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Abstract

We propose in this paper a very fast feature selection tgaenbased on conditional mutual in-
formation. By picking features which maximize their mutirdbrmation with the class to predict
conditional to any feature already picked, it ensures thectien of features which are both individ-
ually informative and two-by-two weakly dependant. We stibat this feature selection method
outperforms other classical algorithms, and that a naiweBian classifier built with features se-
lected that way achieves error rates similar to those ofsththe-art methods such as boosting or
SVMs. The implementation we propose selects 50 features@#@ 000, based on a training set
of 500 examples in a tenth of a second on a standard 1Ghz PC.

Keywords: classification, mutual information, feature selectionya@ayes, information theory,
fast learning

1. Introduction

By reducing the number of features, one can both reduce overfittinqofitey methods, and in-
crease the computation speed of prediction (Guyon and Elisseeff,.28@8¥ocus in this paper
on the selection of a few tens of binary features among a several tensushitds in a context of
classification.

Feature selection methods can be classified into two tyfpesss and wrappers(Kohavi and
John, 1997; Das, 2001). The first kind are classifier agnostic, gsathkeot dedicated to a specific
type of classification method. On the contrary tin@ppersrely on the performance of one type of
classifier to evaluate the quality of a set of features. Our main interest inape s to design an
efficientfilter, both from a statistical and from a computational point of view.

The most standard filters rank features according to their individudiginge power, which can
be estimated by various means such as Fisher score (Furey et al., ROIBO)gorov-Smirnov test,
Pearson correlation (Miyahara and Pazzani, 2000) or mutual inform@ttiti, 1994; Bonnlan-
der and Weigend, 1996; Torkkola, 2003). Selection based on swatkang does not ensure weak
dependency among features, and can lead to redundant and thu$dessiiive selected families.
To catch dependencies between features, a criterion based on dé@s®has been proposed re-
cently (Ratanamahatana and Gunopulos, 2003). Features which appézary trees build with
the standard C4.5 algorithm are likely to be either individually informative élabshe top) or con-
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ditionally informative (deeper in the trees). The drawbacks of such a mietteits computational
cost and sensitivity to overfitting.

Our approach iteratively picks features which maximize their mutual informatitinthe class
to predict, conditionally to the response of any feature already pickedl™edquet and Uliman,
2003; Fleuret, 2003). This Conditional Mutual Information Maximization ciote (CMIM) does
not select a feature similar to already picked ones, even if it is individuallyepful, as it does not
carry additional information about the class to predict. Thus, this critensnres a good tradeoff
between independence and discrimination. A very similar solution called feastl&tion-Based
Filter (Yu and Liu, 2003) selects features which are highly correlated wélcthss to predict if
they are less correlated to any feature already selected. This criterienyi€lesed to ours but
does not rely on a unique cost function which includes both aspects {oemation about the class
and independence between features) and may be tricked in situationthvaelependence between
feature appears only conditionally on the object class. It also requiearting of a threshold for
feature acceptance, while our algorithm does not.

Experiments demonstrate that CMIM outperforms the other feature selectiboadseve have
implemented. Results also show and that a naive Bayesian classifier (Duitag, 1973; Langley
et al., 1992) based on features chosen with our criterion achievasates similar or lower than
AdaBoost (Freund and Schapire, 1996a) or SVMs (Boser et al2; M@®nik, 1998; Christiani and
Shawe-Taylor, 2000). Also, experiments show the robustness of thiodethen challenged by
noisy training sets. In such a context, it actually achieves better resultsefalarized AdaBoost,
even though it does not require the tuning of any regularization paraineséte the number of
features itself.

We also propose in this paper a fast but exact implementation based on evédagtion of
feature scores during the selection process. This implementation dividesrtiputational time
by two orders of magnitude and leads to a learning scheme which takestimdgasone tenth of a
second to select 50 out of 484 features, based on 500 training examples. It is available under the
GNU General Public Licence attp://diwww.epfl.ch/fleuret/files/cmim-1.0.tgz

In 82 we introduce the notation, summarize basic concepts of informatiorytteeat present
several feature selection schemes, including ours. In 83 we desombfehtures can be combined
with standard classification techniques (perceptron, naive Bayesanest neighbors and SVM
with a Gaussian kernel). We propose a very fast implementation of ourithlgoin 84 and give
experimental results in 85 and 8§6. We finally analyze those results in §78and §

2. Feature Selection

Our experiments are based on two tasks. The first one is a standarah pattegnition problem

and consists of classifying small grey-scale picture$aas or non face given a large number
of elementary boolean edge-like features. The second one is a dsiggrgeoblem and consists
of predicting the bio-activity of unknown molecules, given a large numlbéhree-dimensional

boolean properties. For clarity, we relate our notation to those two problemsubapproach is

generic.

2.1 Notation

Denote byY a boolean random variable standing for the real class of the object sifglashe value
1 (respectively 0) stands fdacein the image classification experiments anddotive moleculén
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the drug design task (respectively fuon-faceandinactive moleculg LetXy, ..., Xy denote theéN
boolean features. They depend on the presence or absence sbtdgegain positions in the image
classification task and to certain three-dimensional properties of the moiecihie drug-design
task (see 85.1.2 and 8§5.2).

The total number of featuréé is of the order of a few thousands. We denotedyy), - . ., X,k
theK features selected during the feature selection process. The néndbeuch features is very
small compared tdl, of the order of a few tens.

All statistical estimation is based on a few hundreds of samples, labeled tyalidirtheir real
classes and denoted

e = {xW oy, x Ty

See §5.1 and §5.2 for a precise description of those sets. ¥aeh{0, 1}N is the boolean
vector of feature responses on thietraining example. Henca,(,f) is the response of theh feature
on the samplg, andx.(ql), e x.(qT) are independent and identically distributed realizations,ofVe
denotex, € {0, 1} this vector of values of featureon the training samples.

We will use those examples implicitly for all the empirical estimation during training.

2.2 Information Theory Tools

Information theory provides intuitive tools to quantify the uncertainty of camdjuantities, or how
much information is shared by a few of them (Cover and Thomas, 1991¢oWeder in this section
finite random variables and we denotelbyV andW The three of them.

The most fundamental concept in information theory is the entkbfy) of a random variable,
which quantifies the uncertainty &f. The conditional entropy (U |V) quantifies the remaining
uncertainty ofU, whenV is known. For instance, i) is a deterministic function d¥, then this
conditional entropy is zero, as no more information is required to desCritaenV is known.
On the contrary, if they are independent, knowihgloes not tell you anything abolt and the
conditional entropy is equal to the entropy itself.

Our feature selection is based on the conditional mutual information

I(U;VIW) = H(U|W)—HUI|W,V).

This value is an estimate of the quantity of information shared betweandV whenW is
known. It can also be seen, as shown above, as the differencedpetive average remaining
uncertainty olJ whenW is known and the same uncertainty when batlandV are known. IV
andW carry the same information abdut the two terms on the right are equal, and the conditional
mutual information is zero, even if bothandW are individually informative. On the contrary\f
brings information about) which is not already contained W the difference is large.

2.3 Conditional Mutual Information Maximization

The main goal of feature selection is to select a small subset of featurtesatti@s as much
information as possible. The ultimate goal would be to chodds, ..., v(K) which minimize
H (Y | Xv(1)s -+ XV(K)). But this expression can not be estimated with a training set of realistic size
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as it requires the estimation of 2% probabilities. Furthermore, even if there were ways to have an
estimation, its minimization would be computationally intractable.

At the other extreme, one could do a trivial random sampling which woulgrens some extent
independence between features (if different types of featuregjaederepresented) but would not
account for predictive power. This could be dealt with by basing thécehan an estimate of this
predictive power. The main weakness of this approach is that althoudteg tare of individual
performance, it does not avoid at all redundancy among the seleetedds. One would pick many
similar features, as the ones carrying a lot of information are likely to be eftain type. For face
detection with edge-like features for instance, edges on the eyebralnb@mouth would be the
only ones competitive as they are more face-specific than any othenedgeimerous enough.

We propose an intermediate solution. Our approach deals with the traédwtdn individual
power and independence by comparing each new feature with the oeagyapicked. We say that
a featureX’ is good only ifi (Y ; X’|X) is large forevery Xalready picked. This means thét is
good only if it carries information abot, and if this information has not been caught by any of
the X already picked. More formally, we propose the following iterative scheme

v(1) = argmaxi (Y ;X) 1)

vk, 1<k<K, v(k+1) = argr?]ax{rlmlipf(Y;Xn\va)}. 2)

s(n.k)

As said beforef(Y s Xn| Xy is low if either X, does not bring information abowtor if this
information was already caught bY;,. Hence, the scorgn, k) is low if at least one of the features
already picked is similar ti, (or if X, is not informative at all).

By taking the featuré, with the maximum score(n, k) we ensure that the new feature is both
informative and different than the preceding ones, at least in ternedigingy.

The computation of those scores can be done accurately as each(3cpxg| X, () requires
only estimating the distribution of triplets of boolean variables. Despite its appeost this al-
gorithm can be implemented in a very efficient way. We will come back in detailsich an
implementation in 84.

Note that this criterion is equivalent to maximizih@, X, ; Y) —1(Xyx) ; Y), which is pro-
posed in (Vidal-Naquet and Ullman, 2003).

2.4 Theoretical Motivation

In Koller and Sahami (1996) the authors propose using the concepg dddhnkov blanket to char-
acterize features that can be removed without hurting the classificatitmrmpance. A subfamily

of featuredM is a blanket for a featurk; if X; is conditionally independent of the other feature and
the class to predict givell. However, as the authors point out, such a criterion is stronger than
what is really required which is the conditional independence bet¥eandY givenM.

CMIM is a forward-selection of features based on an approximation ottitarion. This ap-
proximation considers familied composed of a unique feature already picked. Thus, a feXture
can be discarded if there is one featMealready picked such that andY are conditionally inde-
pendent giverX,. This can be expressed dis | (Y ; X|X,)) = 0. Since the mutual information is
positive, this can be re-written
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mkinI(Y;X\Xv(k)) = 0.

Conversely, the higher this value, the métés relevant. A natural criterion consists of ranking
the remaining features according to that quantity, and to pick the one with thestigalue.

2.5 Other Feature Selection Methods

This section lists the various feature selection methods we have used foadsomin our experi-
ments.

2.5.1 RANDOM SAMPLING

The most trivial form of feature selection consist of a uniform randatysampling without rep-
etition. Such an approach leads to features as independent as thel dngidaes not pick the
informative ones. This leads to poor results when only a small fraction ofetiteires actually
provide information about the class to predict.

2.5.2 MUTUAL INFORMATION MAXIMIZATION

To avoid the main weakness of the random sampling described aboveygalka implemented a

method which picks thK featuresi(1), ..., v(K) maximizing individually the mutual information

(Y ; X)) with the class to predict. Selection based on such a ranking does not emeak

dependency among features, and can lead to redundant and pooriygatife families of features.
In the following sections, we call this method MIM for Mutual Information Maxiatinn.

2.5.3 C4.5 BNARY TREES

As proposed by Ratanamahatana and Gunopulos (2003), binary ddogse can be used for fea-
ture selection. The idea is to grow several binary trees and to rankdsatacording to the number
of times they appear in the top nodes. This technique is proposed in the ligeaatargood filter
for naive Bayesian classifiers, and is a good example of a scheme apla siatistical dependen-
cies between more than two features, since the choice of a feature in @ tsteedepends on the
statistical behavior conditionally on the values of the ones picked above.

Efficiency was increased on our specific task by using randomization @ralt, 1997) which
consist of using random subsets of the features instead of rand@®tsulb training examples as in
bagging (Breiman, 1999, 1996).

We have built 50 trees, each with one half of the features selected atnamaad collected the
features in the first five layers. Several configurations of numbereekirproportions of features
and proportions of training examples were compared and the best oneTkep method is called
“C4.5 feature selection” in the result sections.

2.5.4 FAST CORRELATION-BASED FILTER

Th FCBF method addresses explicitly the correlation between featuresst Itafinks the features
according to their mutual information with the class to predict, and remove thbis wnutual
information is lesser than a threshdd
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In a second step, it iteratively removes any feat¥yef there exist a feature&X; such that
[(Y;X;) > 1(Y; %) and 1 (X; X;) > 1(X;Y), i.e. Xj is better as a predictor of and X; is more
similar to X; than toY. The threshold can be adapted to get the expected number of features.

2.5.5 AbABoOOST

A last method consists of keeping the features selected during boosting deskcribed precisely
in 83.4, page 1538.

3. Classifiers

To evaluate the efficiency of the CMIM feature selection method, we contharerror rates of
classifiers based on the features it selects to the error rates with the sasiféectabuild on features
selected by other techniques.

We have implemented several classical type of classifiers, two lineare(ieso and naive
Bayesian) and two non-lineak-\NN and SVM with a Gaussian kernel), to test the generality of
CMIM. We also implemented a boosting method which avoids the feature selectioess since
it selects the features and combine them into a linear classifier simultaneousk/.tethnique
provides a baseline for classification score.

In this section, recall that we denote Ky,), ..., X,k the selected features.

3.1 Linear Classifiers

A linear classifier depends on the sign of a function of the form

K

f(Xe, ..oy XN) = Z Wk Xy(k) + b.
k=1

We have used two algorithms to estimate (b®, ..., wx) andb from the training set. The
first one is the classical perceptron (Rosenblatt, 1958; Novikoff2)186d the second one is the
naive Bayesian classifier (Duda and Hart, 1973; Langley et al., 1992)

3.1.1 FERCEPTRON

The perceptron learning scheme estimates iteratively the normal yestor ., wx ) by correcting it
as long as training examples are misclassified. More precisely, as longasxists a misclassified
example, its feature vector is added to the normal vector if it is of class pasitind is otherwise
subtracted. The bias tertmis computed by considering a constant feature always “positive”. If
the training set is linearly separable in the feature space, the processvis ko converge to a
separating hyperplane and the number of iterations can be easily bo{@iuestiani and Shawe-
Taylor, 2000, page. 12—-14). If the data are not linearly separaldgrttess is terminated after an
a priori fixed number of iterations.

Compared to linear SVM for instance, the perceptron has a greater atgierghmplicity, and
suffers from different weaknesses (over-fitting in particular). Hnsinteresting candidate to esti-
mate the quality of the feature selection methods as a way to control overfitting.
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3.1.2 NaIVE BAYESIAN

The naive Bayesian classifier is a simple likelihood ratio test with an assumpticonditional
independence among the features. The predicted class depends ign thfe s

PCY = 1| Xy(1) = Xo(1)» - -5 Xo(k) = Xo(k))
P(Y = 0 Xy(1) = Xy(1)» - -+ » Xo(K) = Xu(K))

f(xe,...,xn) = log

Under the assumption that thg, ) are conditionally independent, givénand witha = log P(Y=1)

B(Y=0)"
we have

(Xo(
f(X]_, 7XN) Iog 3 +a
Mie1 Py =X |Y =0)

K P = Y=1
~ 3 log A(Xv(k) Xu(k) | ) L

& PO =X |Y =0)

< log P(Xui = 1]Y = 1) P(Xy09 = 0|Y = 0) b
p— ~ A k

G| P = 1Y =0) P(Xyp =0[Y=1) [

Thus we finally obtain a simple expression for the coefficients

P(Xyk) = 1Y = 1) P(Xy4) = 0[Y = 0)
P(Xy = 1Y =0) P(Xy =0]Y =1)

The biash can be estimated empirically given thg to minimize the error rate on the training
set.

wx = log

3.2 Nearest Neighbors

We used the Nearest-Neighbors as a first non-linear classifier. @ivegularization parameter
k and an example, thek-NN technique considers tHetraining examples closest toaccording
to their distance in the feature spaf@ 1}¥ (eitherL' or L?, which are equivalent in that case),
and gives as predicted class the dominant real class amongkleasenples. To deal with highly
unbalanced population, such as in drug-design series of experimenkgwe introduced a second
parameten € [0, 1] used to weight the positive examples.

Bothk anda are optimized by cross-validation during training.

3.3 SVM

As a second non-linear technique, we have used a SVM (Boser et@f;,\I&pnik, 1998; Christiani
and Shawe-Taylor, 2000) based on a Gaussian kernel. This techinignewn to be robust to
overfitting and has demonstrated excellent behavior on a very largéapesf problems. The
unbalanced population is dealt with by changing the soft-margin parant@&esordingly to the
number of training samples of each class, and the choice ofplaeameter of the kernel is described
in 86.1.
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3.4 AdaBoost

The idea of boosting is to select and combine several classifiers (ofezreckto asveak learners
as they may have individually high error rate) into an accurate one with agvptotedure. In our
case, the finite set of features is considered as the space of weadréeidsalf (i.e. each feature is
considered as a boolean predictor). Thus, the training of a weak tesammay consist of picking the
one with the minimum error rate. We allow negative weights, which is equivedeadding for any
featureX, its anti-feature - X,. Note that this classifier is not combined with a feature selection
methods since it does both the feature selection and the estimation of the weightsitime them
simultaneously.

The process maintains a distribution on the training examples which concerdratee mis-
classified ones during training. At iteratignthe featurex,, ) which minimizes the weighted error
rate is selected, and the distribution is refreshed to increase the weigktmigblassified samples
and reduce the importance of the others. Boosting can be seen as arfahgtiadient descent
(Breiman, 2000; Mason et al., 2000; Friedman et al., 2000) in which edaddawveak learner is a
step in the space of classifiers. From that perspective, the weighividragample is proportional to
the derivative of the functional to minimize with respect to the response oéthet classifier on that
sample: the more a correct prediction on that particular example helps to opthreifenctional,
the higher its weight.

In our comparisons, we have used the original AdaBoost procedneirfd and Schapire,
19964a,b), which is known to suffer from overfitting. For noisy taskshage chosen a soft-margin
version called AdaBoog} (Ratsch et al., 1998), which regularizes the classical AdaBoost by pe-
nalizing samples which too heavily influence the training, as they are usudligreu

To use boosting as a feature selector, we just keep the set of selemti@@$X, 1), - .., Xy (k).
and combine them with another classification rule instead of aggregating theanlyirwvith the
weightswy, ..., wx computed during the boosting process.

4. CMIM Implementations

We describe in this section how we compute efficiently entropy and mutual infiomand give
both a naive and an efficient implementation of CMIM.

4.1 Mutual Information Estimation

For the clarity of the algorithmic description that follows, we describe hererhatual information
and conditional mutual information are estimated from the training set. Recalidhsaid in §2.1
for any 1< n < N we denote by, € {0, 1}T the vector of responses of tinh feature on thd
training samples.

The estimation of the conditional entropy, mutual information, or conditional ahurtforma-
tion can be done by summing and subtracting estimation of entropies of familiesedbdhree
variables. Lek, y, andz be three boolean vectors angv, andw, three boolean values. We denote
by ||.|| the cardinal of a set and define three counting functions

nux) = [[{t:xY=u}]
nUN(X? y) = H{t . X(t) =u, y(t) — V}H
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Nuw(X %2 = [[{t:xV =uyV =v.z" =w}]|.
From this, if we definé/x, §(x) = % log(x), with the usual conventio&(0) = 0, we have

H(Y) = log(T) - Z}E(nu(y))
ue{01

|:|<Y7 Xn) = log(T) — Z E(Muy(Y; Xn))

u,ve{0,1}2

F'(Y7 Xn, Xm) = log(T) — z & (Nuyw(Ys Xn; Xm))-

u,v,we {0,1}3

And by definition, we have

[Y3%) = HY)+H) = H(Y, X)
(Y5 % Xm) = ALY [Xm) = HY X0, Xen)
=AY, Xm) = H(Xm) = (Y, Xa, Xm) + H (Xa, Xm).

Finally, those computations are based on counting the numbers of ocagrertain patterns
of bits in families of one to three vectors, and evaluation§ of integer values between 0 afd
The most expensive operation is the former: the evaluations afthg,y andnyyw, Which can
be decomposed into bit counting of conjunctions of binary vectors. The implatien can be
optimized by using a look-up table to count the number of bits in couples of ypgtsomputing
the conjunctions by block of 32 bits. Also, note that because the evaludtibrsaestricted on
integers smaller thai, a lookup table can be used for it too. In the pseudo-code, the function
mut_inf (n) computed (Y ; X,) andcond mut_inf (n, m) computed (Y ; X, | Xm).

Note that the naive Bayesian coefficients can be computed very efficieithlyhe same count-
ing procedures

o = lognoo(Xvk),Y) +10gN11(X k) Y) =109 N10(X% k)5 Y) — 109 N0 1 (Xv(k), ¥)-

4.2 Standard Implementation

The most straight-forward implementation of CMIM keeps a score vextehich contains for
every featureX,, after the choice o¥(k), the scores|n] = min < f(Y ; Xn | Xy0). This score table
is initialized with the value$ (Y ; X,).

The algorithm picks at each iteration the featufk) with the highest score, and then refreshes
every scores[n| by taking the minimum o§[n| andf(Y  Xn | Xv(k)). This implementation is given
in pseudo-code on Algorithm 1 and has a cogDEK x N x T).

4.3 Fast Implementation

The most expensive part in the algorithm described above ark thél calls to cond mut_inf,
each costing@(T) operations. The fastimplementation of CMIM relies on the fact that bedhase
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Algorithm 1 Simple version of CMIM
forn=1...Ndo
§n] « mut_inf(n)

fork=1...K do
nulk] = argmax s[n|
forn=1...Ndo

gin] <« min(s[n], cond mut_inf(n, nulk]))

score vector can only decrease when the process goes on, bes s@yr not need to be refreshed.
This implementation does not rely on any approximation and produces thiesaxag results as the
naive implementation described above.

Intuitively, consider a set of features containing several ones almestiégdl. Picking one of
them makes all the other ones of this group useless during the rest oftipaitation. This can be
spotted early because their scores are low, and will remain so becauss san only decrease.

The fast version of CMIM stores for every featufg a partial scorgpsn|, which is the mini-
mum over a few of the conditional mutual informations appearing in the min intiemqué) page
1534. Another vectom[n] contains the index of the last picked feature taken into account in the
computation ofpgn]. Thus, we have at any moment

psin] = min T(Y: % | X))

At every iteration, the algorithm goes through all candidates and updat®isanly if the best
one found so far in that iteration is not better, since scores can onlywn dtnen updated. For
instance, if thaup-to-date scoref the first feature was.02 and thenon-already updatedcore of
the second feature wasd5, it is not necessary to update the later, since it can only go down.

The pseudo-code on Algorithm 2 is an implementation of that idea. It goesghrall the
candidate features, but does not compute the conditional mutual inforntettereen a candidate
and the class to predict, given the most recently picked features, if the setthat candidate is
below the best up-to-date scaefound so far in that iteration (see figure 1).

Algorithm 2 Fast version of CMIM
forn=1...Ndo
psn] < mut_inf(n)
mn] < O
fork=1...Kdo
s «—0
forn=1...Ndo
while pgn] > s*and m[n] < k—1do
m[n] «— m[n|+1
psn] < min(pgn], cond -mut_inf(n, numnj]))
if pgn] > s* then
s« psn|
nukl < n
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1 2 3 4 5 7
116]3 514 5
213151?15]13]7]3
315121?214]|7?| 7|7
4141?2167 7?2|7?
S131?2 1?2147 7?]|7

psin] 3 2 1 4 3 2
mn 5 3 1 5 2 1

Figure 1: The cell in column n and row | in the array contains the vatv&d mut_inf (n, nul]).
The score of feature Xat step ki1 is the minimum over the k top-cells of column n.
While the naive version evaluates the values of all cells in the first k rowfagheersion
computes a partial score, which is the minimum over only the firgtcells in column n.
It does not update a feature score[msf its current value is already below the best score
of a column found so far in that iteration.
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5. Experimental Settings

All the experiments have been done with softwares written in C++ on GNU/Léomxputers. We
have used free software tools (editor, compiler, debugger, wortkpsors, etc.), mainly from the
Free Software FoundatidnWe have also used the Libs¢rfor the SVM.

5.1 Image Classification

This task is a classical pattern-recognition problem in which one tries tacptbe real class of
a picture. The input data are small grayscale patches and the two cles$aseaand background
(non-face) pictures.

5.1.1 TRAINING AND TEST SETS

We have used training and test sets built from two large sets of scenese dhginal big sets were
assembled by collecting a few thousand scenes from the web and markimantythe locations
of eyes and mouth on every visible frontal viewed face. Using two setsrenshat examples
belonging to the same scene series will all be used either as training pictaetest pictures. This
prevents from trivial similarities between the training and test examples.

From every face of every scene we generate ten small grayscal@rfages by applying ro-
tation, scaling and translation to randomize its pose in the image plan. We haveolészied
complex scenes (forests, buildings, furniture, etc.) from which we hat@matically extracted tens
of thousands of background (non-face) pictures. This leads to actfoll 268 faces and 1800
background pictures for training (respectively282 and 5584 for test).

All those images, faces and backgrounds, are of size 28 pixels, and with 256 grayscale
levels. Faces have been registered roughly so that the center of this @ya 2x 2 central square,
the distance between the eyes is between 10 to 12 pixels and the tilt is bet2@and4-20 degrees
(see figure 2 for a few examples of images).

For each experiment both the training and the test sets contain 500 imaggydyrdivided into
faces and non-faces. Errors are averaged over 25 rounds whitrsining and test sets.

5.1.2 BEDGE FEATURES

We use features similar to the edge fragment detectors in (Fleuret and G2004n 2002). They
are easy to compute, robust to illumination variations, and do not requireiaimg.

Each feature is a boolean function indexed by a locatiog) in the 28x 28 reference frame
of the image, a directiod which can take 8 different values (see figures 3 and 4) and a tolerance
t which is an integer value between 1 and 7 (this maximum value has been fixétitafty). The
tolerance corresponds to the size of the neighborhood where the ddioat”, i.e. where it has
to be present for the feature to be equal to 1 (see figure 3).

For every location in the reference frame (i.e. every pixel), we thus Hiavg features, one for
each couple direction / tolerance. For tolerance 1, those featureismgle gdge fragment detector
(seefigure 4). Fortolerance 2, they are disjunction of those edgadmigietectors on two locations
for each pixel, etc.

The total number of such features is 288 x 8 x 7= 43,904.

1. http:/iwww.fsf.org
2. http:/fwww.csie.ntu.edu.tw/cjlin/libsvm
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Figure 2: The two upper rows show examples of background picturdsha two lower rows show
examples of face pictures. All images are grayscale of size ZB pixels, extracted
from complete scenes found on the World Wide Web. Faces are roughigred and
standardized in size.

Figure 3: The boolean features we are using are crude edge detéotargant to changes in il-
lumination and to small deformations of the image. The picture on the left shows the
criterion for a horizontal edge located(ix y). The detector responds positively if the six
differences between pixels connected by a thin segment are lessepintabh&lue than
the difference between the pixels connected by the thick segment. Theeefaliies of
the two pixels connected by the thick line define the polarity of the edge (ddidhtcor
light to dark). The picture on the right shows the strip where the edgeftzat™for the
feature to respond when the tolerandg equal to 5.
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Figure 4: The original grayscale pictures are shown on the left. The leiigéry maps on the right
show the responses of the edge detectors at every locations in the&@8ame, for
every one of the 8 possible directions and polarities. The binary feaeatisjunctions
(ORings) of such edge detectors in small neighborhoods, which etigirgobustness
to image deformations.

5.2 Prediction of Molecular Bio-activity

The second data set is based ¢8O compounds tested for their ability to bind to a target site on
thrombin. This corresponds to a drug-design task in which one tries tapveaich molecules will
achieve the expected effect.

Each compound has a binary claastiveor inactive and 139351 binary features standing for
as many three-dimensional properties. The exact semantic of thosefe@nrains unknown but is
consistent among the samples. To be able to use many techniques in ourisongave restricted
the number of binary features t9300 by a rough random sampling, since the computation time
would have been intractable with classical methods on such a large nuntiieranf features.

All the experiments are done with 25 rounds of cross-validation. For eaetof this round,
100 samples are randomly picked as test examples, and all the other®usaihfng. Since the
population are highly unbalanced (42 positive vs. 1867 negative examfile balanced error rate
(average of false positive and false negative error rates) washagledor training and testing.

The dataset was provided by DuPont Pharmaceutical for the KDD-G0p @ompetitiod and
was used in 2003 for the NIPS feature selection challtngeder the name DOROTHEA.

6. Results

The experimental results we present in this section address both penfmimaterm of error rates
and speed.

In 86.1, we compare several associations of a feature selection methd(GMM, C4.5,
random and AdaBoost as a feature selection method) and a classifier Bagesiank-NN, Gaus-
sian SVM, perceptron). Also, AdaBoost and a regularized versigkdaBoost were tested on the
same data.

For the image recognition task, since the error rates with 50 featurespone roughly to the
asymptotic score of our main methods (CMIM + naive Bayesian and AddBses figure 5), we

3. http://www.cs.wisc.edu/"dpage/kddcup2001/
4. http://www.nipsfsc.ecs.soton.ac.uk
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Figure 5: The asymptotic error rates are reached with 50 features orctheelassification task.

have used this number of features for the extensive comparisons. Sipthariyumber of features
was 10 for the bio-activity prediction.

The o parameter of the Gaussian kernel was chosen separately for ewtuyefeselection
method by optimizing the test error with a first series of 25 rounds. The topinid test errors
reported in the results section are estimated by running 25 other roundsssfwalidation. The
results may suffer slightly from over-fitting and over-estimate the scoreeoS¥iM. However the
effect is likely to be negligible considering the large size of the complete sets.

In 86.2 we compare the fast implementation of CMIM to the naive one and grexigerimental
computation times in the task of image recognition.

6.1 Error Rates

To quantify the statistical significance in our comparisons, we estimate emg@ricalrates form
the data sets, but also the empirical variance of those estimates. Those&saae computed under
the assumption that the samples are independent and identically distributed.

We provide for every experiments in the tables 1, 2 and 3 both the estimatestrmst and
the scor% wheree* is the score of our reference setting (CMIM + Naive Bayesian),and
andao, are the empirical variances of the error rate estimates. This empirical vaidae estimated
simply as empirical variance of Bernoulli variables.

6.1.1 IMAGE CLASSIFICATION

The first round of experiments uses the dataset of pictures descrit&lin The results on ta-
ble 1 show that the best scores are obtained with CMIM + SVM, closely feltbtay AdaBoost

features combined also with SVM. The Naive Bayesian with CMIM featuestopms pretty well,

ranking fourth. CMIM as a feature selection method is always the besanfogiven classification
technique.

It is meaningful to note that the computational cost of SVM is few orders ofnihages higher
than those of AdaBoost alone or CMIM + Bayesian as it requires foritrgiihe computation of the
optimal o through cross-validation, and requires during classification the evatuattioundreds of
exponentials.
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Classifier Training error  Test errce)( \/%
CMIM + SVM 0.53% 112% —2.77
AdaBoost feature selection + SVM 0% 21% —-211
AdaBoost 0% 145% —0.45
CMIM feature selection + naive Bayesian .50% 152% -
CMIM feature selection k-NN 0% 169% 107
AdaBoost feature selectionkrNN 0% 171% 119
FCBF feature selection + SVM .5% 185% 202
FCBF feature selection + naive Bayesian .28% 213% 360
CMIM feature selection + perceptron 0% .28% 440
AdaBoost feature selection + perceptron 0% 4620 532
C4.5 feature selection + SVM .B8% 258% 591
FCBF feature selection kNN 0% 275% 673
C4.5 feature selection + perceptron 0% .268% 902
C4.5 feature selection + naive Bayesian 4% 328% 911
FCBF feature selection + perceptron 0% 5@ 1003
AdaBoost feature selection + naive Bayesian  .4% 351% 1006
C4.5 feature selection NN 0% 357% 1031
MIM + SVM 3.26% 567% 1773
MIM feature selection + perceptron .55% 828% 2506
MIM feature selection + naive Bayesian .58% 854% 2572
MIM feature selection k-NN 0.23% 899% 2684
Random feature selection + SVM .B1% 1186% 3344
Random feature selection + perceptron .363%% 1745% 4466
Random feature selectionk+NN 0.30% 2154% 5218
Random feature selection + naive Bayesian .69% 2477% 5793

Table 1: Error rates with 50 features on the accurate face vs. baoidjdata set. The right col-
umn shows the difference between the test error ¢atef the CMIM + naive Bayesian
method and the test error ratén the given row, divided by the standard deviation of that
difference.
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To test the robustness of the combination of CMIM and naive Bayes, we fflum a second
round of experiments with noisy training data, known to be problematic fostbapschemes. We
generated the new training set by flipping at random 5% of the training labeis corresponds to
a realistic situation in which some training examples have been mis-labelled.

It creates a difficult situation for learning methods which take care of osilgnce there are
5% of them, distributed uniformly among the training population. Results are sur@uan table
2. Note that the performance of the regularized version of AdaBoastsmond to the optimal
performance on theest set

All methods based on perceptron or boosting have high error rates,thieg are very sensitive
to outliers. The best classification techniques are those protected feyfittng, thus SVM, Naive
Bayesian and regularized AdaBoost, which take the 8 first rankingsinAig this experiment,
CMIM is the best feature selection method for any classification scheme.

The FCBF method, which is related to CMIM since it looks for features bothlyigorrelated
with the class to predict and two-by-two uncorrelated scores very wédkrtiban in the non-noisy
case. It may be due to the fact that in this noisy situation protection fronfitbver matters more
than picking optimal features on the training set.

6.1.2 MOLECULAR BIO-ACTIVITY

This third round of experiments is more difficult to analyze since the chaistats of the features
we deal with are mainly unknown. Because of the highly unbalanced gapulenethods sensitive
to overfitting perform badly.

Results for these experiments are given 3. Except in one case (S\KM}) (@ads to the lowest
error rate for any classification method. Also, when combined with the fB&yesian rule, it gets
lower error rates than SVM or nearest-neighbors.

The same dataset was used in the NIPS 2003 chalfeimgehich it was divided in three subsets
for training, test and validation (respectively of size 800, 350 and.800) main method CMIM
+ Bayesian achieves 4%6% error rate on the validation set without any tunning, while the top-
ranking method achieves4r% with a Bayesian Network, see (Guyon et al., 2004) for more details
on the participants and results.

6.2 Speed

The image classification task requires the selection of 50 features am@@y48ith a training set
of 500 examples. The naive implementation of CMIM takes 18800ms to achiisveetlection on
a standard 1Ghz personal computer, while with the fast version this duidtips to 255ms for
the exact same selection, thus a factor of 73. For the thrombin dataseti(gglO features out of
139 351 based on,D09 examples) the computation times drops from, B86ms with the naive
implementation to J401ms with the fast one, corresponding to a factor 110.

The dramatic gain in performance can be explained by looking at the nuftmistocond mut_inf,
which drops for the faces by a factor 80 (fronB46 496 to 54928), and for the thrombin dataset
by a factor 220 (from 1395 749 to 62125).

The proportion of calls teond mut_inf for the face dataset is depicted on figure 6. We have
also looked at the number of calls required to sort out each featuree Isirtiple implementation
that number is the same for all features and is equal to the number of sdesatiga@ K. For the fast

5. http://www.nipsfsc.ecs.soton.ac.uk
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Classifier Training error  Test erroe)( \/%
CMIM + SVM 5.68% 137% —3.59
FCBF feature selection + SVM .B2% 149% —2.79
CMIM feature selection + naive Bayesian .06% 195% -
FCBF feature selection + naive Bayesian 3B 239% 238
C4.5+SVM 557% 299% 530
AdaBoosteg (optimized on test set) .80% 306% 561
C4.5 feature selection + naive Bayesian 18/ 362% 803
AdaBoost feature selection + SVM 3% 418% 1025
CMIM feature selection k-NN 0.08% 536% 1442
MIM + SVM 7.85% 587% 1607
AdaBoost 0.58% 633% 1748
C4.5 feature selection kNN 0.71% 634% 1752
FCBF feature selection kNN 0.87% 650% 1799
AdaBoost feature selectionk-NN 0.39% 7.20% 2002
AdaBoost feature selection + perceptron A% 823% 2282
MIM feature selection + naive Bayesian A49% 859% 2375
CMIM feature selection + perceptron .36% 932% 2560
FCBF feature selection + naive Bayesian 2@ 933% 2562
AdaBoost feature selection + naive Bayesian  .28% 946% 2594
C4.5 feature selection + perceptron .58% 1106% 2971
Random + SVM 130% 1219% 3223
MIM feature selection kK-NN 2.92% 1146% 3061
MIM feature selection + perceptron BEB% 1312% 3423
Random feature selection + perceptron A% 2058% 4875
Random feature selectionk+«NN 1.43% 2477% 5629
Random feature selection + naive Bayesian 123% 2499% 5668

Table 2: Error rates with 50 features on the face vs. background efatdnsse training labels have
been flipped with probability 5%. The right column shows the difference detvihe test
error ratee* of the CMIM + naive Bayesian method and the test error edtethe given
row, divided by the standard deviation of that difference.
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Classifier Training error  Test errog)( \/%
CMIM feature selection + naive Bayesian .48% 1172% -
AdaBoost feature selection + SVM 3BH% 1299% 136
AdaBoost feature selection + naive Bayesian .29 1360% 199
AdaBoosfeg (optimized on test set) .88% 1364% 204
CMIM + SVM 13.21% 1365% 205
AdaBoost 9.49% 1376% 216
C4.5 feature selection + naive Bayesian 28/ 1390% 231
C4.5+SVM 872% 1734% 565
CMIM feature selection k-NN 17.17% 1877% 697
FCBF feature selection + naive Bayesian .63 1922% 737
FCBF feature selection + SVM 130% 2314% 1076
MIM feature selection + naive Bayesian .B3% 2335% 1094
CMIM feature selection + perceptron 30% 2351% 1108
C4.5 feature selection + perceptron .86% 2388% 1138
MIM + SVM 24.65% 2575% 1293
FCBF feature selection + perceptron .28% 2706% 1398
FCBF feature selection kNN 19.28% 2794% 1468
Random + SVM 30L0% 3092% 1705
C4.5 feature selection k-NN 24.18% 3411% 1954
Random feature selection + naive Bayesian .33% 4013% 2423
MIM feature selection + perceptron FD% 4027% 2434
Random feature selection + perceptron 6436 4568% 2863
Random feature selectionk+«NN 45.09% 4729% 2994
MIM feature selection k-NN 50.00% 5000% 3219

Table 3: Error rates with 10 features on the Thrombin dataset. The riglthocshows the differ-
ence between the test error rateof the CMIM + naive Bayesian method and the test error
rateein the given row, divided by the standard deviation of that difference.
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Figure 6: Those curves show the proportion of callstmd_mut_inf actually done in the fast ver-
sion compared to the standard version for each iteration. The curve deftrghows the
proportion for each step of the selection process, while the curve on thesiigws the
proportion of cumulate evaluations since the beginning. As it can be gégproportion
is around1% on the average.
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Figure 7: This curve shows on an logarithmic scale how many features (y axisjreegertain
number of calls taccond mut_inf (X axis). The peak on the right corresponds to Hife
features actually selected, which had to be compared with all the other featimes
requiring 49 comparisons.

version, this number depends on the feature, as very inefficient diigsabably require only one

of them. The distribution of the number of evaluations is represented orfigan a logarithmic
scale, and fits roughly 1000.92". This means that there are roughly 8% fewer features which
requiren+ 1 evaluations than features which requirevaluations.
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7. Discussion

The experimental results we provide show the strength of the CMIM, e\xemwombined with a
simple naive Bayesian rule, since it ranks 4th, 3rd and 1st in the threiegnts in which it is
compared with 26 other combination feature selection + classifier.

Classification Power

Itis easy to build a task CMIM can not deal with. Consider a situation wherpdkitive population
is a mixture of two sub-populations, and where half of the features prawvidemation about the
first population, while the other features provide information about thengkpopulation. This can
happen in an image context by considering two different objects whichotdshare informative
edges.

In such a situation, if one sub-population dominates statistically, CMIM doepiak feature
providing information about the second sub-population. It would go okiqcfeature informative
about the domineering sub-population as long as independent feataramr

A feature selection based on C4.5 would be able to catch informative feainm the minority
class would quickly be revealed as the source of uncertainty, anddeatedicated to them would
be selected. Similarly, AdaBoost can handle such a challenge becaesmott@mncentrates quickly
on the second sub-population, which eventually drives the choice nfrésa In fact, both can be
ween as wrappers since they take into account the classification outcogeiedintise features.

We could fix this weakness of CMIM by weighting challenging examples as feeting the
algorithm to care about problematic minorities and pick features related to tHeswduld be the
dual solution to AdaBoost regularization techniques which on the contedyce the influence of
outliers.

From that point of view, CMIM and AdaBoost are examples of two familidsafning methods.
The first one is able to cope with overfitting by making a strong assumptionmbgeneity of the
informative power of features, while the second one is able to deal witmaased population by
sequentially focusing on sub populations as soon as they become the ebarwor.

In both cases, the optimal tradeoff has to be specified on a per-prolasis) las there is no
absolute way to know if the training examples are reliable examples of a complexedt noisy
examples of an homogeneous population.

Speed

CMIM and boosting share many similarities from an algorithmic point of view. Bdtthem pick
features one after another and compute at each iteration a score fprsewgle candidate which
requires to go through every training example.

Despite this similarity the lazy evaluation idea can not be applied directly to booshing
could try to estimate a bound of the score of a weak learner at itefiatiadh (which is a weighted
error rate), given its value at iteratidtusing a bound on the weight variation. Practically, this idea
gives very bad results because the variation can not be controlleidmtficand turns out to be very
pessimistic. It leads to a negligible rate of rejection of the candidate featuchett.

The feature selection based on C4.5 is even more difficult to optimize. Beoatlsee complex
interactions between features selected in previous nodes and the renw@ndidates at a given
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node, there is no simple way to predict that a feature can be ignored withdwting the perfor-
mance of the method.

Usability

The CMIM algorithm does not require the tuning of any regularizing patamand since the im-
plementation is an exact exhaustive search it also avoids the tuning ofiarizegion scheme.

Also, compared to methods like SVM or AdaBoost, both the feature selectimian and
the naive Bayesian classifier have a very clear statistical semantic. Semoaitle Bayesian is an
approximation of a likelihood ratio test, it can be easily combined with other tegbsiguch as
HMM, Bayesian Inference and more generally with other statistical methods.

Multi-class, Continuous Valued Features and Regression

Extension to the multi-class problem can be addressed either with a claagifiestic technique (for
instance training several classifiers dedicated to different binarygansbwhich can be combined
into a multi-class predictor (Hastie and Tibshirani, 1998) or by extending\Chtid the Bayesian
classifier directly to the multi-class context.

In that case, the price to pay is both in term of accuracy and computatibrTtesestimation of
the conditional mutual information requires the estimation of the empirical distribafitviples of
variables, oN3 empirical probabilities in & class problem. Thus, accurate estimation requires as
many more training samples. From the implementation perspective the fastveamibe kept as-is
but the computation of a conditional mutual informatiorOEN2), and the boolean computations
by block require @(N;) memory usage.

Extension to the case of continuous valued features and to regressitim{ous valued class)
is the center of interest of our current works. It is natural as sograesmetric density models are
provided for any variable, couple of variables and triplet of variatifes.any couple of features,
X;, the estimation of the conditional mutual information givénequires first an estimation of the
model parametean according to the training data.

The most naive form of multi-variable density would be piece-wise condtarg,discretisation
with features of the fornfk = 1x>¢ whereX is one of the original continuous feature. Such a model
would lead to the same weakness as those described above for the mulsitciatssn.

If a more sophisticated model can legitimately be used — for instance multi-dimah&ans-
sian — the only difficulty is the computation of the conditional mutual information jtsedfuiring
sums over the space of values of products and ratios of such expies&epending on the ex-
istence of analytical form of this sum, the algorithm may require numericalratieg and heavy
computations. Nevertheless, even if the computation of the conditional mufaahation is ex-
pensive, the lazy evaluation trick presented in 82 can still be used,ingdil@ cost by the same
amount as in the provided results.

8. Conclusion

We have presented a simple and very efficient scheme for feature selecticcontext of classi-
fication. On the experiments we have done CMIM is the best feature selecttirod except in
one case (SVM for the thrombin experiment). Combined with a naive Bayesissifeer the scores
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we obtained are comparable or better than those of state-of-the-arigieefiisuch as boosting or
Support Vector Machines, while requiring a training time of a few tenth otarse

Because of its high speed, this learning method could be used to tune teachires on the fly,
to adapt them to the specific difficulties of the populations they have to deal lwithe context of
face detection, such an on-line training could exploit the specificities ofabkgoound population
and reduce the false-positive error rate. Also, it could be used in afiplis requiring the training
of a very large number of classifiers. Our current works in objeaigeition are based on several
thousands of classifiers which are built in a few minutes.
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