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Abstract

We present a new technique for the display of high-dynamic-range
images, which reduces the contrast while preserving detail. It is
based on a two-scale decomposition of the image into a base layer,
encoding large-scale variations, and a detail layer. Only the base
layer has its contrast reduced, thereby preserving detail. The base
layer is obtained using an edge-preserving filter called the bilateral
filter. This is a non-linear filter, where the weight of each pixel is
computed using a Gaussian in the spatial domain multiplied by an
influence function in the intensity domain that decreases the weight
of pixels with large intensity differences. We express bilateral filter-
ing in the framework of robust statistics and show how it relates to
anisotropic diffusion. We then accelerate bilateral filtering by using
a piecewise-linear approximation in the intensity domain and ap-
propriate subsampling. This results in a speed-up of two orders of
magnitude. The method is fast and requires no parameter setting.

CR Categories: I.3.3 [Computer Graphics]: Picture/image
generation—Display algorithms; I.4.1 [Image Processing and Com-
puter Vision]: Enhancement—Digitization and image capture

Keywords: image processing, tone mapping, contrast reduction,
edge-preserving filtering,weird maths

1 Introduction

As the availability of high-dynamic-range images grows due to ad-
vances in lighting simulation, e.g. [Ward 1994], multiple-exposure
photography [Debevec and Malik 1997; Madden 1993] and new
sensor technologies [Mitsunaga and Nayar 2000; Schechner and
Nayar 2001; Yang et al. 1999], there is a growing demand to be
able to display these images on low-dynamic-range media. Our vi-
sual system can cope with such high-contrast scenes because most
of the adaptation mechanisms are local on the retina.

There is a tremendous need for contrast reduction in applica-
tions such as image-processing, medical imaging, realistic render-
ing, and digital photography. Consider photography for example.
A major aspect of the art and craft concerns the management of
contrast via e.g. exposure, lighting, printing, or local dodging and
burning [Adams 1995; Rudman 2001]. In fact, poor management
of light – under- or over-exposed areas, light behind the main char-
acter, etc. – is the single most-commonly-cited reason for rejecting

Figure 1: High-dynamic-range photography. No single global ex-
posure can preserve both the colors of the sky and the details of
the landscape, as shown on the rightmost images. In contrast, our
spatially-varying display operator (large image) can bring out all
details of the scene. Total clock time for this 700x480 image is 1.4
seconds on a 700Mhz PentiumIII. Radiance map courtesy of Paul
Debevec, USC. [Debevec and Malik 1997]

Base Detail Color

Figure 2: Principle of our two-scale decomposition of the input
intensity. Color is treated separately using simple ratios. Only the
base scale has its contrast reduced.

photographs. This is why camera manufacturers have developed
sophisticated exposure-metering systems. Unfortunately, exposure
only operates via global contrast management – that is, it recenters
the intensity window on the most relevant range. If the range of in-
tensity is too large, the photo will contain under- and over-exposed
areas (Fig. 1, rightmost part).

Our work is motivated by the idea that the use of high-dynamic-
range cameras and relevant display operators can address these is-
sues. Digital photography has inherited many of the strengths of
film photography. However it also has the potential to overcome
its limitations. Ideally, the photography process should be de-
composed into a measurement phase (with a high-dynamic-range
output), and a post-process phase that, among other things, man-
ages the contrast. This post-process could be automatic or user-
controlled, as part of the camera or on a computer, but it should
take advantage of the wide range of available intensity to perform
appropriate contrast reduction.

In this paper, we introduce a fast and robust operator that takes
a high-dynamic-range image as input, and compresses the contrast
while preserving the details of the original image, as introduced by
Tumblin [1999]. Our operator is based on a two-scale decomposi-
tion of the image into a base layer (large-scale features) and a detail
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layer (Fig. 2). Only the base layer has its contrast reduced, thereby
preserving the detail. In order to perform a fast decomposition into
these two layers, and to avoid halo artifacts, we present a fast and
robust edge-preserving filter.

1.1 Overview

The primary focus of this paper is the development of a fast and
robust edge-preserving filter – that is, a filter that blurs the small
variations of a signal (noise or texture detail) but preserves the large
discontinuities (edges). Our application is unusual however, in that
the noise (detail) is the important information in the signal and must
therefore be preserved.

We build on bilateral filtering, a non-linear filter introduced by
Tomasi et al. [1998]. It derives from Gaussian blur, but it prevents
blurring across edges by decreasing the weight of pixels when the
intensity difference is too large. As it is a fast alternative to the
use of anisotropic diffusion, which has proven to be a valuable tool
in a variety of areas of computer graphics, e.g. [McCool 1999;
Desbrun et al. 2000], the potential applications of this technique
extend beyond the scope of contrast reduction.

This paper makes the following contributions:
Bilateral filtering and robust statistics: We recast bilateral filter-
ing in the framework of robust statistics, which is concerned with
estimators that are insensitive to outliers. Bilateral filtering is an
estimator that considers values across edges to be outliers. This al-
lows us to provide a wide theoretical context for bilateral filtering,
and to relate it to anisotropic diffusion.
Fast bilateral filtering: We present two acceleration techniques:
we linearize bilateral filtering, which allows us to use FFT and fast
convolution, and we downsample the key operations.
Uncertainty: We compute the uncertainty of the output of the fil-
ter, which permits the correction of doubtful values.
Contrast reduction: We use bilateral filtering for the display of
high-dynamic-range images. The method is fast, stable, and re-
quires no setting of parameters.

2 Review of local tone mapping

Tone mapping operators can be classified into global and local
techniques [Tumblin 1999; Ferwerda 1998; DiCarlo and Wandell
2000]. Because they use the same mapping function for all pixels,
most global techniques do not directly address contrast reduction.
A limited solution is proposed by Schlick [1994] and Tumblin et
al. [1999], who use S-shaped functions inspired from photography,
thus preserving some details in the highlights and shadows. Unfor-
tunately, contrast is severely reduced in these areas. Some authors
propose to interactively vary the mapping according to the region
of interest attended by the user [Tumblin et al. 1999], potentially
using graphics hardware [Cohen et al. 2001].

A notable exception is the global histogram adjustment by Ward-
Larson et al. [1997]. They disregard the empty portions of the
histogram, which results in efficient contrast reduction. However,
the limitations due to the global nature of the technique become
obvious when the input exhibits a uniform histogram (see e.g. the
example by DiCarlo and Wandell [2000]).

In contrast, local operators use a mapping that varies spatially
depending on the neighborhood of a pixel. This exploits the fact
that human vision is sensitive mainly to local contrast.

Most local tone-mapping techniques use a decomposition of the
image into different layers or scales (with the exception of Socol-
insky, who uses a variational technique [2000]). The contrast is
reduced differently for each scale, and the final image is a recom-
position of the various scales after contrast reduction. The major
pitfall of local methods is the presence of haloing artifacts. When
dealing with high-dynamic-range images, haloing issues become

even more critical. In 8-bit images, the contrast at the edges is lim-
ited to roughly two orders of magnitude, which directly limits the
strength of halos.

Chiu et al. vary a gain according to a low-pass version of the im-
age [1993], which results in pronounced halos. Schlick had similar
problems when he tried to vary his mapping spatially [1994]. Job-
son et al. reduce halos by applying a similar technique at multiple
scales [1997]. Pattanaik et al. use a multiscale decomposition of the
image according to comprehensive psychophysically-derived filter
banks [1998]. To date, this method seems to be the most faithful to
human vision, however, it may still present halos.

DiCarlo et al. propose to use robust statistical estimators to im-
prove current techniques [2000], although they do not provide a
detailed description. Our method follows in the same spirit and fo-
cuses on the development of a fast and practical method.

Tumblin et al. [1999] propose an operator for synthetic images
that takes advantage of the ability of the human visual system to
decompose a scene into intrinsic “layers”, such as reflectance and
illumination [Barrow and Tenenbaum 1978]. Because vision is sen-
sitive mainly to the reflectance layers, they reduce contrast only in
the illumination layer. This technique is unfortunately applicable
only when the characteristics of the 3D scene are known. As we
will see, our work can be seen as an extension to photographs. Our
two-scale decomposition is very related to the texture-illuminance
decoupling technique by Oh et al. [2001].

Recently, Tumblin and Turk built on anisotropic diffusion to
decompose an image using a new low-curvature image simplifier
(LCIS) [Tumblin 1999; Tumblin and Turk 1999]. Their method can
extract exquisite details from high-contrast images. Unfortunately,
the solution of their partial differential equation is a slow iterative
process. Moreover, the coefficients of their diffusion equation must
be adapted to each image, which makes this method more diffi-
cult to use, and the extension to animated sequences unclear. We
build upon a different edge-preserving filter that is easier to con-
trol and more amenable to acceleration. We will also deal with two
problems mentioned by Tumblin et al.: the small remaining halos
localized around the edges, and the need for a “leakage fixer” to
completely stop diffusion at discontinuities.

3 Edge-preserving filtering

In this section, we review important edge-preserving-smoothing
techniques, e.g. [Saint-Marc et al. 1991].

3.1 Anisotropic diffusion

Anisotropic diffusion [Perona and Malik 1990] is inspired by an
interpretation of Gaussian blur as a heat conduction partial differ-
ential equation (PDE): ∂I

∂t = �∆I: That is, the intensity I of each
pixel is seen as heat and is propagated over time to its 4 neighbors
according to the heat spatial variation.

Perona and Malik introduced an edge-stopping function g that
varies the conductance according to the image gradient. This pre-
vents heat flow across edges:

∂I
∂t

= div[g(jj∇Ijj) ∇I]: (1)

They propose two expressions for the edge-stopping function g(x):

g1(x) =
1

1+ x2

σ2

and g2(x) = e�(x
2=σ2)

; (2)

where σ is a scale parameter in the intensity domain that specifies
what gradient intensity should stop diffusion.
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The discrete Perona-Malik diffusion equation governing the
value Is at pixel s is then

It+1
s = It

s +
λ
4 ∑

p2neighb4(s)

g(It
p� It

s) (It
p� It

s); (3)

where t describes discrete time steps, and neighb4(s) is the 4-
neighborhood of pixel s. λ is a scalar that determines the rate of
diffusion.

Although anisotropic diffusion is a popular tool for edge-
preserving filtering, its discrete diffusion nature makes it a slow
process. Moreover, the results depend on the stopping time, since
the diffusion converges to a uniform image.

3.2 Robust anisotropic diffusion

Black et al. [1998] recast anisotropic diffusion in the framework
of robust statistics. Our analysis of bilateral filtering is inspired by
their work. The field of robust statistics develops estimators that are
robust to outliers or deviation to the theoretical distribution [Huber
1981; Hampel et al. 1986].

Black et al. [1998] show that anisotropic diffusion can be seen
as the estimate of a value Is at each pixel s that is an estimate of its
4-neighbors, which minimizes an energy over the whole image:

min ∑
s2Ω

∑
p2neighb4(s)

ρ(Ip� Is); (4)

where Ω is the whole image, and ρ is an error norm (e.g. quadratic).
Eq. 4 can be solved by gradient descent for each pixel:

It+1
s = It

s +
λ
4 ∑

p2neighb4(s)

ψ(Ip� Is); (5)

where ψ is the derivative of ρ, and t is a discrete time variable. ψ
is proportional to the so-called influence function that characterizes
the influence of a sample on the estimate.

For example, a least-square estimate is obtained by using ρ(x) =
x2, and the corresponding influence function is linear, thus resulting
in the mean estimator (Fig. 4, left). As a result, values far from the
mean have a considerable influence on the estimate. In contrast, an
influence function such as the Lorentzian error norm, given in Fig. 3
and plotted in Fig. 4, gives much less weight to outliers and is there-
fore more robust. In the plot of ψ, we see that the influence function
is redescending [Black et al. 1998; Huber 1981]1. Robust norms
and influence functions depend on a parameter σ that provides the
notion of scale in the intensity domain, and controls where the in-
fluence function becomes redescending, and thus which values are
considered outliers.

Black et al. note that Eq. 5 is similar to Eq. 3 govern-
ing anisotropic diffusion, and that by defining g(x) = ψ(x)=x,
anisotropic diffusion is reduced to a robust estimator. They also
show that the g1 function proposed by Perona et al. is equivalent to
the Lorentzian error norm plotted in Fig. 4 and given in Fig. 3.

This analogy allows them to discuss desirable properties of edge-
stopping functions. In particular, they show that Tukey’s biweight
function (Fig. 3) yields more robust results, because it completely
stops diffusion across edges: The influence of outliers is null, as
shown in Fig. 5, as opposed to the Lorentzian error norm that slowly
goes to zero towards infinity. This also solves the termination prob-
lem, since diffusion then converges to a piecewise-uniform image.

1Some authors reserve the term redescending for function that vanish
after a certain value [Hampel et al. 1986].

Huber Lorentz

gσ(x) =

(
1
σ jxj � σ
1
jxj ; otherwise

gσ(x) = 2
2+ x2

σ2

σ σ=

p
2

Tukey Gauss

gσ(x) =

�
1
2 [1� (x=σ)2

]
2 jxj � σ

0; otherwise
gσ(x) = e�

x2

2σ2

σ�
p

5 σ

Figure 3: Robust edge-stopping functions. Note that ψ can be found
by multiplying g by x, and ρ by integration of ψ. The value of
σ has to be modified accordingly to use a consistent scale across
estimators, as indicated below the Lorentz and Tukey functions.
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Figure 4: Least-square vs. Lorentzian error norm (after [Black et al.
1998]).
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Figure 5: Tukey’s biweight (after [Black et al. 1998]).

3.3 Bilateral filtering

Bilateral filtering was developed by Tomasi and Manduchi as an
alternative to anisotropic diffusion [1998]. It is a non-linear filter
where the output is a weighted average of the input. They start
with standard Gaussian filtering with a spatial kernel f (Fig. 6).
However, the weight of a pixel depends also on a function g in the
intensity domain, which decreases the weight of pixels with large
intensity differences. We note that g is an edge-stopping function
similar to that of Perona et al. [1990]. The output of the bilateral
filter for a pixel s is then:

Js =
1

k(s) ∑
p2Ω

f (p� s) g(Ip� Is) Ip; (6)

where k(s) is a normalization term:

k(s) = ∑
p2Ω

f (p� s) g(Ip� Is): (7)

In practice, they use a Gaussian for f in the spatial domain, and
a Gaussian for g in the intensity domain. Therefore, the value at
a pixel s is influenced mainly by pixel that are close spatially and
that have a similar intensity (Fig. 6). This is easy to extend to color
images, and any metric g on pixels can be used (e.g. CIE-LAB).

Barash proposes a link between anisotropic diffusion and bilat-
eral filtering [2001]. He uses an extended definition of intensity
that includes spatial coordinates. This permits the extension of
bilateral filtering to perform feature enhancement. Unfortunately,
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input spatial kernel f influence g in the intensity weight f �g output
domain for the central pixel for the central pixel

Figure 6: Bilateral filtering. Colors are used only to convey shape.

the extended definition of intensity is not quite natural. Elad also
discusses the relation between bilateral filtering, anisotropic diffu-
sion, and robust statistics, but he address the question from a linear-
algebra point of view [to appear]. In this paper, we propose a dif-
ferent unified viewpoint based on robust statistics that extends the
work by Black et al. [1998].

4 Edge-preserving smoothing as robust
statistical estimation

In their paper, Tomasi et al. only outlined the principle of bilat-
eral filters, and they then focused on the results obtained using two
Gaussians. In this section, we provide a principled study of the
properties of this family of filters. In particular, we show that bilat-
eral filtering is a robust statistical estimator, which allows us to put
empirical results into a wider theoretical context.

4.1 A unified viewpoint on bilateral filtering and 0-
order anisotropic diffusion

In order to establish a link to bilateral filtering, we present a differ-
ent interpretation of discrete anisotropic filtering. In Eq. 3, It

p� It
s is

used as the derivative of It in one direction. However, this can also
be seen simply as the 0-order difference between the two pixel in-
tensities. The edge-stopping function can thus be seen as preventing
diffusion between pixels with large intensity differences. The two
formulations are equivalent from a practical standpoint, but Black
et al.’s variational interpretation [1998] is more faithful to Perona
and Malik’s diffusion analogy, while our 0-order interpretation is
more natural in terms of robust statistics.

In particular, we can extend the 0-order anisotropic diffusion to
a larger spatial support:

It+1
s = It

s +λ ∑
p2Ω

f (p� s) g(It
p� It

s) (It
p� It

s); (8)

where f is a spatial weighting function (typically a Gaussian), Ω
is the whole image,and t is still a discrete time variable. The
anisotropic diffusion of Perona et al., which we now call local
diffusion, corresponds to an f that is zero except at the 4 neigh-
bors. Eq. 8 defines a robust statistical estimator of the class of
M-estimators (generalized maximum likelihood estimator) [Ham-
pel et al. 1986; Huber 1981].

In the case where the conductance g is uniform (isotropic filter-
ing) and where f is a Gaussian, Eq. 8 performs a Gaussian blur for
each iteration, which is equivalent to several iterations of the heat-
flow simulation. It can thus be seen as a way to trade the number
of iterations for a larger spatial support. However, in the case of
anisotropic diffusion, it has the additional property of propagating
heat across ridges. Indeed, if the image is white with a black line
in the middle, local anisotropic diffusion does not propagate energy

between the two connected components, while extended diffusion
does. Depending on the application, this property will be either
beneficial or deleterious. In the case of tone mapping, for exam-
ple, the notion of connectedness is not important, as only spatial
neighborhoods matter.

We now come to the robust statistical interpretation of bilateral
filtering. Eq. 6 defines an estimator based on a weighted average of
the data. It is therefore a W -estimator [Hampel et al. 1986]. The
iterative formulation is an instance of iteratively reweighted least
squares. This taxonomy is extremely important because it was
shown that M-estimators and W-estimators are essentially equiv-
alent and solve the same energy minimization problem [Hampel
et al. 1986], p. 116:

min ∑
s2Ω

∑
p2Ω

ρ(Is� Ip) (9)

or for each pixel s:
∑

p2Ω
ψ(Is� Ip) = 0; (10)

where ψ is the derivative of ρ. As shown by Black et al. [1998]
for anisotropic diffusion, and as is true also for bilateral filtering, it
suffices to define ψ(x) = g(x) � x to find the original formulations.
In fact the second edge-stopping function g2 in Eq. 2 defined by
Perona et al. [1990] corresponds to the Gaussian influence function
used for bilateral filtering [Tomasi and Manduchi 1998]. As a con-
sequence of this unified viewpoint, all the studies on edge-stopping
functions for anisotropic diffusion can be applied to bilateral filter-
ing.

Eqs. 9 and 10 are not strictly equivalent because of local min-
ima of the energy. Depending on the application, this can be de-
sirable or undesirable. In the former case, the use of a very robust
estimator, such as the median, to initialize an iterative process is
recommended. In the case of tone mapping or texture-illuminance
decoupling, however, we want to find the local minimum closest to
the initial pixel value.

It was noted by Tomasi et al. [1998] that bilateral filtering usu-
ally requires only one iteration. Hence it belongs to the class of
one-step W-estimators, or w-estimators, which have been shown to
be particularly efficient. The existence of local minima is however
a very important issue, and the use of an initial median estimator is
highly recommended. In contrast, Oh. et al. use a simple Gaussian
blur [2001], which deserves further study.

Now that we have shown that 0-order anisotropic diffusion and
bilateral filtering belong to the same family of estimators, we can
compare them. They both respect causality: No maximum or mini-
mum can be created, only removed. However, anisotropic diffusion
is adiabatic (energy-preserving), while bilateral filtering is not. To
see this, consider the energy exchange between two pixels p and s.
In the diffusion case, the energy λ f (p� s)g(It

p� It
s)(I

t
p� It

s) flow-
ing from p to s is the opposite of the energy from s to p because
the expression is symmetric (provided that g and f are symmet-
ric). In contrast, in bilateral filtering, the normalization factor 1=k
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is different for the two pixels, resulting in an asymmetric energy
flow. Energy preservation can be crucial for some applications, e.g.
[Rushmeier and Ward 1994], but it is not for tone mapping or re-
flectance extraction.

In contrast to anisotropic diffusion, bilateral filtering does not
rely on shock formation, so it is not prone to stairstepping artifacts.
The output of bilateral filtering on a gradient input is smooth. This
point is mostly due to the non-iterative nature of the filter and de-
serves further exploration.

4.2 Robust estimators

0

0.5

1

1.5

2

y

–2 –1 1 2
x

–1

–0.5

0

0.5

1

y

–2 –1 1 2
x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y

–2 –1 1 2
x

g(x) ψ(x) ρ(x)

Figure 7: Huber’s minimax (after [Black et al. 1998]).

Fig. 8 plots a variety of robust influence functions, and their For-
mulas are given in Fig. 3. When the influence function is mono-
tonic, there is no local minimum problem, and estimators always
converge to a global maximum. Most robust estimators have a
shape as shown on the left: The function increases, then decreases,
and potentially goes to zero if it has a finite rejection point.

These plots can be very helpful in understanding how an esti-
mator deals with outliers. For example, we can see that the Huber
minimax gives constant influence to outliers, and that the Lorentz
estimator gives them more importance than, say, the Gaussian esti-
mator. The Tukey biweight is the only purely redescending function
we show. Outliers are thus completely ignored.
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Figure 8: Comparison of influence functions.

We anticipate the results of our technique and show in Fig. 9 the
output of a robust bilateral filter using these different ψ functions
(or their g equivalent in Eq. 6). We can see that larger influences of
outliers result in estimates that are more blurred and further from
the input pixels. In what follows, we use the Gaussian or Tukey in-
fluence function, because they are more robust to outliers and better
preserve edges.

5 Efficient Bilateral Filtering

Now that we have provided a theoretical framework for bilateral fil-
tering, we will next deal with its speed. A direct implementation of

Huber Lorentz Gaussian Tukey

Figure 9: Comparison of the 4 estimators for the log of intensity of
the foggy scene of Fig 15. The false-colored output is normalized
to the log of the min and max of the input.

bilateral filtering might require O(n2
) time, where n is the number

of pixels in the image. In this section, we dramatically accelerate
bilateral filtering using two strategies: a piecewise-linear approxi-
mation in the intensity domain, and a sub-sampling in the spatial
domain. We then present a technique that detects and fixes pixels
where the bilateral filter cannot obtain a good estimate due to lack
of data.

5.1 Piecewise-linear bilateral filtering

A convolution such as Gaussian filtering can be greatly accelerated
using Fast Fourier Transform. A O(n2

) convolution in the primal
becomes a O(n) multiplication in the frequency domain. Since the
discrete FFT and its inverse have cost O(n log n), there is a gain of
one order of magnitude.

Unfortunately, this strategy cannot be applied directly to bilat-
eral filtering, because it is not a convolution: The filter is signal-
dependent because of the edge-stopping function g(Ip� Is). How-
ever consider Eq. 6 for a fixed pixel s. It is equivalent to the convolu-
tion of the function HIs : p! g(Ip�Is)Ip by the kernel f . Similarly,
the normalization factor k is the convolution of GIs : p! g(Ip� Is)

by f . That is, the only dependency on pixel s is the value Is in g.
Our acceleration strategy is thus as follows: We discretize the

set of possible signal intensities into NB SEGMENT values fi jg, and
compute a linear filter for each such value:

J j
s =

1
k j(s) ∑

p2Ω
f (p� s) g(Ip� i j

) Ip

=
1

k j(s) ∑
p2Ω

f (p� s) H j
p

(11)

and
k j
(s) = ∑

p2Ω
f (p� s) g(Ip� i j

)

= ∑
p2Ω

f (p� s) G j
(p):

(12)

The final output of the filter for a pixel s is then a linear interpo-
lation between the output J j

s of the two closest values i j of Is. This
corresponds to a piecewise-linear approximation of the original bi-
lateral filter (note however that it is a linearization of the whole
functional, not of the influence function). The pseudocode is given
in Fig. 10.

Fig. 11 shows the speed-up we obtain depending on the size of
the spatial kernel. Quickly, the piecewise-linear version outper-
forms the brute-force implementation, due to the use of FFT con-
volution. The formal analysis of error remains to be performed, but
no artifact was noticeable for segments up to the size of the scale
σr.

This could be further accelerated when the distribution of inten-
sities is not uniform spatially. We can subdivide the image into
sub-images, and if the difference between the max and min of the
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PiecewiseBilateral
(Image I, spatial kernel fσs , intensity influence gσr )

J=0 /* set the output to zero */
for j=0..NB SEGMENTS

i j= minI+j � (max(I)-min(I))/NB SEGMENTS
Gj=gσr (I - i j ) /* evaluate gσr at each pixel */
K j=G j


 fσs /* normalization factor */
H j=G j

� I /* compute H for each pixel */
H� j=H j


 fσs

J j=H� j/K j /* normalize */
J=J+J j

� InterpolationWeight(I, i j )

Figure 10: Pseudo code of the piecewise-linear acceleration of bi-
lateral filtering. Operations with upper cases such as Gj=gσr (I, i j)
denote computation on all pixels of the image. 
 denotes the con-
volution, while � is simply the per-pixel multiplication. Interpola-
tionWeight is the “hat” interpolation weight for linear interpolation.
In practice, we use NB SEGMENT=(max(I)-min(I))/σr.

Figure 11: Speed-up of the piecewise-linear acceleration for 17 seg-
ments and a 576x768 image.

FastBilateral
(Image I, spatial kernel fσs , intensity influence gσr ,
downsampling factor z)

J=0 /*set the full-scale output to zero */
I’=downsample ( I, z )
f 0

σs=z=downsample ( fσs , z )
for j=0..NB SEGMENTS

i j= minI+j � (max(I)-min(I))/NB SEGMENTS
G0 j=gσr (I’-i j ) /* evaluate gσr at each pixel */
K 0 j=G0 j


 f 0

σs=z /* normalization factor */
H 0 j=G0 j

� I’ /* compute H for each pixel */
H 0� j=H 0 j


 f 0

σs=z

J0 j=H 0� j/K 0 j /* normalize */
J j=upsample(J0 j , z)
J=J+J j

� InterpolationWeight(I, i j)

Figure 12: Pseudo code of the downsampled piecewise-linear ac-
celeration of bilateral filtering. Parts at the full resolution are in
green, while downsampled operations are in blue, and downsam-
pled images are denoted with a prime.

intensity is more reduced in the sub-images than in the whole im-
age, fewer segments can be used. This solution has however not
been implemented yet.

5.2 Subsampling

To further accelerate bilateral filtering, we note that all operations in
Fig. 10 except the final interpolation aim at low-pass filtering. We
can thus safely use a downsampled version of the image with little
quality loss. However, the final interpolation must be performed
using the full-scale image, otherwise edges would not be respected,
resulting in visible artifacts. Fig. 12 shows the new algorithm.

We use nearest-neighbor downsampling, because it does not
modify the histogram. The acceleration we obtain is plotted in
Fig. 13 for an example. While a formal study of error/acceleration
remains to be done, we did not notice any visible artifact up to
downsampling factor of 10 to 25. At this resolution, the cost of
the upsampling and linear interpolation outweighs the filtering op-
erations, and no further acceleration is gained by more aggressive
downsampling.

Figure 13: Speed-up due to downsampling for 17 segments and a
576x768 image. The value for the full-scale filtering is 173 sec.

5.3 Uncertainty

As noted by Tumblin et al. [Tumblin 1999; Tumblin and Turk
1999], edge-preserving contrast reduction can still encounter small
halo artifacts for antialiased edges or due to flare around high-
contrast edges. We noticed similar problems on some synthetic
as well as real images. We propose an explanation in terms of
signal/noise ratio. These small halos correspond to pixels where
there is not enough information in the neighborhood to decouple
the large-scale and the small-scale features. Indeed, the values at
the edges span the whole range between the upper and the lower
values, and there are very few pixels in the zone of proper data of
the influence function. We thus compute a statistical estimator with
very little data, and the variance is quite high.

Fortunately, bilateral filtering provides a direct measure of this
uncertainty: The normalization factor k in Eq. 6 is the sum of the
influence of each pixel. We can therefore use it to detect dubious
pixels that need to be fixed. In practice, we use the log of this value
because it better extracts uncertain pixels.

The fixing strategy we use is then simple. We compute a low-
pass version J̃ of the output J of the bilateral filter, using a small
Gaussian kernel (2 pixels in practice), and we assign to a pixel the
value of a linear interpolation between J and J̃ depending on the log
of the uncertainty k.

6 Contrast reduction

We now describe how bilateral filtering can be used for contrast re-
duction. We note that our method is not strictly a tone reproduction
operator, in the sense of Tumblin and Rushmeier’s [1993], since it
does not attempt to imitate human vision.

Building on previous approaches, our contrast reduction is based
on a multiscale decomposition e.g. [Jobson et al. 1997; Pattanaik
et al. 1998; Tumblin and Turk 1999]. However, we only use a two-
scale decomposition, where the “base” image is computed using
bilateral filtering, and the detail layer is the division of the input
intensity by the base layer. Fig. 2 illustrates the general approach.
The base layer has its contrast reduced, while the magnitude of the
detail layer is unchanged, thus preserving detail.

Following Tumblin et al. [Tumblin 1999; Tumblin and Turk
1999], we compress the range of the base layer using a scale factor
in the log domain. We compute this scale factor such that the whole
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range of the base layer is compressed to a user-controllable base
contrast. In practice, a base contrast of 5 worked well for all our
examples, but in some situations where lights sources are visible,
one might want to vary this setting.

Our treatment of color is simple. We perform contrast reduction
on the intensity of pixels and recompose color after contrast reduc-
tion [Schlick 1994; Tumblin 1999; Tumblin and Turk 1999]. We
perform our calculations on the logs of pixel intensities, because
pixel differences then correspond directly to contrast, and because
it yields a more uniform treatment of the whole range.

Our approach is faithful to the original idea by Chiu et al. [1993],
albeit using a robust filter instead of their low-pass filter. It can also
be viewed as the decomposition of the image into intrinsic layers of
reflectance and illuminance [Oh et al. 2001], followed by an appro-
priate contrast reduction of the illuminance (or base) layer [Tumblin
et al. 1999].

For the filtering phase, we experimented with the various in-
fluence functions discussed in Section 4.2. As expected, the Hu-
ber minimax estimator decreases the strength of halos compared to
standard Gaussian blur, but does not eliminate them. Moreover, the
results vary with the size of the spatial kernel. The Lorentz function
performed better, but only the Gaussian and Tukey’s biweight were
able to accurately decompose the image. With both functions, the
scale σs of the spatial kernel had little influence on the result. This
is important since it allows us to keep σs constant to a value of 2%
of the image size.

The value σr = 0:4 performed consistently well for all our ex-
periments. Again, this property is quite important because the user
does not have to set a complex parameter. The significance of this
value might come from two complementary origins, which are still
areas of future research. First, it might be due to characteristics of
the local sensitivity of the human visual system. Perhaps beyond
this value, we notice no difference. Second, it might be related to
the physical range of possible reflectance values, between a perfect
reflector and a black material.

As a conclusion, the only user-controlled parameters of our
method are the overall brightness and the base contrast. While the
automatic values perform very well, we found it useful to provide
these intuitive degrees of freedom to allow the user a control over
the “look” of the image. The base contrast provides a very intuitive
alternative to the contrast/brightness setting of image-editing soft-
ware. It controls the overall appearance of the image, while still
preserving the fine details.

6.1 Implementation and results

We have implemented our technique using a floating point repre-
sentation of images, and the Intel image processing library for the
convolutions. We have tested it on a variety of synthetic and real
images, as shown in the color plates. All the examples reproduced
in the paper use the Gaussian influence function, but the results
with Tukey’s biweight are not different. The technique is extremely
fast, as can be seen in Fig. 14. We have tested it on an upsam-
pled 10Mpixel image with contrast of more than 1:100,000, and the
computation took only 6s on a 2GHz Pentium 4. In particular, due
to our acceleration techniques, the running time grows sub-linearly.
This is a dramatic speed-up compared to previous methods.

Our technique can address some of the most challenging pho-
tographic situations, such as interior lighting or sunset photos, and
produces very compelling images. In our experiments, Tumblin and
Turk’s operator [1999] appears to better preserve fine details, while
our technique better preserves the overall photorealistic appearance
(Figs. 21 and 22).

Image resolution # segments z timing (s)
Grove D 710 * 480 15 4 0.33
Memorial 512 * 768 11 4 0.31
Hotel room 750 * 487 13 4 0.31
Vine 710 * 480 10 4 0.23
Fog 1130 * 751 12 8 0.45
Grove C 709 * 480 14 4 0.30
Window 2K*1.3K 10 16 2.73
Interior 2K*1.3K 19 16 2.19
Interior*2 2.6K * 4K 19 24 6.03

Figure 14: Results of our new technique. Timings on a 2GHz P4.

7 Discussion

This paper opens several avenues of future research related to edge-
preserving filtering and contrast reduction. The unified viewpoint
on bilateral filtering and anisotropic diffusion offers some interest-
ing possibilities. The robust statistical framework we have intro-
duced suggests the application of bilateral filtering to a variety of
graphics areas where energy preservation is not a major concern.

The treatment of uncertainty deserves more attention. The cor-
rection scheme based on a Gaussian blur by a small kernel works
well in the cases we have tested, but a more formal analysis is
needed. Other approaches might involve the use of a different range
scale σr.

In terms of contrast reduction, future work includes the develop-
ment of a more principled fixing method for uncertain values, and
the use of a more elaborate compression function for the base layer,
e.g. [Tumblin et al. 1999; Larson et al. 1997]. White balance is an
important issue for indoor scenes that also exhibit outdoor portions,
as can be seen in Fig. 23. A strategy similar to Pattanaik et al.’s op-
erator [Pattanaik et al. 1998] should be developed. The inclusion of
perceptual aspects is a logical step. The main difficulty stems from
the complex interaction between local adaptation and gaze move-
ments. The extension to animated sequences is an exciting topic.
Initial experiments are very encouraging.

Finally, contrast reduction is only one example of pictorial tech-
niques to cope with the limitations of the medium [Durand 2002].
We believe that these techniques are crucial aspects of the digital
photography and video revolution, and will facilitate the creation
of effective and compelling pictures.
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Figure 15: Foggy scene. Radiance map courtesy of Jack Tumblin,
Northwestern University [Tumblin and Turk 1999].

Figure 16: Grove scene. Radiance map courtesy of Paul Debevec,
USC [Debevec and Malik 1997].
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Figure 17: Interior scene.

Figure 18: Hotel room. The rightmost image shows the uncertainty.
Designed and rendered by Simon Crone using RADIANCE [Ward
1994]. Source image: Proposed Burswood Hotel Suite Refurbish-
ment (1995). Interior Design - The Marsh Partnership, Perth, Aus-
tralia. Computer simulation - Lighting Images, Pert, Australia.
Copyright (c) 1995 Simon Crone.

without with uncertainty fix uncertainty

Figure 19: Zoom of Fig. 17. The haloing artifacts in the vertical
highlight and in the lamp are dramatically reduced. The noise is
due to the sensor.

Figure 20: Vine scene. Radiance map courtesy of Paul Debevec,
USC [Debevec and Malik 1997].
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User-optimized gamma correction
only on the intensity

Histogram adjustment
[Larson et al. 1997]

LCIS. Image reprinted by permission,
copyright c1999 Jack Tumblin [Tumblin and Turk 1999]

Figure 21: Stanford Memorial Church, displayed with different
methods.

Figure 22: Stanford Memorial Church displayed using bilateral fil-
tering. The rightmost frame is the color-coded base layer. Radiance
map courtesy of Paul Debevec, USC [Debevec and Malik 1997].

Figure 23: Window scene. The rightmost image shows the color-
coded base layer.
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