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Abstract

Bayesian optimization has become a successful

tool for hyperparameter optimization of machine

learning algorithms, such as support vector ma-

chines or deep neural networks. Despite its suc-

cess, for large datasets, training and validating a

single configuration often takes hours, days, or

even weeks, which limits the achievable perfor-

mance. To accelerate hyperparameter optimiza-

tion, we propose a generative model for the valida-

tion error as a function of training set size, which

is learned during the optimization process and al-

lows exploration of preliminary configurations on

small subsets, by extrapolating to the full dataset.

We construct a Bayesian optimization procedure,

dubbed FABOLAS, which models loss and train-

ing time as a function of dataset size and auto-

matically trades off high information gain about

the global optimum against computational cost.

Experiments optimizing support vector machines

and deep neural networks show that FABOLAS

often finds high-quality solutions 10 to 100 times

faster than other state-of-the-art Bayesian opti-

mization methods or the recently proposed bandit

strategy Hyperband.

1 Introduction

The performance of many machine learning algorithms

hinges on certain hyperparameters. For example, the pre-

diction error of non-linear support vector machines depends

on regularization and kernel hyperparameters C and γ; and

modern neural networks are sensitive to a wide range of hy-

perparameters, including learning rates, momentum terms,
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number of units per layer, dropout rates, weight decay,

etc. (Montavon et al., 2012). The poor scaling of naïve

methods like grid search with dimensionality has driven

interest in more sophisticated hyperparameter optimization

methods over the past years (Bergstra et al., 2011; Hutter

et al., 2011; Bergstra and Bengio, 2012; Snoek et al., 2012;

Bardenet et al., 2013; Bergstra et al., 2013; Swersky et al.,

2013, 2014; Snoek et al., 2015). Bayesian optimization has

emerged as an efficient framework, achieving impressive

successes. For example, in several studies, it found bet-

ter instantiations of convolutional network hyperparameters

than domain experts, repeatedly improving the top score

on the CIFAR-10 (Krizhevsky, 2009) benchmark without

data augmentation (Snoek et al., 2012; Domhan et al., 2015;

Snoek et al., 2015).

In the traditional setting of Bayesian hyperparameter op-

timization, the loss of a machine learning algorithm with

hyperparameters x ∈ X is treated as the “black-box” prob-

lem of finding argminx∈X
f(x), where the only mode of

interaction with the objective f is to evaluate it for inputs

x ∈ X. If individual evaluations of f on the entire dataset re-

quire days or weeks, only very few evaluations are possible,

limiting the quality of the best found value. Human experts

instead often study performance on subsets of the data first,

to become familiar with its characteristics before gradually

increasing the subset size (Bottou, 2012; Montavon et al.,

2012). This approach can still outperform contemporary

Bayesian optimization methods.

Motivated by the experts’ strategy, here we leverage dataset

size as an additional degree of freedom enriching the repre-

sentation of the optimization problem. We treat the size of a

randomly subsampled dataset Nsub as an additional input to

the blackbox function, and allow the optimizer to actively

choose it at each function evaluation. This allows Bayesian

optimization to mimic and improve upon human experts

when exploring the hyperparameter space. In the end, Nsub

is not a hyperparameter itself, but the goal remains a good

performance on the full dataset, i.e. Nsub = N .

Hyperparameter optimization for large datasets has been

explored by other authors before. Our approach is similar to
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Multi-Task Bayesian optimization by Swersky et al. (2013),

where knowledge is transferred between a finite number of

correlated tasks. If these tasks represent manually-chosen

subset-sizes, this method also tries to find the best config-

uration for the full dataset by evaluating smaller, cheaper

subsets. However, the discrete nature of tasks in that ap-

proach requires evaluations on the entire dataset to learn the

necessary correlations. Instead, our approach exploits the

regularity of performance across dataset size, enabling gen-

eralization to the full dataset without evaluating it directly.

Other approaches for hyperparameter optimization on large

datasets include work by Nickson et al. (2014), who es-

timated a configuration’s performance on a large dataset

by evaluating several training runs on small, random sub-

sets of fixed, manually-chosen sizes. Krueger et al. (2015)

showed that, in practical applications, small subsets can

suffice to estimate a configuration’s quality, and proposed a

cross-validation scheme that sequentially tests a fixed set of

configurations on a growing subset of the data, discarding

poorly-performing configurations early.

In parallel work1, Li et al. (2017) proposed a multi-arm ban-

dit strategy, called Hyperband, which dynamically allocates

more and more resources to randomly sampled configura-

tions based on their performance on subsets of the data.

Hyperband assures that only well-performing configura-

tions are trained on the full dataset while discarding bad

ones early. Despite its simplicity, in their experiments the

method was able to outperform well-established Bayesian

optimization algorithms.

In §2, we review Bayesian optimization, in particular the

Entropy Search algorithm and the related method of Multi-

Task Bayesian optimization. In §3, we introduce our new

Bayesian optimization method FABOLAS for hyperparame-

ter optimization on large datasets. In each iteration, FABO-

LAS chooses the configuration x and dataset size Nsub pre-

dicted to yield most information about the loss-minimizing

configuration on the full dataset per unit time spent. In §4, a

broad range of experiments with support vector machines

and various deep neural networks show FABOLAS often

identifies good hyperparameter settings 10 to 100 times

faster than state-of-the-art Bayesian optimization methods

acting on the full dataset as well as Hyperband.

2 Bayesian optimization

Given a black-box function f : X → R, Bayesian opti-

mization2 aims to find an input x⋆ ∈ argminx∈X
f(x) that

globally minimizes f . It requires a prior p(f) over the func-

tion and an acquisition function ap(f) : X → R quantifying

1Hyperband was first described in a 2016 arXiv paper (Li et al.,
2016), and FABOLAS was first described in a 2015 NIPS workshop
paper (Klein et al.)

2Comprehensive tutorials are presented by Brochu et al. (2010)
and Shahriari et al. (2016).

the utility of an evaluation at any x. With these ingredi-

ents, the following three steps are iterated (Brochu et al.,

2010): (1) find the most promising xn+1 ∈ argmax ap(x)
by numerical optimization; (2) evaluate the expensive and

often noisy function yn+1 ∼ f(xn+1) +N (0, σ2) and add

the resulting data point (xn+1, yn+1) to the set of obser-

vations Dn = (xj , yj)j=1...n; and (3) update p(f | Dn+1)
and ap(f |Dn+1). Typically, evaluations of the acquisition

function a are cheap compared to evaluations of f such that

the optimization effort is negligible.

2.1 Gaussian Processes

Gaussian processes (GP) are a prominent choice for p(f),
thanks to their descriptive power and analytic tractability

(e.g. Rasmussen and Williams, 2006). Formally, a GP is a

collection of random variables, such that every finite subset

of them follows a multivariate normal distribution. A GP

is identified by a mean function m (often set to m(x) =
0 ∀x ∈ X), and a positive definite covariance function

(kernel) k. Given observations Dn = (xj , yj)j=1...n =
(X,y) with joint Gaussian likelihood p(y | X, f(X)),
the posterior p(f |Dn) follows another GP, with mean and

covariance functions of tractable, analytic form.

The covariance function determines how observations influ-

ence the prediction. For the hyperparameters we wish to

optimize, we adopt the Matérn 5/2 kernel (Matérn, 1960),

in its Automatic Relevance Determination form (MacKay

and Neal, 1994). This stationary, twice-differentiable model

constitutes a relatively standard choice in the Bayesian op-

timization literature. In contrast to the Gaussian kernel

popular elsewhere, it makes less restrictive smoothness as-

sumptions, which can be helpful in the optimization setting

(Snoek et al., 2012):

k5/2(x,x
′) = θ

(

1 +
√
5dλ(x,x

′)

+5/3d2
λ
(x,x′)

)

e−
√
5dλ(x,x′).

(1)

Here, θ and λ are free parameters—hyperparameters

of the GP surrogate model—and dλ(x,x
′) = (x −

x′)T diag(λ)(x− x′) is the Mahalanobis distance. For the

dataset size dependent performance and cost, we construct

a custom kernel in 3.1. An additional hyperparameter of the

GP model is a overall noise covariance needed to handle

noisy observations. For clarity: These GP hyperparameters

are internal hyperparameters of the Bayesian optimizer, as

opposed to those of the target machine learning algorithm

to be tuned. Section 3.4 shows how we handle them.

2.2 Acquisition functions

The role of the acquisition function is to trade off exploration

vs. exploitation. Popular choices include Expected Improve-

ment (EI) (Mockus et al., 1978), Upper Confidence Bound
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(UCB) (Srinivas et al., 2010), Entropy Search (ES) (Hen-

nig and Schuler, 2012), and Predictive Entropy Search

(PES) (Hernández-Lobato et al., 2014). In our experiments,

we will use EI and ES.

We found EI to perform robustly in most applications, pro-

viding a solid baseline; it is defined as

aEI(x|Dn) = Ep[max(fmin − f(x), 0)] . (2)

where fmin is the best function value known (also called the

incumbent). This expected drop over the best known value

is high for points predicted to have small mean and/or large

variance.

ES is a more recent acquisition function that selects evalua-

tion points based on the predicted information gain about

the optimum, rather than aiming to evaluate near the opti-

mum. At the heart of ES lies the probability distribution

pmin(x | D) := p(x ∈ argminx′∈X
f(x′) | D), the belief

about the function’s minimum given the prior on f and ob-

servations D. The information gain at x is then measured by

the expected Kullback-Leibler divergence (relative entropy)

between pmin(· | D∪{(x, y)}) and the uniform distribution

u(x), with expectations taken over the measurement y to be

obtained at x:

aES(x) : = Ep(y|x,D)

[
∫

pmin(x
′ | D ∪ {(x, y)})

· log pmin(x
′ | D ∪ {(x, y)})
u(x′)

dx′
]

.

(3)

The primary numerical challenge in this framework is the

computation of pmin(· | D ∪ {(x, y)}) and the integral

above. Due to the intractability, several approximations

have to be made. We refer to Hennig and Schuler (2012) for

details, as well as to the supplemental material (Section A),

where we also provide pseudocode for our implementation.

Despite the conceptual and computational complexity of ES,

it offers a well-defined concept for information gained from

function evaluations, which can be meaningfully traded off

against other quantities, such as the evaluations’ cost.

PES refers to the same acquisition function, but uses dif-

ferent approximations to compute it. In Section 3.4 we

describe why, for our application, ES was the more direct

choice.

2.3 Multi-Task Bayesian optimization

The Multi-Task Bayesian optimization (MTBO) method of

Swersky et al. (2013) refers to a general framework for

optimizing in the presents of different, but correlated tasks.

Given a set of such tasks T = {1, . . . , T}, the objective

function f : X× T → R corresponds to evaluating a given

x ∈ X on one of the tasks t ∈ T. The relation between

points in X× T is modeled via a GP using a product kernel:

kMT((x, t), (x
′, t′)) = kT (t, t

′) · k5/2(x,x
′) . (4)

The kernel kT is represented implicitly by the Cholesky

decomposition of k(T,T) whose entries are sampled via

MCMC together with the other hyperparameters of the

GP. By considering the distribution over the optimum

on the target task t∗ ∈ T, pt∗min(x | D) := p(x ∈
argminx′∈X

f(x′, t = t∗) | D), and computing any in-

formation w.r.t. it, Swersky et al. (2013) use the information

gain per unit cost as their acquisition function3:

aMT(x, t) : =
1

c(x, t)
Ep(y|x,t,D)

[
∫

pt∗min(x
′ | D′)

· log pt∗min(x
′ | D′)

u(x′)
dx′

]

, (5)

where D′ = D ∪ {(x, t, y)}. The expectation represents

the information gain on the target task averaged over the

possible outcomes of f(x, t) based on the current model. If

the cost c(x, t) of a configuration x on task t is not known

a priori it can be modelled the same way as the objective

function.

This model supports machine learning hyperparameter op-

timization for large datasets by using discrete dataset sizes

as tasks. Swersky et al. (2013) indeed studied this approach

for the special case of T = {0, 1}, representing a small and

a large dataset; this will be a baseline in our experiments.

3 Fast Bayesian optimization for large

datasets

Here, we introduce our new approach for FAst Bayesian

Optimization on LArge data Sets (FABOLAS). While tradi-

tional Bayesian hyperparameter optimizers model the loss

of machine learning algorithms on a given dataset as a black-

box function f to be minimized, FABOLAS models loss and

computational cost across dataset size and uses these mod-

els to carry out Bayesian optimization with an extra degree

of freedom. The blackbox function f : X × R → R now

takes another input representing the data subset size; we

will use relative sizes s = Nsub/N ∈ [0, 1], with s = 1
representing the entire dataset. While the eventual goal

is to minimize the loss f(x, s = 1) for the entire dataset,

evaluating f for smaller s is usually cheaper, and the func-

tion values obtained correlate across s. Unfortunately, this

correlation structure is initially unknown, so the challenge

is to design a strategy that trades off the cost of function

evaluations against the benefit of learning about the scaling

behavior of f and, ultimately, about which configurations

work best on the full dataset. Following the nomenclature of

3In fact, Swersky et al. (2013) deviated slightly from this for-
mula (which follows the ES approach of Hennig and Schuler
(2012)) by considering the difference in information gains in
pt∗
min

(x | D) and pt∗
min

(x | D ∪ {(x, y)}). They stated this to
work better in practice, but we did not find evidence for this in our
experiments and thus, for consistency, use the variant presented
here throughout.
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Williams et al. (2000), we call s ∈ [0, 1] an environmental

variable that can be changed freely during optimization, but

that is set to s = 1 (i.e., the entire dataset size), at evaluation

time.

We propose a principled rule for the automatic selection of

the next (x, s) pair to evaluate. In a nutshell, where standard

Bayesian optimization would always run configurations on

the full dataset, we use ES to reason about, how much can

be learned about performance on the full dataset from an

evaluation at any s. In doing so, FABOLAS automatically

determines the amount of data necessary to (usefully) ex-

trapolate to the full dataset.

For an initial intuition on how performance changes with

dataset size, we evaluated a grid of 400 configurations of a

support vector machine (SVM) on subsets of the MNIST

dataset (LeCun et al., 2001) ; MNIST has N = 50 000
data points and we evaluated relative subset sizes s ∈
{1/512, 1/256, 1/128, . . . , 1/4, 1/2, 1}. Figure 1 visualizes the

validation error of these configurations on s = 1/128, 1/16,
1/4, and 1. Evidently, just 1/128 of the dataset is quite repre-

sentative and sufficient to locate a reasonable configuration.

Additionally, there are no deceiving local optima on smaller

subsets. Based on these observations, we expect that rel-

atively small fractions of the dataset yield representative

performances and therefore vary our relative size parameter

s on a logarithmic scale.

3.1 Kernels for loss and computational cost

To transfer the insights from this illustrative example into

a formal model for the loss and cost across subset sizes,

we extend the GP model by an additional input dimension,

namely s ∈ [0, 1]. This allows the surrogate to extrapolate to

the full data set at s = 1 without necessarily evaluating there.

We chose a factorized kernel, consisting of the standard

stationary kernel over hyperparameters, multiplied with a

finite-rank (“degenerate”) covariance function in s:

k ((x, s), (x′, s′)) = k5/2 (x,x
′) ·

(

φT (s) · Σφ · φ(s′)
)

.
(6)

Since any choice of the basis function φ yields a positive

semi-definite covariance function, this provides a flexible

language for prior knowledge relating to s. We use the same

form of kernel to model the loss f and cost c, respectively,

but with different basis functions φf and φc.

The loss of a machine learning algorithms usually decreases

with more training data. We incorporate this behavior by

choosing φf (s) = (1, (1 − s)2)T to enforce monotonic

predictions with an extremum at s = 1. This kernel choice

is equivalent to Bayesian linear regression with these basis

functions and Gaussian priors on the weights.

To model computational cost c, we note that the complexity

usually grows with relative dataset size s. To fit polynomial

complexity O(sα) for arbitrary α and simultaneously en-

force positive predictions, we model the log-cost and use

φc(s) = (1, s)T . As above, this amounts to Bayesian linear

regression with shown basis functions.

In the supplemental material (Section B), we visualize scal-

ing of loss and cost with s for the SVM example above and

show that our kernels indeed fit them well. We also evaluate

the possibility of modelling the heteroscedastic noise in-

troduced by subsampling the data (supplementary material,

Section C).

3.2 Formal algorithm description

FABOLAS starts with an initial design, described in more

detail in Section 3.3. Afterwards, at the beginning of each

iteration it fits GPs for loss and computational cost across

dataset sizes s using the kernel from Eq. 6. Then, capturing

the distribution of the optimum for s = 1 using ps=1
min(x |

D) := p(x ∈ argminx′∈X
f(x′, s = 1) | D), it selects the

maximizer of the following acquisition function to trade off

information gain versus cost:

aF(x, s) : =
1

c(x, s) + coverhead

Ep(y|x,s,D)

[
∫

ps=1
min(x

′ | D ∪ {(x, s, y)})· (7)

log
ps=1
min(x

′ | D ∪ {(x, s, y)})
u(x′)

dx′
]

.

Algorithm 1 shows pseudocode for FABOLAS. We

also provide an open-source implementation at

https://github.com/automl/RoBO.

Algorithm 1 Fast BO for Large Datasets (FABOLAS)

1: Initialize data D0 using an initial design.

2: for t = 1, 2, . . . do

3: Fit GP models for f(x, s) and c(x, s) on data Dt−1

4: Choose (xt, st) by maximizing the acquisition func-

tion in Equation 7.

5: Evaluate yt ∼ f(xt, st) +N (0, σ2), also measuring

cost zt ∼ c(xt, st) + N (0, σ2
c ), and augment the

data: Dt = Dt−1 ∪ {(xt, st, yt, zt)}
6: Choose incumbent x̂t based on the predicted loss at

s = 1 of all {x1,x2, . . . ,xt}.

7: end for

Our proposed acquisition function resembles the one used

by MTBO (Eq. 5), with two differences: First, MTBO’s

discrete tasks t are replaced by a continuous dataset size s
(allowing to learn correlations without evaluations at s = 1,

and to choose the appropriate subset size automatically).

Second, the prediction of computational cost is augmented

by the overhead of the Bayesian optimization method. This

inclusion of the reasoning overhead is important to appropri-

ately reflect the information gain per unit time spent: it does

https://github.com/automl/RoBO
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(a) s = 1/128 (b) s = 1/16 (c) s = 1/4 (d) s = 1

Figure 1: Validation error of a grid of 400 SVM configurations (20 settings of each of the regularization parameter C and

kernel parameter γ, both on a log-scale in [−10, 10]) for subsets of the MNIST dataset (LeCun et al., 2001) of various sizes

Nsub. Small subsets are quite representative: The validation error of bad configuration (yellow) remains constant at around

0.9, whereas the region of good configurations (blue) does not change drastically with s.

not matter whether the time is spent with a function evalua-

tion or with reasoning about which evaluation to perform.

In practice, due to cubic scaling in the number of data points

of GPs and the computational complexity of approximating

ps=1
min , the additional overhead of FABOLAS is within the or-

der of minutes, such that differences in computational cost

in the order of seconds become negligible in comparison.4

Being an anytime algorithm, FABOLAS keeps track of its

incumbent at each time step. To select a configuration that

performs well on the full dataset, it predicts the loss of all

evaluated configurations at s = 1 using the GP model and

picks the minimizer. We found this to work more robustly

than globally minimizing the posterior mean, or similar

approaches.

3.3 Initial design

It is common in Bayesian optimization to start with an initial

design of points chosen at random or from a Latin hyper-

cube design to allow for reasonable GP models as starting

points. To fully leverage the speedups we can obtain from

evaluating small datasets, we bias this selection towards

points with small (cheap) datasets in order to improve the

prediction for dependencies on s: We draw k random points

in X (k = 10 in our experiments) and evaluate them on

different subsets of the data (for instance on the support vec-

tor machine experiments we used s ∈ {1/64, 1/32, 1/16, 1/8}).

This provides information on scaling behavior, and, assum-

ing that costs increase linearly or superlinearly with s, these

k function evaluations cost less than k
8 function evaluations

on the full dataset. This is important as the cost of the initial

design, of course, counts towards FABOLAS’ runtime.

4The same is true for standard ES and MTBO, but was never
exploited as no emphasis was put on the total wall clock time
spent for the hyperparameter optimization. We want to emphasize
that we express budgets in terms of wall clock time (not function
evaluations) since this is natural in most practical applications.

3.4 Implementation details

The presentation of FABOLAS above omits some details

that impact the performance of our method. As it has be-

come standard in Bayesian optimization (Snoek et al., 2012),

we use Markov-Chain Monte Carlo (MCMC) integration

to marginalize over the GPs hyperparameters (we use the

emcee package (Foreman-Mackey et al., 2013)). To accel-

erate the optimization, we use hyper-priors to emphasize

meaningful values for the parameters, chiefly adopting the

choices of the SPEARMINT toolbox (Snoek et al., 2012): a

uniform prior between [−10, 2] for all length scales λ in log

space, a lognormal prior (µa = 0, σ2
a = 1) for the covari-

ance amplitude θ, and a horseshoe prior with length scale

of 0.1 for the noise variance σ2.

We used the original formulation of ES by Hennig and

Schuler (2012) rather than the recent reformulation of PES

by Hernández-Lobato et al. (2014). The main reason for this

is that the latter prohibits non-stationary kernels due to its

use of Bochner’s theorem for a spectral approximation. PES

could in principle be extended to work for our particular

choice of kernels (using an Eigen-expansion, from which we

could sample features); since this would complicate making

modifications to our kernel, we leave it as an avenue for

future work, but note that in any case it may only further

improve our method. To maximize the acquisition function

we used the blackbox optimizer DIRECT (Jones, 2001) and

CMAES (Hansen, 2006).

4 Experiments

For our empirical evaluation of FABOLAS, we compared

it to standard Bayesian optimization (using EI and ES as

acquisition functions), MTBO, and Hyperband. For each

method, we tracked wall clock time (counting both optimiza-

tion overhead and the cost of function evaluations, including

the initial design), storing the incumbent returned after ev-

ery iteration. In an offline validation step, we then trained

models with all incumbents on the full dataset and measured



FABOLAS: Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets

Figure 2: Evaluation on SVM grid on MNIST. (Left) Baseline comparison of test performance of the methods’ selected

incumbents over time. (Middle) Test performance over time for variants of MTBO with different dataset sizes for the

auxiliary task. (Right) Dataset size FABOLAS and MTBO pick in each iteration to trade off small cost and high information

gain; unlike elsewhere in the paper, this right plot shows mean ±1/4 stddev of 30 runs (medians would only take two values

for MTBO).

their test error. We plot these test errors throughout.5 To

obtain error bars, we performed 10 independent runs of

each method with different seeds (except on the grid ex-

periment, where we could afford 30 runs per method) and

plot medians, along with 25th and 75th percentiles for all

experiments. Details on the hyperparameter ranges used

in every experiment are given in the supplemental material

(Section D).

We implemented Hyperband following Li et al. (2017) using

the recommended setting for the parameter η = 3 that con-

trols the intermediate subset sizes. For each experiment, we

adjusted the budget allocated to each Hyperband iteration to

allow the same minimum dataset size as for FABOLAS: 10

times the number of classes for the support vector machine

benchmarks and the maximum batch size for the neural

network benchmarks. We also followed the prescribed in-

cumbent estimation after each iteration as the configuration

with the best performance on the full dataset size.

4.1 Support vector machine grid on MNIST

First, we considered a benchmark allowing the comparison

of the various Bayesian optimization methods on ground

truth: our SVM grid on MNIST (described in Section 3),

for which we had performed all function evaluations be-

forehand, measuring loss and cost 10 times for each con-

figuration x and subset size s to account for performance

variations. (In this case, we computed each method’s wall

clock time in each iteration as its summed optimization over-

heads so far, plus the summed costs for the function values

it queried so far.)

MTBO requires choosing the number of data points in its

auxiliary task. Figure 2 (middle) evaluates MTBO vari-

5The residual network in Section 4.4 is an exception: here,
we trained networks with the incumbents on the full training set
(50000 data points, augmented to 100000 as in the original code)
and then measured and plotted performance on the validation set.

ants with a single auxiliary task with a relative size of 1/4,
1/32, and 1/512, respectively. With auxiliary tasks at either

s = 1/512 or 1/32, MTBO improved quickly, but converged

more slowly to the optimum; we believe small correlations

between the tasks cause this. Figure 2 (right) shows the

dataset sizes chosen by the different algorithms during the

optimization; all methods slowly increased the average sub-

set size used over time. An auxiliary task with s = 1/4
worked best and we used this for MTBO in the remaining

experiments.

At first glance, one might expect many tasks (e.g., with a

task for each s ∈ {1/512, 1/256, . . . , 1/2, 1}) to work best,

but quite the opposite is true. In preliminary experiments,

we evaluated MTBO with up to 3 auxiliary tasks (s = 1/4,
1/32, and 1/512), but found performance to strongly degrade

with a growing number of tasks. We suspect that the
(|T |

2

)

kernel parameters that have to be learned for the discrete

task kernel for |T | tasks are the main reason. If the MCMC

sampling is too short, the correlations are not appropriately

reflected, especially in early iterations, and an adjusted sam-

pling creates a large computational overhead that dominates

wall-clock time. We therefore obtained best performance

with only one auxiliary task.

Figure 2 (left) shows results using EI, ES, random search,

MTBO and FABOLAS on this SVM benchmark. EI and ES

perform equally well and find the best configuration (which

yields an error of 0.014, or 1.4%) after around 105 sec-

onds, roughly five times faster than random search. MTBO

achieves good performance faster, requiring only around

2× 104 seconds to find the global optimum. FABOLAS is

roughly another order of magnitude faster than MTBO in

finding good configurations, and finds the global optimum

at the same time.
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Figure 3: SVM hyperparameter optimization on the datasets covertype (left), vehicle (middle) and MNIST(right). At each

time, the plots show test performance of the methods’ respective incumbents. FABOLAS finds a good configuration between

10 and 1000 times faster than the other methods.

Figure 4: Test performance of a convolutional neural network on CIFAR10 (left) and SVHN (right).

4.2 Support vector machines on various datasets

For a more realistic scenario, we optimized the same SVM

hyperparameters without a grid constraint on MNIST and

two other prominent UCI datasets (gathered from OpenML

(Vanschoren et al., 2014)), vehicle registration (Siebert,

1987) and forest cover types (Blackard and Dean, 1999)

with more than 50000 data points, now also comparing to

Hyperband. Training SVMs on these datasets can take sev-

eral hours, and Figure 3 shows that FABOLAS found good

configurations for them between 10 and 1000 times faster

than the other methods.

Hyperband required a relatively long time until it recom-

mended its first hyperparameter setting, but this first recom-

mendation was already very good, making Hyperband sub-

stantially faster to find good settings than standard Bayesian

optimization running on the full dataset. However, FABO-

LAS typically returned configurations with the same quality

another order of magnitude faster.

4.3 Convolutional neural networks on CIFAR-10 and

SVHN

Convolutional neural networks (CNNs) have shown supe-

rior performance on a variety of computer vision and speech

recognition benchmarks, but finding good hyperparameter

settings remains challenging, and almost no theoretical guar-

antees exist. Tuning CNNs for modern, large datasets is

often infeasible via standard Bayesian optimization; in fact,

this motivated the development of FABOLAS.

We experimented with hyperparameter optimization for

CNNs on two well-established object recognition datasets,

namely CIFAR10 (Krizhevsky, 2009) and SVHN (Netzer

et al., 2011). We used the same setup for both datasets (a

CNN with three convolutional layers, with batch normal-

ization (Ioffe and Szegedy, 2015) in each layer, optimized

using Adam (Kingma and Ba, 2014)). We considered a total

of five hyperparameters: the initial learning rate, the batch

size and the number of units in each layer. For CIFAR10, we

used 40000 images for training, 10000 to estimate validation

error, and the standard 10000 hold-out images to estimate
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Figure 5: Validation performance of a residual network on

CIFAR10.

the final test performance of incumbents. For SVHN, we

used 6000 of the 73257 training images to estimate vali-

dation error, the rest for training, and the standard 26032

images for testing.

The results in Figure 4 show that—compared to the SVM

tasks—FABOLAS’ speedup was smaller because CNNs

scale linearly in the number of datapoints. Nevertheless,

it found good configurations about 10 times faster than

vanilla Bayesian optimization. For the same reason of linear

scaling, Hyperband was substantially slower than vanilla

Bayesian optimization to make a recommendation, but it

did find good hyperparameter settings when given enough

time.

4.4 Residual neural network on CIFAR-10

In the final experiment, we evaluated the performance of our

method further on a more expensive benchmark, optimizing

the validation performance of a deep residual network on the

CIFAR10 dataset, using the original architecture from He

et al. (2015). As hyperparameters we exposed the learning

rate, L2 regularization, momentum and the factor by which

the learning rate is multiplied after 41 and 61 epochs.

Figure 5 shows that FABOLAS found configurations with

reasonable performance roughly 10 times faster than ES and

MTBO. Note that due to limited computational capacities,

we were unable to run Hyperband on this benchmark: a sin-

gle iteration took longer than a day, making it prohibitively

expensive. (Also note that by that time all other methods had

already found good hyperparameter settings.) We want to

emphasize that the runtime could be improved by adapting

Hyperband’s parameters to the benchmark, but we decided

to keep all methods’ parameters fixed throughout the experi-

ments to also show their robustness.

5 Conclusion

We presented FABOLAS, a new Bayesian optimization

method based on entropy search that mimics human ex-

perts in evaluating algorithms on subsets of the data to

quickly gather information about good hyperparameter set-

tings. FABOLAS extends the standard way of modelling

the objective function by treating the dataset size as an

additional continuous input variable. This allows the incor-

poration of strong prior information. It models the time it

takes to evaluate a configuration and aims to evaluate points

that yield—per time spent—the most information about the

globally best hyperparameters for the full dataset. In vari-

ous hyperparameter optimization experiments using support

vector machines and deep neural networks, FABOLAS of-

ten found good configurations 10 to 100 times faster than

the related approach of Multi-Task Bayesian optimization,

Hyperband and standard Bayesian optimization. Our open-

source code is available at https://github.com/automl/RoBO,

along with scripts for reproducing our experiments.

In future work, we plan to expand our algorithm to model

other environmental variables, such as the resolution size of

images, the number of classes, and the number of epochs,

and we expect this to yield additional speedups. Since our

method reduces the cost of individual function evaluations

but requires more of these cheaper evaluations, we expect

the cubic complexity of Gaussian processes to become the

limiting factor in many practical applications. We therefore

plan to extend this work to other model classes, such as

Bayesian neural networks (Neal, 1996; Hernández-Lobato

and Adams, 2015; Blundell et al., 2015; Springenberg et al.,

2016; Klein et al., 2017), which may lower the computa-

tional overhead while having similar predictive quality.
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