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Fast Bilateral Filter With Arbitrary Range and

Domain Kernels

Bahadir K. Gunturk, Senior Member, IEEE

Abstract—In this paper, we present a fast implementation of the bilat-

eral filter with arbitrary range and domain kernels. It is based on the his-

togram-based fast bilateral filter approximation that uses uniform box as

the domain kernel. Instead of using a single box kernel, multiple box ker-

nels are used and optimally combined to approximate an arbitrary domain

kernel. The method achieves better approximation of the bilateral filter

compared to the single box kernel version with little increase in compu-

tational complexity. We also derive the optimal kernel size when a single

box kernel is used.

Index Terms—Image enhancement, nonlinear filtering.

I. INTRODUCTION

The bilateral filter is a nonlinear weighted averaging filter, where the

weights depend on both the spatial distance and the intensity distance

with respect to the center pixel. The main feature of the bilateral filter

is its ability to preserve edges while doing spatial smoothing. The term

“bilateral filter” was first used by Tomasi and Manduchi in [1]; the

same filter was earlier called the SUSAN (Smallest Univalue Segment

Assimilating Nucleus) filter by Smith and Brady in [2]. The variants of

the bilateral filter have been published even earlier as the sigma filter

[3] and the neighborhood filter [4].
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At a pixel location � � ���� ���, the output of the bilateral filter is

calculated as follows:

����� �
�

����
��� ���

����� � ������������ ���������� (1)

where ����� is the spatial domain kernel, ����� is the intensity range

kernel, � ��� is the set of pixels within a spatial neighborhood of �,

and ���� is the normalization term

���� �
��� ���

������ ������������ ������� (2)

The kernels����� and����� determine how the spatial and intensity

differences are treated. The contribution (weight) of a pixel ���� is

determined by the product of ����� and �����. The bilateral filter in

[1] uses the Gaussian kernel, ����� � �������		
��, for both the

domain and range kernels:

������ ��� � �� ��� � ��� (3)

and

��������� ������ � �� ������� ������� (4)

On the other hand, the sigma filter [3] and the neighborhood filter [4]

use different kernels. The sigma filter [3] first calculates the local stan-

dard deviation around ����; the standard deviation is then used to de-

termine a threshold value for pixel intensities, and pixels that are within

the threshold of the center pixel ���� are averaged (with equal weights)

to calculate the filter output at that pixel. In case of the neighborhood

filter [4], the range kernel is a Gaussian as in (3), and the spatial kernel

is a uniform box kernel. Among different kernel options, the Gaussian

kernel is the most popular choice for both the range and spatial kernels,

as it gives an intuitive and simple control of the behavior of the filter

with two parameters, 
� and 
� .

The bilateral filter has found a wide range of applications in image

processing and computer vision. The immediate application of the bi-

lateral filter is image denoising as it can do spatial averaging without

blurring edges. [5] presents a multiresolution extension of the bilateral

filter for image denoising and an empirical study on optimal parameter

selection. It is shown that the optimal value of 
� is relatively insensi-

tive to noise power, while the optimal 
� value is linearly proportional

to the noise standard deviation. Other applications of bilateral filter in-

clude tone mapping in high-dynamic range imaging [6], contrast en-

hancement [7], [8], fusion of flash and no-flash images [9], [10], fusion

of visible spectrum and infrared spectrum images [11], compression

artifact reduction [12], 3-D mesh denoising [13], [14], depth map es-

timation [15], video stylization [16], video enhancement [17], texture

and illumination separation [18], orientation smoothing [19], and op-

tical flow estimation [20].

This paper presents a fast approximation of the bilateral filter with

arbitrary range and domain kernels. It is based on a method presented

by Porikli in [21]. The method in [21] (which uses a box domain

kernel) is extended by optimally combining multiple box kernels to

approximate an arbitrary domain kernel. As there is no restriction on

the range kernel either, any range and domain kernels can be used

with this fast bilateral filter implementation. Section II reviews the

fast bilateral filter techniques in the literature. The proposed method is

explained in Section III. In Section IV, the question of optimal kernel

size in case of a single box kernel is addressed. Section V provides

some experimental results, and Section VI concludes the paper.

1057-7149/$26.00 © 2011 IEEE
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II. FAST BILATERAL FILTER METHODS

The direct implementation of the bilateral filter is given here.

• For each pixel � � � , where � is the set of all pixels in the image

• Initialize: ����� � � and ���� � �.

• For each � in the local neighborhood � of �:

• Calculate the weight: � � ����� � ����������� �������.
• Update: ����� � ����� � �����.
• Update: ���� � ���� � �.

• Normalize: ����� � ����������.
The computational complexity of this implementation is ������� ��,
where ��� is the number of pixels in the entire image and �� � is the

number of pixels in the neighborhood � . The local neighborhood is

typically chosen such that ����� � ���; therefore, the neighborhood

size �� � is proportional to ��� . While the overall complexity� ������
is acceptable for small ��, it quickly becomes limiting with increasing

��. To address this issue, a number of fast implementation/approxima-

tion methods have been proposed.

A. Kernel Separation

One method of speeding up the bilateral filter is to separate the 2-D

filter kernel into two 1-D kernels. First, the rows of an image are fil-

tered; the result is then filtered along the columns [22], [23]. This re-

duces the complexity to ��������. Although its performance is good

in smooth regions and horizontal/vertical edges, the algorithm may not

perform satisfactorily on texture regions because of 1-D handling of

spatial domain.

B. Bilateral Grid

Another fast bilateral filter algorithm is obtained through rep-

resenting an image in a 3-D space, where the signal intensity is

added to the spatial domain as the third dimension [24]. This vector

representation can be used to interpret the bilateral filter as linear

filtering the entries of a vector-valued image separately, followed

by point-by-point division. Because the linear filtering involved is

low-pass filtering, the results are bandlimited and can be represented

well with their low-frequency components. Therefore, the 3-D grids

can be downsampled without losing much performance to speed up

the algorithm. The work in [24] proposes downsampling of the spatial

domain � by �� and the intensity range 	 by �� . The complexity of

the algorithm then becomes ����� � ����������	������.

C. Polynomial Representation of Range Filter

In [21], the author presents two approaches for a fast bilateral filter.

The first approach does not have any restriction on the domain filter, but

the range kernel is approximated with a polynomial. Doing a Taylor se-

ries expansion on the Gaussian range filter, it turns out that the bilateral

filter could be approximated through linear filtering images � , ��, ��,

etc., and point-by-point multiplication/division of the results. The per-

formance of this algorithm is good for small �� , but it degrades quickly

for large �� since the polynomial representation does not approximate

the Gaussian well. The use of higher order polynomials should improve

the results.

D. Local-Histogram-Based Bilateral Filter With Box Spatial Filter

The second approach presented in [21] is based on the use of a uni-

form box kernel for the domain kernel. With the box kernel �� �
�, the

bilateral filter can be written in terms of local histograms as

������ �
�

�����
�

���� � ����������� ����������

�
�

�����

���

���

�	������������ ������ (5)

where � � in 	�
 
��� for an 8-bit image, 	��� is the local histogram

in the 
� � � � 
� � � neighborhood around �, ���
� is the box

kernel, given by

����� �
�
 ��� � � �
  � �
 


�
 otherwise
(6)

and ����� is the normalization term, given by

����� �

���

���

	������������ ������� (7)

There are several advantages of this formulation [21], including

those given here.

1) ������ ������ can be calculated for all values of � and at

all locations � independently and therefore in parallel. Simi-

larly, 	������ and �	������, which are also required in the

bilateral filter calculation (5), can be obtained independent of

������ ������.
2) 	������ can be calculated efficiently using the integral histogram

technique [25].

3) The algorithm can be further speeded up by quantizing the

histogram.

As a result, the box bilateral filter can be implemented independent

of the kernel size. The method can be applied to 16-bit images (e.g., in

medical, satellite, and microscopy, applications) as well and extended

to color images through either processing each color channel separately

[21] or using 3-D integral histograms [25]. A similar histogram-based

method was proposed in [26], although the histogram computation is

not as efficient as the one in [21], which also reports that the box bilat-

eral filter outperforms other fast bilateral filters available at the time in

terms of speed-versus-quality tradeoff characteristics.

In addition to the above-mentioned methods, there are some other

fast bilateral filter implementations. In [6], the signal intensities are

quantized such that the final output is obtained through linear interpo-

lation of a set of linear filter outputs. [27] shows that this method can be

used with constant-time bilateral filters and further improve the speed.

In [28], the block size is adjusted to gain speed improvements, while

[29] considers the memory usage as well as the accuracy of implemen-

tation. In [30], compared with the regular grid representation of the

bilateral grid [24], a more efficient Gaussian kd-tree representation is

used to improve over [24]. An alternative high-dimensional representa-

tion is presented in [31], where the permutohedral lattice representation

is shown to be more efficient than the Gaussian kd-tree for large filter

size.

III. PROPOSED METHOD

Our method is based on the histogram-based method of [21]. Instead

of a single box bilateral filter, we would like to approximate the bilateral

filter as a weighted sum of multiple box bilateral filters

����� �
�

���

�� ������� (8)

Note that, in this equation, ������ is the input image ���� itself. This is

not inconsistent with our previous definition of ������ because ���
�
is a Kronecker delta function according to (6), and therefore ������ be-

comes ���� in (5).
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We will show that
�
���

�� ������ can approximate ����� better

than any box bilateral filter ������, and the computational cost is not

increased significantly. Now, the question that needs to be answered is

the optimal values of ��. First, we write (8) as

�

����
�

�� ��� � ������������ ����������

�
�

���

��
�

�����
�

���� � ��

���������� ����������

�
�

�

���

��
�����

���� � ��

���������� ������ ���� (9)

where we switched the order of summations in the last line. To mini-

mize the approximation error at an arbitrary point, the coefficients of

���� on both sides of (9) should be close to each other. To keep a simple

notation, we absorb the normalization coefficients into ��; in other

words, we redefine �� as ������������. Then, we want the fol-

lowing coefficients to be close:

�� ��� � ������������ ������ (10)

and

�

���

������ � ����������� ������� (11)

Therefore, we define the error function to be minimized as

	���
 � � � 
 ��� �
���

�� ������
�

���

�������

�

(12)

where � � ���
 ��
 � � � 
 ����� is the set of pixels within the support

of the domain kernels.

Minimization of this error function is equivalent to solving the fol-

lowing linear set of equations:

�� ������

�� ������
...

�� ��������

�

�

������ ������ 	 	 	 ������

������ ������ 	 	 	 ������
...

...
. . .

...

�������� �������� 	 	 	 ��������

�

��
��
...

��

�

(13)

whose solution is� � ����������. This is independent of the input

image and only requires the parameters ��, the size of the neighbor-

hood � , and the number of box filters parameter � .

For a given image, ������, ������
 � � � 
 ��� ��� are calculated, and a

weighted sum of these images and the input image produces the filter

output. The box bilateral filter implementation involves calculation of

integral histogram, calculation of local histogram��� , and evaluation

of (5). For the proposed bilateral filter, the local histogram calculation

and the evaluation of (5) are repeated� times; the integral histogram is

calculated once and not repeated. The repetitions do not add much com-

putational cost: the local histograms can be obtained by linear filtering

the integral histogram, and the evaluation of (5) requires point-by-point

multiplications of arrays that can be obtained in parallel. Calculation of

� is not an issue either as it can be done offline and saved in a lookup

table. In our unoptimized MATLAB implementation (on a 2.4-GHz ma-

chine), the box bilateral filter takes 0.61 s for a 256� 256 image with

histogram quantization level of 15. The proposed bilateral filter adds

0.07 s for each additional � ; that is, it takes 0.68 s for � � �, 0.75 s

for� � �, and so on. Through optimization of the codes, it is possible

to reduce these numbers further.

The memory usage of the histogram-based method [21] is about��
�� �, where � is the number of histogram bins, and �� � is the number

of pixels in the image, and it is basically allocated to store the integral

histogram. We should note that this method is not the most memory-

efficient fast bilateral filter; for example, [27] has a memory usage of

	��� �, and [29] has a memory usage of���� ��	�
�. The proposed

method is based on [21], and has similar memory usage. The memory

space �� �� � allocated for the integral histogram does not change; if

the output image of each box filter is stored separately as it is done in

this paper, then the additional memory requirement is � � �� �; that

is, the total memory usage of the proposed method is ��
��� �� �.
The algorithm could be implemented in a more memory-efficient way

by not saving the output of each filter separately but updating single

output as different size box filters are applied.

IV. WHAT IS THE BEST SINGLE BOX BILATERAL FILTER?

In the previous section, we showed how to optimally combine mul-

tiple box bilateral filters. If we are supposed to use a single box bilateral

filter, then we would like to know what box size we should choose. The

optimal box size can be derived using the error function (12). In the

Appendix, we write the continuous version of (12) and derive the for-

mula for the optimal box size, and it turns out that � should be ��	��,

which needs to be rounded to the nearest integer in practice.

V. EXPERIMENTS AND ANALYSIS

We compared the outputs of the box bilateral filter and the proposed

bilateral filter with respect to the output of the standard bilateral filter

for different values of �� , ��, and histogram quantization levels. Fig. 1

shows the PSNR values of the proposed bilateral filter �� � �� and

five box bilateral filters �� � �
 � � � 
 �� for �� � 15, 25, 75, and

�� � ��
 ���
 � � � 
 ���. For each �� value, the �� values are calcu-

lated as discussed in the previous section. It is seen that the proposed

bilateral filter outperforms the box bilateral filter regardless of the size

of the box. The best box bilateral filter depends on the �� value. In

Tables I and II, we compared the PSNR of the proposed bilateral with

the best possible PSNR that can be achieved with a box bilateral filter

for �� � 5, 15, 25, 50, and 75 and �� � ��
 ���
 � � � 
 ���. It is ob-

served that, for small �� , the proposed bilateral filter does not improve

much over the box bilateral filter. The reason is that the defining factor

in the bilateral filter kernel becomes the range parameter �� if its value

is small; therefore, it does not make much difference whether the do-

main kernel is approximated well or not. For large values of �� , ��
becomes more important, and the improvement of the proposed bilat-

eral filter is more pronounced. Comparing Tables I and II, it is also

observed that with higher number of quantization levels (finer quanti-

zation of intensities), the improvement of the proposed bilateral filter

increases on average.

Fig. 2 shows a visual comparison of the standard, proposed, and box

bilateral filters. While the outputs of the proposed bilateral filter and
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Fig. 1. Approximation of the standard bilateral filter with the box bilateral filters and the proposed method. The test image is the standard Mandrill image, which
is of size 512� 512. To speed up the implementation, the intensity values are quantized to 15 bins. Left: � � ��; middle: � � ��; right: � � ��. In each
subfigure, blue lines are box bilateral filters for � � �� � � � � �; red lines are proposed bilateral filter with � � �.

TABLE I
APPROXIMATION OF THE STANDARD BILATERAL FILTER. BEST BOX: MAXIMUM PSNR THAT CAN BE ACHIEVED WITH A BOX FILTER.

PROPOSED: PSNR OF THE PROPOSED FILTER. THE QUANTIZATION LEVELS IS 15. THE RESULTS ARE

AVERAGE VALUES FOR THE BARBARA, LENA, BOAT, GOLDHILL, AND MANDRILL TEST IMAGES

TABLE II
APPROXIMATION OF THE STANDARD BILATERAL FILTER. BEST BOX: MAXIMUM PSNR THAT CAN BE ACHIEVED WITH A BOX FILTER.

PROPOSED: PSNR OF THE PROPOSED FILTER. THE QUANTIZATION LEVELS IS 25. THE RESULTS ARE AVERAGE VALUES

FOR THE BARBARA, LENA, BOAT, GOLDHILL, AND MANDRILL TEST IMAGES

the standard bilateral filter are very similar, the box bilateral filter loses

some texture details. The best box bilateral filter is with� � �, which

is also predicted by the formula derived in the Appendix.

In Fig. 3, we investigate the effect of the number of box filters on

PSNR performance. It is seen that � should be sufficiently large to

achieve the best possible performance. (A rule of thumb deducted from

the experiments is that � should be at least ��� to have the best per-

formance.) If � is not sufficiently large compared with ��, the pro-

posed filter cannot approximate the standard bilateral filter well. This

is the reason we are seeing drops in the PSNR curves for large values

of �� in both Figs. 1 and 3. On the other hand, using more than a suffi-

cient number of boxes does not degrade the performance, as we would

expect.

As a final experiment, we compared the standard, box, and proposed

bilateral filters in a denoising example. As seen in Fig. 4, the proposed

bilateral filter works very similar to the standard bilateral filter, while

box bilateral filter may over-blur or under-work.

VI. CONCLUSION

In this paper, we presented an extension of the box bilateral filter

to approximate the bilateral filter with arbitrary range and domain ker-

nels. Although we demonstrated the performance improvement for the

Gaussian kernel only, the proposed approximation method could be ap-

plied to other symmetric kernels as well. The method would be impor-

tant especially in applications where the shape of the domain kernel
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Fig. 2. Visual and quantitative comparison of the box and proposed bilateral filters with respect to the standard bilateral filter. (a) Standard bilateral
filter. (b) Gaussian low-pass filter ����� � 33.82 dB�. (c) Box bilateral filter with � � � ����� � 34.44 dB�. (d) Box bilateral filter with
� � 	 ����� � 39.68 dB�. (e) Box bilateral filter with � � 
 ����� � 37.94 dB�. (f) Proposed bilateral filter with � � � ����� � 42.28 dB�. The
parameters are as follows: the quantization level is 15, � � ���, and � � ��.

Fig. 3. Effect of the number of box filters on the approximation of the standard
bilateral filter. Quantization level is 25. � � ��. (The test image is the standard
Barbara image of size 512� 512.)

is critical. One such example is the image denoising method of [32],

where the domain kernel is spatially adapted.

We included a set of experiments to demonstrate and analyze cer-

tain features of the method. The additional computational cost over the

single box bilateral filter is not much and would be bearable in applica-

tions where the domain kernel accuracy is crucial. Our implementation

was done in MATLAB without any optimization; this is not a concern in

this paper since the goal is to present the theoretical aspect.

A side information that can be deducted from the experiments is

the optimal box size when single box bilateral filter is used: Fig. 1

shows the best possible box size for various �� and �� values. A quick

look into the plots reveals that the best box size depends on ��, and

someone can come up with a rule of thumb for choosing the box size

based on ��. It is indeed possible (as shown in the Appendix) to derive

optimal box size using the error function defined to obtain the optimal

combination when multiple box kernels are used. We have observed

that the experimental data is consistent with the theoretically predicted

box sizes.

Finally, we should note that the derivations are based on the domain

kernel of the bilateral filter. We may expect deviations from the the-

oretical predictions based on the content of an image since the range

kernel is multiplied with the domain kernel to form the overall kernel.
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Fig. 4. Denoising example. (a) Input image. (b) Noisy image with noise standard deviation of 15 ����� � 24.64 dB�. (c) Box bilateral filter with � �
� ����� � 	
����. (d) Box bilateral filter with � � 	 ����� � 	
���. (e) Box bilateral filter with � � � ����� � 	
����. (f) Box bilateral filter with
� � � ����� � 	
��	�. (g) Box bilateral filter with � � � ����� � 	
�		�. (h) Standard bilateral filter ����� � 	
�
��. (i) Proposed bilateral filter
with � � � ����� � 	
����. The quantization level is 15, � � ��, and � � ��
.

APPENDIX

To derive the best single box kernel to approximate a Gaussian kernel

with spatial parameter ��, we write the 1-D continuous version of the

error function (12) for a single box kernel as

������� �

�

��

��� ���� ��������
�
��

��

�

�

��� ���� ��������
�
��

��

�

�

��� �������
�
����

�

�

��� ������� (14)

where � is now an unknown nonnegative real number and ����� is

equal to 1 for ��� � � and 0 otherwise. We would like to find what

value of � minimizes this error function. At an extrema, the gradient

of the error function must be equal to zero; therefore, taking the deriva-

tive of ������� with respect to �� and �, we get the following

equations:

	�������

	��
� � �

�

�

��� ���� �����

� � �

�

�

�� ����� � �

�

�
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�

�

�� ����� (15)



2696 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 9, SEPTEMBER 2011

Fig. 5. (a) Left and right sides of (17) for � � �. The intersection gives the optimal� value. (b) By repeating this process, we can obtain the optimal� values
for different � values. The data points show the optimal � values as a function � values.

and

��������

��
����� ���� ���

�
� ���� �����

� � ��� ����� � ����

� �� ���� ���� (16)

In other words, the optimal� should satisfy the following condition:

��� ��� �
�

�

�

�

�� ���	�� (17)

We have numerically found the solution to this integral equation.

Fig. 5(a) plots the left and right sides of (17) as a function of � for a

particular 
� value; the intersection of these curves gives the solution

for �. Repeating this procedure for different values of 
�, we obtain

a plot for the optimal � as a function of 
�. Fig. 5(b) verifies that the

� � ���
� line describes the relation very well. In practice, we need

an integer-sized box kernel; therefore, ���
� should be rounded to the

nearest integer to determine the best box kernel size.
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