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A new hardware-friendly bi-exponential fluorescence lifetime imaging (FLIM) algorithm has been proposed.
Compared to conventional FLIM software, the proposed algorithms are noniterative offering direct calculation
of lifetimes and therefore suitable for real-time applications. They are applicable to single-channel or 2D multichan-
nel time-correlated single-photon counting (TCSPC) systems. The proposed methods have been tested on both
synthesized and realistic FLIM data, and we have compared their performances with other recently proposed
nonfitting bi-exponential techniques showing promising applications in future massive solid-state TCSPC
imagers. © 2015 Optical Society of America
OCIS codes: (030.5260) Photon counting; (040.1345) Avalanche photodiodes (APDs); (110.0180) Microscopy;

(170.3650) Lifetime-based sensing; (170.6920) Time-resolved imaging.
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A fluorescence lifetime imaging microscopy (FLIM)
system does not only acquire the intensity but also the
temporal decay of the fluorescence [1]. As lifetime char-
acteristics of fluorophores are usually sensitive to their
environment, FLIM can be a powerful tool to monitor
physiological parameters such as pH, O2, Ca2�, or image
cellular protein–protein interactions that link to diseases
or tumors [2–4].
There are frequency-domain and time-domain FLIM

systems. In this Letter we will only discuss nonfitting
time-domain methods applicable to highly parallel
single-photon avalanche diode (SPAD) arrays [5–7].
Time-domain FLIM usually employs time-gated cameras
[6,8–10] or time-correlated single-photon counting
(TCSPC) modules [1,3]. Only the former technique can
provide high-speed acquisition. Grant et al. used the
two-gate rapid lifetimedetermination (RLD)method toob-
tain fast FLIM imaging (∼10 fps), but the frame rate drops
significantly when multiple gates (No. of gates � M) are
applied to image samples exhibiting significant variations
in lifetimes across the field of view [8,9]. Moreover, multi-
gatemethods require iterative nonlinear fitting algorithms
for lifetime analysis. Although gating techniques provide
faster imaging than traditional TCSPCs, at the same ac-
quisition they are unable to provide the raw imaging data
that most biologists feel comfortable with. To record a
complex decay profile, for example one with a gated
imager, a large number of intensity images at different
delays (M ≫ 1) from the excitation pulse is acquired. A
narrow sliding gate (gate width ∼ hundreds of picosec-
onds) is usually used to ensure enough timing resolution,
but thephotonefficiency is extremely low.For biologists a
TCSPC with FLIM software is still the gold standard.
Most TCSPC-based FLIM experiments are conducted
by choosing a pixel dwell time to produce a frame
rate around 0.2–0.5 frames-per-minute to avoid photo-
bleaching. Such an acquisition might be enough for
observing drug efficacy in cancer, but surely impossible
for imaging rapid cellular dynamics within seconds.

Recent advances in SPADs have shown a great poten-
tial to provide a step-change in FLIM techniques [5–7].
SPADs can be fabricated in 2D arrays and integrated with
digital circuits in a single chipset using a power supply
compatible with commercial field programmable gate ar-
ray (FPGA) chips without using any cooling modules and
high-voltage power supplies (usually required in CCD
systems). The data throughput of the latest SPAD im-
agers can be easily higher than 50 Gb∕s, and it is impos-
sible to process the raw data without introducing any
data compression similar to the fast FLIM processors
[7]. These hardware friendly algorithms mainly serve
to (1) compress the raw data to enhance the frame rate
and to release the need for high-speed serial links
between the camera and a workstation and (2) generate
fast FLIM imaging with the minimum latency between
the data collection and image generation for real-time
applications. In this Letter we will propose new
hardware friendly algorithms and compare their
performances with some recently published nonfitting
algorithms [11–13].

Assume that the fluorescence is a bi-exponential
decay, and the measured density is f �t� � K · �f D ·
exp�−t∕τF� � �1 − f D� · exp�−t∕τD�� · u�t�: τF ; τD are the
lifetimes, K is the pre-scalar, f D the proportion, u�t�
the step function, and we neglect the instrumental re-
sponse function (IRF) and background noise as the
model described in [12]. The assumption allows a proper
comparison with other algorithms and provides intuitive
insights for choosing a proper strategy in system design
and data acquisition. The background noise can be
corrected in most experiments without affecting the
precision as long as they are smaller than the true
signals.

Figure 1(a) shows the fluorescence density f �t�.
Usually in an FLIM experiment, the measurement win-
dow T is divided into M�M > 2� channels with the chan-
nel width of h. Nj is the photon count in the jth channel,
and the photon count in the first channel is
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N1 �
Z

h

0
f �t�dt ≅ Kf Dh� K�1 − f D�h � K · h; (1)

when h ≪ 2τF �τF < τD�. This condition sustains in most
commercially available TCSPC systems. If the condition
cannot be met, calibration procedures can be applied to
fix the bias. From Eq. (1), we can obtain

Nj �
Z

jh

�j−1�h
f �t�dt

≅ Khf De−�j−1�h∕τF � Kh�1 − f D�e−�j−1�h∕τD
� N1f De−�j−1�h∕τF � N1�1 − f D�e−�j−1�h∕τD ; (2)

j � 2;…; M . The goal is equivalent to resolving a signal
F�t� � N1 f D exp�−t∕τF � � N1�1 − f D� exp�−t∕τD�, with
the signal sampled at tj � �j − 1�h as shown in Fig. 1(b).
Assuming T ≫ τD, we can obtain

Z �M−1�h

0
F�t�dt ≅ N1f DτF � N1�1 − f D�τD

≅ h ·
XM
j�1

�Cj · Nj� � h · N;

N ≡
XM
j�1

�Cj · Nj�; (3)

where Cj ; j � 1; 2;…; M , are coefficients for Simpson’s
or Romberg’s integration rule. Similarly, we can obtain
Eq. (4),

Z �M−1�h

0
t · F�t�dt ≅ N1f Dτ2F � N1�1 − f D�τ2D;

≅ h ·
XM
j�1

�Cj · tj · Nj� � h · X;

X ≡ �Cj · tj · Nj�: (4)

Similar to the phasor approach (Phasor) and moment
method (MoM) [12,13], we can fix τD to obtain τF and
f D as Eqs. (5) and (6),

τF � τDN − X
τDK − N

; (5)

f D � τDK − N
K�τD − τF �

. (6)

Compared with the single-exponential center-of-mass
method (CMM) [7], Eqs. (5) and (6) are able to solve
bi-exponential decays by just including an extra known
N1. We call this new method bi-decay CMM (BCMM),
denoted as BCMM1. Unlike the previously published min-
imal fraction of interacting donor method (mfD) giving
only underestimated f D [11], BCMM1 provides both accu-
rate τF and f D. It is much simpler than Phasor and MoM
and more hardware friendly, for example it only requires
counters and accumulators in FPGAs like CMM [7]. We
define

N 0≡
Z

T

0
f �t�dt; X 0≡

Z
T

0
t · f �t�dt; Y 0≡

Z
T

0
t2 · f �t�dt;

u�
Z

T

0
cos�ωt� · f �t�dt∕N 0; v�

Z
T

0
sin�ωt� · f �t�dt∕N 0;

where ω is the laser repetition angular frequency. All
methods are re-derived and summarized in Table 1. When
τD is unknown, Eq. (7) can be included to provide an
extra condition for solving τD

Z �M−1�h

0

t2

2
· F�t�dt ≅ N1f Dτ3F � N1�1 − f D�τ3D

≅ h ·
XM
j�1

�
Cj ·

t2j
2
· Nj

�

� h · Y; Y ≡
XM
j�1

�
Cj ·

t2j
2
· Nj

�
. (7)

As N1 is included there is no need to use the third mo-
ment (requiring a much bigger T∕τD ratio) as the early
MoM work [14] greatly reduces the complexity (denoted
as BCMM2 hereafter). Similar to the MoM [12], bias cor-
rection is required for BCMM2 if T∕τD is not large
enough. Ignoring lengthy derivations here, Table 1 also
lists the BCMM2 with both τF and τD unknown. To com-
pare BCMM with Phasor and MoM, Monte Carlo simula-
tions were carried out with τD � 2.5 ns, M � 81,
T � 18 ns, 0.1 < fD < 1.0 and 0.2 ns < τF < 1.8 ns. The
integrals N 0, X 0, Y 0, u, and v can be obtained from

S ≅ h ·
XM
j�1

�
g
�
tj �

h
2

�
·Nj

�
; g�t� � 1; t; t2;cos�ωt�;sin�ωt�;

for S�N 0;X 0;Y 0;uN 0; vN 0:

Figures 2(a), 2(c), and 2(e) show the precision (F -
value) plots. (F -value is defined as F ≡ N0.5

C σg∕g [7],
g � τF or f D, and σg is the standard deviation
of g.) Figures 2(b), 2(d), and 2(f) show the bias
(�� Δg∕g; g ≡ jhgi − grealj�) for different methods. BCMM
favors a smaller τF , whereas Phasor and MoM favor a
larger τF . Figures 2(c) and 2(d) show the precision
and bias plots (for τF ) for BCMM2 using the Romberg’s
rule. BCMM2 is slightly less efficient than BCMM1, but it
does not require any fixed parameter. MoM is the most
biased among all methods, regardless of M , and worse
than BCMM2 although they both use the second moment.
The integral of the second moment, Y 0, in �T;∞� used in

Fig. 1. (a) Decay function f �t� and (b) sampled F�t�.
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MoM cannot be ignored and needs to be corrected [12].
Figures 3(a) and 3(c) show the precision plots for f D,
F�f D�, whereas Figs. 3(b) and 3(d) show the bias plots,
Δf D∕f D, for BCMM1, Phasor, and MoM. It is interesting
that the precision of f D seems better than that of τF . Sim-
ilar to the observations above, the BCMM favors a
smaller τF and the Phasor and MoM are optimized around
τF ∼ 1 ns when τD is 2.5 ns. Again, the MoM results are
the most biased among all approaches. Figures 2(a),
2(b), 3(a), and 3(b) also show the BCMM1 results using
the Romberg’s rule, which are comparable to the results
obtained by the Simpson’s rule. The Simpson’s rule is
useful when a gated or TCSPC system only has a limited
number of temporal channels. For implementations in
embedded hardware similar to [15], its complexity is sim-
ilar to the Romberg’s rule. To test BCMM two-photon

FLIM was performed on Cy5-ssDNA-GNRs (gold nano-
rods) labeled Hek293 cells. The synthesis of GNR-based
RNA nanoprobes was described elsewhere [4]. Briefly,
GNRs were functionalized with thiolated oligonucleoti-
des (ssDNA) labeled with Cy5 through ligand exchange
and salting aging process [16]. Following incubation with
Cy5-ssDNA-GNRs, Hek293 cells were washed and fixed
with paraformaldehyde. FLIM was performed using a
confocal microscope (LSM 510, Carl Zeiss) with a TCSPC
module (SPC-830, Becker & Hickl GmbH). A femtosec-
ond Ti:sapphire laser (Chameleon, Coherent) was tuned
at 800 nm. The laser pulse has a repetition rate of 80 MHz
and duration less than 200 fs. The fluorescence of Cy5
was largely quenched by GNRs because of energy trans-
fer arising from the hairpin structure of ssDNA [4].
Hybridization of nanoprobes with target RNA in cells
opens the hairpin structure and results in significant in-
crease in fluorescence intensity. The effects of the IRF
can be neglected as a proper measurement window
after the peak of the histogram was selected without ap-
plying deconvolution. Figure 4(a) depicts the intensity
image of Hek293 cells. Figures 4(b)–4(d) show f D images
obtained by the Phasor, MoM, and BCMM1, respectively.
Figures 4(e) and 4(f) show τD and f D images obtained by

Table 1. τF and fD for mfD, Phasor, MoM, and the Proposed BCMM

Methods τF f D

mf D [11] N/A Minimumf D � �τ2DN 02 − τDX 0N 0�∕�0.5X 0
− τDN 0�2

Phasor [12]
1 − u − vτDω
ω�v − uτDω�

τD�1� τ2Fω
2��1 − u − uτ2Dω

2�
�τD − τF ��1 − u − uτ2Fω

2
− τF τDω

2
− uτ2Dω

2
− uτ2Fτ

2
Dω

4�
MoM [12,13] �τDX 0

− 0.5 · Y 0�∕�τDN 0
− X 0� τD�τDN 0

− X 0�∕f�τD − τF ���τD � τF �N 0
− X 0�g

BCMM1, Eqs. (5) and (6) �τDK − N�∕�K�τD − τF �� �τDK − N�∕�K�τD − τF ��

BCMM2 τD Unknown τF � 0.5 ·
�
G −

���������������������������������������������
G2

− 4�N · G − X�∕K
q �

; f D � �K · τD − N�∕�K · �τD − τF ��

τD � 0.5 ·
�
G�

���������������������������������������������
G2

− 4�N · G − X�∕K
q �

; where G � �K · Y − N · X�∕�K · X − N2�;

Fig. 2. (a), (c), and (e) are precision plots for τF , whereas (b),
(d), and (f) are accuracy plots for different methods.

Fig. 3. (a) and (c) are precision plots, whereas (b) and (d) are
accuracy plots for BCMM1, Phasor, and MoM.
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BCMM2 with a simple look-up table correcting the bias.
A measurement window T ∼ 5τD was used for acquisi-
tion. The average lifetime of the background free of
GNRs, τD � 2.3 ns, was set for Phasor, BCMM1, and
MoM. Phasor obtains a slightly bigger f D, Fig. 4(b). Both
BCMM1 and BCMM2 obtained τF ∼ 100 ps as in Fig. 4(g),
consistent with the typical lifetime of two-photon
luminescence of GNRs as reported previously [4].
Figure 4(h) shows lifetime histograms for τD with GNRs
(τD ∼ 2.16� 0.20 ns). The lifetime reduction of Cy5 is

due to the energy transfer to GNRs [4]. Figures 4(i)
and 4(j) show lifetime and f D histograms or different
algorithms. The MoM shows a significant bias
(τF;MoM ∼ 0.8 ns) if the bias is not corrected, consistent
with the previous simulations. The bias can be corrected
using the method introduced in [12] or a look-up table for
faster corrections [7]. Figures 4(b), 4(i), and 4(j) show
that Phasor is biased when τF ≪ τD making it difficult
to locate GNRs precisely.

In summary, we have proposed a hardware friendly bi-
exponential algorithm, BCMM, suitable for high-speed
FLIM analysis. It is much similar and faster, and its per-
formance was demonstrated and compared with other
previously reported methods. The results show that
the BCMM can be a powerful tool suitable for real-time
applications. Similar to the previously proposed CMM
processors [7], BCMM can be embedded in hardware
with minimal extra resources.

The authors would like to acknowledge the Royal
Society (RG110438), BBSRC (BB/K013416/1), G. Wei, J.
Sutter, W. Li, and R. Y. M. M. Qotob for this work.
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