|γn+1 = h, θh) dπ

(
θh|y

(n),γ (n)
)

=

kn+1∑

h=1

πn+1,hf
(
yn+1|γn+1 = h,y(n),γ (n)

)
, (3.8)

which is available in closed form.

To obtain pointwise credible intervals for the conditional density estimate, f̂ (yn+1),

apply the following Monte Carlo procedure:

1. Draw S samples {θ
(s)
1 , . . . , θ

(s)
kn

, α(s)}Ss=1 from the joint posterior distribution of

(
θ1, . . . , θkn , α|y(n),γ (n)

)
.

2. Calculate the conditional density for each of these draws:

f (s)
(
yn+1|θ

(s)
1 , . . . , θ

(s)
kn

, α(s)
)
=

kn∑

h=1

π
(s)
n+1,hf

(
yn+1|γn+1 = h, θh = θ

(s)
h

)
,

where π
(s)
n+1,h is calculated using formula (3.1) with α = α(s) and i = n + 1.

3. Calculate empirical percentiles of {f (s)(yn+1)}
S
s=1.

Because the proposed SUGS algorithm is deterministic for a selected ordering, the re-

sulting credible intervals tend to underestimate the uncertainty. This is observed in our

simulation study and occurs in many other competing approaches, such as VB.
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3.5 MODEL COMPARISON

One very appealing aspect of the SUGS approach is that we obtain a closed-form ex-

pression for the exact marginal likelihood for the selected model γ , because each integral

term in (3.2) has a simple closed form due to the conjugacy. Hence, we can obtain Bayes

factors and posterior probabilities for competing models. For example, the Bayes factor for

comparing the selected semiparametric model to the parametric base model is

BF =
L(y(n)|γ )

L1(y(n))
,

where the denominator is the marginal likelihood obtained in allocating all subjects to the

first cluster. The performance of tests based on these Bayes factors is assessed through

simulations in Section 5.

4. DP MIXTURES OF NORMALS AND SUGS DETAILS

4.1 SUGS DETAILS

We focus on normal mixture models as an important special case, letting θh = (μh, τh)
′

represent the mean parameter μh and residual precision τh for cluster h, h = 1, . . . ,∞. To

specify p0, we choose conjugate normal inverse-gamma priors as follows:

π(μh, τh) = Np(μh;m,ψτ−1
h )G(τh;a, b), (4.1)

with m,ψ,a, b hyperparameters that are assumed known.

After updating prior (4.1) with the data for subjects 1, . . . , i, we have

π
(
μh, τh|y

(i),γ (i)
)
∼ Np

(
μh;m

(i)
h ,ψ

(i)
h τ−1

h

)
G

(
τh;a

(i)
h , b

(i)
h

)
, (4.2)

where the values m
(i)
h ,ψ

(i)
h , a

(i)
h , b

(i)
h are obtained through sequential application of the

updating equations:

ψ
(i)
h =

{(
ψ

(i−1)
h

)−1
+ 1(γi = h)

}−1
,

m
(i)
h = ψ

(i)
h

{(
ψ

(i−1)
h

)−1
m

(i−1)
h + 1(γi = h)yi

}
,

a
(i)
h = a

(i−1)
h + 1(γi = h)/2,

b
(i)
h = b

(i−1)
h +

1(γi = h)

2

×
[
y2
i +

(
m

(i−1)
h

)′(
ψ

(i−1)
h

)−1
m

(i−1)
h −

(
m

(i)
h

)′(
ψ

(i)
h

)−1
m

(i)
h

]
,

with m
(0)
h = m,ψ

(0)
h = ψ,a

(0)
h = a, b

(0)
h = b corresponding to the initial prior in (4.1).

Letting πih = Pr(γi = h|γ (i−1)) as shorthand for the conditional prior probabilities in

(2.3) and updating with the data for subject i, we obtain

π̂ih = Pr
(
γi = h|γ (i−1),y(i)

)
=

πihf (yi |γi = h,γ (i−1))
∑ki−1+1

l=1 πilf (yi |γi = l,γ (i−1),y(i−1))
(4.3)



FAST INFERENCE IN DIRICHLET PROCESS MIXTURES 205

for l = 1, . . . , ki−1 + 1, where f (yi |γi = h,γ (i−1),y(i−1)) corresponds to a noncentral t -

distribution, a special case in (A.1) in the Appendix for x = 1 and one-dimensional β , with

m
(i−1)
h ,ψ

(i−1)
h , a

(i−1)
h , b

(i−1)
h used in place of ξ,�,a, b in (A.1).

4.2 EMPIRICAL SUGS

In implementing SUGS, we have found some sensitivity to the prior specification, which

is an expected feature of analyses based on DP mixture models. To reduce this sensitivity,

we recommend routinely normalizing the data prior to analysis. Then, one can let m =

0,ψ = 1, and a = 1 in prior (4.1) as a default. However, there is still some sensitivity to the

choice of b, which we propose to address through the following procedure. We first choose

a prior for b, π(b) = G(c,d), with c = 1, d = 10 providing a good default choice. We

then propose to update this prior sequentially within a preliminary SUGS run to obtain an

estimate of b. This estimate will then be plugged in for b in a subsequent SUGS analysis.

We find this modification leads to good performance in terms of estimation and model

selection in a very wide variety of cases.

Let b̂(i) be an estimate of b after the first i − 1 subjects have been incorporated, with

b̂(i) =
c + aki−1

d +
∑ki−1

h=1 a
(i−1)
h /b

(i−1)
h

.

The updating equation for b
(i)
h is then modified to be

b
(i)
h = b

(i−1)
h +

1(γi = h)

2

[
y2
i +

(
m

(i−1)
h

)′(
ψ

(i−1)
h

)−1
m

(i−1)
h −

(
m

(i)
h

)′(
ψ

(i)
h

)−1
m

(i)
h

]

− b̂(i−1) + b̂(i).

The final estimate b̂(n+1) is used as the value for b in the subsequent SUGS analyses.

Although this increases the computational cost, the result is a more robust estimate.

5. SIMULATION STUDY

5.1 PERFORMANCE OF SUGS

Simulation studies were conducted to evaluate the performance of the proposed algo-

rithm. We focused on the normal DPM model of Section 4 and considered two cases for

the true density: (1) mixture of three normals:

g(y) = 0.3N(y;−2,0.4) + 0.5N(y;0,0.3) + 0.2N(y;2.5,0.3),

and (2) a single normal with mean 0 and variance 0.4. In each case, we considered 100

simulated datasets each with sample size n = 500. For all the analyses reported in this

article, we used the default priors recommended in Section 4.2, and took the prior for α to

be a discretized Gamma(1,1) distribution with support on the points {0.01, 0.05} ∪ {0.1 +

0.2k, k = 0,1, . . . ,20}. In addition, SUGS was repeated for 10 random orderings.

For each sampled dataset, we calculated the predictive density using SUGS, the typical

frequentist kernel density estimate, and the Bayes factor of the selected model against
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the parametric null model (a single normal distribution). The kernel density estimate was

obtained using the “ksdensity” function in Matlab, with default settings including using

a normal kernel (Bowman and Azzalini 1997) and an optimal default value for kernel

width. To measure the closeness of the proposed density estimate and the true density, we

calculated the Kullback–Leibler divergence (KLD) between densities f and g defined as

follows:

K(f,g) =

∫
f (x) log

{
f (x)

g(x)

}
dx,

with f being the true density and g being an estimate.

Figures 1 and 2 plot the true density (solid) and the 100 predictive densities (dotted)

given by the SUGS algorithm in case 1 and case 2, respectively. Clearly, the predictive

densities are very close to the true density. The averages of 100 KLDs of the proposed

density estimates and the kernel density estimates relative to the true density are 0.0111

and 0.041 in case 1 and 0.0027 and 0.0080 in case 2, respectively. The results suggest

that the proposed density estimates are closer to the true density than the kernel density

estimates.

Table 1 summarizes the estimated Bayes factors across the simulations. To obtain the

Bayes factor, we calculate the marginal likelihood using the formula in (3.2), with the

hyperparameter b = 1 for the normal baseline model. When data are generated from a

mixture of normals in case 1, the Bayes factors provide decisive support in favor of the true

model as shown in Table 1. When data are generated from the null model as in simulation

2, the Bayes factors pick up the base normal model over 90% of the datasets. These results

show that SUGS has good performance in selecting between a single normal and a mixture

of normals.

Figure 1. SUGS density estimates in simulation case 1 for n = 500. The estimated densities (dotted) from 100

datasets and the true density (solid). A color version of this figure is available in the electronic version of this

article.
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Figure 2. SUGS density estimates in simulation case 2 for n = 500. The estimated densities (dotted) from 100

datasets and the true density (solid). A color version of this figure is available in the electronic version of this

article.

In the above implementation of SUGS, we treat α as unknown and assign a discretized

Gamma prior for it. To see the benefit of this, we run SUGS with several fixed values of

α separately. The comparison results are presented in Table 2 in terms of the average of

100 KLDs and the computational time per dataset. From Table 2, SUGS using random α

performs better than using fixed value of α in estimating the predictive density because it

produces the smallest average of KLDs. This is more apparent in case 1 of the simulation,

for which all the averages of KLDs from the SUGS using fixed α values are relatively

large. It is observed that the computation time increases as the value of α becomes large.

The reason is that large values of α tend to induce more clusters and thus need more

computation cost. It is appealing that SUGS using random α has better performance than

using fixed value of α whereas it does not necessarily take more time.

In the above simulations, we adopt the PML criterion to eliminate the effect of sequen-

tial ordering of subjects in SUGS. For comparison, we also run SUGS using marginal

likelihood (ML) criterion mentioned in Section 3.2 together with SUGS using simply av-

eraging (SAV) over 10 random orderings for each dataset. The first part of Table 3 lists the

sample standard deviation (SSD) of 100 log marginal likelihood estimates obtained from

100 datasets using these three criteria in SUGS. From Table 3, the PML criterion clearly

performs best with smallest SSD compared to the ML and SAV criteria in both cases 1 and

Table 1. Performance of Bayes factor under null and alternative models.

BF ≤ 1 1 < BF ≤ 100 BF > 100

Case 1 0 0 100

Case 2 92 4 4
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Table 2. Effect of using random and fixed value of α in SUGS.

Random α α = 0.1 α = 0.5 α = 1 α = 2

KLD Case 1 0.0111 0.1182 0.0643 0.0488 0.0430

Case 2 0.0027 0.0037 0.0064 0.0069 0.0067

Time Case 1 2.98 2.27 3.88 5.55 8.28

Case 2 2.93 2.71 3.75 5.36 8.03

2 of simulation. The large value of SSD from using the SAV criterion indicates that SUGS

is very sensitive to the ordering of subjects being added to the model. The proposed PML

criterion does a great job in eliminating the effect of such ordering as clearly indicated

from Table 3.

The SUGS algorithm is very fast. In both case 1 and case 2, the analyses for all 100

simulated datasets were completed in approximately 3 minutes for sample size 500. We

also ran simulations with sample size n = 5000 and obtained excellent results (not shown).

All programs including the simulations in Section 5.2 and data analysis in Section 6 were

executed in Matlab version 7.3 running on Dell desktop with Intel(R) Xeon(R) CPU and

3.00 GB of RAM.

5.2 COMPARISON WITH FOUR OTHER FAST NONPARAMETRIC DPM

ALGORITHMS

To compare SUGS with competing fast nonparametric methods, we reanalyzed the same

simulated data in Section 5.1 using the VB method of Blei and Jordan (2006), the PR ap-

proach of Newton (2002), the SIS of MacEachern, Clyde, and Liu (1999), and the inad-

missible (Inad) approach of Daumé III (2007). We evaluated their performance in terms of

predictive density estimation and running time.

The idea of variational inference is to formulate the computation of the posterior distri-

bution as an optimization problem (Blei and Jordan 2006; Wainwright and Jordan 2008).

To implement the variational Dirichlet process Gaussian mixture model, we applied the

code created by Dr. Kenichi Kurihara; the code is available at http:// sato-www.cs.titech.

ac.jp/kurihara/vdpmog.html. It is known that VB is very sensitive to the initial values and

poorly chosen initial values usually result in poor estimates. To overcome this problem, the

code adopts sequential importance sampling to find good initial values.

Table 3. Sample standard deviation of log marginal likelihood estimates for running SUGS and the inadmissible

approach using different criteria regarding the online clustering of subjects based on 100 datasets: PML,

ML, and SAV criteria for SUGS and AS and ML criteria for the inadmissible approach.

SUGS Inad

PML ML SAV AS ML

Case 1 17.4 62.4 209.9 99.2 21.6

Case 2 4.1 88.3 143.9 62.9 19.0

http://sato-www.cs.titech.ac.jp/kurihara/vdpmog.html
http://sato-www.cs.titech.ac.jp/kurihara/vdpmog.html
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The recursive algorithm of Newton (2002) sequentially updates the mixing density π(θ)

via the following equation:

πi(θ) = (1 − wi)πi−1(θ) + wi

f (yi |θ)πi−1(θ)

c(yi,πi−1)
,

where w = (w1, . . . ,wn) is a sequence of weights satisfying some conditions, c(y,π) =∫
f (y|θ)π(θ) dθ, and πn is used as the estimated mixing density. The predictive density

estimate is then fn(y) =
∫

f (y|θ)πn(θ) dθ , which is strongly consistent (Tokdar, Martin,

and Ghosh 2009). Because πn depends on the ordering of (y1, . . . , yn), following the rec-

ommendation of Newton (2002) and Tokdar, Martin, and Ghosh (2009), we use the average

of fn(y) over 10 permutations.

We generalize the SIS of MacEachern, Clyde, and Liu (1999) for DP mixture of nor-

mals. The SIS is similar to SUGS in the sense of sequential updating but differs in that it

adopts a random assignment of allocation instead of finding the allocation that maximizes

the posterior probabilities in step 2(a) of Section 3.1 in SUGS. Here we implement SIS

with 10 particles (permutations) and calculate the predictive density by taking the average

for each dataset.

The admissible approach is the one that performs fastest and best among the three algo-

rithms proposed by Daumé III (2007). It aims to find the maximum posteriori assignment

of data points to clusters. To achieve this goal, it sequentially updates multiple clusterings

in a queue to obtain clusterings that have highest scores. The clustering with the highest

score is chosen to be the allocation of all subjects. To be fair to the admissible approach in

comparison with SUGS, we adopt only one clustering in the queue. We fix the DP precision

parameter α to be 1 in the simulation and calculate marginal likelihood and predictive den-

sity based on the final clustering that has the highest score. Because the ordering of subjects

can affect the clustering result, Daumé III (2007) recommended to present the data in the

ascending ordering (AS) of individual marginal likelihood. We evaluate this criterion and

also implement a marginal likelihood (ML) criterion, in which one runs the inadmissible

approach over 10 random orderings and chooses the one that leads to the highest marginal

likelihood among the 10 final clusterings. The results in the second part of Table 3 suggest

that AS is not a good criterion as it produces a large uncertainty. In contrast, the ML crite-

rion seems to be more reliable because the SSD is much smaller as seen in Table 3. Also,

Inad ML gives larger marginal likelihoods than Inad AS from our simulation (results not

shown).

Table 4 shows the comparison of SUGS with VB, PR, SIS, Inad AS, and Inad ML

in terms of the average of 100 KLDs and the running time per dataset. The values of

the average of KLDs obtained from SUGS and VB are comparable and are smaller than

the corresponding value obtained from PR and the Inad methods in case 1 of simulation.

In case 2, the average of KLDs is small for all the approaches except the inadmissible

approach although the latter gives acceptable predictive density estimates using the ML

criterion.

The second part of Table 4 shows the runtime (in seconds) of all the methods including

SUGS per dataset. From Table 4, SUGS is only slower than the SIS and Inad AS, both

of which perform poorly in estimating the predictive density, however. Also, we observed
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Table 4. Comparison of SUGS, VB, PR, SIS, and the inadmissible algorithm proposed by Daumé III (2007) in

terms of the average of KLD and running time.

SUGS VB PR SIS Inad AS Inad ML

KLD Case 1 0.0111 0.0101 0.0265 0.1395 0.0559 0.0205

Case 2 0.0027 0.0040 0.0051 0.0032 0.0427 0.0298

Time Case 1 2.98 33.40 47.18 2.60 0.37 6.94

Case 2 2.93 33.70 49.01 2.74 0.53 9.05

from our simulations that SUGS works over 10 times faster than VB and and over 15 times

faster than the recursive algorithm. The reason that VB is slow here is that the applied

code of VB adopts a sequential importance sampling step to obtain feasible initialization

for VB, which is quite time-consuming. However, the SIS step is necessary because VB

gives poor results if it is used alone. The recursive algorithm is slow because it involves

estimating a two-dimensional mixing density in the sequential updating and also averages

on 10 permutations to eliminate the ordering effect for each dataset.

6. APPLICATIONS

We applied the SUGS algorithm to three data examples. The first two are galaxy data

and enzyme data, which have been studied thoroughly by many people in the literature.

The third is gestational age at delivery data from the Collaborative Perinatal Project (CPP),

which was a very large epidemiologic study conducted in the 1960s and 1970s. The offi-

cial CPP data and documentation are available at ftp:// sph-ftp.jhsph.edu/cpp/ provided by

Johns Hopkins University School of Public Health. Here we focus on 34,178 pregnancies

that had their gestational ages at delivery (GADs) recorded in the CPP data, which provide

a large sample size example. The Matlab codes of the SUGS algorithms for the simulation

in Section 5.1 and data analyses as well as all the datasets are provided in the Supplemental

Materials.

The galaxy data are a commonly used example in assessing methods for Bayesian den-

sity estimation and clustering; see, for example, the works of Roeder (1990), Escobar and

West (1995), and Richardson and Green (1997), among others. The data contain measured

velocities of 82 galaxies from six well-separated conic sections of space. The SUGS al-

gorithm gives five clusters and the corresponding predictive density is shown in Figure 3,

which is similar to kernel estimate and the results of Escobar and West (1995), Richardson

and Green (1997), and Fearnhead (2004).

The enzyme data record enzyme activities in blood for 245 individuals. One interest

in analyzing this dataset is the identification of subgroups of slow or fast metabolizers as

a marker of genetic polymorphisms (Richardson and Green 1997). Bechtel et al. (1993)

concluded that the distribution is a mixture of two skewed distributions based on a maxi-

mum likelihood analysis. Richardson and Green (1997) analyzed the data using Bayesian

normal mixtures with an unknown number of components. The application of the SUGS

algorithm using the default priors on the enzyme data gives a partition of three clusters.

ftp://sph-ftp.jhsph.edu/cpp/
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Figure 3. Predictive density estimate (solid), kernel density estimate (dashed), histogram, and plots of galaxy

data (+). A color version of this figure is available in the electronic version of this article.

The predictive density shown in Figure 4 agrees closely with the findings in the above

mentioned papers.

For the third example, we consider the GADs in weeks for 34,178 births in the CPP. We

are interested in the relationship of GAD and the covariates race, sex, maternal smoking

status during pregnancy, and maternal age. We use indicators X1,X2,X3, and X4 to de-

note these four variables, with 1 indicating black, female, smoker, and maternal age less

than 35, respectively, and with 0 indicating nonblack, male, nonsmoker, and maternal age

no less than 35, respectively. Table 5 gives the observed frequencies for these covariates.

Figure 4. Predictive density estimate (solid), kernel density estimate (dashed), histogram, and plots of enzyme

data (+). A color version of this figure is available in the electronic version of this article.



212 L. WANG AND D. B. DUNSON

Table 5. The frequency of observations in categories of each covariate.

Value x1 (race) x2 (sex) x3 (smoke) x4 (age)

0 51.23% 49.72% 48.51% 7.72%

1 48.77% 50.28% 51.49% 92.28%

The distribution of GAD is known to be nonnormal and have heavy left tails by previous

research done by, for example, Smith (2001), among others. In the following, we apply the

proposed SUGS algorithm on this dataset. The left tail behavior of the distribution of GAD

corresponding to premature deliveries is particularly of interest.

Let zi = (1 xi1 xi2 xi3 xi4)
′ and yi denote the GAD for subject i. We consider the

following model:

yi ∼ N(z′
iβi, τ

−1
i ), (β i, τi)|P ∼ P, P ∼ DP(αP0)

P0(β, τ ) = N(β; ξ,�τ−1)Ga(τ ;a, b),

where β i = (βi0 βi1 βi2 βi3 βi4)
′ denotes the random effects of intercept and covariates

for subject i. To apply SUGS, we set ξ = 0, � = n(zz′)−1, a = 1, and estimated b as

described in Section 4.2, where z = (z1, . . . , zn)
′. We run 20 permutations for CPP data to

eliminate the ordering effect. In terms of computational speed, the analysis was completed

within a few seconds for the galaxy and enzyme data, whereas a single permutation took

approximately 2 minutes for the CPP data.

Figure 5 shows the estimated predictive densities and cumulative distribution functions

of GAD for nonblack babies and black babies controlling other covariates equal to zero. As

seen in Figure 5, the predictive density of GAD for black babies is shifted left by around

Figure 5. Top: Densities of GAD for black race (dashed) and other race (solid). Bottom: Cumulative distribution

functions of GAD for black race (dashed) and other race (solid). A color version of this figure is available in the

electronic version of this article.
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Table 6. Cluster-specific coefficients obtained by SUGS

Cluster 1 Cluster 2 Cluster 3 Cluster 4

β0 48.26 (48.19,48.32) 39.88 (39.88,39.88) 31.40 (31.36,31.44) 19.98 (16.19,23.77)

β1 −0.01 (−0.02,0.01) −0.70 (−0.70,−0.70) −1.62 (−1.63,−1.61) −3.28 (−4.43,−2.12)

β2 −0.11 (−0.12,−0.09) 0.12 (0.12,0.12) 0.05 (0.04,0.06) −0.56 (−1.48,0.37)

β3 0.03 (0.02,0.05) 0.02 (0.01,0.02) 0.04 (0.03,0.05) 0.16 (−0.83,1.14)

β4 0.04 (−0.02,0.10) 0.15 (0.15,0.15) 1.06 (1.03,1.10) 1.52 (−1.01,4.04)

ȳj 48.28 39.75 31.39 18.42

nj 385 32,024 1702 67

1 week compared to the density of GAD for nonblacks. This result suggests that black

babies are more likely to be born premature than nonblack babies. Here, we only show the

comparison of densities and CDFs of GAD for different race groups, and the corresponding

densities and CDFs of GAD for different other covariate groups are very close (not shown).

Note that SUGS will produce clusters of subjects having identical coefficients for the

different predictors. Table 6 summarizes the results of the cluster-specific coefficients in

the original data scale given by SUGS, including the posterior means and the correspond-

ing 95% credible intervals. Table 6 also presents the sample mean of GAD and the number

of subjects for each cluster in the last two rows. Clearly, the four clusters represent different

groups of babies with the first cluster at the right tail of the distribution of GAD and the

third and fourth clusters at the left tail. Cluster 2 is the dominant cluster containing about

94% babies and the covariate effects are all significant in this cluster due to the extremely

large sample size. Seen across the clusters, the effect of black race on GAD tends to in-

crease in the clusters corresponding to lower GAD babies. This implies an interaction in

which black race has a significant impact in shifting GAD slightly for full-term deliveries,

with a larger impact on timing of premature deliveries.

7. DISCUSSION

We have proposed a fast algorithm for posterior computation and model selection in

Dirichlet process mixture models. The proposed SUGS approach is very fast and can be

implemented easily in very large datasets when priors are chosen to be conjugate. In the

simulations and real data examples we considered, we obtained promising results. Exten-

sions to nonconjugate cases are conceptually straightforward. In such cases, instead of

obtaining the exact marginal likelihoods conditional on the allocation to clusters, one can

utilize an approximation. A promising strategy for many models would be to use a Laplace

approximation. The performance of such an approach remains to be evaluated.

Although our focus was on DPMs, the same type of approach can conceptually be ap-

plied in a much broader class of models, including species sampling models and general

product partition models.
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APPENDIX: DESCRIPTION OF THE PREDICTIVE

DISTRIBUTION

Suppose that (y|x,β, τ ) ∼ N(x′β, τ−1) with π(β, τ ) = Np(β; ξ ,�τ−1)G(τ ;a, b) the

prior. Then, the marginal density of y given x follows the noncentral t -distribution:

f (y|x) =
Ŵ((ν + 1)/2)

(πν)1/2Ŵ(ν/2)σ

(
1 +

1

σ 2ν
(y − μy)

2

)−(ν+1)/2

= tν(y;μy, σ
2), (A.1)

where ν = 2a is the degrees of freedom, �̂ = (�−1 + xx′)−1,

μy =
x′�̂�−1ξ

1 − x′�̂x
and σ 2 =

1

ν

(
2b + ξ ′(�−1 − �−1�̂�−1)ξ

1 − x′�̂x
− μ2

y

)
,

with μy the mean and σ 2ν/(ν − 2) the variance for ν > 2.

SUPPLEMENTAL MATERIALS

Data Files: The galaxy data, enzyme data, and CPP data used in Section 6. (Data_

application.zip, WinZip archived file)

Matlab Codes for Data Analysis: The SUGS codes used for analyzing the galaxy data,

enzyme data, and CPP data. (SUGS_application.zip, WinZip archived file)

Matlab Code for Simulation: The SUGS code used in case 1 of the simulation study in

Section 5.1. (SUGSsimu.m, Matlab m file)

ACKNOWLEDGMENTS

The authors thank the editor, the associate editor, and two anonymous reviewers for their critical and con-

structive comments that greatly improved the presentation of this article.

[Received July 2007. Revised September 2009.]

REFERENCES

Barry, D., and Hartigan, J. A. (1992), “Product Partition Models for Change Point Problems,” The Annals of

Statistics, 20, 260–279. [198]

Basu, S., and Chib, S. (2003), “Marginal Likelihood and Bayes Factors for Dirichlet Process Mixture Models,”

Journal of the American Statistical Association, 98, 224–235. [197]

Bechtel, Y. C., Bonaïti-Pellié, C., Poisson, N., Magnette, J., and Bechtel, P. R. (1993), “A Population and Family

Study of N-Acetyltransferase Using Caffeine Urinary Metabolites,” Clinical Pharmacology & Therapeutics,

54, 134–141. [210]

Blackwell, D., and MacQueen, J. (1973), “Ferguson Distributions via Polya Urn Schemes,” The Annals of Statis-

tics, 1, 353–355. [198]

Blei, D. M., and Jordan, M. I. (2006), “Variational Inference for Dirichlet Process Mixtures,” Bayesian Analysis,

1, 121–144. [197,203,208]

Bowman, A. W., and Azzalini, A. (1997), Applied Smoothing Techniques for Data Analysis, New York: Oxford

Univeristy Press. [206]



FAST INFERENCE IN DIRICHLET PROCESS MIXTURES 215

Bush, C. A., and MacEachern, S. N. (1996), “A Semiparametric Bayesian Model for Randomized Block Designs,”

Biometrika, 83, 175–185. [196,198]

Dahl, D. B. (2009), “Modal Clustering in a Class of Product Partition Models,” Bayesian Analysis, 4, 243–264.

[200]

Daumé, III, H. (2007), “Fast Search for Dirichlet Process Mixture Models,” Conference on Artificial Intelligence

and Statistics. [198,201,202,208-210]

Escobar, M. D. (1994), “Estimating Normal Means With a Dirichlet Process Prior,” Journal of the American

Statistical Association, 89, 268–277. [196]

Escobar, M. D., and West, M. (1995), “Bayesian Density Estimation and Inference Using Mixtures,” Journal of

the American Statistical Association, 90, 577–588. [196,210]

Fearnhead, P. (2004), “Particle Filters for Mixture Models With an Unknown Number of Components,” Statistics

and Computing, 14, 11–21. [198,202,210]

Ferguson, T. S. (1973), “A Bayesian Analysis of Some Nonparametric Problems,” The Annals of Statistics, 1,

209–230. [196]

(1974), “Prior Distributions on Spaces of Probability Measures,” The Annals of Statistics, 2, 615–629.

[196]

Geisser, S. (1980), Discussion on “Sampling and Bayes Inference in Scientific Modeling and Robustness,” by

G. E. P. Box, Journal of the Royal Statistical Society, Ser. A, 143, 416–417. [201]

Geisser, S., and Eddy, W. (1979), “A Predictive Approach to Model Selection,” Journal of the American Statistical

Association, 74, 153–160. [201]

Gelfand, A. E., and Dey, D. K. (1994), “Bayesian Model Choice: Asymptotics and Exact Calculations” (with

discussion), Journal of the Royal Statistical Society, Ser. B, 56, 501–514. [201]

Ghosh, J., and Tokdar, S. (2006), “Convergence and Consistency of Newton’s Algorithm for Estimating a Mixing

Distribution,” in The Frontiers of Statistics, eds. J. Fan and H. Koul, London: Imperial College Press, pp. 429–

443. [197]

Ishwaran, H., and James, L. F. (2001), “Gibbs Sampling Methods for Stick-Breaking Priors,” Journal of the

American Statistical Association, 101, 179–194. [197]

(2003), “Generalized Weighted Chinese Restaurant Processes for Species Sampling Mixture Models,”

Statistica Sinica, 13, 1211–1235. [197]

Ishwaran, H., and Takahara, G. (2002), “Independent and Identically Distributed Monte Carlo Algorithms for

Semiparametric Linear Mixed Models,” Journal of the American Statistical Association, 97, 1154–1166.

[197]

Jain, S., and Neal, R. M. (2004), “A Split-Merge Markov Chain Monte Carlo Procedure for the Dirichlet Process

Mixture Model,” Journal of Computational and Graphical Statistics, 13, 158–182. [197]

Kurihara, K., Welling, M., and Teh, Y. W. (2007), “Collapsed Variational Dirichlet Process Mixture Models,”

in Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI07), San

Francisco, CA: Kaufmann, pp. 2796–2801. [197,203]

Kurihara, K., Welling, M., and Vlassis, N. (2006), “Accelerated Variational Dirichlet Mixture Models,” in Ad-

vances in Neural Information Processing Systems, 19 (NIPS 2006), Vancouver, British Columbia, Canada.

[197,203]

Lau, J. W., and Green, P. J. (2007), “Bayesian Model Based Clustering Procedures,” Journal of Computational

and Graphical Statistics, 16, 526–558. [200]

Lo, A. Y. (1984), “On a Class of Bayesian Nonparametric Estimates: I, Density Estimates,” The Annals of Statis-

tics, 12, 351–357. [196,198]

Lo, A. Y., Brunner, L. J., and Chan, A. T. (1996), “Weighted Chinese Restaurant Processses and Bayesian Mixture

Models,” Research Report 1, Hong Kong University of Science and Technology. [197]

MacEachern, S. N. (1994), “Estimating Normal Means With a Conjugate Style Dirichlet Process Prior,” Com-

munications in Statistics: Simulation and Computation, 23, 727–741. [196]

MacEachern, S. N., Clyde, M., and Liu, J. S. (1999), “Sequential Importance Sampling for Nonparametric Bayes

Models: The Next Generation,” Canadian Journal of Statistics, 27, 251–267. [197,208,209]



216 L. WANG AND D. B. DUNSON

Minka, T., and Ghahramani, Z. (2003), “Expectation and Propagation for Infinite Mixtures,” in NIPS’03 Workshop

on Nonparametric Bayesian Methods and Infinite Models, Vancouver, British Columbia, Canada. [198,202]

Mukhopadhyay, N., Ghosh, J. K., and Berger, J. O. (2005), “Some Bayesian Predictive Approaches to Model

Selection,” Statistics & Probability Letters, 73, 369–379. [202]

Newton, M. A. (2002), “On a Nonparametric Recursive Estimator of the Mixing Distribution,” Sankhyā, Ser. A,
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