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Abstract

We propose in this paper a very fast feature selection technique based on conditional mutual in-
formation. By picking features which maximize their mutualinformation with the class to predict
conditional to any feature already picked, it ensures the selection of features which are both individ-
ually informative and two-by-two weakly dependant. We showthat this feature selection method
outperforms other classical algorithms, and that a naive Bayesian classifier built with features se-
lected that way achieves error rates similar to those of state-of-the-art methods such as boosting or
SVMs. The implementation we propose selects 50 features among 40,000, based on a training set
of 500 examples in a tenth of a second on a standard 1Ghz PC.

Keywords: classification, mutual information, feature selection, naive Bayes, information theory,
fast learning

1. Introduction

By reducing the number of features, one can both reduce overfitting of learning methods, and in-
crease the computation speed of prediction (Guyon and Elisseeff, 2003). We focus in this paper
on the selection of a few tens of binary features among a several tens of thousands in a context of
classification.

Feature selection methods can be classified into two types,filters andwrappers(Kohavi and
John, 1997; Das, 2001). The first kind are classifier agnostic, as they are not dedicated to a specific
type of classification method. On the contrary thewrappersrely on the performance of one type of
classifier to evaluate the quality of a set of features. Our main interest in this paper is to design an
efficientfilter, both from a statistical and from a computational point of view.

The most standard filters rank features according to their individual predictive power, which can
be estimated by various means such as Fisher score (Furey et al., 2000),Kolmogorov-Smirnov test,
Pearson correlation (Miyahara and Pazzani, 2000) or mutual information(Battiti, 1994; Bonnlan-
der and Weigend, 1996; Torkkola, 2003). Selection based on such a ranking does not ensure weak
dependency among features, and can lead to redundant and thus less informative selected families.
To catch dependencies between features, a criterion based on decisiontrees has been proposed re-
cently (Ratanamahatana and Gunopulos, 2003). Features which appearin binary trees build with
the standard C4.5 algorithm are likely to be either individually informative (those at the top) or con-
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ditionally informative (deeper in the trees). The drawbacks of such a method are its computational
cost and sensitivity to overfitting.

Our approach iteratively picks features which maximize their mutual informationwith the class
to predict, conditionally to the response of any feature already picked (Vidal-Naquet and Ullman,
2003; Fleuret, 2003). This Conditional Mutual Information Maximization criterion (CMIM) does
not select a feature similar to already picked ones, even if it is individually powerful, as it does not
carry additional information about the class to predict. Thus, this criterion ensures a good tradeoff
between independence and discrimination. A very similar solution called Fast Correlation-Based
Filter (Yu and Liu, 2003) selects features which are highly correlated with the class to predict if
they are less correlated to any feature already selected. This criterion is very closed to ours but
does not rely on a unique cost function which includes both aspects (i.e. information about the class
and independence between features) and may be tricked in situation wherethe dependence between
feature appears only conditionally on the object class. It also requires the tuning of a thresholdδ for
feature acceptance, while our algorithm does not.

Experiments demonstrate that CMIM outperforms the other feature selection methods we have
implemented. Results also show and that a naive Bayesian classifier (Duda and Hart, 1973; Langley
et al., 1992) based on features chosen with our criterion achieves error rates similar or lower than
AdaBoost (Freund and Schapire, 1996a) or SVMs (Boser et al., 1992; Vapnik, 1998; Christiani and
Shawe-Taylor, 2000). Also, experiments show the robustness of this method when challenged by
noisy training sets. In such a context, it actually achieves better results thanregularized AdaBoost,
even though it does not require the tuning of any regularization parameterbeside the number of
features itself.

We also propose in this paper a fast but exact implementation based on a lazyevaluation of
feature scores during the selection process. This implementation divides thecomputational time
by two orders of magnitude and leads to a learning scheme which takes for instance one tenth of a
second to select 50 out of 43,904 features, based on 500 training examples. It is available under the
GNU General Public Licence athttp://diwww.epfl.ch/˜fleuret/files/cmim-1.0.tgz .

In §2 we introduce the notation, summarize basic concepts of information theory, and present
several feature selection schemes, including ours. In §3 we describe how features can be combined
with standard classification techniques (perceptron, naive Bayesian, nearest neighbors and SVM
with a Gaussian kernel). We propose a very fast implementation of our algorithm in §4 and give
experimental results in §5 and §6. We finally analyze those results in §7 and §8.

2. Feature Selection

Our experiments are based on two tasks. The first one is a standard pattern recognition problem
and consists of classifying small grey-scale pictures asface or non face, given a large number
of elementary boolean edge-like features. The second one is a drug-design problem and consists
of predicting the bio-activity of unknown molecules, given a large number of three-dimensional
boolean properties. For clarity, we relate our notation to those two problems, but our approach is
generic.

2.1 Notation

Denote byY a boolean random variable standing for the real class of the object to classify. The value
1 (respectively 0) stands forfacein the image classification experiments and foractive moleculein
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the drug design task (respectively fornon-faceandinactive molecule). Let X1, . . . , XN denote theN
boolean features. They depend on the presence or absence of edges at certain positions in the image
classification task and to certain three-dimensional properties of the moleculein the drug-design
task (see §5.1.2 and §5.2).

The total number of featuresN is of the order of a few thousands. We denote byXν(1), . . . , Xν(K)

theK features selected during the feature selection process. The numberK of such features is very
small compared toN, of the order of a few tens.

All statistical estimation is based on a few hundreds of samples, labeled by hand with their real
classes and denoted

L = {(x(1)
, y(1)), . . . , (x(T)

, y(T))}.

See §5.1 and §5.2 for a precise description of those sets. Eachx(t) ∈ {0, 1}N is the boolean

vector of feature responses on thetth training example. Hence,x(t)
n is the response of thenth feature

on the samplet, andx(1)
n , . . . , x(T)

n are independent and identically distributed realizations ofXn. We
denotexn ∈ {0, 1}T this vector of values of featuren on the training samples.

We will use those examples implicitly for all the empirical estimation during training.

2.2 Information Theory Tools

Information theory provides intuitive tools to quantify the uncertainty of random quantities, or how
much information is shared by a few of them (Cover and Thomas, 1991). Weconsider in this section
finite random variables and we denote byU , V andW The three of them.

The most fundamental concept in information theory is the entropyH(U) of a random variable,
which quantifies the uncertainty ofU . The conditional entropyH(U |V) quantifies the remaining
uncertainty ofU , whenV is known. For instance, ifU is a deterministic function ofV, then this
conditional entropy is zero, as no more information is required to describeU whenV is known.
On the contrary, if they are independent, knowingV does not tell you anything aboutU and the
conditional entropy is equal to the entropy itself.

Our feature selection is based on the conditional mutual information

I(U ; V |W) = H(U |W) − H(U |W, V).

This value is an estimate of the quantity of information shared betweenU andV whenW is
known. It can also be seen, as shown above, as the difference between the average remaining
uncertainty ofU whenW is known and the same uncertainty when bothW andV are known. IfV
andW carry the same information aboutU , the two terms on the right are equal, and the conditional
mutual information is zero, even if bothV andW are individually informative. On the contrary ifV
brings information aboutU which is not already contained inW the difference is large.

2.3 Conditional Mutual Information Maximization

The main goal of feature selection is to select a small subset of features that carries as much
information as possible. The ultimate goal would be to chooseν(1), . . . , ν(K) which minimize
Ĥ

(
Y |Xν(1), . . . , Xν(K)

)
. But this expression can not be estimated with a training set of realistic size
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as it requires the estimation of 2K+1 probabilities. Furthermore, even if there were ways to have an
estimation, its minimization would be computationally intractable.

At the other extreme, one could do a trivial random sampling which would ensure to some extent
independence between features (if different types of features are equally represented) but would not
account for predictive power. This could be dealt with by basing the choice on an estimate of this
predictive power. The main weakness of this approach is that although it takes care of individual
performance, it does not avoid at all redundancy among the selected features. One would pick many
similar features, as the ones carrying a lot of information are likely to be of a certain type. For face
detection with edge-like features for instance, edges on the eyebrows and the mouth would be the
only ones competitive as they are more face-specific than any other edge,yet numerous enough.

We propose an intermediate solution. Our approach deals with the tradeoff between individual
power and independence by comparing each new feature with the ones already picked. We say that
a featureX′ is good only if Î(Y ; X′ |X) is large forevery Xalready picked. This means thatX′ is
good only if it carries information aboutY, and if this information has not been caught by any of
theX already picked. More formally, we propose the following iterative scheme

ν(1) = argmax
n

Î (Y ; Xn) (1)

∀k, 1≤ k < K, ν(k+1) = argmax
n

{

min
l≤k

Î
(
Y ; Xn |Xν(l)

)
}

︸ ︷︷ ︸

s(n,k)

. (2)

As said before,̂I
(
Y ; Xn |Xν(l)

)
is low if eitherXn does not bring information aboutY or if this

information was already caught byXν(l). Hence, the scores(n, k) is low if at least one of the features
already picked is similar toXn (or if Xn is not informative at all).

By taking the featureXn with the maximum scores(n, k) we ensure that the new feature is both
informative and different than the preceding ones, at least in term of predictingY.

The computation of those scores can be done accurately as each scoreI(Y ;Xn |Xν(l)) requires
only estimating the distribution of triplets of boolean variables. Despite its apparent cost this al-
gorithm can be implemented in a very efficient way. We will come back in details to such an
implementation in §4.

Note that this criterion is equivalent to maximizingI(X, Xν(k) ; Y)− I(Xν(k) ; Y), which is pro-
posed in (Vidal-Naquet and Ullman, 2003).

2.4 Theoretical Motivation

In Koller and Sahami (1996) the authors propose using the concept of the Markov blanket to char-
acterize features that can be removed without hurting the classification performance. A subfamily
of featuresM is a blanket for a featureXi if Xi is conditionally independent of the other feature and
the class to predict givenM. However, as the authors point out, such a criterion is stronger than
what is really required which is the conditional independence betweenXi andY givenM.

CMIM is a forward-selection of features based on an approximation of that criterion. This ap-
proximation considers familiesM composed of a unique feature already picked. Thus, a featureX
can be discarded if there is one featureXν already picked such thatX andY are conditionally inde-
pendent givenXν. This can be expressed as∃k, I(Y ; X |Xν(k)) = 0. Since the mutual information is
positive, this can be re-written
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min
k

I(Y ; X |Xν(k)) = 0.

Conversely, the higher this value, the moreX is relevant. A natural criterion consists of ranking
the remaining features according to that quantity, and to pick the one with the highest value.

2.5 Other Feature Selection Methods

This section lists the various feature selection methods we have used for comparison in our experi-
ments.

2.5.1 RANDOM SAMPLING

The most trivial form of feature selection consist of a uniform random subsampling without rep-
etition. Such an approach leads to features as independent as the original but does not pick the
informative ones. This leads to poor results when only a small fraction of thefeatures actually
provide information about the class to predict.

2.5.2 MUTUAL INFORMATION MAXIMIZATION

To avoid the main weakness of the random sampling described above, we have also implemented a
method which picks theK featuresν(1), . . . , ν(K) maximizing individually the mutual information
Î
(
Y ; Xν(l)

)
with the class to predict. Selection based on such a ranking does not ensure weak

dependency among features, and can lead to redundant and poorly informative families of features.
In the following sections, we call this method MIM for Mutual Information Maximization.

2.5.3 C4.5 BINARY TREES

As proposed by Ratanamahatana and Gunopulos (2003), binary decision trees can be used for fea-
ture selection. The idea is to grow several binary trees and to rank features according to the number
of times they appear in the top nodes. This technique is proposed in the literature as a good filter
for naive Bayesian classifiers, and is a good example of a scheme able to spot statistical dependen-
cies between more than two features, since the choice of a feature in a binary tree depends on the
statistical behavior conditionally on the values of the ones picked above.

Efficiency was increased on our specific task by using randomization (Amitet al., 1997) which
consist of using random subsets of the features instead of random subsets of training examples as in
bagging (Breiman, 1999, 1996).

We have built 50 trees, each with one half of the features selected at random, and collected the
features in the first five layers. Several configurations of number of trees, proportions of features
and proportions of training examples were compared and the best one kept. This method is called
“C4.5 feature selection” in the result sections.

2.5.4 FAST CORRELATION-BASED FILTER

Th FCBF method addresses explicitly the correlation between features. It first ranks the features
according to their mutual information with the class to predict, and remove those which mutual
information is lesser than a thresholdδ.
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In a second step, it iteratively removes any featureXi if there exist a featureXj such that
I(Y;Xj) ≥ I(Y;Xi) and I(Xi ;Xj) ≥ I(Xi ;Y), i.e. Xj is better as a predictor ofY and Xi is more
similar toXj than toY. The thresholdδ can be adapted to get the expected number of features.

2.5.5 ADABOOST

A last method consists of keeping the features selected during boosting andis described precisely
in §3.4, page 1538.

3. Classifiers

To evaluate the efficiency of the CMIM feature selection method, we comparethe error rates of
classifiers based on the features it selects to the error rates with the same classifiers build on features
selected by other techniques.

We have implemented several classical type of classifiers, two linear (perceptron and naive
Bayesian) and two non-linear (k-NN and SVM with a Gaussian kernel), to test the generality of
CMIM. We also implemented a boosting method which avoids the feature selection process since
it selects the features and combine them into a linear classifier simultaneously. This technique
provides a baseline for classification score.

In this section, recall that we denote byXν(1), . . . , Xν(K) the selected features.

3.1 Linear Classifiers

A linear classifier depends on the sign of a function of the form

f (x1, . . . , xN) =
K

∑
k=1

ωk xν(k) + b.

We have used two algorithms to estimate the(ω1, . . . , ωK) andb from the training setL. The
first one is the classical perceptron (Rosenblatt, 1958; Novikoff, 1962) and the second one is the
naive Bayesian classifier (Duda and Hart, 1973; Langley et al., 1992).

3.1.1 PERCEPTRON

The perceptron learning scheme estimates iteratively the normal vector(ω1, . . . , ωK) by correcting it
as long as training examples are misclassified. More precisely, as long as there exists a misclassified
example, its feature vector is added to the normal vector if it is of class positive, and is otherwise
subtracted. The bias termb is computed by considering a constant feature always “positive”. If
the training set is linearly separable in the feature space, the process is known to converge to a
separating hyperplane and the number of iterations can be easily bounded(Christiani and Shawe-
Taylor, 2000, page. 12–14). If the data are not linearly separable, the process is terminated after an
a priori fixed number of iterations.

Compared to linear SVM for instance, the perceptron has a greater algorithmic simplicity, and
suffers from different weaknesses (over-fitting in particular). It isan interesting candidate to esti-
mate the quality of the feature selection methods as a way to control overfitting.
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3.1.2 NAIVE BAYESIAN

The naive Bayesian classifier is a simple likelihood ratio test with an assumption of conditional
independence among the features. The predicted class depends on the sign of

f (x1, . . . , xN) = log
P̂(Y = 1|Xν(1) = xν(1), . . . , Xν(K) = xν(K))

P̂(Y = 0|Xν(1) = xν(1), . . . , Xν(K) = xν(K))
.

Under the assumption that theXν(.) are conditionally independent, givenY, and witha = log P̂(Y=1)

P̂(Y=0)
,

we have

f (x1, . . . , xN) = log
∏K

k=1 P̂(Xν(k) = xν(k) |Y = 1)

∏K
k=1 P̂(Xν(k) = xν(k) |Y = 0)

+ a

=
K

∑
k=1

log
P̂(Xν(k) = xν(k) |Y = 1)

P̂(Xν(k) = xν(k) |Y = 0)
+ a

=
K

∑
k=1

{

log
P̂(Xν(k) = 1|Y = 1)

P̂(Xν(k) = 1|Y = 0)

P̂(Xν(k) = 0|Y = 0)

P̂(Xν(k) = 0|Y = 1)

}

xν(k) + b.

Thus we finally obtain a simple expression for the coefficients

ωk = log
P̂(Xν(k) = 1|Y = 1)

P̂(Xν(k) = 1|Y = 0)

P̂(Xν(k) = 0|Y = 0)

P̂(Xν(k) = 0|Y = 1)
.

The biasb can be estimated empirically given theωk to minimize the error rate on the training
set.

3.2 Nearest Neighbors

We used the Nearest-Neighbors as a first non-linear classifier. Givena regularization parameter
k and an examplex, thek-NN technique considers thek training examples closest tox according
to their distance in the feature space{0, 1}K (eitherL1 or L2, which are equivalent in that case),
and gives as predicted class the dominant real class among thosek examples. To deal with highly
unbalanced population, such as in drug-design series of experiments, we have introduced a second
parameterα ∈ [0, 1] used to weight the positive examples.

Bothk andα are optimized by cross-validation during training.

3.3 SVM

As a second non-linear technique, we have used a SVM (Boser et al., 1992; Vapnik, 1998; Christiani
and Shawe-Taylor, 2000) based on a Gaussian kernel. This techniqueis known to be robust to
overfitting and has demonstrated excellent behavior on a very large spectrum of problems. The
unbalanced population is dealt with by changing the soft-margin parametersC accordingly to the
number of training samples of each class, and the choice of theσ parameter of the kernel is described
in §6.1.
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3.4 AdaBoost

The idea of boosting is to select and combine several classifiers (often referred to asweak learners,
as they may have individually high error rate) into an accurate one with a voting procedure. In our
case, the finite set of features is considered as the space of weak learners itself (i.e. each feature is
considered as a boolean predictor). Thus, the training of a weak learner simply consist of picking the
one with the minimum error rate. We allow negative weights, which is equivalentto adding for any
featureXn its anti-feature 1−Xn. Note that this classifier is not combined with a feature selection
methods since it does both the feature selection and the estimation of the weights tocombine them
simultaneously.

The process maintains a distribution on the training examples which concentrates on the mis-
classified ones during training. At iterationk, the featureXν(k) which minimizes the weighted error
rate is selected, and the distribution is refreshed to increase the weight of the misclassified samples
and reduce the importance of the others. Boosting can be seen as a functional gradient descent
(Breiman, 2000; Mason et al., 2000; Friedman et al., 2000) in which each added weak learner is a
step in the space of classifiers. From that perspective, the weight of a given sample is proportional to
the derivative of the functional to minimize with respect to the response of theresult classifier on that
sample: the more a correct prediction on that particular example helps to optimizethe functional,
the higher its weight.

In our comparisons, we have used the original AdaBoost procedure (Freund and Schapire,
1996a,b), which is known to suffer from overfitting. For noisy tasks, wehave chosen a soft-margin
version called AdaBoostreg (Ratsch et al., 1998), which regularizes the classical AdaBoost by pe-
nalizing samples which too heavily influence the training, as they are usually outliers.

To use boosting as a feature selector, we just keep the set of selected featuresXν(1), . . . , Xν(K),
and combine them with another classification rule instead of aggregating them linearly with the
weightsω1, . . . , ωK computed during the boosting process.

4. CMIM Implementations

We describe in this section how we compute efficiently entropy and mutual information and give
both a naive and an efficient implementation of CMIM.

4.1 Mutual Information Estimation

For the clarity of the algorithmic description that follows, we describe here how mutual information
and conditional mutual information are estimated from the training set. Recall that as said in §2.1
for any 1≤ n≤ N we denote byxn ∈ {0, 1}T the vector of responses of thenth feature on theT
training samples.

The estimation of the conditional entropy, mutual information, or conditional mutual informa-
tion can be done by summing and subtracting estimation of entropies of families of one to three
variables. Letx, y, andz be three boolean vectors andu, v, andw, three boolean values. We denote
by ||.|| the cardinal of a set and define three counting functions

ηu(x) = ||{t : x(t) = u}||
ηu,v(x, y) = ||{t : x(t) = u, y(t) = v}||
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ηu,v,w(x, y, z) = ||{t : x(t) = u, y(t) = v, z(t) = w}||.

From this, if we define∀x,ξ(x) = x
T log(x), with the usual conventionξ(0) = 0, we have

Ĥ(Y) = log(T) − ∑
u∈{0,1}

ξ(ηu(y))

Ĥ(Y, Xn) = log(T) − ∑
u,v∈{0,1}2

ξ(ηu,v(y, xn))

Ĥ(Y, Xn, Xm) = log(T) − ∑
u,v,w∈{0,1}3

ξ(ηu,v,w(y, xn, xm)).

And by definition, we have

Î(Y ; Xn) = Ĥ(Y)+ Ĥ(Xn) − Ĥ(Y, Xn)

Î(Y ; Xn |Xm) = Ĥ(Y |Xm) − Ĥ(Y |Xn, Xm)

= Ĥ(Y, Xm) − Ĥ(Xm)− Ĥ(Y, Xn, Xm)+ Ĥ(Xn, Xm).

Finally, those computations are based on counting the numbers of occurrences of certain patterns
of bits in families of one to three vectors, and evaluations ofξ on integer values between 0 andT.
The most expensive operation is the former: the evaluations of theηu, ηu,v andηu,v,w, which can
be decomposed into bit counting of conjunctions of binary vectors. The implementation can be
optimized by using a look-up table to count the number of bits in couples of bytesand computing
the conjunctions by block of 32 bits. Also, note that because the evaluation of ξ is restricted on
integers smaller thanT, a lookup table can be used for it too. In the pseudo-code, the function
mut inf(n) computeŝI(Y ; Xn) andcond mut inf(n, m) computeŝI(Y ; Xn |Xm).

Note that the naive Bayesian coefficients can be computed very efficientlywith the same count-
ing procedures

ωk = log η0,0(xν(k), y)+ log η1,1(xν(k), y)− log η1,0(xν(k), y)− log η0,1(xν(k), y).

4.2 Standard Implementation

The most straight-forward implementation of CMIM keeps a score vectors which contains for
every featureXn, after the choice ofν(k), the scores[n] = minl≤k Î

(
Y ; Xn | Xν(l)

)
. This score table

is initialized with the valueŝI (Y ; Xn).
The algorithm picks at each iteration the featureν(k) with the highest score, and then refreshes

every scores[n] by taking the minimum ofs[n] and Î
(
Y ; Xn | Xν(k)

)
. This implementation is given

in pseudo-code on Algorithm 1 and has a cost ofO(K×N×T).

4.3 Fast Implementation

The most expensive part in the algorithm described above are theK×N calls tocond mut inf,
each costingO(T) operations. The fast implementation of CMIM relies on the fact that becausethe

1539



FLEURET

Algorithm 1 Simple version of CMIM
for n = 1. . .N do

s[n] ← mut inf(n)
for k = 1. . .K do

nu[k] = argmaxn s[n]
for n = 1. . .N do

s[n] ← min(s[n], cond mut inf(n, nu[k]))

score vector can only decrease when the process goes on, bad scores may not need to be refreshed.
This implementation does not rely on any approximation and produces the exact same results as the
naive implementation described above.

Intuitively, consider a set of features containing several ones almost identical. Picking one of
them makes all the other ones of this group useless during the rest of the computation. This can be
spotted early because their scores are low, and will remain so because scores can only decrease.

The fast version of CMIM stores for every featureXn a partial scoreps[n], which is the mini-
mum over a few of the conditional mutual informations appearing in the min in equation (2) page
1534. Another vectorm[n] contains the index of the last picked feature taken into account in the
computation ofps[n]. Thus, we have at any moment

ps[n] = min
l≤m[n]

Î
(
Y ; Xn | Xν(l)

)
.

At every iteration, the algorithm goes through all candidates and update its score only if the best
one found so far in that iteration is not better, since scores can only go down when updated. For
instance, if theup-to-date scoreof the first feature was 0.02 and thenon-already updatedscore of
the second feature was 0.005, it is not necessary to update the later, since it can only go down.

The pseudo-code on Algorithm 2 is an implementation of that idea. It goes through all the
candidate features, but does not compute the conditional mutual informationbetween a candidate
and the class to predict, given the most recently picked features, if the score of that candidate is
below the best up-to-date scores? found so far in that iteration (see figure 1).

Algorithm 2 Fast version of CMIM
for n = 1. . .N do

ps[n] ← mut inf(n)
m[n] ← 0

for k = 1. . .K do
s? ← 0
for n = 1. . .N do

while ps[n] > s? and m[n] < k−1 do
m[n] ← m[n]+1
ps[n] ← min(ps[n], cond mut inf(n, nu[m[n]]))

if ps[n] > s? then
s? ← ps[n]
nu[k] ← n
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Figure 1: The cell in column n and row l in the array contains the valuecond mut inf(n, nu[l ]).
The score of feature Xn at step k+ 1 is the minimum over the k top-cells of column n.
While the naive version evaluates the values of all cells in the first k rows, thefast version
computes a partial score, which is the minimum over only the first m[n] cells in column n.
It does not update a feature score ps[n] if its current value is already below the best score
of a column found so far in that iteration.
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5. Experimental Settings

All the experiments have been done with softwares written in C++ on GNU/Linuxcomputers. We
have used free software tools (editor, compiler, debugger, word-processors, etc.), mainly from the
Free Software Foundation.1 We have also used the Libsvm2 for the SVM.

5.1 Image Classification

This task is a classical pattern-recognition problem in which one tries to predict the real class of
a picture. The input data are small grayscale patches and the two classes are face and background
(non-face) pictures.

5.1.1 TRAINING AND TEST SETS

We have used training and test sets built from two large sets of scenes. Those original big sets were
assembled by collecting a few thousand scenes from the web and marking byhand the locations
of eyes and mouth on every visible frontal viewed face. Using two sets ensures that examples
belonging to the same scene series will all be used either as training pictures or as test pictures. This
prevents from trivial similarities between the training and test examples.

From every face of every scene we generate ten small grayscale faceimages by applying ro-
tation, scaling and translation to randomize its pose in the image plan. We have alsocollected
complex scenes (forests, buildings, furniture, etc.) from which we haveautomatically extracted tens
of thousands of background (non-face) pictures. This leads to a totalof 14,268 faces and 14,800
background pictures for training (respectively 5,202 and 5,584 for test).

All those images, faces and backgrounds, are of size 28×28 pixels, and with 256 grayscale
levels. Faces have been registered roughly so that the center of the eyes is in a 2×2 central square,
the distance between the eyes is between 10 to 12 pixels and the tilt is between−20 and+20 degrees
(see figure 2 for a few examples of images).

For each experiment both the training and the test sets contain 500 images, roughly divided into
faces and non-faces. Errors are averaged over 25 rounds with such training and test sets.

5.1.2 EDGE FEATURES

We use features similar to the edge fragment detectors in (Fleuret and Geman, 2001, 2002). They
are easy to compute, robust to illumination variations, and do not require anytuning.

Each feature is a boolean function indexed by a location(x,y) in the 28×28 reference frame
of the image, a directiond which can take 8 different values (see figures 3 and 4) and a tolerance
t which is an integer value between 1 and 7 (this maximum value has been fixed empirically). The
tolerance corresponds to the size of the neighborhood where the edge can “float”, i.e. where it has
to be present for the feature to be equal to 1 (see figure 3).

For every location in the reference frame (i.e. every pixel), we thus have7×8 features, one for
each couple direction / tolerance. For tolerance 1, those features are simple edge fragment detector
(see figure 4). For tolerance 2, they are disjunction of those edge fragment detectors on two locations
for each pixel, etc.

The total number of such features is 28×28×8×7 = 43,904.

1. http://www.fsf.org
2. http://www.csie.ntu.edu.tw/˜cjlin/libsvm
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Figure 2: The two upper rows show examples of background pictures, and the two lower rows show
examples of face pictures. All images are grayscale of size 28×28 pixels, extracted
from complete scenes found on the World Wide Web. Faces are roughly centered and
standardized in size.

y

x

y

x

t

Figure 3: The boolean features we are using are crude edge detectors, invariant to changes in il-
lumination and to small deformations of the image. The picture on the left shows the
criterion for a horizontal edge located in(x,y). The detector responds positively if the six
differences between pixels connected by a thin segment are lesser in absolute value than
the difference between the pixels connected by the thick segment. The relative values of
the two pixels connected by the thick line define the polarity of the edge (dark tolight or
light to dark). The picture on the right shows the strip where the edge can “float” for the
feature to respond when the tolerancet is equal to 5.
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Figure 4: The original grayscale pictures are shown on the left. The eight binary maps on the right
show the responses of the edge detectors at every locations in the 28×28 frame, for
every one of the 8 possible directions and polarities. The binary featuresare disjunctions
(ORings) of such edge detectors in small neighborhoods, which ensuretheir robustness
to image deformations.

5.2 Prediction of Molecular Bio-activity

The second data set is based on 1,909 compounds tested for their ability to bind to a target site on
thrombin. This corresponds to a drug-design task in which one tries to predict which molecules will
achieve the expected effect.

Each compound has a binary class (activeor inactive) and 139,351 binary features standing for
as many three-dimensional properties. The exact semantic of those features remains unknown but is
consistent among the samples. To be able to use many techniques in our comparisons, we restricted
the number of binary features to 2,500 by a rough random sampling, since the computation time
would have been intractable with classical methods on such a large number ofbinary features.

All the experiments are done with 25 rounds of cross-validation. For eachone of this round,
100 samples are randomly picked as test examples, and all the others used for training. Since the
population are highly unbalanced (42 positive vs. 1867 negative examples), the balanced error rate
(average of false positive and false negative error rates) was usedboth for training and testing.

The dataset was provided by DuPont Pharmaceutical for the KDD-Cup 2001 competition3 and
was used in 2003 for the NIPS feature selection challenge4 under the name DOROTHEA.

6. Results

The experimental results we present in this section address both performance in term of error rates
and speed.

In §6.1, we compare several associations of a feature selection method (CMIM, MIM, C4.5,
random and AdaBoost as a feature selection method) and a classifier (naive Bayesian,k-NN, Gaus-
sian SVM, perceptron). Also, AdaBoost and a regularized version ofAdaBoost were tested on the
same data.

For the image recognition task, since the error rates with 50 features correspond roughly to the
asymptotic score of our main methods (CMIM + naive Bayesian and AdaBoost, see figure 5), we

3. http://www.cs.wisc.edu/˜dpage/kddcup2001/
4. http://www.nipsfsc.ecs.soton.ac.uk
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Figure 5: The asymptotic error rates are reached with 50 features on the picture classification task.

have used this number of features for the extensive comparisons. Similarly, the number of features
was 10 for the bio-activity prediction.

The σ parameter of the Gaussian kernel was chosen separately for every feature selection
method by optimizing the test error with a first series of 25 rounds. The training and test errors
reported in the results section are estimated by running 25 other rounds of cross-validation. The
results may suffer slightly from over-fitting and over-estimate the score of the SVM. However the
effect is likely to be negligible considering the large size of the complete sets.

In §6.2 we compare the fast implementation of CMIM to the naive one and provide experimental
computation times in the task of image recognition.

6.1 Error Rates

To quantify the statistical significance in our comparisons, we estimate empiricalerror rates form
the data sets, but also the empirical variance of those estimates. Those variances are computed under
the assumption that the samples are independent and identically distributed.

We provide for every experiments in the tables 1, 2 and 3 both the estimated testerror e and
the score e?−e√

σe?+σe
wheree? is the score of our reference setting (CMIM + Naive Bayesian), andσe?

andσe are the empirical variances of the error rate estimates. This empirical variance are estimated
simply as empirical variance of Bernoulli variables.

6.1.1 IMAGE CLASSIFICATION

The first round of experiments uses the dataset of pictures described in§5.1. The results on ta-
ble 1 show that the best scores are obtained with CMIM + SVM, closely followed by AdaBoost
features combined also with SVM. The Naive Bayesian with CMIM features performs pretty well,
ranking fourth. CMIM as a feature selection method is always the best, forany given classification
technique.

It is meaningful to note that the computational cost of SVM is few orders of magnitudes higher
than those of AdaBoost alone or CMIM + Bayesian as it requires for training the computation of the
optimalσ through cross-validation, and requires during classification the evaluation of hundreds of
exponentials.
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Classifier Training error Test error (e) e?−e√
σe?+σe

CMIM + SVM 0.53% 1.12% −2.77
AdaBoost feature selection + SVM 0% 1.21% −2.11
AdaBoost 0% 1.45% −0.45
CMIM feature selection + naive Bayesian 0.52% 1.52% –
CMIM feature selection +k-NN 0% 1.69% 1.07
AdaBoost feature selection +k-NN 0% 1.71% 1.19
FCBF feature selection + SVM 0.75% 1.85% 2.02
FCBF feature selection + naive Bayesian 1.28% 2.13% 3.60
CMIM feature selection + perceptron 0% 2.28% 4.40
AdaBoost feature selection + perceptron 0% 2.46% 5.32
C4.5 feature selection + SVM 0.73% 2.58% 5.91
FCBF feature selection +k-NN 0% 2.75% 6.73
C4.5 feature selection + perceptron 0% 3.26% 9.02
C4.5 feature selection + naive Bayesian 1.4% 3.28% 9.11
FCBF feature selection + perceptron 0% 3.50% 10.03
AdaBoost feature selection + naive Bayesian 0.4% 3.51% 10.06
C4.5 feature selection +k-NN 0% 3.57% 10.31
MIM + SVM 3 .26% 5.67% 17.73
MIM feature selection + perceptron 3.56% 8.28% 25.06
MIM feature selection + naive Bayesian 5.58% 8.54% 25.72
MIM feature selection +k-NN 0.23% 8.99% 26.84
Random feature selection + SVM 9.04% 11.86% 33.44
Random feature selection + perceptron 13.36% 17.45% 44.66
Random feature selection +k-NN 0.30% 21.54% 52.18
Random feature selection + naive Bayesian 21.69% 24.77% 57.93

Table 1: Error rates with 50 features on the accurate face vs. background data set. The right col-
umn shows the difference between the test error ratee? of the CMIM + naive Bayesian
method and the test error ratee in the given row, divided by the standard deviation of that
difference.
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To test the robustness of the combination of CMIM and naive Bayes, we have run a second
round of experiments with noisy training data, known to be problematic for boosting schemes. We
generated the new training set by flipping at random 5% of the training labels. This corresponds to
a realistic situation in which some training examples have been mis-labelled.

It creates a difficult situation for learning methods which take care of outliers, since there are
5% of them, distributed uniformly among the training population. Results are summarized in table
2. Note that the performance of the regularized version of AdaBoost correspond to the optimal
performance on thetest set.

All methods based on perceptron or boosting have high error rates, since they are very sensitive
to outliers. The best classification techniques are those protected from over-fitting, thus SVM, Naive
Bayesian and regularized AdaBoost, which take the 8 first rankings. Again in this experiment,
CMIM is the best feature selection method for any classification scheme.

The FCBF method, which is related to CMIM since it looks for features both highly correlated
with the class to predict and two-by-two uncorrelated scores very well, better than in the non-noisy
case. It may be due to the fact that in this noisy situation protection from overfitting matters more
than picking optimal features on the training set.

6.1.2 MOLECULAR BIO-ACTIVITY

This third round of experiments is more difficult to analyze since the characteristics of the features
we deal with are mainly unknown. Because of the highly unbalanced population, methods sensitive
to overfitting perform badly.

Results for these experiments are given 3. Except in one case (SVM), CMIM leads to the lowest
error rate for any classification method. Also, when combined with the naiveBayesian rule, it gets
lower error rates than SVM or nearest-neighbors.

The same dataset was used in the NIPS 2003 challenge,5 in which it was divided in three subsets
for training, test and validation (respectively of size 800, 350 and 800). Our main method CMIM
+ Bayesian achieves 12.46% error rate on the validation set without any tunning, while the top-
ranking method achieves 5.47% with a Bayesian Network, see (Guyon et al., 2004) for more details
on the participants and results.

6.2 Speed

The image classification task requires the selection of 50 features among 43,904 with a training set
of 500 examples. The naive implementation of CMIM takes 18800ms to achieve this selection on
a standard 1Ghz personal computer, while with the fast version this duration drops to 255ms for
the exact same selection, thus a factor of 73. For the thrombin dataset (selecting 10 features out of
139,351 based on 1,909 examples) the computation times drops from 156,545ms with the naive
implementation to 1,401ms with the fast one, corresponding to a factor 110.

The dramatic gain in performance can be explained by looking at the number of calls tocond mut inf,
which drops for the faces by a factor 80 (from 4,346,496 to 54,928), and for the thrombin dataset
by a factor 220 (from 13,795,749 to 62,125).

The proportion of calls tocond mut inf for the face dataset is depicted on figure 6. We have
also looked at the number of calls required to sort out each feature. In the simple implementation
that number is the same for all features and is equal to the number of selectedfeaturesK. For the fast

5. http://www.nipsfsc.ecs.soton.ac.uk
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Classifier Training error Test error (e) e?−e√
σe?+σe

CMIM + SVM 5.68% 1.37% −3.59
FCBF feature selection + SVM 6.02% 1.49% −2.79
CMIM feature selection + naive Bayesian 5.06% 1.95% –
FCBF feature selection + naive Bayesian 5.38% 2.39% 2.38
C4.5 + SVM 5.57% 2.99% 5.30
AdaBoostreg (optimized on test set) 3.80% 3.06% 5.61
C4.5 feature selection + naive Bayesian 6.14% 3.62% 8.03
AdaBoost feature selection + SVM 4.39% 4.18% 10.25
CMIM feature selection +k-NN 0.08% 5.36% 14.42
MIM + SVM 7 .85% 5.87% 16.07
AdaBoost 0.58% 6.33% 17.48
C4.5 feature selection +k-NN 0.71% 6.34% 17.52
FCBF feature selection +k-NN 0.87% 6.50% 17.99
AdaBoost feature selection +k-NN 0.39% 7.20% 20.02
AdaBoost feature selection + perceptron 0.12% 8.23% 22.82
MIM feature selection + naive Bayesian 9.47% 8.59% 23.75
CMIM feature selection + perceptron 7.36% 9.32% 25.60
FCBF feature selection + naive Bayesian 8.20% 9.33% 25.62
AdaBoost feature selection + naive Bayesian 10.28% 9.46% 25.94
C4.5 feature selection + perceptron 7.58% 11.06% 29.71
Random + SVM 13.00% 12.19% 32.23
MIM feature selection +k-NN 2.92% 11.46% 30.61
MIM feature selection + perceptron 11.53% 13.12% 34.23
Random feature selection + perceptron 19.47% 20.58% 48.75
Random feature selection +k-NN 1.43% 24.77% 56.29
Random feature selection + naive Bayesian 24.13% 24.99% 56.68

Table 2: Error rates with 50 features on the face vs. background data set whose training labels have
been flipped with probability 5%. The right column shows the difference between the test
error ratee? of the CMIM + naive Bayesian method and the test error ratee in the given
row, divided by the standard deviation of that difference.
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Classifier Training error Test error (e) e?−e√
σe?+σe

CMIM feature selection + naive Bayesian 10.45% 11.72% –
AdaBoost feature selection + SVM 9.35% 12.99% 1.36
AdaBoost feature selection + naive Bayesian 10.29% 13.60% 1.99
AdaBoostreg (optimized on test set) 9.48% 13.64% 2.04
CMIM + SVM 13.21% 13.65% 2.05
AdaBoost 9.49% 13.76% 2.16
C4.5 feature selection + naive Bayesian 9.22% 13.90% 2.31
C4.5 + SVM 8.72% 17.34% 5.65
CMIM feature selection +k-NN 17.17% 18.77% 6.97
FCBF feature selection + naive Bayesian 13.62% 19.22% 7.37
FCBF feature selection + SVM 13.39% 23.14% 10.76
MIM feature selection + naive Bayesian 21.53% 23.35% 10.94
CMIM feature selection + perceptron 20.31% 23.51% 11.08
C4.5 feature selection + perceptron 12.86% 23.88% 11.38
MIM + SVM 24.65% 25.75% 12.93
FCBF feature selection + perceptron 21.98% 27.06% 13.98
FCBF feature selection +k-NN 19.28% 27.94% 14.68
Random + SVM 30.10% 30.92% 17.05
C4.5 feature selection +k-NN 24.18% 34.11% 19.54
Random feature selection + naive Bayesian 39.32% 40.13% 24.23
MIM feature selection + perceptron 32.70% 40.27% 24.34
Random feature selection + perceptron 43.61% 45.68% 28.63
Random feature selection +k-NN 45.09% 47.29% 29.94
MIM feature selection +k-NN 50.00% 50.00% 32.19

Table 3: Error rates with 10 features on the Thrombin dataset. The right column shows the differ-
ence between the test error ratee? of the CMIM + naive Bayesian method and the test error
ratee in the given row, divided by the standard deviation of that difference.
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Figure 6: Those curves show the proportion of calls tocond mut inf actually done in the fast ver-
sion compared to the standard version for each iteration. The curve on theleft shows the
proportion for each step of the selection process, while the curve on the right shows the
proportion of cumulate evaluations since the beginning. As it can be seen,this proportion
is around1%on the average.
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Figure 7: This curve shows on an logarithmic scale how many features (y axis) require a certain
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features actually selected, which had to be compared with all the other features, thus
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version, this number depends on the feature, as very inefficient ones will probably require only one
of them. The distribution of the number of evaluations is represented on figure 7 on a logarithmic
scale, and fits roughly 100× 0.92n. This means that there are roughly 8% fewer features which
requiren+1 evaluations than features which requiren evaluations.
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7. Discussion

The experimental results we provide show the strength of the CMIM, even when combined with a
simple naive Bayesian rule, since it ranks 4th, 3rd and 1st in the three experiments in which it is
compared with 26 other combination feature selection + classifier.

Classification Power

It is easy to build a task CMIM can not deal with. Consider a situation where the positive population
is a mixture of two sub-populations, and where half of the features provideinformation about the
first population, while the other features provide information about the second population. This can
happen in an image context by considering two different objects which do not share informative
edges.

In such a situation, if one sub-population dominates statistically, CMIM does not pick feature
providing information about the second sub-population. It would go on picking feature informative
about the domineering sub-population as long as independent features remain.

A feature selection based on C4.5 would be able to catch informative features since the minority
class would quickly be revealed as the source of uncertainty, and features dedicated to them would
be selected. Similarly, AdaBoost can handle such a challenge because theerror concentrates quickly
on the second sub-population, which eventually drives the choice of features. In fact, both can be
ween as wrappers since they take into account the classification outcome to select the features.

We could fix this weakness of CMIM by weighting challenging examples as well,forcing the
algorithm to care about problematic minorities and pick features related to them. This would be the
dual solution to AdaBoost regularization techniques which on the contraryreduce the influence of
outliers.

From that point of view, CMIM and AdaBoost are examples of two families oflearning methods.
The first one is able to cope with overfitting by making a strong assumption of homogeneity of the
informative power of features, while the second one is able to deal with a composed population by
sequentially focusing on sub populations as soon as they become the source of error.

In both cases, the optimal tradeoff has to be specified on a per-problem basis, as there is no
absolute way to know if the training examples are reliable examples of a complex mixture or noisy
examples of an homogeneous population.

Speed

CMIM and boosting share many similarities from an algorithmic point of view. Bothof them pick
features one after another and compute at each iteration a score for every single candidate which
requires to go through every training example.

Despite this similarity the lazy evaluation idea can not be applied directly to boosting. One
could try to estimate a bound of the score of a weak learner at iterationk+1 (which is a weighted
error rate), given its value at iterationk, using a bound on the weight variation. Practically, this idea
gives very bad results because the variation can not be controlled efficiently and turns out to be very
pessimistic. It leads to a negligible rate of rejection of the candidate features tocheck.

The feature selection based on C4.5 is even more difficult to optimize. Because of the complex
interactions between features selected in previous nodes and the remainingcandidates at a given
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node, there is no simple way to predict that a feature can be ignored withoutreducing the perfor-
mance of the method.

Usability

The CMIM algorithm does not require the tuning of any regularizing parameter, and since the im-
plementation is an exact exhaustive search it also avoids the tuning of an optimization scheme.

Also, compared to methods like SVM or AdaBoost, both the feature selection criterion and
the naive Bayesian classifier have a very clear statistical semantic. Since the naive Bayesian is an
approximation of a likelihood ratio test, it can be easily combined with other techniques such as
HMM, Bayesian Inference and more generally with other statistical methods.

Multi-class, Continuous Valued Features and Regression

Extension to the multi-class problem can be addressed either with a classifier-agnostic technique (for
instance training several classifiers dedicated to different binary problems which can be combined
into a multi-class predictor (Hastie and Tibshirani, 1998) or by extending CMIM and the Bayesian
classifier directly to the multi-class context.

In that case, the price to pay is both in term of accuracy and computation cost. The estimation of
the conditional mutual information requires the estimation of the empirical distribution of triples of
variables, orN3

c empirical probabilities in aNc class problem. Thus, accurate estimation requires as
many more training samples. From the implementation perspective the fast version can be kept as-is
but the computation of a conditional mutual information isO(N3

c ), and the boolean computations
by block require aO(Nc) memory usage.

Extension to the case of continuous valued features and to regression (continuous valued class)
is the center of interest of our current works. It is natural as soon asparametric density models are
provided for any variable, couple of variables and triplet of variables.For any couple of featuresXi ,
Xj , the estimation of the conditional mutual information givenY requires first an estimation of the
model parameterα according to the training data.

The most naive form of multi-variable density would be piece-wise constant,thus discretisation
with features of the formF = 1X≥t whereX is one of the original continuous feature. Such a model
would lead to the same weakness as those described above for the multi-classsituation.

If a more sophisticated model can legitimately be used – for instance multi-dimensional Gaus-
sian – the only difficulty is the computation of the conditional mutual information itself, requiring
sums over the space of values of products and ratios of such expressions. Depending on the ex-
istence of analytical form of this sum, the algorithm may require numerical integration and heavy
computations. Nevertheless, even if the computation of the conditional mutual information is ex-
pensive, the lazy evaluation trick presented in §2 can still be used, reducing the cost by the same
amount as in the provided results.

8. Conclusion

We have presented a simple and very efficient scheme for feature selection in a context of classi-
fication. On the experiments we have done CMIM is the best feature selectionmethod except in
one case (SVM for the thrombin experiment). Combined with a naive Bayesian classifier the scores
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we obtained are comparable or better than those of state-of-the-art techniques such as boosting or
Support Vector Machines, while requiring a training time of a few tenth of a second.

Because of its high speed, this learning method could be used to tune learnt structures on the fly,
to adapt them to the specific difficulties of the populations they have to deal with. In the context of
face detection, such an on-line training could exploit the specificities of the background population
and reduce the false-positive error rate. Also, it could be used in applications requiring the training
of a very large number of classifiers. Our current works in object recognition are based on several
thousands of classifiers which are built in a few minutes.
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