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Abstract—A low-complexity recursive procedure is presented
for minimum mean squared error (MMSE) estimation in linear
regression models. A Gaussian mixture is chosen as the prior
on the unknown parameter vector. The algorithm returns both
an approximate MMSE estimate of the parameter vector and a
set of high posterior probability mixing parameters. Emphasis
is given to the case of a sparse parameter vector. Numerical
simulations demonstrate estimation performance and illustrate
the distinctions between MMSE estimation and MAP model
selection. The set of high probability mixing parameters not only
provides MAP basis selection, but also yields relative probabilities
that reveal potential ambiguity in the sparse model.1

I. I NTRODUCTION

Sparse linear regression is a topic of long standing interest
in statistics and signal processing. The linear regressionmodel
is

y = Ax + ν, (1)

with unknown parameter vectorx, unit norm columns in the
regressor matrixA, and additive noiseν. We provide a brief,
and necessarily incomplete, survey of existing approaches,
with an emphasis on themes relevant to the proposed estimator.

Algorithmic approaches have been proposed over sev-
eral decades, providing greedy heuristic solutions. Exam-
ples include CLEAN [1], iteratively re-weighted least-squares
[2], and orthogonal matched pursuit (OMP) [3]. Tropp and
Gilbert [4], for example, provide sufficient conditions on the
sparsity ofx and correlation among columns ofA such that
the greedy OMP provides correct model selection with high
probability in the noiseless measurement case.

In addition to greedy approaches, penalized least-squares
solutions forx have likewise been presented in the past four
decades. In this class of approaches, parameters are found via
the optimization

x̂ = arg min
x

‖Ax − y‖2
2 + λ‖x‖p

p, (2)

or, equivalently for someǫ > 0

x̂ = arg min
x

‖x‖p s.t. ‖Ax − y‖2
2 < ǫ. (3)

Ridge regression [5] (Tikhonov regularization) adoptsp = 2,
while basis pursuit [6] and Lasso [7] usep = 1. Equation (2)
has been widely adopted, for example in radar imaging [8], im-
age reconstruction [9], [10], and elsewhere [11], [12]. Elegant
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recent results by several authors [13]–[15] have demonstrated
sufficient conditions onA, ν, and sparsity ofx such that the
convex problem in (3) forp = 1 provides the unique solution
to the non-convex task

min ‖x‖0 s.t. ‖Ax − y‖2
2 < ǫ. (4)

These proofs have validated the widespread use of (2)-(3),
providing a deeper understanding, spurring a resurgent interest,
and promoting the interpretation as “compressive sensing.”
The large class of methods adopting (2) may be interpreted
as implicitly seeking the Bayesian MAP estimate ofx under
a sparsity inducing prior

p(x) ∝ exp
{
− λ

2 ‖x‖
p
p

}
. (5)

The method of sparse Bayesian learning [16], [17] explicitly
adopts a Bayesian framework withxi independent, zero-mean,
Gaussian with unknown varianceσ2

i . The unknown variances
are given the Gamma conjugate prior, and an expectation-
maximization (EM) iteration computes a MAP estimate ofx.

In the literature, primary focus is placed on the detection of
the few significant entries of the sparsex—a task alternatively
known as model selection or basis selection. In contrast, we
adopt a minimum mean-squared error (MMSE) estimation
formulation and focus on accurately inferringx from the
noisy observations,y. The MMSE estimation approach was
likewise adopted in a crisp exposition by Larsson and Selén
[18]; as they noted, the Bayesian formulation requiresa priori
assumptions that are explicitly stated and admit unambiguous
interpretation. (We specifically identify similarities to[18] in
Section V.)

As a byproduct of approximating the proposed MMSE
estimation algorithm, we also provide exact ratios of posterior
probabilities for a set of high probability solutions to the
detection problem. These relative probabilities serve to reveal
potential ambiguity among multiple models, due to low signal-
to-noise ratio and/or significant correlation among columns in
the regressor matrix,A.

The remainder of the paper is organized as follows. In
Section II, we state the signal model and explicitly identify
the assumed priors. In Section III, we describe our proposed
technique, and in Section IV we investigate its performance
numerically. In Section V, we discuss our findings, and in
Section VI we conclude.



II. SIGNAL MODEL

Consider observingy ∈ R
M , a noisy linear combination of

the parameters inx ∈ R
N :

y = Ax + ν, (6)

where the noiseν is assumed to be white Gaussian with
varianceσ2, i.e.,ν ∼ N (0, σ2IM ), and the columns ofA are
taken to be unit-norm. Our focus is on the under-determined
case (i.e.,N ≫ M ) with a suitablysparseparameter vector
x (i.e., ‖x‖0 ≪ N ).

To model sparsity, we assume that the parameters are
generated from a Gaussian mixture density:

x|s ∼ N (0,R(s)), (7)

where the covarianceR(s) is determined by a discrete random
vector s = [s0, . . . , sN−1]

T of mixture parameters. For sim-
plicity, we takeR(s) to be diagonal with[R(s)]n,n = σ2

sn

,
implying that {xn|sn}

N−1
n=0 are independent withxn|sn ∼

N (0, σ2
sn

). Also for simplicity, we assume that the mixture
parameters{sn}

N−1
n=0 are2 Bernoulli(p1). To model sparsex,

we chooseσ2
0 = 0 andp1 ≪ 1.

From the model assumptions it can be seen that
[
y

x

]∣
∣
∣
∣
s ∼ N

(

0,

[
Φ(s) AR(s)

R(s)AT R(s)

])

, (8)

where

Φ(s) := AR(s)AT + σ2IM . (9)

III. E STIMATION OF BASIS AND PARAMETERS

In this section, we propose an efficient search procedure
to find the most probable basis configurations along with their
respective posterior probabilities. These posteriors canthen be
used to compute an MMSE estimate of the sparse parameters
x.

A. Basis Selection Metric

As a consequence of the model described in Section II, the
nonzero locations ins specify which of the basis elements
(i.e., columns ofA) are “active.” Thus, basis selection reduces
to estimation ofs. Because we have adopted a probabilistic
model for {s,y}, we can not only computewhich of the
basis configurations are most likely, but alsohow likely these
bases are. The latter is accomplished through the estimation
of dominant posteriorsp(s|y).

The posterior can be written, via Bayes rule, as

p(s|y) =
p(y|s)p(s)

∑

s′∈S
p(y|s′)p(s′)

, (10)

whereS = {0, 1}N , which shows that estimating{p(s|y)}s∈S

reduces to estimating{p(y|s)p(s)}s∈S . The size ofS makes
it impractical to compute{p(s|y)} or {p(y|s)p(s)} for all s ∈
S. However, the setS⋆ responsible for thedominantposteriors

2In other words,sn is binary withPr{sn = 1} = p1 andPr{sn = 0} =
1 − p1.

can be quite small and therefore practical to compute. Working
in the log domain, we find

µ(s) := ln p(y|s)p(s) (11)

= ln p(y|s) +

N−1∑

n=0

ln p(sn) (12)

= ln p(y|s) + ‖s‖0 ln p1 + (N − ‖s‖0) ln(1 − p1) (13)

= ln p(y|s) + ‖s‖0 ln p1

1−p1

+ N ln(1 − p1) (14)

= −M
2 ln 2π − 1

2 ln det(Φ(s)) − 1
2yT

Φ(s)−1y

+ ‖s‖0 ln p1

1−p1

+ N ln(1 − p1). (15)

We will refer to µ(s) as thebasis selection metric.

B. MMSE Parameter Estimation

For applications in which the identification of the most prob-
able basis is the primary objective, the sparse coefficientsx

can be regarded as nuisance parameters. In other applications,
however, estimation ofx is the primary goal.

The MMSE estimate ofx from y is

x̂mmse := E{x|y} =
∑

s∈S

p(s|y) E{x|y, s} (16)

where from (8) it is straightforward (e.g., [19, p. 155]) to
obtain

E{x|y, s} = R(s)AT
Φ(s)−1y. (17)

Although exact evaluation of (16) involves a summation over
2N terms, which may be computationally infeasible, the
MMSE estimate can be closely approximated using only the
dominant posteriors:

x̂ammse :=
∑

s∈S⋆

p(s|y) E{x|y, s}. (18)

Likewise, the covariance of the corresponding estimation error
can be closely approximated as

Cov{x|y} ≈
∑

s∈S⋆

p(s|y)
[
Cov

{
x|y, s} + (x̂ammse −

E{x|y, s})(x̂ammse − E{x|y, s})T
]

(19)

Cov{x|y, s} = R(s) − R(s)AT
Φ(s)−1AR(s). (20)

Note that, in evaluating (18)-(20), the primary challenge
becomes that of obtainingp(s|y) andΦ(s)−1 for eachs ∈ S⋆.
In the sequel, we propose a fast algorithm to search for the
dominant basis configurationsS⋆ that, as a byproduct, also
generatesp(s|y) and Φ(s)−1 for each of thes returned by
the search.

C. Bayesian Matching Pursuit

We now describe an efficient means of determiningS⋆, the
set of mixture parameterss yielding the dominant values of
p(s|y), or, equivalently, the dominant values ofµ(s). First
we present a prosaic description of the search heuristic; the
detailed algorithm will be specified in Section III-E.

The search starts withs = 0 and first “turns on” one mixture
parameter at a time, yielding a set ofN binary vectorss which



we refer to asS(1). The metricsµ(s) for the N vectors in
S(1) are then computed, and the elements ofS(1) with the
D largest metrics are collected inS(1)

⋆ . For each candidate
in S

(1)
⋆ , all locations of a second active mixture parameter are

then considered, yielding(N−1)+(N−2)+· · ·+(N−D) =

ND − D(D+1)
2 unique binary vectors to store inS(2). The

metricsµ(s) for all vectors inS(2) are then computed, and
the elements ofS(2) with theD largest metrics are collected in
S

(2)
⋆ . Then, for each candidate vector inS(2)

⋆ , all possibilities
of a third active mixture parameter are considered, and those
with the D largest metrics are stored inS(3)

⋆ . The process
continues untilS(P )

⋆ is computed, whereP can be chosen3

to makePr(‖s‖0 > P ) sufficiently small.4 Note thatS(P )
⋆

constitutes the algorithm’s final estimate ofS⋆. Henceforth
we denote this final estimate bŷS⋆.

D. Fast Metric Update

For use with the aforementioned Bayesian matching pursuit
(BMP) algorithm, we propose a fast metric update which
computes the change inµ(·) that results from the activation
of a single mixture parameter. More precisely, if we denote
by sn the vector identical tos except for thenth coefficient,
which is active insn but inactive ins (i.e., [sn]n = 1 and
[s]n = 0), then we seek an efficient method of computing
∆n(s) := µ(sn)−µ(s). Note that the metric at the root node
(i.e., s = 0) is

µ(0) = −M
2 ln 2π − M

2 lnσ2 − 1
2σ2 ‖y‖2

2

+ N ln(1 − p1) (21)

via (15) and the fact thatΦ(0) = σ2IM .
To derive the fast metric update, we start with the property

that, for anyn ands,

Φ(sn) = Φ(s) + σ2
1anaT

n , (22)

from which the matrix inversion lemma implies

Φ(sn)−1 = Φ(s)−1 − σ2
1βnbnbT

n (23)

bn := Φ(s)−1an (24)

βn :=
(
1 + σ2

1aT
nbn

)−1
. (25)

Equations (22)-(25) then imply

yT
Φ(sn)−1y = yT

(
Φ(s)−1 − σ2

1βnbnbT
n

)
y (26)

= yT
Φ(s)−1y − σ2

1βn(yT bn)2 (27)

ln det(Φ(sn)) = ln det
(
Φ(s) + σ2

1anaT
n

)
(28)

= ln
[(

1 + σ2
1aT

nΦ(s)−1an

)
det

(
Φ(s)

)]

= ln det(Φ(s)) − lnβn (29)

‖sn‖0 ln p1

1−p1

= (‖s‖0 + 1) ln p1

1−p1

(30)

= ‖s‖0 ln p1

1−p1

+ ln p1

1−p1

, (31)

3One could also determine the stopping parameterP adaptively.
4Notice that‖s‖0 is Binomial(N, p1) distribution. WhenNp1 > 5, it

is common to use the approximation‖s‖0 ∼ N
(
Np1, Np1(1 − p1)

)
, in

which casePr(‖s‖0 > P ) = 1
2

erfc
(

P−Np1√
2Np1(1−p1)

)
.

which, combined with (15), yield

µ(sn) = µ(s) + 1
2 lnβn +

σ2

1

2 βn(yT bn)2 + ln p1

1−p1

︸ ︷︷ ︸

∆n(s)

.(32)

In summary,∆n(s) in (32) quantifies the change in our basis
selection metricµ(·) due to the activation of thenth tap ofs.

E. Fast Bayesian Matching Pursuit

Notice that the cost of computing{βn}
N−1
n=0 via (24)-(25)

is O(NM2) if standard matrix multiplication is used. As we
now describe, the complexity of this operation can be made
linear in M by exploiting the structure ofΦ(s)−1.

Say thatt = [t1, t2, . . . , tp]
T contains the indices of active

elements ins. Then, from (23),

Φ(s)−1 = 1
σ2 IM − σ2

1

∑p

i=1 β(i)b(i)b(i)T , (33)

whereb(i) and β(i) denote the values ofb and β generated
while activating indexti in the mixture parameter vector
defined by the active indices[t1, . . . , ti−1]. From (24), we are
required to compute

bn = 1
σ2 an − σ2

1

∑p

i=1 β(i)b(i) b(i)T an
︸ ︷︷ ︸

:= c(i)
n

(34)

when activating thenth tap in s. The key observation is
that the coefficients{c(i)

n }N−1
n=0 need only be computed once,

i.e., when indexti is activated. Furthermore,{c(i)
n }N−1

n=0 only
need to be computed forsurviving indices ti. These tricks
form the foundation of the Fast Bayesian Matching Pursuit
(FBMP) algorithm outlined in Table I. From the table, it is
straightforward to verify that the number of multiplications
required by the algorithm isO(NMPD).

IV. N UMERICAL EXPERIMENTS

A. FBMP Behavior

Numerical experiments were conducted to investigate the
performance of FBMP from Table I for various values of
model and algorithmic parameters, and the results are reported
in Figs. 1-5. Unless otherwise noted, the experiments used
N = 256, M = 64, SNR = 15 dB, p1 = 0.04, and
P =

⌈
erfc−1(2P0)

√

2Np1(1 − p1) + Np1

⌉
where P0 =

0.00005 is the target value ofPr{‖s‖0 > P} as suggested
in Section III-C. Here we useSNR :=

σ2

1
p1N

σ2M
, as motivated

by the unit-norm assumption on the columns ofA. The plots
represent an average of200 independent model realizations.
For each realization ofA, an i.i.d. normal matrix was drawn
and then scaled to make each of its columns unit-norm. Note
that the average number of active coefficientsE{‖x‖0} =
p1N is approximately equal to10 when p1 = 0.04 and
N = 256. When referring to the “normalized mean-squared
error” (NMSE) of an estimatêx, we meanE{‖x̂−x‖2

2/‖x‖
2
2}.

In Fig. 1, we plot NMSE versus observation lengthM for
FBMP under several values of the search parameterD. Recall
that D effects a tradeoff between search accuracy and search
complexity (the latter of which is expected to grow linearly



µ0,1 = −M
2

ln 2π − M
2

ln σ2 − 1
2σ2

‖y‖2
2 + N ln(1 − p1);

for n = 1 : N ,
b̃1,n = σ−2an;

β̃1,n =
(
1 + σ2

1aT
n b̃1,n

)
−1

;

µ̃1,n = µ0,1 + 1
2

log β̃1,n +
σ2

1

2
β̃1,n(yT b̃1,n)2 + log p1

1−p1

;
end
for q = 1 : D,

n⋆ = n corresponding toqth largestµ̃1,n;
µ1,q = µ̃1,n⋆

;

b
(1)
1,q

= b̃1,n⋆
; c

(1)
1,q

= AT b
(1)
1,q

; β
(1)
1,q

= β̃1,n⋆
; t

(1)
1,q

= n⋆;
end
for p = 2 : P ,

for d = 1 : D,
for n = 1 : N ,

b̃d,n = σ−2an −
∑p−1

i=1
b
(i)
p−1,d

β
(i)
p−1,d

[
c
(i)
p−1,d

]

n
;

β̃d,n =
(
1 + σ2

1aT
n b̃d,n

)
−1

;

µ̃d,n = µp−1,d + 1
2

log β̃d,n +
σ2

1

2
β̃d,n(yT b̃d,n)2 + log p1

1−p1

;

if n ∈ {t(i)
p−1,d

}p−1
i=1 then µ̃d,n = −∞;

end
end
for q = 1 : D,

{d⋆, n⋆} = {d, n} corresponding toqth largestµ̃d,n;
µp,q = µ̃d⋆,n⋆

;

b
(p)
p,q = b̃d⋆,n⋆

; c
(p)
p,q = AT b

(p)
p,q ; β

(p)
p,q = β̃d⋆,n⋆

; t
(p)
p,q = n⋆;

for i = 1 : p − 1,

b
(i)
p,q = b

(i)
p−1,q

; c
(i)
p,q = c

(i)
p−1,q

; β
(i)
p,q = β

(i)
p−1,q

; t
(i)
p,q = t

(i)
p−1,q

;
end

end
end

TABLE I
FAST BAYESIAN MATCHING PURSUIT

in D). There we see that NMSE performance improves asM
gets larger, i.e., as the average number of unknown parameters
per measurementp1N

M
decreases. ForD = 1 (i.e., the simplest

possible search), Fig. 1 shows a “knee” in the curve atM =
64 (i.e., p1N

M
= 0.16) below which NMSE degrades quickly.

By increasing search complexityD, the knee shifts so that
the FBMP is robust to a wider range ofM (e.g., M = 48
or p1N

M
= 0.21 when D = 5). The benefits of increasedD

diminish quickly forD > 5, however.
In Fig. 2, we plot the number of active basis elements miss-

ing from FBMP’s estimate of the MAP basis configuration:

ŝmap := argmax
s∈Ŝ⋆

p(s|y). (35)

In particular, the traces in Fig. 2 show number-of-misses
versus observation lengthM for FBMP under several values of
search parameterD. Because the number-of-misses in Fig. 2
closely parallel the NMSEs in Fig. 1, we conjecture that the
sub-optimality of FBMP’s greedy search is to blame for the
relatively large NMSE values that occur whenM < 64 (i.e.,
when p1N

M
> 0.16).

In Fig. 3, we plot NMSE versusp1N , the expected number
of active coefficients, for FBMP under several values of search
parameterD. There we see that NMSE performance quickly
degrades asp1N increases abovep1N = 10 (i.e., above
p1N

M
= 0.16), mirroring the results in Figs. 1-2. As in Fig. 1,

when p1N

M
> 0.16, increasingD from 1 to 10 can yield an

NMSE improvement of3 dB. When p1N

M
≤ 0.16, however,

D = 1 appears to suffice.
In Fig. 4, we plot NMSE versusSNR for FBMP under

several values of search parameterD (where{M,p1} corre-
spond to the aforementioned breakpoints in the NMSE-vs-M
and NMSE-vs-p1N curves). Figure 4 shows a satisfying linear
relationship between NMSE andSNR (in dB). As expected,
the effect of increasingD from 1 to 10 is negligible because
p1N

M
= 0.16; a more significant effect would be expected if

p1N

M
had been larger.

In Fig. 5, we plot NMSE versusSNR for two FBMP-
derived estimates: the (approximate) MMSE estimatex̂ammse

from (18) and the quasi-MAP estimatêxamap from (36):

x̂amap := E{x|y, ŝmap}. (36)

Whereasx̂ammse is the averageof the conditional MMSE
estimatesE{x|y, s} over s ∈ Ŝ⋆, the estimatex̂amap is
MMSE conditioned on (FBMP’s estimate of) the MAP basis-
configuration̂smap. In terms of average NMSE, Fig. 5 demon-
strates thatx̂ammse are about1 dB better thanx̂map at
SNR ≤ 10 dB and about0.5 dB better atSNR > 10 dB. The
improvement reflects the advantage of allowing foruncertainty
in the estimated basis.

Finally, in Fig. 6, we plot average FBMP runtime versus
search parameterD. As expected from the algorithmic de-
scription in Table I, the runtime scales linearly inD.

B. Comparison To Other Algorithms

In Figs. 7-8 we compare FBMP to several other popular
sparse estimation algorithms, including SparseBayes [16],
OMP [4], StOMP [20], GPSR-Basic [21], and BCS [22].
Unless otherwise noted, the model parameters were set at
N = 512, M = 128, p1 = 0.04, and σ2 = 0.001 (which
corresponds toSNR = 19 dB at the nominal values ofN , M ,
and p1). Our plots represent an average of100 independent
model realizations.

For FBMP, we usednon-optimized MATLAB code (which
we plan to optimize in the near future), and unless otherwise
noted usedD = 5 and the sameP specified in Section IV-A.
For the other algorithms, we used the publicly available
implementations that were found at the web-sites listed in
our bibliography. The algorithmic parameters were chosen
largely in accordance with suggested values provided by the
authors of the software, or in accordance with values used in
examples that accompanied the algorithms. The SparseBayes
algorithm was tested with the initial hyper-parameter set to
α = 1. StOMP was tested using the “False Alarm Control”
thresholding strategy, with the thresholding parameter set to
M

NQ
(1 − 1

M
‖x‖0), where the default number of iterations,

Q = 10, was used. Theℓ1-penalty in the GPSR algorithm
was chosen asτ = 0.1‖AHy‖∞, and the MSE kept for
comparison purposes was the smaller of the MSEs of the
un-debiased and debiased estimates. The BCS algorithm was
tested with the “Adaptive CS” option turned off.
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Fig. 6. Average FBMP runtime versus search parameterD. (See the graph
title for configuration.)



In Fig. 7 we plot NMSE versus observation lengthM (at
σ2 = 0.001) for the various sparse estimation algorithms.
There we see that FBMP achieved significantly lower NMSE
than the other algorithms over the examined range ofM . In
particular, it outperformed BCS by approximately3 dB, it
outperformed OMP by3 dB at smallM and 10 dB at large
M , and it outperformed the other algorithms by even more. In
Fig. 8 we plot NMSE versusSNR (at M = 128) for the vari-
ous sparse estimation algorithms. Again, the NMSEs achieved
by FBMP were significantly lower than those achieved by the
other algorithms. AtSNR = 22 dB, FBMP outperformed BCS
by approximately3 dB and the other algorithms by> 9 dB;
at SNR = 15 dB, FBMP outperformed all other algorithms
by > 6 dB; and, atSNR = 3 dB, FBMP outperformed GPSR
by approximately1 dB and the other algorithms by> 5 dB.

Finally, in Fig. 9, we plot average runtime versus observa-
tion lengthM for the various sparse estimation algorithms. For
FBMP, we usedD = 1. Figure 9 shows that FBMP is about an
order of magnitude faster than SparseBayes, on the same order
of complexity as BCS, and about an order of magnitude slower
than OMP, StOMP, and GPSR. We anticipate that optimized
FBMP code will yield improved runtimes.

V. D ISCUSSION

The Bayesian framework provides a report on the confi-
dence of estimates of both the coefficientsx and the basis
configurations. In particular, the basis selection metricµ(s)
provides a posterior confidence label for a candidate basis
configurations, in addition to providing the MMSE estimate
x̂mmse through (16). Specifically, from (10), we can write the
posterior probability of basis configurations as

p(s|y) =
exp{µ(s)}

∑

s′∈S
exp{µ(s′)}

≈
exp{µ(s)}

∑

s′∈S⋆

exp{µ(s′)}
, (37)

where the approximation in (37) includes only the basis
configurationsS⋆ ⊂ S that account for the dominant values
of exp{µ(s)}. Likewise, (19) provides an approximate error
covariance for the MMSE estimatêxmmse. These posterior
confidence values reflect the ambiguity inherently present in
the sparse inference problem—an ambiguity especially evident
when the SNR is low and/or the correlation among the
columns ofA is high.

Standard errors for estimated̂x are largely absent in the
compressive sensing literature. Exceptions are found in [7],
[22] which give the error covariance for the simple linear
problem conditioned onperfect knowledge of the active basis
elements. As noted by Tibshirani [7], such a measure of
posterior uncertainty has dubious value, because “a difficulty
with this formula is that it gives an estimated variance of0
for predictors with” si = 0. In this light, we expect certain
advantages for algorithms that consider the active basis as
implicitly uncertain.

A Gaussian mixture model similar to that in Section II
was likewise adopted by Larsson and Selén [18], who also
constructed the MMSE estimate in the manner of (18) but with
anS⋆ that contains exactly one sequences for each Hamming
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Fig. 7. Normalized MSE versus observation lengthM for several algorithms.
(See the graph title for configuration.)
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weight 0 to N . They proposed to find theses via greedy
deflation, i.e., starting with an all-active basis configuration
and recursively deactivating one element at a time. Thus, the
D = 1 version of the BMP heuristic from Section III-C
recalls the heuristic of [18], but in reverse. Note, however,
that the fast D = 1 BMP presented in Section III-E has a
complexity of onlyO(NMP ), in comparison toO(N3M2)
for the technique in [18]. Given the typically large values of
N encountered in practice, the complexity of FBMP can be
several orders of magnitude lower than that of [18].

As a caveat, we should emphasize that our greedy FBMP
search returns onlŷS⋆, an estimateof the dominant subset
S⋆, along with the values ofµ(s) for s ∈ Ŝ⋆. Thus, while the
valuesµ(s) returned by FBMP can be used to compute exact
ratios between the posterior probabilities of the configurations
in Ŝ⋆, the absolute posteriors of these configurations (as
approximated by (37) withŜ⋆ in place of S⋆) will only
be accurate when̂S⋆ indeed containsS⋆. For example, if
FBMP somehow missed the MAP configurationŝmap (i.e.,
ŝmap /∈ Ŝ⋆), then we would expect a large discrepancy between
∑

s′∈S⋆

exp{µ(s′)} and
∑

s′∈Ŝ⋆

exp{µ(s′)} which would in
turn corrupt the FBMP estimates ofp(s|y) and Cov{x|y}.
Fortunately, the proposed greedy FBMP basis search seems to
perform quite well, as least forp1N

M
≤ 0.16 (as suggested by

Fig. 2).
Although the model in Section II assumed that eachxi

is generated according to a binary mixture of zero-mean
Gaussians, one can imagine extending the model to, e.g.,
a mixture of finitely many Gaussians with non-zero means.
In this case, one would need to generalize the BMP search
heuristic of Section III-C to handle several types of active
coefficient (e.g., one for each allowed mean).

VI. CONCLUSION

In this paper, we proposed an algorithm for joint basis
selection and sparse parameter estimation which we call fast
Bayesian matching pursuit (FBMP). In brief, FBMP models
each unknown coefficientxi as either inactive or active (with
prior probability p1), where an i.i.d. Gaussian distribution
(with zero mean and varianceσ2

1) is assigned to the values
of active coefficients. The observationy is then modeled
as an AWGN-corrupted version of the unknown coefficients
that has been mixed by a known matrixA. FBMP navigates
through the tree of active/inactive configurationsS with the
goal of finding the configurations with dominant posterior
probability, S⋆. The search is controlled by a parameterD
which effects a tradeoff between complexity and accuracy.
Numerical experiments suggest that the estimates returned
by FBMP outperform (in normalized MSE) those of other
popular algorithms (e.g., SparseBayes, OMP, StOMP, GPSR-
Basic, BCS) by several dB in typical situations.

We plan, in the near future, to extend FBMP to the case
where the active coefficients are complex Gaussian with non-
zero means chosen from a finite set according to some
prior probabilities. An example of the non-zero mean sparse
signal model can be found in electron paramagnetic resonance

imaging [23], where micro-liter particulate probes are inserted
into a tumor and fill less than 0.25% volume in the field of
view. The fabrication of the paramagnetic signal probes results
in variable shape, size and electron spin density, giving rise
to a non-zero-mean and nearly Gaussian distribution of signal
strength in a very few active voxels.
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