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Jie Yang, Student Member, IEEE, Shi Jin, Senoir Member, IEEE, Chao-Kai Wen, Member, IEEE,

Xi Yang, and Michail Matthaiou, Senoir Member, IEEE

Abstract—Millimeter-wave (mmWave) communications attract
considerable interest due to the massive available spectrum.
However, to establish communication links, a beam training
procedure is indispensable. How to accelerate the beam training
process is one of the key challenges towards realizing mmWave
communications in practice. In this study, we first propose a
novel low-cost digital beamforming (DBF) module assisted hybrid
(DA-hybrid) architecture, by exploiting both the capabilities of
analog and digital modules. To make this topology practical, we
deploy coarse radio frequency (RF) chains and low-resolution
analog-to-digital converters in the low-cost DBF module to reduce
cost and power consumption. Second, we design a fast beam
training method (named DAH-BT) by utilizing the proposed DA-
hybrid architecture and leveraging the sparse nature of mmWave
channels, in which an internal calibration method is adapted to
obtain the parameters of the RF impairments and the orthogonal
matching pursuit algorithm is utilized to estimate beams. We
also prove that the developed measurement matrices satisfy the
restricted isometry property. Extensive simulation results show
that the DA-hybrid architecture can not only provide close to
100% beam matching accuracy, but also dramatically reduce the
system power consumption and cost. In addition, the proposed
DAH-BT scheme consumes the shortest time for beam training
over the state-of-art methods with comparable spectral efficiency.

Index Terms—Beam training, digital beamforming architecture,
hybrid architecture, low-resolution ADC, millimeter-wave system,
RF impairments.

I. INTRODUCTION

Millimeter-wave (mmWave) frequencies have been identified

as a catalyst for the next generation wireless communication

systems [1], since the mmWave band offers extremely large

bandwidth and can therefore boost peak data rates. However, the

path loss of mmWave signals is inherently large, and mmWave

signals are sensitive to blockage, hence, large antenna arrays

and highly directional transmission should be combined to com-

pensate for the severe penetration path losses [2]. Unfortunately,

directional communications complicate the link establishment,

and the indispensable beam training is time-consuming [3].

To support high mobility in mmWave systems, which enables

widespread applications, such as vehicular communications and

wireless virtual reality [4], [5], there is an urgent need to

overcome a critical challenge in mmWave communications:
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how to improve the reliability and reduce the latency of beam

training. In this study, we design a novel system architecture by

the cross-design of analog and digital modules and propose a

compatible fast beam training scheme via compressed sensing

(CS) tools to precisely address the above mentioned challenge.

We now recall that the practical implementation of mmWave

systems faces several hardware challenges compared to sub-

6 GHz communication systems [6]. The fully digital beam-

forming (DBF) architecture [7], [8], compared with other

architectures, has the highest precoding freedom, flexible multi-

beam ability, fast beam steering speed, and high beamforming

precision. However, the comparison result in [8] showed that the

total cost and power consumption of the fully DBF architecture

is more than twice of that of hybrid architectures. The hybrid

architecture utilizes a lens topology [9] or is connected to a

bank of phase shifters to reduce the number of RF chains [10],

so as to maintain the hardware cost and power consumption

at reasonable levels. However, the signal processing becomes

complicated, since it is split between the analog and digital

domains in the hybrid architecture. In [11], different hybrid

architectures were compared in terms of power consumption

and performance.

Recently, to further reduce the power consumption and com-

putational complexity, quantized multiple-input multiple-output

(MIMO) systems were proposed in [12] that use low-cost low-

resolution analog-to-digital converters (ADCs), e.g., 1-4 bits.

Several aspects of quantized MIMO systems have been studied,

such as capacity analysis [13], energy efficiency analysis [14],

data detection [15], and channel estimation [16]. However, only

very few works in the literature have investigated hardware

imperfections in the DBF or hybrid architectures [17], [18],

including phase noise, power amplifier nonlinearities, and In-

phase and Quadrature-phase (IQ) imbalance [19], [20], which

can seriously undermine the system performance especially

in mmWave frequencies. The work in [17] considered the

aggregate impact of hardware impairments and modeled it as

additive Gaussian noise. The study in [18] characterized the

superposition of different RF impairments by a more accurate

extended error vector magnitude (EEVM) model. Capitalizing

on [18], we will take low-resolution phase shifters, low-bit

ADCs, and radio frequency (RF) impairments into consider-

ation.

mmWave beam training has become a popular research topic

in recent years [21]–[30]. The most straightforward method

is the exhaustive search [21], which is prohibitively time-

consuming, where the base station (BS) and the mobile station

(MS) scan all the angle-of-arrival (AoA) and angle-of-departure

(AoD) beam pairs until they find the strongest one. IEEE

802.11ad standardized a beam sector based scheme for beam
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training [22], whose main idea is to start with sectors of wide

beams to do a coarse beam estimation and then shrink the

beamwidth adaptively and successively to obtain a more refined

beam. Most works considered sequential and single-directional

scanning during the beam training [23]–[26], while, work in

[27] leveraged the multi-directional scanning abilities of the

hybrid transceivers to accelerate the beam training process. The

drawback of such methods, however, is the need of successive

feedback between the BS and the MS, which is difficult to

achieve at the initial channel acquisition stage [3]. The sparse

nature of mmWave channels in the angular domain motivates

the application of CS-based techniques to expedite the beam

training process [28]–[30]. However, these solutions mainly

focus on the channel estimation performance, which induce

high computational complexity and rely on unrealistic hardware

assumptions. In our study, to accelerate the beam training,

eliminate the demand of feedback, and reduce the algorithmic

complexity, we develop a more flexible beam training method,

by embedding the idea of CS into the sector-based beam

training scheme to change the fixed hierarchical sectors into

adaptive refined beams.

In this study, we investigate the problem of beam training

acceleration by proposing a novel low-cost DBF module as-

sisted hybrid (DA-hybrid) architecture and a compatible beam

training method (DAH-BT). According to the standards 3GPP

TS 38.211 [31] and 3GPP TS 38.213 [32], the beam training is

conducted within the periodic half frames, which can occupy

high proportion of the total transmission process in 5G NR,

especially for fast-moving communication scenarios. Hence, it

is fundamentally important to greatly reduce the time of beam

training by adding a low-cost auxiliary module. In contrast

to almost all of the approaches in the literature [23]–[27],

our design exploits both the abilities of the hybrid module to

generate desired multiple beams and the low-cost DBF module

to accurately capture the angular information. To make the

proposed architecture more practically viable, we take into

account the hardware imperfections, including RF impairments,

low-bit ADCs, and low-resolution phase shifters, and develop

robust algorithms and reduce the hardware cost and power

consumption. The main contributions of our study are as

follows:

• Hardware Architecture (DA-hybrid): We propose a

novel low-cost DBF module assisted hybrid architecture,

named DA-hybrid, where we deploy coarse RF chains and

low-resolution ADCs in the low-cost DBF module. We

also model the RF chain impairments and low-bit quanti-

zation by the EEVM model and the additive quantization

noise model, respectively. We provide a comprehensive

cost and power consumption comparison of different archi-

tectures with respect to the price and power consumption

information of commercial key devices. Through this nu-

merical comparison, the DA-hybrid architecture composed

of sub-connected hybrid module and low-cost DBF module

is proven to be a promising solution for a good tradeoff

between beam training performance and hardware cost.

• Accelerate Beam Training (DAH-BT): We design a

fast beam training method based on the proposed DA-

hybrid architecture, named DAH-BT. We avail of the

sparsity of mmWave channels in the angular domain to

quickly estimate the AoAs and AoDs of beams via the

adapted orthogonal matching pursuit (OMP) algorithm.

Then, we develop an internal calibration method to obtain

the parameters of RF impairments in the EEVM model

before beam training, which simplifies the CS-based beam

training algorithms by avoiding the relatively complex bi-

linear techniques. To evaluate the adapted OMP algorithm,

we also prove that the designed measurement matrices

satisfy the restricted isometry property (RIP).

Extensive simulation results show that the DA-hybrid archi-

tecture composed of the sub-connected hybrid module and the

low-cost DBF module can not only achieve close to 100% beam

matching accuracy, but also reduce the system power consump-

tion and cost. In addition, the proposed DAH-BT shows great

potential in saving the time resources over traditional methods

[25], [27] with comparable spectral efficiency.

The rest of this paper is organized as follows: The system

model is presented in Section II. In Section III, we propose

the DA-hybrid architecture, and analyze the cost and power

consumption. In Section IV, we design a fast beam training

method DAH-BT by utilizing the proposed system architecture.

Our simulation results are presented in Section V.We conclude

the study in Section VI.

Notations—Throughout this paper, uppercase boldface A

and lowercase boldface a denote matrices and vectors, re-

spectively. For any matrix A, the superscripts A∗, AT and

AH stand for the conjugate, transpose and conjugate-transpose,

respectively. A diagonal matrix is denoted by diag{·} with

diagonal entries given in {·}, and blkdiag{A1,A2, · · · ,Ak}
denotes a block-diagonal matrix constructed by A1, A2, and

Ak. For any vector a, a∗ represents the conjugate, and the 2-

norm is denoted by ‖a‖2. The quantitative function is denoted

by Q(·) and the vector operator is denoted by vec(·). In

addition, the Kronecker product is represented by ⊗, while

z ∼ CN (0, σ2) denotes a complex-valued Gaussian random

variable z with zero mean and variance σ2. For any real

numbers a and b, ⌊a⌋ denotes the largest integer no greater

than a, ⌈a⌉ denotes the smallest integer no smaller than a, and

mod
{a

b

}

means the remainder of a being divided by b. For

any complex number c, |c| represents the modulus of c. For any

set S, |S| denotes the number of elements in set S.

II. SYSTEM MODEL

A. Signal Model

We consider a mmWave system in Fig. 1, where the BS and

the MS are equipped with a uniform planar array (UPA) with

Nt = Naz
t ×Nel

t and Nr = Naz
r ×Nel

r antennas,1 respectively.

The UPA is placed on the y−z plane. We assume a narrowband

point-to-point flat fading channel, and the received signal at the

BS antenna array can be expressed as

yUL = HULxUL + nUL, (1)

where HUL ∈ C
Nt×Nr denotes the uplink channel matrix

between the MS and the BS. The received signal at the MS

antenna array is given by

yDL = HDLxDL + nDL, (2)

1Throughout the paper, the superscripts “az” and “el” will be used to denote
the azimuth and elevation domains, correspondingly. Likewise, the superscripts
“UL” and “DL” will denote the uplink and downlink, respectively.
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Fig. 1: Block diagram of the proposed DA-hybrid architecture. The BS and MS consist of an antenna array, a low-cost DBF module, a hybrid module, and an
electronic switch.

where HDL ∈ C
Nr×Nt represents the downlink channel matrix;

xUL ∈ C
Nr×1 and xDL ∈ C

Nt×1 are the transmitted signal at

the antenna array. Moreover, nUL and nDL are the additive com-

plex Gaussian noise vectors. With the assumption of channel

reciprocity, we have HUL = (HDL)T .

B. Physical Channel Model

Before proceeding, we first specify the commonly used

mmWave channel model which characterizes the geometrical

structure and limited scattering nature of mmWave channels

[2]. The channel model is expressed as

HDL =

√

NrNt

L

L
∑

l=1

αlaRx(θ
az
l , θell )aHTx(φ

az
l , φel

l ), (3)

where L is the number of paths, αl is the complex path gain of

the l-th path, θazl represents the angle between the incident wave

of the l-th path and the y axis; θell represents the angle between

the incident wave of the l-th path and the z axis; φaz
l represents

the angle between the transmitted wave of the l-th path and

the y axis; φel
l represents the angle between the transmitted

wave of the l-th path and the z axis; θazl , θell , φaz
l and φel

l are

modeled as uniformly distributed variables in [0, π). Moreover,

aRx(θ
az
l , θell ) ∈ C

Nr×1 and aTx(φ
az
l , φel

l ) ∈ C
Nt×1 denote the

receiving and transmitting UPA steering vectors, respectively.

The definition of aRx(θ
az
l , θell ) is given by

aRx(θ
az
l , θell ) = aRx(θ

az
l )⊗ aRx(θ

el
l ), (4)

where

aRx(θ
az
l )=

1
√

Naz
r

[

1, ej
2πd

λ
cos(θaz

l
), . . . , ej(N

az

r
−1) 2πd

λ
cos(θaz

l
)
]T

,

(5)
and

aRx(θ
el
l )=

1
√

Nel
r

[

1, ej
2πd

λ
cos(θel

l
), . . . , ej(N

el

r
−1) 2πd

λ
cos(θel

l
)
]T

,

(6)

where λ is the wavelength of the carrier and d is the distance

between two neighboring antennas [33]–[35]. Likewise, by

replacing θazl , θell , Naz
r , and Nel

r in (4), (5), and (6) with

φaz
l , φel

l , Naz
t , and Nel

t , we can obtain the expression of

aTx(φ
az
l , φel

l ). Note that, generally, we consider half-wavelength

spaced UPAs in the remainder of the study.

C. Virtual Channel Representation

Unfortunately, it is difficult to analyze and estimate the

physical model HDL in (3) due to the nonlinear relationship

of parameters {αl, θ
az
l , θell , φaz

l , φel
l }. However, the physical

channel model can be well approximated by the virtual channel

model, which is a linear representation in the angular domain

[36]. To harness the tractable virtual channel representation, we

assume that the AoAs and AoDs are taken from angular grids

of Gaz
r , Gel

r , Gaz
t and Gel

t points in [0, π), respectively. The

discrete angles are given by

θ̄azi = arccos(2(i− 1)/Gaz
r − 1), i = 1, 2, . . . , Gaz

r , (7)

θ̄eli = arccos(2(i− 1)/Gel
r − 1), i = 1, 2, . . . , Gel

r , (8)

φ̄az
j = arccos(2(j − 1)/Gaz

t − 1), j = 1, 2, . . . , Gaz
t , (9)

φ̄el
j = arccos(2(j − 1)/Gel

t − 1), j = 1, 2, . . . , Gel
t . (10)

Let Gr = Gaz
r × Gel

r and Gt = Gaz
t × Gel

t . Then, we define

the receiving and transmitting dictionary matrices Ār and Āt,

with Ār ∈ C
Nr×Gr being given by

Ār = Āaz
r ⊗ Āel

r , (11)
where

Āaz
r =

[

aRx(θ̄
az
1 ),aRx(θ̄

az
2 ), . . . ,aRx(θ̄

az
Gaz

r
)
]

, (12)

and
Āel

r =
[

aRx(θ̄
el
1 ),aRx(θ̄

el
2 ), . . . ,aRx(θ̄

el
Gel

r

)
]

. (13)

Similarly, by replacing aRx(θ̄
az
i ) and aRx(θ̄

el
i ) with aTx(φ̄

az
j ) and

aTx(φ̄
el
j ) in (11), (12), and (13), we can obtain the expression

of Āt ∈ C
Nt×Gt . Therefore, the virtual representation of HDL

is given by

HDL
v = ĀrHaĀ

H
t , (14)

where Ha is the virtual channel coefficients matrix (which

will be defined in Section IV-B). The virtual channel HDL
v

approximates the physical channel HDL, and the approximation

error will decrease as Gr and Gt increase. For a particular

system architecture, there is a resolvable phase resolution. In

this study, we assume that the resolution of the phase is π/N ,

hence, Gaz
r , Gel

r , Gaz
t , and Gel

t should be no greater than N .

The virtual channel effectively captures the underlying sparse

multipath environment comprising L physical paths through

GrGt resolvable paths.

III. HARDWARE ARCHITECTURE OF THE PROPOSED

TRANSCEIVER SYSTEM

In this section, we propose a low-cost DBF module assisted

hybrid architecture. In addition, we compare the cost and power

consumption of the proposed DA-hybrid architecture with the

traditional DBF and hybrid architectures.
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(a) Fully-connected hybrid module: each RF chain
is connected to all the antennas.

(b) Sub-connected hybrid module: each RF chain
is connected to a subset of antennas.

(c) Low-cost DBF module.

Fig. 2: Illustration of different architectures.

A. System Topology and Frame Structure

As was previously mentioned, the fully DBF architectures

have a number of performance advantages, however, the hard-

ware cost and power consumption are viewed as their major

constrains [4]. The hybrid architectures keep the cost and com-

plexity to affordable levels by using fewer RF chains compared

to the number of antennas and allow multi-terminal multi-

stream precoding [2], while the signal processing becomes

complicated. To leverage the advantages of both the DBF and

hybrid architectures, we propose the DA-hybrid architecture, as

illustrated in Fig. 1. The DA-hybrid architecture is composed

of the following modules: an antenna array, a low-cost DBF

module, a hybrid module, and an electronic switch.

•The antenna array is a UPA with Nt and Nr antennas in

the BS and MS, respectively. Each antenna array is connected

to both the low-cost DBF module and the hybrid module.

•The hybrid module consists of a digital precoding (com-

bining) matrix FBB ∈ C
Nt

RF
×Ns (WBB ∈ C

Nt

RF
×Ns ) and

an analog precoding (combining) matrix FRF ∈ C
Nt×Nt

RF

(WRF ∈ C
Nt×Nt

RF ) at the BS, or a digital precoding (com-

bining) matrix FBB ∈ C
Nr

RF
×Ns (WBB ∈ C

Nr

RF
×Ns ) and

an analog precoding (combining) matrix FRF ∈ C
Nr×Nr

RF

(WRF ∈ C
Nr×Nr

RF ) at the MS, where N t
RF and Nr

RF repre-

sents the number of RF chains at the BS and MS, respectively,

and Ns denotes the number of baseband data streams, with

Ns ≤ N t
RF ≤ Nt and Ns ≤ Nr

RF ≤ Nr. Each RF chain carries

a pair of amplitude-domain IQ high-resolution ADCs. Fig. 2(a)

and Fig. 2(b) show the fully-connected and the sub-connected

hybrid architectures, respectively. The signal transmitted by the

hybrid architecture in a time slot is given by

x = FRFFBBs, (15)

where s ∈ C
Ns×1 is the baseband data sequence. Through

ingenious design of FRF, FBB and s, the beam can point at a

particular direction, or cover the whole space [27]. Note that

FRF is implemented by analog phase shifters, such that its

entries are of constant modulus. Commercially used RF phase

shifters generally have 6-bit resolution, hence, in this study, we

assume that RF phase shifters in the hybrid modules have 6-bit

phase resolution [37], without amplitude adjustment. Therefore,

the phase resolution parameter N is 26 = 64. According to (7)-

(10) in Section II-C, the angular space of beams is meshed,

with Gaz
r , Gel

r , Gaz
t and Gel

t no greater than 64, such that

Gr (Gt) beam directions are stored in the beam dictionary

matrix Ār (Āt). We can design the analog precoding matrix

FRF based on beam dictionary matrix (by combining different

column vectors of the beam dictionary matrix). The hybrid

architecture can reduce the number of RF chains, maintain the

hardware cost and power consumption at reasonable levels, and

guarantee satisfactory transmission performance. However, it

splits the signal processing into the analog domains (FRF and

WRF) and digital domains (FBB and WBB), which results in

high computational complexity. Due to the complicated signal

processing and the lack of RF chains, beam training has to

rely on multi-level scanning and feedback, which are time

consuming exercises.

•The low-cost DBF module consists of Nt and Nr low-

cost coarse RF chains in the BS and MS, respectively. Each

RF chain carries a pair of amplitude-domain IQ low-resolution

ADCs. The block diagram of the low-cost DBF module is

depicted in Fig. 2(c). Note that only the first two antennas have

transmission capability. There is no analog combining matrix in

the low-cost DBF module, therefore, data from all the antennas

is retained directly but with a certain degree of resolution loss.

The low-cost DBF module and the hybrid module will not

work at the same time slot, hence, the power consumption will

not be doubled. We adopt the EEVM model to capture the

combined impact of all kinds of RF impairments [18], [19].

For illustration simplicity, let k denote the k-th RF chain of the

receiver, χ(k) = κ(k)ejϕ(k) denotes the attenuation and phase

shift effects on the k-th RF chain with |χ(k)| 6 1, and nRF(k)
is the additive Gaussian noise. Take downlink as an example,

the downlink received data impaired by imperfect RF chains

can be expressed as

yDL
RF = χ(HDLxDL + nDL) + nRF, (16)

where χ = diag{χ(1), . . . , χ(Nr)}, and nRF = [nRF(1), . . . ,
nRF(Nr)]

T
. Then, we use the additive quantization noise model

to formulate the coarsely quantized outputs of low-resolution

ADCs with ideal automatic gain control [13]. The quantized

signal is expressed as

rDLADC = Q(yDL
RF) = ηyDL

RF + nq, (17)

where Q(·) represents the non-linear quantitative function,

which can be modeled as a linear function [38]. Let b denote

the quantization bits of the ADC, then the value of η for b 6 5
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Fig. 3: Illustration of the frame structure, which consists of internal calibration
phase, beam training phase, channel estimation phase, data transmission phase,
and guard intervals between different phases. The beam training phase consists
of two sub-phases.

can be found in [13]: when b = 1, η = 0.6366; when b = 2,

η = 0.8825; when b = 4, η = 0.9905. Note that nq denotes the

additive Gaussian quantization noise vector. Although we apply

coarse RF chains and low-bit ADCs to reduce the cost and

power consumption, the low-cost DBF module still manages

to retain some advantages of the ideal DBF module, e.g., a

high enough number of RF chains can make the received

measurements sparser, hence, by using compressed sensing

algorithms, beam directions can be estimated even at low

operating SNRs.

•The electronic switch is strictly controlled by the frame

structure to make the system switch between the hybrid module

and the low-cost DBF module.

The proposed frame structure is illustrated in Fig. 3: The

first phase is the internal calibration phase (introduced in detail

in Section IV-A), during which both of the BS and the MS

compute the values of the RF impairments’ parameters of their

own low-cost DBF module. The next is the beam training phase

(introduced in detail in Section IV-B), which is divided into two

phases: in phase 1, the BS switches to the hybrid module to

omni-directionally transmit the beam training sequence, and the

MS switches to the low-cost DBF module to obtain AoAs by

the standard CS algorithm2. In phase 2, by taking advantage of

channel reciprocity, the MS switches to the hybrid module to

single-directionally transmit beam training sequences along the

estimated beam directions successively, and the BS switches to

the low-cost DBF module to obtain AoDs by the standard CS

algorithm. Finally, during the channel estimation phase and the

data transmission phase, both of the BS and MS switch to the

hybrid module.

B. Cost and Power Consumption Analysis

In this section, we analyze the cost and power consump-

tion of the following architectures: the fully-connected hybrid

architecture (A1), the sub-connected hybrid architecture (A2),

the fully DBF architecture (A3) [2], and the low-cost DBF

architecture (A4). The previous work in [11] summarizes the

power consumption of the ADC and the phase shifter, however,

these values are relatively low since the considered devices’

designs are not commercial products. Here, we assume that the

transceiver operates at the 28-GHz band with a 500-MHz signal

bandwidth, and we refer to commercial products in Applied

Dynamics International (ADI) company website that meet the

above conditions. With the development of chip technology, the

price and power consumption of products will change, but the

2The low-cost DBF module and the hybrid module share the same antenna
array and beam codebook, hence, the angular information obtained by the low-
cost DBF module can be directly used for the hybrid module.

trend we revealed in this study is valuable for reference. We

pursue the analysis on the receiver side as an example, and

the required devices are summarized in Table I. The choice

of the reference value is difficult, since the cost and power

consumption for ADI devices present high variability, e.g., the

price of one ADC device with around 1Gs/s sampling rate

ranges from $292.19 to $1326.00, and the power consumption

ranges from 0.71W to 5.1W per ADC device. For A1, A2,

and A3, which we assume that good device performance is

required, we choose the average price and power consumption

as the reference value, e.g., $809 and 3W per ADC device.

For A4, with coarse RF chains and low-bit ADCs, we choose

a relatively cheaper device with lower power consumption as

reference, e.g., the No. HMCAD1511 8-bit ADC device costs

$300 with 1W power consumption.3 Similarly, we can obtain

the reference cost and power consumption of the low noise

amplifier (LNA), mixer, local oscillator (LO), low pass filter

(LPF),4 and base band amplifier (BBA). Since there is no

phase shifter in A4, we only choose the average cost and

power consumption as the reference values for the phase shifter,

by also noting that the previous work [8] considers similar

reference values. According to [8], [11], the electronic switch

has negligible power consumption and cost.

To compare the cost and power consumption of the consid-

ered architectures, we calculate the total cost and power con-

sumption of each architecture based on Table I with Nr = 64
and Nr

RF as a variable. Since we assume that the baseband

processor consumes almost the same power in different modules

[11], we can ignore its impact in our analysis without severely

sacrificing the modeling accuracy. The simulation result is

shown in Fig. 4: (1) A1 and A3 are much more expensive

than A2 and A4, and with Nr
RF increasing, the cost of A4

becomes lower than A2; (2) the power consumption of A3 is the

highest and that of A2 is the lowest among four architectures,

nevertheless, the power consumption of A4 will be lower

than A2 with Nr
RF increasing. (3) the low-cost DBF module

assisted sub-connected hybrid architecture (A2+A4) has lower

cost and power consumption than A1 and A3. Given the above

analysis, as an additional module, A4 has relative low cost

and power consumption. Moreover, compared to the low-cost

DBF module assisted fully-connected hybrid module, the low-

cost DBF module assisted sub-connected hybrid architecture

can further reduce the total cost and power consumption with

comparable beam training performance shown in Section V-A.

IV. ACCELERATING BEAM TRAINING BY THE PROPOSED

TRANSCEIVER SYSTEM

The proposed DA-hybrid transceiver architecture can in

principle accelerate the beam training process. In this section,

we propose a fast beam training method, which only requires

Lest +1 time slots, where Lest is the number of the estimated

paths. As briefly introduced in Section III-A, there are internal

calibration phase and beam training phase in the frame struc-

ture. In the following, we will elaborate on these phases.

3Actually, 4 or less bits ADC devices will have lower cost and power
consumption [2].

4The power consumption of the LPF is relatively low, which is around
0.02W, we directly set the reference value to 0.02W.



6

TABLE I: Comparison of cost and power consumption for different devices on the receiver side
ADI device Reference ADI device Reference Number Number Number Number

Device cost cost power power in in in in
($) low/avg ($) (W) low/avg (W) A1 A2 A3 A4

LNA 25.85-223.13 40/125 0.09-0.64 0.09/0.4 Nr Nr Nr Nr

Mixer 25.09-102.91 26/64 0.595-1.442 0.6/2 Nr

RF
Nr

RF
Nr Nr

LO 7.63-200.01 8/104 0.03-1.75 0.1/0.9 Nr

RF
Nr

RF
Nr Nr

LPF 2.10-17.50 2.5/10 0.02 0.02 Nr

RF
Nr

RF
Nr Nr

BBA 1.31-5.65 1.5/3.5 0.02-0.16 0.02/0.09 Nr

RF
Nr

RF
Nr Nr

ADC 292.19-1326.00 300/809 0.71-5.1 1/3 Nr

RF
Nr

RF
Nr Nr

Phase shifter 170 170 0.4 0.4 Nr

RF
Nr Nr - -
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Fig. 4: Cost and power consumption of different architectures versus the number
of RF chains Nr

RF
.

A. Internal Calibration of RF Impairments’ Parameters

The RF impairments include phase noise, IQ imbalance and

nonlinearities. The EEVM model in (16) generally describes

the aggregation of multiple impairments [39]–[41]. In the

subsequent beam training phase, we are going to use the OMP

algorithm, however, χ as a part of measurement matrices is

unknown. To fulfill the requirements of the OMP algorithm

[42], we need to know the values of χ. Since all RF chains

in the same low-cost DBF module share one clock, the values

of χ are in fact stable over a long coherence time. Thus, it is

possible to internally calibrate the RF impairments’ parameters

by a similar calibration method in [43]. For calibration, the

low-cost DBF module should have transmission capability in

at least the first two antennas. Therefore, as shown in Fig. 2(c),

the first two antennas carry digital-to-analog converters (DAC).

The adapted calibration is summarized in Algorithm 1.

Algorithm 1 Internal Calibration

Step 1: The antenna connected to RF chain 1 sends a training

signal s = 1.

Step 2: The antennas connected to RF chains numbered

(2, . . . , Nr) receive the signal; after the low-resolution ADC,

the quantized received signal is b1→i, where 2 6 i 6 Nr.

Step 3: The antenna connected to RF chain 2 sends training

signal s = 1.

Step 4: The antennas connected to RF chains numbered

(1, 3, . . . , Nr) receive the signal; after the low-resolution ADC,

the quantized received signal is b2→i, where 1 6 i 6 Nr and

i 6= 2.

Output:

χcal = Q(χ(2))diag
{

b2→1b1→3

b1→2b2→3

, 1, b1→3

b1→2

, b1→4

b1→2

, . . . ,
b1→Nr

b1→2

}

.

To be specific, firstly, the antenna connected to RF chain 1
sends a training signal s = 1. Then, the antennas connected

to RF chains numbered (2, . . . , Nr) receive the signal; after

the low-resolution ADC, the quantized received signal b1→i is

given by

b1→i = Q (ht1χ(i)) ≈ ht1Q(χ(i)) 2 6 i 6 Nr, (18)

where t1 and χ(i) denote the unknown RF chain impairments’

coefficient of the transmit antenna 1 and the receive antenna

i, respectively; h represents the channel between the trans-

mission and receiver antennas. Since the distance between the

transmission and receiver antennas is quite close, the effective

signal-to-noise ratio (SNR) can be high enough. Therefore, it

is reasonable to assume that the Gaussian thermal noise is

negligible and the channel between different antennas is the

same, denoted as h in (18).

Next, the antenna connected to RF chain 2 sends a training

signal s = 1. Then, the antennas connected to RF chains

numbered (1, 3, . . . , Nr) receive the signal, similarly, after the

low-resolution ADC, the quantized received signal b2→i is given

by
b2→i ≈ ht2Q(χ(i)) 1 ≤ i ≤ Nr, i 6= 2, (19)

where t2 is the unknown RF chain impairments’ coefficient of

the transmit antenna 2. According to (18) and (19), we can

obtain that

Q(χ(i))

Q(χ(2))
≈

{

b2→1b1→3

b1→2b2→3

i = 1,
b1→i

b1→2

2 < i ≤ Nr.
(20)

Then, we obtain the relative quantized estimation of RF chain

impairments’ parameters as

χcal=Q(χ(2))diag

{

b2→1b1→3

b1→2b2→3
, 1,

b1→3

b1→2
,
b1→4

b1→2
, . . . ,

b1→Nr

b1→2

}

.

(21)
We can assume that Q(χ(2)) = 1 in this study, since the

performance of AoA/AoD estimation based on CS algorithms

will not deteriorate when each RF chain deviates from the real

RF chain impairments by the same multiplicative factor. If more

accurate results are needed, it is not difficult to measure the

value of Q(χ(2)) by external measuring facilities.

B. Fast Beam Training Method

In this section, we propose a fast beam training method by

utilizing the proposed DA-hybrid architecture, therefore, we

name the proposed beam training method DAH-BT. Since the

MS can be devices which are equipped with large antenna

arrays, such as vehicles, in this study we assume that Nt ≫ L
and Nr ≫ L.5 Our design leverages a simple observation: the

angular equivalent channel matrix Ha is sparse and there is a

one-to-one relationship between AoAs/AoDs and the indexes

of entries in Ha.

Definition 1. Let Sd denote the set of dominant entries in Ha,

where Sd = {(i, k) : |Ha(i, k)| > ǫ}, and ǫ is an appropriately

5To be more practical, in simulations, we consider less RF chains in the MS
than BS.
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Fig. 5: Illustration of the proposed DAH-BT method, where Lest is the number
of the estimated paths.

chosen threshold. If d = |Sd| ≪ GrGt, we say that Ha is

effectively d-sparse.

The work in [28] deduced the expression of Ha with uniform

linear array (ULA) deployed at both BS and MS. We can infer

that the (i, k)-th entry of Ha for UPA equipped at both BS and

MS is given by

Ha(i, k) ≈
L
∑

l=1

αlfNaz
r

(

m(i)

Naz
r

−θazl

)

fNel
r

(

n(i)

Nel
r

−θell

)

× f∗
Naz

r

(

p(k)

Naz
t

−φaz
l

)

f∗
Naz

r

(

q(k)

Nel
t

−φel
l

)

,

(22)

where m(i)
∆
=
⌊

i
Gel

r

⌋

+1, n(i)
∆
=mod

{

i
Gel

r

}

, p(k)
∆
=
⌊

k
Gel

t

⌋

+1,

q(k)
∆
= mod

{

k
Gel

t

}

; fNaz
r
(·), fNel

r
(·), fNaz

t
(·) and fNel

t
(·)

are the Dirichlet kernels, where fN (θ) = 1
N

∑N
i=1 e

−j2πiθ.

According to the summation formula of geometric sequences,

fN (θ) = 1
N
e−jπ(N+1)θ sin(Nπθ)

sin(πθ) . The property of the sinc

function infers that the indexes of dominant entries in Ha

are corresponding to AoA/AoD pairs, which can be calculated

according to (7)-(10), and (22). Then, it is obvious that Ha is

effectively L-sparse due to L paths. Therefore, we can find the

matching beams by utilizing standard CS techniques to coarsely

reconstruct Ha.

The schematic diagram of the DAH-BT procedure is depicted

in Fig. 5. Simply put, the DAH-BT is divided into two phases6:

during phase 1, the BS omni-directionally transmits the training

signal, and the MS omni-directionally receives the signal, then,

via a standard compressed sensing algorithm, the MS estimates

the AoAs of the beams; during phase 2, by exploiting chan-

nel reciprocity, the MS single-directionally transmits training

signals along the estimated beam directions successively, and

the BS omni-directionally receives the signal and estimates the

AoDs of the beams by a method similar to phase 1. Finally, the

beams are matched. A more detailed introduction of the beam

training is given as follows.

6Considering that the maximum uplink transmit power is less than that of
downlink, it is reasonable to design omnidirectional transmission at the BS and
directional transmission at the MS.

1) DAH-BT Phase 1: The BS omni-directionally sends the

training signal, as shown in Fig. 5. The transmitted data is given

by

xDL = Pt[1, 0, . . . , 0]
T , (23)

where xDL ∈ C
Nt×1 and Pt is the transmit power, which is set

to 1 in this study. The signal received at the MS by the low-cost

DBF module is given by

yDL
RF = χms(H

DLxDL + nDL) + nRF = χmsH
DLxDL + nDL

eff, (24)

where χms contains the RF chain impairments’ parameters at

the MS, and nDL
eff

∆
= χmsn

DL+nRF is still the additive Gaussian

noise. Then, the received signal quantized by the low-bit ADC

can be written as

rDLADC=Q
(

χmsH
DLxDL + nDL

eff

)

= ηχmsH
DLxDL + nDL

e , (25)

where nDL
e

∆
= ηnDL

eff + nq, and we assume that nDL
e ∼

CN (0, σ2
dl,eI). Note that a Gaussian distribution is the worst-

case assumption. Here, we define the downlink receive SNR as

SNRDL = 10 log10
(

‖ηχmsH
DLxDL‖22/(Nrσ

2
dl,e)

)

. (26)

According to (14), by approximately replacing HDL with HDL
v =

ĀrHaĀ
H
t , we obtain

rDLADC = ηχmsĀrHaĀ
H
t xDL + nDL

e . (27)

Since
√
Nt

Gt
Āt1 = [1, 0, 0, . . . , 0]T , where 1 represents a vector

in which all elements are one, we make xDL =
√
Nt

Gt
Āt1. Then,

we have

rDLADC = η

√
Nt

Gt

χmsĀrh
DL
v + nDL

e , (28)

where hDL
v

∆
= HaĀ

H
t Āt1. Since ĀH

t Āt ≈ I, we have hDL
v ≈

Ha1. Hence, the row index of hv corresponds to the AoAs in

grid. Denote Φ
∆
= η

√
Nt

Gt
χmsĀr, then, (28) can be simplified

into
rDLADC = ΦhDL

v + nDL
e . (29)

According to the Definition 1 and the property of Ha, hDL
v also

has a sparse nature. Hence, the equation (29) fits with the CS

model. Nevertheless, we also need to verify that the derived

matrix Φ in (29) meets the requirements of the measurement

matrix in CS. To analyze the property of Φ, we should review

some concepts of CS. In particular, one fundamental property

of the measurement matrix that has been very useful in proving

the optimality of CS reconstruction procedures is the RIP [44],

[45].

Definition 2. Let A be an p×q matrix with p < q. If there exists

δk ∈ (0, 1), for all x with ‖x‖0 6 k, the following inequality

holds, we say that the matrix A satisfies the k-order RIP:

(1− δk)‖x‖22 6 ‖Ax‖22 6 (1 + δk)‖x‖22, (30)

where ‖ · ‖0 counts the number of nonzero entries of a vector.

Note that RIP can be explained as approximately preserving

the distance of the k-sparse vector pairs. If a matrix meets

the RIP condition, many algorithms will have great chance to

recover a sparse signal from measurement with noise success-

fully [28]. A. C. Gilbert et al. have proven that partial Fourier

matrices satisfy the RIP [46]. The partial Fourier matrices are

formed by randomly choosing P rows from N × N Fourier

matrices, and normalizing each column. It is obvious that Āt

and Ār are partial Fourier matrices. Then, we will prove that

the measurement matrix Φ satisfies the RIP.

Lemma 1. Let Φ = η
√
Nt

Gt
χmsĀr, where the coefficient
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η
√
Nt

Gt
6 1, the entries in χms satisfy 0 < |χms(i)| < 1, and

Ār is the matrix defined in (11). Then, for an effectively d-

sparse vector hv , there exists δd ∈ (0, 1) such that

(1− δd)‖hDL
v ‖22 6 ‖ΦhDL

v ‖22 6 (1 + δd)‖hDL
v ‖22. (31)

Namely, Φ satisfies the d-order RIP.

Proof. Please refer to Appendix A.

Hence, with the knowledge of Φ and rDLADC, we can estimate

hDL
v by the standard OMP algorithm. We denote the estimation

of hDL
v as ĥDL

v . There are Lest entries in ĥDL
v with non-vanishing

power, where Lest is the number of estimated paths. To prevent

some paths from being missed, we take Lest slightly larger than

L in simulations. Based on the indexes of these Lest entries,

we find the azimuth and elevation AoAs of the corresponding

paths from the discrete angles, according to (7), (8), and (22).

The set of estimated AoAs is denoted as

SAoA=
[

(θ̄azAoA1
, θ̄elAoA1

),(θ̄azAoA2
, θ̄elAoA2

),. . .,(θ̄azAoALest

, θ̄elAoALest

)
]

.

The process of beam training phase 1 is summarized in Algo-

rithm 2.

Algorithm 2 OMP-based DAH-BT Phase 1

Step 1: The BS omni-directionally transmits xDL by the hybrid

module.

Step 2: The MS omni-directionally receives signal rDLADC =

η
√
Nt

Gt
χmsĀrh

DL
v + nDL

e by the low-cost DBF module.

Step 3: OMP-based AoAs estimation.

Input: rDLADC, Φ = η
√
Nt

Gt
χmsĀr and stopping criterion

Initialization: r0 = rDLADC, x0 = 0, Λ0 = ∅, t = 0
While not converged do

Match: vt = ΦT rt

Identify: Λt+1 = Λt ∪ {argmax
j

|vt(j)|}
(where vt(j) is the j-th entry of vt)

Update: xt+1= argmin
z:supp(z)⊆Λt

‖r−Φz‖2
rt+1 = r−Φxt+1

t = t+ 1
end While

Output: ĥDL
v = xt

Step 4: Find the largest Lest entries in ĥDL
v , look for the

corresponding angles according to (7), (8), and (22), and record

them in set SAoA.

2) DAH-BT Phase 2: After obtaining the set of receiving

beams SAoA, we avail of channel reciprocity, and the MS

transmits the training signal across the directions in set SAoA

successively in Lest time slots by the hybrid module, as shown

in Fig. 5. The reasons for this successive transmission are (1)

match the beams one by one without feedback; (2) better focus

the transmission energy of the MS. The transmitted data is given

by

XUL=Pt

[

a∗Rx(θ̄
az
AoA1

, θ̄elAoA1
),. . .,a∗Rx(θ̄

az
AoALest

, θ̄elAoALest

)
]

,

(32)
where XUL ∈ C

Nr×Lest , and Pt is the transmit power, which

is set to 1 in this study. Then, the signal received at the BS by

the low-cost DBF module is given by

YUL
RF=χbs(H

ULXUL+NUL)+NUL
RF=χbsH

ULXUL+NUL
eff, (33)

where χbs contains the RF chain impairments’ parameters at

the BS, and NUL
eff

∆
= χbsN

UL+NUL
RF is still the additive Gaussian

noise. Then, the received signal quantized by the low-bit ADC

can be written as

RUL
ADC=Q

(

χbsH
ULXUL+NUL

eff

)

=ηχbsH
ULXUL+NUL

e , (34)

where NUL
e

∆
= ηNUL

eff + Nq, and we assume that the elements

in NUL
e follow Gaussian distribution with zero mean and σ2

ul,e

variance. Here, we define the uplink receive SNR as

SNRUL
l = 10 log10

(

‖ηχbsH
TxUL

l ‖22/(Ntσ
2
ul,e)

)

, (35)

where xUL
l is the l-th column of XUL with 1 ≤ l ≤ Lest.

According to (14), by replacing HUL approximately to HUL
v =

Ā∗
tH

T
a Ā

T
r , we obtain

RUL
ADC = ηχbsĀ

∗
tH

T
a Ā

T
r X

UL +NUL
e . (36)

According to (32), ĀT
r X

UL is a Gr × Lest matrix, and each

column of ĀT
r X

UL has approximately a single 1 at the index of

the corresponding AoA. Denote H̃a
∆
= HT

a Ā
T
r X

UL, and H̃a is

a Gt × Lest matrix. Each column of H̃a corresponds to AoAs

in set SAoA, and the row indexes of H̃a correspond to AoDs

in grid. Then, we have

RUL
ADC = ηχbsĀ

∗
t H̃a +NUL

e . (37)

Vectorizing RUL
ADC, we have

rULADC = vec(RUL
ADC) = η(I⊗ χbsĀ

∗
t )h

UL
v + nUL

e , (38)

where hUL
v

∆
= vec(H̃a) and nUL

e

∆
= vec(NUL

e ), Then, denote

Φ̃
∆
= η(I⊗ χbsĀ

∗
t ), and (38) can be simplified to

rULADC = Φ̃hUL
v + nUL

e . (39)

Similarly, the following lemma shows that the measurement

matrix Φ̃ satisfies the RIP.

Lemma 2. Let Φ̃ = η(I⊗χbsĀ
∗
t ), where the coefficient η 6 1,

and the entries in χbs satisfy 0 < |χbs(i)| < 1, and Āt is the

matrix defined in Section II-C. Then for an effectively d̃-sparse

vector hUL
v , there exists δd̃ ∈ (0, 1) such that

(1− δd̃)‖hUL
v ‖22 6 ‖Φ̃hUL

v ‖22 6 (1 + δd̃)‖hUL
v ‖22. (40)

Namely, Φ̃ satisfies the d̃-order RIP.

Proof. Please refer to Appendix B.

Therefore, hUL
v can be estimated by the OMP algorithm,

and the estimate of hUL
v is denoted as ĥUL

v . Then, we reshape

ĥUL
v ∈ C

GtLest×1 into Ĥa ∈ C
Gt×Lest . The index of the largest

entry in the l-th column of Ĥa represents the AoD of the l-th
path. According to (9), (10), and (22), we can obtain the set of

estimated AoDs denoted as

SAoD=
[

(φ̄az
AoD1

,φ̄el
AoD1

),(φ̄az
AoD2

,φ̄el
AoD2

),. . .,(φ̄az
AoDLest

,φ̄el
AoDLest

)
]

.

To recapitulate, the process of beam training phase 2 is summa-

rized in Algorithm 3. After phase 1 and phase 2 of the DAH-BT,

we finally identify the pairs of transmitting and receiving beams

recorded in SAoD and SAoA, respectively.

V. NUMERICAL RESULTS

In this section, we carry out simulations to investigate the

feasibility of the proposed DA-hybrid architecture and the

performance of the proposed DAH-BT method. In all of the

simulations, Nt, Nr, Gaz
t , Gel

t , Gaz
r and Gel

r are set to 64.7

Other parameters will be defined with each simulation. Finally,

7The phase resolution parameter N is 26 = 64, due to the 6-bit resolution
of the RF phase shifters. Hence, Gaz

r , Gel
r , Gaz

t
, and Gel

t
should be no greater

than 64.
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Algorithm 3 OMP-based DAH-BT Phase 2

Step 1: The MS transmits xUL
l = a∗Rx(θ̄

az
AoAl

, θ̄elAoAl
), where

l = 1, . . . , Lest, successively by the hybrid module.

Step 2: The BS omni-directionally receives signal rULADC = η(I⊗
χbsĀ

∗
t )h

UL
v + nUL

e by the low-cost DBF module.

Step 3: OMP-based AoDs estimation is similar to Step 3 in

Algorithm 2, where Input is rULADC and Φ̃ = η(I⊗χbsĀ
∗
t ), and

Output is hUL
v .

Step 4: Reshape hUL
v ∈ C

GtLest×1 into Ĥa ∈ C
Gt×Lest , the

index of the largest entry in the l-th column of Ĥa represents

the AoD of the l-th path, then, record AoDs in set SAoD.
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all the numerical results provided in this section are obtained

from Monte Carlo simulations with 1000 independent channel

realizations for each BS-MS configuration.
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different ADC bits and L. The receive SNR of the upper figure is defined in
(26), and the receive SNR of the lower figure is defined in (35).

A. Beam Matching Accuracy

In the first set of simulations, we aim at comparing the beam

training performance of the proposed DA-hybrid architecture

with the traditional DBF and hybrid architectures [2], and

analyzing the impact of replacing the fully-connected hybrid

module with sub-connected hybrid module in the proposed DA-

hybrid architecture. In addition, we further study the effect of

increasing the number of dominant paths L on the proposed

DAH-BT method. Since the angles are meshed, according to

(7)-(10), the index of the grid point corresponds to the angle

one by one. In our algorithm, we estimate the index of the grid

point that is closest to the real angle. The indexes of the real

angle can also be obtained, which may not be integers, by the

inverse operation of (7)-(10). When the difference between the

estimated indexes and the true indexes is smaller than a given

threshold, we determine that the beam is correctly matched.

In this section, the threshold is set to 5. We define the beam

matching accuracy as Ta/T , which signifies that the beams are

correctly matched Ta times out of T Monte Carlo simulations.

Fig. 6 shows the beam matching accuracy for different archi-

tectures. During the simulation, the path number L is set to 1.

For beam training phase 1, since the signal is omni-directionally

transmitted, for different transmitter architectures, the trans-

mitted signals have the same expression xDL = [1, 0, . . . , 0]T .

Hence, we do not have to consider different transmitter archi-

tectures during phase 1. We compare the performance of four

receiver architectures by setting Nr
RF for A1 and A2 to 8 and

Lr for A2 to 8. For beam training phase 2, beamforming is

considered and different transmitter architectures have different

beamforming performance. Obviously, the fully DBF architec-

ture A3 has the highest precoding freedom and beamforming

precision among four architectures mentioned in this study,

while the low-cost DBF architecture A4 with imperfect RF

chains and low-bit ADCs cannot be used as transmitter, since

the RF impairments’ parameters of the transmitter are unknown

to the receiver. Therefore, we only compare two transmitter

architectures, the fully-connected hybrid architecture A1 and

the sub-connected hybrid architecture A2. Considering that the

number of RF chains at the MS is smaller than at the BS,

we make the following settings: at the transmitters of the MS,

the number of RF chains for A1 and A2 is set to 4, hence

each subarray in A2 has 16 antennas; while at the receivers

of the BS, the number of RF chains for A1 and A2 is set

to 8, and therefore each subarray in A2 has 8 antennas. At

the receivers, to fit in the CS framework, the WRF in A1 is

a random matrix with elements consisting of 1/
√

N t
RF and

−1/
√

N t
RF , while WRF in A2 is a block diagonal matrix,

where WRF = blkdiag{w1, . . . ,wi, . . . ,wNr

RF
} and wi is

a random vector with elements consisting of 1/
√
Lt and

−1/
√
Lt. Actually, more suitable measurement matrices and

more efficient CS algorithms can be selected to further improve

the performance of A1 and A2. However, this goes outside

the scope of this study. In this section, we aim at qualitatively

comparing the performance of different architectures.

TABLE II: Beam matching accuracy comparison of different receiver architec-
tures in phase 1.

Receiver BMA in Phase 1
A1 0.771
A2 0.829
A3 0.995

A4: 1-bit ADC 0.994
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TABLE III: Beam matching accuracy comparison of different architectures in
phase 2.

Transmitter Receiver BMA in Phase 2
A1 A1 0.777
A1 A2 0.819
A1 A3 0.995
A1 A4: 1-bit ADC 0.993
A2 A1 0.762
A2 A2 0.808
A2 A3 0.995
A2 A4: 1-bit ADC 0.993

There are several interesting findings shown in Fig. 6: both in

phase 1 and 2, as the SNR increases, A4 as a receiver gradually

reaches the performance of A3, which achieves close to 100%
beam matching accuracy, while A1 and A2 are far from such

precision, because A4 can get more information despite of the

RF impairments and low ADC bits, making the measurements

more sparse than A1 and A2, in which the measurements are

compressed by the combining matrix; in phase 2, although

A2 is less flexible than A1, A2 as a transmitter can achieve

performance close to A1, because in phase 2, only single beam

transmission is needed. More specifically, we list the beam

matching accuracy for different architectures in Table II and

III, the values of which are obtained in Fig. 6 with receive

SNRDL = −40 dB for phase 1 and SNRUL = −40 dB for phase

2, respectively. In terms of beam matching accuracy, A4 as a

receiver has performance close to A3 from Table II, and A2 as a

transmitter has performance close to A1 from Table III. Hence,

we can conclude that the DA-hybrid architecture composed

of the sub-connected hybrid (A2) module and the low-cost

DBF (A4) module can not only achieve high beam matching

accuracy, but also reduce the system power consumption and

cost, which confirms the feasibility of the proposed DA-hybrid

architecture.

Fig. 7 further displays the beam matching accuracy for A4

with different ADC bits and L. For beam training phase 1, as the

number of L increases, the beam matching accuracy decreases

accordingly, due to the reduced sparsity. By comparing the red

dotted line “A3”, which represents the fully DBF architecture

with ideal hardware, with solid lines, which represent imperfect

RF chains and low-bit ADCs, we find that the performance

loss caused by the aggregate impact of residual hardware

impairments increases when L = 3. However, with the module

“A4: 4-bit ADC”, our proposed algorithm can gradually get

close to the performance of ideal hardware module A3, within

a certain angle error of beams set by the threshold, as the receive

SNR increases. During beam training phase 2, since beams are

sent and received one by one, the beam matching accuracy for

beam training phase 2 will not be affected by the increase of

L, but the beam training time grows linearly with L.

As mentioned before, the beam matching accuracy is cal-

culated by setting a particular threshold. For a more intuitive

understanding of the beam matching accuracy, we compare the

estimated azimuth and elevation AoA indexes with the true

indexes in Fig. 8, where we take DAH-BT phase 1 for example

by setting L to 3 and SNRDL in (26) to −30 dB. As shown

in Fig. 8, for A4 with 1-bit ADC, the average deviation of

the estimated index in both azimuth and elevation is around 2;

for A4 with 4-bit ADC, the average deviation of the estimated

index is further reduced to less than 1; when the ADC in A4 is

infinite-bit, the accuracy reaches the level of A3. Particularly,

from Fig. 8 for A4 with 4-bit ADC, we can see that Lest ≥ L,

and the estimated paths cluster around the true values. Actually,
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Fig. 8: Comparison of the estimated azimuth and elevation AoA indexes with
true values in phase 1 with L = 3 and SNRDL = −30 dB.
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Fig. 9: Beam matching accuracy of the proposed beam training method with
different BS-MS distance with L = 1.

in the case where the beam matching accuracy requirement is

slightly lower, A4 with 1-bit ADC can be used.

Finally, we analyze the impact of BS-MS distance on beam

matching accuracy. In the simulations, we model the path gain

of the l-th path as αl ∼ CN (0, γ10−0.1PL) [27]. According to

[47], for omnidirectional path loss, PL = α+10β log10(d)+ξ
dB, where ξ ∼ N (0, σ2) denotes lognormal shadowing, γ =
Urτ−1100.1Z is the cluster power fraction with Z ∼ N (0, ς2)
and U ∼ U [0, 1], and d represents the BS-MS distance in

meters. The system is assumed to operate at 28 GHz carrier

frequency with 500 MHz bandwidth, hence, the reference

values of α, β, σ, rτ , and ς can be found in [47, Table I], where

rτ = 2.8 and ς = 4.0; for the LoS path, α = 61.4, β = 2, and

σ = 5.8 dB; for the NLoS path, α = 72.0, β = 2.92, and

σ = 8.7 dB. We assume that the transmit power at the BS is

set to 33 dBm, the noise power at the MS is set to -83 dBm, the

threshold is set to 5. The simulation results are shown in Fig. 9

and Fig. 10, where the beam matching accuracy decreases when

the BS-MS distance d increases. Since the BS transmit power

is fixed, the received energy of the signal decreases with d
increases, which causes this performance degradation. However,
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Fig. 10: Beam matching accuracy of the proposed beam training method with
different BS-MS distance with L = 3.

under the given simulation parameters, with the module “A4:

4-bit ADC”, the beam matching accuracy at beam training

phase 1 (omnidirectional transmission) can reach 80% or even

more within 50 (m) when L = 1 and within 45 (m) when

L = 3. Since mmWave frequency band is used for short-

distance transmission, the simulation results have confirmed the

feasibility of the proposed beam training algorithm.

B. Outage Probability

After beam training, the BS and MS use the estimated beam

directions to build their precoder PDATA ∈ C
Nt×Lest (at the BS)

and combiner CDATA ∈ C
Nr×Lest (at the MS). To further an-

alyze the performance of the proposed DA-hybrid architecture

and DAH-BT method, we quantify the quality of the precoder

and combiner by considering the spectral efficiency [23]:

R = log2

∣

∣

∣

∣

ILest
+

P

Lest

R−1
n CH

DATAH
DLPDATAP

H
DATAH

DLHCDATA

∣

∣

∣

∣

,

(41)

where Lest is the number of estimated main paths via beam

training, P is the transmit power, Rn is the post-processing

noise covariance matrix, i.e., Rn = σ2
dlC

H
DATACDATA, and σ2

dl

is the average downlink noise power. Theoretically, R in (41)

reaches the maximum value when PDATA and CDATA equal to

the right and left sigular vectors of the channel matrix HDL,

respectively. Here, we define the downlink transmit SNR =
10 log10(P/σ

2
dl). Eq. (41) can be used as a valid indicator of

how good the estimated beam steering directions are compared

to the optimal ones.

To analyze the spectral efficiency of the proposed method,

we deploy A1 as transceivers in both BS and MS during

the data transmission phase. Note that when L = 1 (only

one beam is sent at a time), the beamforming and combin-

ing vector are obtained by PDATA = aTx(φ̄
az
AoD, φ̄el

AoD) and

CDATA = aRx(θ̄
az
AoA, θ̄

el
AoA), respectively, where (θ̄azAoA, θ̄

el
AoA)

and (φ̄az
AoD, φ̄el

AoD) are defined in sets SAoA and SAoD with

Lest = 1, respectively. When L > 1, multiple beams will be

transmitted at the same time, the precoder and combiner are
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Fig. 11: Spectral efficiency comparison between SVD-based precoding/com-
bining with perfect channel knowledge and the proposed method when L = 1
and L = 3.

given by

PDATA=blkdiag
{

aTx(φ̄
az
AoD1

,φ̄el
AoD1

),. . .,aTx(φ̄
az
AoDLest

,φ̄el
AoDLest

)
}

,

(42)
and

CDATA=blkdiag
{

aRx(θ̄
az
AoA1

,θ̄elAoA1
),. . .,aRx(θ̄

az
AoALest

, θ̄elAoALest

)
}

,

(43)
respectively. Fig. 11 shows that the spectral efficiency of

proposed method is slightly worse than the optimal one when

L = 1 and L = 3., since the estimated beam directions are

taken from limited angular grids.

For further analysis, we define the outage as the event that

the spectral efficiency delivered to the MS is below a target

value Rth. In Fig. 12, we plot the measured outage probability

for Rth = 0.1 bps/Hz as a function of the downlink transmit

SNR. Obviously, when L = 1 (only one beam is sent at a time)

A2 has the same beamforming and combining performance as

A1. Therefore, the outage probability of the proposed method

is 0, which can be inferred from Fig. 11. As expected, when

L = 3, the outage probability increases, since the beamforming

performance of the sub-connected hybrid module deteriorates

when multiple beams are transmitted. The sequential adaptive

beam training (SA-BT) was proposed in [23], [25] and parallel

adaptive beam training (PA-BT) was proposed in [27]. When

the downlink transmit SNR exceeds −10 dB, the performance

of the proposed DAH-BT method exceeds that of SA-BT and

PA-BT.

C. Time Resources

To provide further insights into the time resources required by

the proposed DAH-BT, let us briefly review the procedure of the

SA-BT and PA-BT shown in Fig. 13 and Fig. 14, respectively.

In SA-BT, the BS and MS can respectively transmit and receive

training signals through only one sector at each time slot.

At each stage, the BS (MS) divides its angular domain into

KBS(KMS) sectors, hence KBSKMS time slots are needed to

train all the possible transmit/receive sector pairs, besides one

additional slot is required for feedback. Then, the number of
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Fig. 12: Outage probability referred to a target value Rth = 0.1 bps/Hz versus
transmit SNR for different beam training methods.

beam training stages required to estimate one AoA/AoD pair

with angular resolution 2π/Na is

S = max
[

logKBS
Na, logKMS

Na

]

. (44)

Therefore, the total beam training time for SA-BT is

LestS(KBSKMS + 1)Tslot, where Tslot denotes one time

slot duration. In PA-BT, the beam training time is further

shortened, since the BS (MS) can transmit the training signal

over DBS(DMS) sectors simultaneously, then the total beam

training time for PA-BT is LestS
(⌈

KBS

DBS

⌉ ⌈

KMS

DMS

⌉

+ 1
)

Tslot.

However, when Na is large, the time overhead of the SA-

BT and PA-BT will become prohibitive. The time overhead

of our proposed method DAH-BT is (Lest + 1)Tslot, which is

obviously small in mmWave communication since Lest is small.

It is easy to observe from Fig. 15 that the proposed DAH-BT

has great potential in saving time resources.
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Fig. 15: Beam training time versus Lest for different methods with Na = 32
and KBS = KMS = DBS = DMS = 2.

VI. CONCLUSION

In this study, we researched the problem of beam training

acceleration by proposing a novel DA-hybrid architecture and

a compatible DAH-BT method. Specifically, we first designed a

low-cost DBF module assisted hybrid architecture, where coarse

RF chains and low-resolution ADCs were considered in the

low-cost DBF module. We also modeled the RF impairments

and low-bit quantization by the EEVM model and the addi-

tive quantization noise model, respectively. Through numerical

comparison of the cost and power consumption, the DA-

hybrid architecture composed of sub-connected hybrid module

and low-cost DBF module was proven to be an alternative

solution for a good tradeoff between beam training performance

and hardware cost. Additionally, by leveraging the sparsity of

mmWave channels in the angular domain, we developed a fast

DAH-BT method based on the proposed DA-hybrid architec-

ture, which included the internal calibration phase to acquire

the parameters of RF impairments and the beam training phase

to obtain AoAs and AoDs of beams via the OMP algorithm.

We also evaluated the algorithm by proving that the designed

measurement matrices satisfy the RIP. In contrast to almost all

of the approaches in the literature, our design exploited both

the abilities of the hybrid module to generate desired multiple

beams and the low-cost DBF module to accurately capture the

angular information. Finally, simulation results revealed that the

DA-hybrid architecture composed of the sub-connected hybrid

module and the low-cost DBF module can not only approach

close to 100% beam matching accuracy, but also reduce the

system power consumption and cost. Moreover, the proposed

DAH-BT (which requires only Lest+1 time slots) showed great

advantage in saving time resources over traditional methods

with comparable spectral efficiency.

APPENDIX A

PROOF OF LEMMA 1

Denote a = η
√
Nt

Gt
and |a| < 1, then Φ = aχmsĀr, and

ΦhDL
v = aχmsĀrh

DL
v . By denoting Ārh

DL
v = [g1, g2, . . . , gNr

]T ,

we have

‖ΦhDL
v ‖22 =

Nr
∑

i=1

|aχms(i)gi|2 = a2
Nr
∑

i=1

|χms(i)|2|gi|2, (45)

since |χms(i)|2 < 1, then

a2
Nr
∑

i=1

|χms(i)|2|gi|2 6 a2
Nr
∑

i=1

|gi|2 = a2‖Ārh
DL
v ‖22. (46)

As known that Ār satisfies the d-th order RIP, there exists

δ+ ∈ (0, 1) such that

a2‖Ārh
DL
v ‖226 a2(1 + δ+)‖hDL

v ‖22. (47)

Since a2 < 1, we have

a2(1 + δ+)‖hDL
v ‖22 6 (1 + δ+)‖hDL

v ‖22. (48)

Hence, we obtain ‖ΦhDL
v ‖22 6 (1+δ+)‖hDL

v ‖22. Denote χmin =

min
16i6Nr

|χms(i)|, then

a2
Nr∑

i=1

|χms(i)|2|gi|
2 > a2χ2

min

Nr∑

i=1

|gi|
2 = a2χ2

min
‖Ārh

DL
v ‖2

2
. (49)

Since Ār satisfies d-th RIP, there exists δ ∈ (0, 1) such that

a2χ2

min
‖Ārh

DL
v ‖2

2
>a2χ2

min
(1−δ)‖hDL

v ‖2
2
=
[

1−
(

1−a2χ2

min
(1−δ)

)]

‖hDL
v ‖2

2
. (50)
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Fig. 13: Illustration of the SA-BT protocol with KBS = KMS = 2.
Fig. 14: Illustration of the PA-
BT protocol with KBS =
KMS = DBS = DMS = 2.

Let δ− = 1− a2χ2
min(1− δ), we have

a2χ2
min‖Ārh

DL
v ‖22 > (1− δ−)‖hDL

v ‖22. (51)

Hence, we obtain ‖ΦhDL
v ‖22 > (1 − δ−)‖hDL

v ‖22. Let δd =

max (δ−, δ+), according to (48) and (51), it is obviously that

(1− δd)‖hDL
v ‖22 6 ‖ΦhDL

v ‖22 6 (1 + δd)‖hDL
v ‖22.

APPENDIX B

PROOF OF LEMMA 2

Let H̃a(i) represent the i-th column of matrix H̃a, where

1 6 i 6 L. Then

‖Φ̃hUL
v ‖22=‖η(I⊗ χbsĀ

∗
t )h

UL
v ‖22

(a)
=η2

L
∑

i=1

‖χbsĀ
∗
t H̃a(i)‖22, (52)

where (a) holds because hUL
v is the vectorized version of H̃a.

As we know that Ā∗
t satisfies the d̃-th order RIP. Similar to

(45), (46) and (47), there exists δ̃+ ∈ (0, 1) such that

η2
L
∑

i=1

‖χbsĀ
∗
t H̃a(i)‖22

(a)

6
L
∑

i=1

‖Ā∗
t H̃a(i)‖22

6 (1 + δ̃+)
L
∑

i=1

‖H̃a(i)‖22 = (1 + δ̃+)‖hUL
v ‖22,

(53)

where (a) holds because η < 1 and |χbs(i)|2 < 1. Hence, we

get ‖Φ̃hUL
v ‖22 6 (1+ δ̃+)‖hUL

v ‖22. For the same reason as in (49)

and (50) , we have

η2
L
∑

i=1

‖χbsĀ
∗
t H̃a(i)‖22 > η2χ2

min

L
∑

i=1

‖Ā∗
t H̃a(i)‖22

> η2χ2
min(1− δ̃)

L
∑

i=1

‖H̃a(i)‖22,
(54)

and we have

η2χ2
min(1− δ̃)

L
∑

i=1

‖H̃a(i)‖22 = η2χ2
min(1− δ̃)‖hUL

v ‖22
= [1− (1− η2χ2

min(1− δ̃))]‖hUL
v ‖22.

(55)

Let δ̃− = 1− η2χ2
min(1− δ̃), we obtain

η2
L
∑

i=1

‖χbsĀ
∗
t H̃a(i)‖22 > (1− δ̃−)‖hUL

v ‖22, (56)

hence, we have ‖Φ̃hUL
v ‖22 > (1− δ̃−)‖hUL

v ‖22. Finally we obtain

(1− δd̃)‖hUL
v ‖22 6 ‖Φ̃hUL

v ‖22 6 (1 + δd̃)‖hUL
v ‖22, (57)

where δd̃ = max (δ̃−, δ̃+).
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