
Fast Black-box Variational Inference

through Stochastic Trust-Region Optimization

Jeffrey Regier
jregier@cs.berkeley.edu

Michael I. Jordan
jordan@cs.berkeley.edu

Jon McAuliffe
jon@stat.berkeley.edu

Abstract

We introduce TrustVI, a fast second-order algorithm for black-box variational
inference based on trust-region optimization and the “reparameterization trick.” At
each iteration, TrustVI proposes and assesses a step based on minibatches of draws
from the variational distribution. The algorithm provably converges to a stationary
point. We implemented TrustVI in the Stan framework and compared it to two
alternatives: Automatic Differentiation Variational Inference (ADVI) and Hessian-
free Stochastic Gradient Variational Inference (HFSGVI). The former is based
on stochastic first-order optimization. The latter uses second-order information,
but lacks convergence guarantees. TrustVI typically converged at least one order
of magnitude faster than ADVI, demonstrating the value of stochastic second-order
information. TrustVI often found substantially better variational distributions than
HFSGVI, demonstrating that our convergence theory can matter in practice.

1 Introduction

The “reparameterization trick” [1, 2, 3] has led to a resurgence of interest in variational inference (VI),
making it applicable to essentially any differentiable model. This new approach, however, requires
stochastic optimization rather than fast deterministic optimization algorithms like closed-form
coordinate ascent. Some fast stochastic optimization algorithms exist, but variational objectives have
properties that make them unsuitable: they are typically nonconvex, and the relevant expectations
cannot usually be replaced by finite sums. Thus, to date, practitioners have used SGD and its variants
almost exclusively. Automatic Differentiation Variational Inference (ADVI) [4] has been especially
successful at making variational inference based on first-order stochastic optimization accessible.
Stochastic first-order optimization, however, is slow in theory (sublinear convergence) and in practice
(thousands of iterations), negating a key benefit of VI.

This article presents TrustVI, a fast algorithm for variational inference based on second-order
trust-region optimization and the reparameterization trick. TrustVI routinely converges in tens
of iterations for models that take thousands of ADVI iterations. TrustVI’s iterations can be more
expensive, but on a large collection of Bayesian models, TrustVI typically reduced total computation
by an order of magnitude. Usually TrustVI and ADVI find the same objective value, but when they
differ, TrustVI is typically better.

TrustVI adapts to the stochasticity of the optimization problem, raising the sampling rate for assessing
proposed steps based on a Hoeffding bound. It provably converges to a stationary point. TrustVI
generalizes the Newton trust-region method [5], which converges quadratically and has performed
well at optimizing analytic variational objectives even at an extreme scale [6]. With large enough
minibatches, TrustVI iterations are nearly as productive as those of a deterministic trust region
method. Fortunately, large minibatches make effective use of single-instruction multiple-data (SIMD)
parallelism on modern CPUs and GPUs.

TrustVI uses either explicitly formed approximations of Hessians or approximate Hessian-vector
products. Explicitly formed Hessians can be fast for low-dimensional problems or problems with
sparse Hessians, particularly when expensive computations (e.g., exponentiation) already need to be

performed to evaluate a gradient. But Hessian-vector products are often more convenient. They can
be computed efficiently through forward-mode automatic differentiation, reusing the implementation
for computing gradients [7, 8]. This is the approach we take in our experiments.

Fan et al. [9] also note the limitations of first-order stochastic optimization for variational inference:
the learning rate is difficult to set, and convergence is especially slow for models with substantial
curvature. Their approach is to apply Newton’s method or L-BFGS to problems that are both
stochastic and nonconvex. All stationary points—minima, maxima, and saddle points—act as
attractors for Newton steps, however, so while Newton’s method may converge quickly, it may
also converge poorly. Trust region methods, on the other hand, are not only unharmed by negative
curvature, they exploit it: descent directions that become even steeper are among the most productive.
In section 5, we empirically compare TrustVI to Hessian-free Stochastic Gradient Variation Inference
(HFSGVI) to assess the practical importance of our convergence theory.

TrustVI builds on work from the derivative-free optimization community [10, 11, 12]. The STORM
framework [12] is general enough to apply to a derivative-free setting, as well as settings where
higher-order stochastic information is available. STORM, however, requires that a quadratic model of
the objective function can always be constructed such that, with non-trivial probability, the quadratic
model’s absolute error is uniformly bounded throughout the trust region. That requirement can
be satisfied for the kind of low-dimensional problems one can optimize without derivatives, where
the objective may be sampled throughout the trust region at a reasonable density, but not for most
variational objective functions.

2 Background

Variational inference chooses an approximation to the posterior distribution from a class of candidate
distributions through numerical optimization [13]. The candidate approximating distributions qω
are parameterized by a real-valued vector !. The variational objective function L, also known as
the evidence lower bound (ELBO), is an expectation with respect to latent variables z that follow
an approximating distribution qω:

L(!) , Eqω {log p(x, z)� log qω(z)} . (1)

Here x, the data, is fixed. If this expectation has an analytic form, L may be maximized by
deterministic optimization methods, such as coordinate ascent and Newton’s method. Realistic
Bayesian models, however, not selected primarily for computational convenience, seldom yield
variational objective functions with analytic forms.

Stochastic optimization offers an alternative. For many common classes of approximating
distributions, there exists a base distribution p0 and a function gω such that, for e ⇠ p0 and z ⇠ qω,

gω(e)
d
= z. In words: the random variable z whose distribution depends on !, is a deterministic

function of a random variable e whose distribution does not depend on !. This alternative expression
of the variational distribution is known as the “reparameterization trick” [1, 2, 3, 14]. At each
iteration of an optimization procedure, ! is updated based on an unbiased Monte Carlo approximation
to the objective function:

L̂(!; e1, . . . , eN) ,
1

N

N
X

i=1

{log p(x, gω(ei))� log qω(gω(ei))} (2)

for e1, . . . , eN sampled from the base distribution.

3 TrustVI

TrustVI performs stochastic optimization of the ELBO L to find a distribution qω that approximates
the posterior. For TrustVI to converge, the ELBO only needs to satisfy Condition 1. (Subsequent
conditions apply to the algorithm specification, not the optimization problem.)

Condition 1. L : RD ! R is a twice-differentiable function of ! that is bounded above. Its gradient
has Lipschitz constant L.

Condition 1 is compatible with all models whose conditional distributions are in the exponential
family. The ELBO for a model with categorical random variables, for example, is twice differentiable
in its parameters when using a mean-field categorical variational distribution.

2

Algorithm 1 TrustVI

Require: Initial iterate !0 2 R
D; initial trust region radius �0 2 (0, �max]; and settings for the

parameters listed in Table 1.
for k = 0, 1, 2, . . . do

Draw stochastic gradient gk satisfying Condition 2.
Select symmetric matrix Hk satisfying Condition 3.

Solve for sk , argmax g|ks+
1

2
s|Hks : ksk �k.

Compute m0

k , g|ksk + 1

2
s|kHksk.

Select Nk satisfying Inequality 11 and Inequality 13.
Draw `0k1, . . . , `

0

kNk
satisfying Condition 4.

Compute `0k , 1

Nk

PNk

i=1
`0ki.

if `0k � ⌘m0

k � ��2k then
!k+1 !k + sk
�k+1 min(��k, �max)

else
!k+1 !k

�k+1 �k/�
end if

end for

Table 1: User-selected parameters for TrustVI

name brief description allowable range

⌘ model fitness threshold (0, 1/2]
� trust region expansion factor (1,1)
� trust region radius constraint (0,1)
↵ tradeoff between trust region radius and objective value (�/(1� ��2),1)
⌫1 tradeoff between both sampling rates (0, 1� ⌘)
⌫2 accuracy of “good” stochastic gradients’ norms (0, 1)
⌫3 accuracy of “good” stochastic gradients’ directions (0, 1� ⌘ � ⌫1)
⇣0 probability of “good” stochastic gradients (1/2, 1)
⇣1 probability of accepting a “good” step (1/(2⇣0), 1)
H maximum norm of the quadratic models’ Hessians [0,1)
�� maximum trust region radius for enforcing some conditions (0,1]
�max maximum trust region radius (0,1)

The domain of L is taken to be all of RD. If instead the domain is a proper subset of a real coordinate
space, the ELBO can often be reparameterized so that its domain is RD [4].

TrustVI iterations follow the form of common deterministic trust region methods: 1) construct a
quadratic model of the objective function restricted to the current trust region; 2) find an approximate
optimizer of the model function: the proposed step; 3) assess whether the proposed step leads to
an improvement in the objective; and 4) update the iterate and the trust region radius based on the
assessment. After introducing notation in Section 3.1, we describe proposing a step in Section 3.2
and assessing a proposed step in Section 3.3. TrustVI is summarized in Algorithm 1.

3.1 Notation

TrustVI’s iteration number is denoted by k. During iteration k, until variables are updated at its
end, !k is the iterate, �k is the trust region radius, and L(!k) is the objective-function value. As

shorthand, let Lk , L(!k).

During iteration k, a quadratic model mk is formed based on a stochastic gradient gk of L(!k), as
well as a local Hessian approximation Hk. The maximizer of this model on the trust region, sk, we

call the proposed step. The maximum, denoted m0

k , mk(sk), we refer to as the model improvement.
We use the “prime” symbol to denote changes relating to a proposed step sk that is not necessarily

3

accepted; e.g., L0

k = L(!k + sk)�Lk. We use the ∆ symbol to denote change across iterations; e.g.,
∆Lk = Lk+1 � Lk. If a proposed step is accepted, then, for example, ∆Lk = L0

k and ∆�k = �0k.

Each iteration k has two sources of randomness: mk and `0k, an unbiased estimate of L0

k that
determines whether to accept proposed step sk. `0k is based on an iid random sample of size Nk

(Section 3.3).

For the random sequence m1, `
0

1,m2, `
0

2, . . ., it is often useful to condition on the earlier variables

when reasoning about the next. Let M�

k refer to the �-algebra generated by m1, . . . ,mk�1 and

`01, . . . , `
0

k�1
. When we condition on M�

k , we hold constant all the outcomes that precede iteration

k. Let M+

k refer to the �-algebra generated by m1, . . . ,mk and `01, . . . , `
0

k�1
. When we condition

on M+

k , we hold constant all the outcomes that precede drawing the sample that determines whether
to accept the kth proposed step.

Table 1 lists the user-selected parameters that govern the behavior of the algorithm. TrustVI
converges to a stationary point for any selection of parameters in the allowable range (column 3). As
shorthand, we refer to a particular trust region radius, derived from the user-selected parameters, as

��k , min

��,

r

⌘m0

k

�
,

⌫2⌫3krLkk

⌫2L+ ⌫2⌘H + 8H

!

. (3)

3.2 Proposing a step

At each iteration, TrustVI proposes the step sk that maximizes the local quadratic approximation

mk(s) = Lk + g|ks+
1

2
s|Hks : ksk �k (4)

to the function L restricted to the trust region.

We set gk to the gradient of L̂ at !k, where L̂ is evaluated using a freshly drawn sample e1, . . . , eN .
From Equation 2 we see that gk is a stochastic gradient constructed from a minibatch of size N . We
must choose N large enough to satisfy the following condition:

Condition 2. If �k ��k , then, with probability ⇣0, given M�

k ,

g|krLk � (⌫1 + ⌫3)krLkkkgkk+ ⌘kgkk
2 (5)

and

kgkk � ⌫2krLkk. (6)

Condition 2 is the only restriction on the stochastic gradients: they have to point in roughly the right
direction most of the time, and they have to be of roughly the right magnitude when they do. By
constructing the stochastic gradients from large enough minibatches of draws from the variational
distribution, this condition can always be met.

In practice, we cannot observe rL, and we do not explicitly set ⌫1, ⌫2, and ⌫3. Fortunately, Con-
dition 2 holds as long as our stochastic gradients remain large in relation to their variance. Because
we base each stochastic gradient on at least one sizable minibatch, we always have many iid samples
to inform us about the population of stochastic gradients. We use a jackknife estimator [15] to con-
servatively bound the standard deviation of the norm of the stochastic gradient. If the norm of a given
stochastic gradient is small relative to its standard deviation, we double the next iteration’s sampling
rate. If it is large relative to its standard deviation, we halve it. Otherwise, we leave it unchanged.

The gradient observations may include randomness from sources other than sampling the variational
distribution too. In the “doubly stochastic” setting [3], for example, the data is also subsampled.
This setting is fully compatible with our algorithm, though the size of the subsample may need to
vary across iterations. To simplify our presentation, we henceforth only consider stochasticity from
sampling the variational distribution.

Condition 3 is the only restriction on the quadratic models’ Hessians.

Condition 3. There exists finite H satisfying, for the spectral norm,

kHkk H a. s. (7)

for all iterations k with �k ��k .

4

For concreteness we bound the spectral norm of Hk, but a bound on any Lp norm suffices. The
algorithm specification does not involve H , but the convergence proof requires that H be finite.
This condition suffices to ensure that, when the trust region is small enough, the model’s Hessian
cannot interfere with finding a descent direction. With such mild conditions, we are free to use
nearly arbitrary Hessians. Hessians may be formed like the stochastic gradients, by sampling from
the variational distribution. The number of samples can be varied. The quadratic model’s Hessian
could even be set to the identity matrix if we prefer not to compute second-order information.

Low-dimensional models, and models with block diagonal Hessians, may be optimized explicitly
by inverting �Hk + ↵kI , where ↵k is either zero for interior solutions, or just large enough that
(�Hk + ↵kI)

�1gk is on the boundary of the trust region [5]. Matrix inversion has cubic runtime
though, and even explicitly storing Hk is prohibitive for many variational objectives.

In our experiments, we instead maximize the model without explicitly storing the Hessian, through
Hessian-vector multiplication, assembling Krylov subspaces through both conjugate gradient
iterations and Lanczos iterations [16, 17]. We reuse our Hessian approximation for two consecutive
iterations if the iterate does not change (i.e., the proposed steps are rejected). A new stochastic
gradient gk is still drawn for each of these iterations.

3.3 Assessing the proposed step

Deterministic trust region methods only accept steps that improve the objective by enough. In a
stochastic setting, we must ensure that accepting “bad” steps is improbable while accepting “good”
steps is likely.

To assess steps, TrustVI draws new samples from the variational distribution—we may not
reuse the samples that gk and Hk are based on. The new samples are used to estimate both
L(!k) and L(!k + sk). Using the same sample to estimate both quantities is analogous to a
matched-pairs experiment; it greatly reduces the variance of the improvement estimator. Formally,
for i = 1, . . . , NK , let eki follow the base distribution and set

`0ki , L̂(!k + sk; eki)� L̂(!k; eki). (8)

Let

`0k ,
1

Nk

Nk
X

i=1

`0ki. (9)

Then, `0k is an unbiased estimate of L0

k—the quantity a deterministic trust region method would use
to assess the proposed step.

3.3.1 Choosing the sample size

To pick the sample size NK , we need additional control on the distribution of the `0ki. The next
condition gives us that.

Condition 4. For each k, there exists finite �k such that the `0ki are �k-subgaussian.

Unlike the quantities we have introduced earlier, such as L and H , the �k need to be known to carry
out the algorithm. Because `0k1, `

0

k2, . . . are iid, �2
k may be estimated—after the sample is drawn—by

the population variance formula, i.e., 1

Nk�1

PNk

i=1
(`0ki � `0k). We discuss below, in the context of

setting Nk, how to make use of a “retrospective” estimate of �k in practice.

Two user-selected constants control what steps are accepted: ⌘ 2 (0, 1/2) and � > 0. The step
is accepted iff 1) the observed improvement `0k exceeds the fraction ⌘ of the model improvement
m0

k, and 2) the model improvement is at least a small fraction �/⌘ of the trust region radius squared.
Formally, steps are accepted iff

`0k � ⌘m0

k � ��2k. (10)

If ⌘m0

k < ��2k, the step is rejected regardless of `0k: we set Nk = 0.

Otherwise, we pick the smallest Nk such that

Nk �
2�2

k

(⌘m0

k + y)2
log

✓

⌧2�
2
k + y

⌧1�
2
k

◆

, 8y > max

✓

�
⌘m0

k

2
,�⌧2�

2
k

◆

(11)

5

where

⌧1 , ↵(1� ��2)� � and ⌧2 , ↵(�2 � ��2). (12)

Finding the smallest such Nk is a one-dimensional optimization problem. We solve it via bisection.

Inequality 11 ensures that we sample enough to reject most steps that do not improve the objective
sufficiently. If we knew exactly how a proposed step changed the objective, we could express in
closed form how many samples would be needed to detect bad steps with sufficiently high probability.
Since we do not know that, Inequality 11 is for all such change-values in a range. Nonetheless, Nk

is rarely large in practice: the second factor lower bounding Nk is logarithmic in y; in the first factor
the denominator is bounded away from zero.

Finally, if �k ��k , we also ensure Nk is large enough that

Nk �
�2�2

k log(1� ⇣1)

⌫21krLkk2�2k
. (13)

Selecting Nk this large ensures that we sample enough to detect most steps that improve the value of
the objective sufficiently when the trust region is small. This bound is not high in practice. Because
of how the `0ki are collected (a “matched-pairs experiment”), as �k becomes small, �k becomes small
too, at roughly the same rate.

In practice, at the end of each iteration, we estimate whether Nk was large enough to meet the condi-
tions. If not, we set Nk+1 = 2Nk. If Nk exceeds the size of the gradient’s minibatch, and it is more
than twice as large as necessary to meet the conditions, we set Nk+1 = Nk/2. These Nk function
evaluations require little computation compared to computing gradients and Hessian-vector products.

4 Convergence to a stationary point

To show that TrustVI converges to a stationary point, we reason about the stochastic process (�k)
1

k=1
,

where

�k , Lk � ↵�2k. (14)

In words, �k is the objective function penalized by the weighted squared trust region radius.

Because TrustVI is stochastic, neither Lk nor �k necessarily increase at every iteration. But, �k

increases in expectation at each iteration (Lemma 1). That alone, however, does not suffice to show
TrustVI reaches a stationary point; �k must increase in expectation by enough at each iteration.

Lemma 1 and Lemma 2 in combination show just that. The latter states that the trust region radius
cannot remain small unless the gradient is small too, while the former states that the expected
increase is a constant fraction of the squared trust region radius. Perhaps surprisingly, Lemma 1
does not depend on the quality of the quadratic model: Rejecting a proposed step always leads to
sufficient increase in �k. Accepting a bad step, though possible, rapidly becomes less likely as the
proposed step gets worse. No matter how bad a proposed step is, �k increases in expectation.

Theorem 1 uses the lemmas to show convergence by contradiction. The structure of its proof,
excluding the proofs of the lemmas, resembles the proof from [5] that a deterministic trust region
method converges. The lemmas’ proofs, on the other hand, more closely resemble the style of
reasoning in the stochastic optimization literature [12].

Theorem 1. For Algorithm 1,

lim
k!1

krLkk = 0 a. s. (15)

Proof. By Condition 1, L is bounded above. The trust region radius �k is positive almost surely by
construction. Therefore, �k is bounded above almost surely by the constant supL. Let the constant

c , supL� �0. Then,

1
X

k=1

E[∆�k | M�

k] c a. s. (16)

6

By Lemma 1, E[∆�k | M+

k], and hence E[∆�k | M�

k], is almost surely nonnegative. Therefore,

E[∆�k | M�

k]! 0 almost surely. By an additional application of Lemma 1, �2k ! 0 almost surely
too.

Suppose there exists K0 and ✏ > 0 such that krLkk � ✏ for all k > K1. Fix K � K0 such that
�k meets the conditions of Lemma 2 for all k � K. By Lemma 2, (log

γ
∆�k)

1

K is a submartingale.
A submartingale almost surely does not go to �1, so �k almost surely does not go to 0. The
contradiction implies that krLkk < ✏ infinitely often.

Because our choice of ✏ was arbitrary,

lim inf
k!1

krLkk = 0 a. s. (17)

Because �2k ! 0 almost surely, this limit point is unique.

Lemma 1.

E
⇥

∆�k | M+

k

⇤

� ��2k a. s. (18)

Proof. Let ⇡ denote the probability that the proposed step is accepted. Then,

E[∆�k | M+

k] = (1� ⇡)[↵(1� ��2)�2k] + ⇡[L0

k � ↵(�2 � 1)]�2k (19)

= ⇡[L0

k � ⌧2�
2
k] + ⌧1�

2
k + ��2k. (20)

By the lower bound on ↵, ⌧1 � 0. If ⌘m0

k < ��2k, the step is rejected regardless of `k, so the lemma

holds. Also, if L0

k � ⌧2�
2
k, then lemma holds for any ⇡ 2 [0, 1]. So, consider just L0

k < ⌧2�
2
k and

⌘m0

k � ��2k.

The probability ⇡ of accepting this step is a tail bound on the sum of iid subgaussian random
variables. By Condition 4, Hoeffding’s inequality applies. Then, Inequality 11 lets us cancel some
of the remaining iteration-specific variables:

⇡ = P(`0k � ⌘m0

k | M+

k) (21)

= P(`0k � L0

k � ⌘m0

k � L0

k | M+

k) (22)

= P

NK
X

i=1

(`0ki � L0

k) � (⌘m0

k � L0

k)Nk

�

�

�
M+

k

!

(23)

 exp

⇢

�
(⌘m0

k � L0

k)
2Nk

2�2
k

�

(24)

⌧1�

2
k

⌧2�
2
k � L0

k

. (25)

The lemma follows from substituting Inequality 25 into Equation 20.

Lemma 2. For each iteration k, on the event �k ��k , we have

P(`0k � ⌘m0

k | M�

k) � ⇣0⇣1 >
1

2
. (26)

The proof appears in Appendix A of the supplementary material.

5 Experiments

Our experiments compare TrustVI to both Automatic Differentiation Variational Inference (ADVI) [4]
and Hessian-free Stochastic Gradient Variational Inference (HFSGVI) [9]. We use the authors’
Stan [21] implementation of ADVI, and implement the other two algorithms in Stan as well.

Our study set comprises 183 statistical models and datasets from [22], an online repository of
open-source Stan models and datasets. For our trials, the variational distribution is always mean-field
multivariate Gaussian. The dimensions of ELBO domains range from 2 to 2012.

7

100 101 102 103 104

runtime (oracle calls)

103

104

105

106

107

108

109

1010

E
L
B

O

ADVI

TrustVI

HFSGVI

-

-

-

-

-

-

-

-

(a) A variance components model (“Dyes”) from [18].
18-dimensional domain.

100 101 102 103 104

runtime (oracle calls)

103

104

105

106

107

108

E
L
B

O

ADVI

TrustVI

HFSGVI

-

-

-

-

-

-

(b) A bivariate normal hierarchical model (“Birats”)
from [19]. 132-dimensional domain.

100 101 102 103 104

runtime (oracle calls)

102.90

102.95

103.00

103.05

103.10

103.15

103.20

103.25

E
L
B

O

ADVI

TrustVI

HFSGVI

-

-

-

-

-

-

-

-

(c) A multi-level linear model (“Electric Chr”)
from [20]. 100-dimensional domain.

100 101 102 103 104

runtime (oracle calls)

103.2

103.4

103.6

103.8

104.0

104.2

E
L
B

O

ADVI

TrustVI

HFSGVI

-

-

-

-

-

-

(d) A multi-level linear model (“Radon Redundant
Chr”) from [20]. 176-dimensional domain.

Figure 1: Each panel shows optimization paths for five runs of ADVI, TrustVI, and HFSGVI, for
a particular dataset and statistical model. Both axes are log scale.

In addition to the final objective value for each method, we compare the runtime each method
requires to produce iterates whose ELBO values are consistently above a threshold. As the threshold,
for each pair of methods we compare, we take the ELBO value reached by the worse performing
method, and subtract one nat from it.

We measure runtime in “oracle calls” rather than wall clock time so that the units are independent
of the implementation. Stochastic gradients, stochastic Hessian-vector products, and estimates
of change in ELBO value are assigned one, two, and one oracle calls, respectively, to reflect the
number of floating point operations required to compute them. Each stochastic gradient is based
on a minibatch of 256 samples of the variational distribution. The number of variational samples
for stochastic Hessian-vector products and for estimates of change (85 and 128, respectively) are
selected to match the degree of parallelism for stochastic gradient computations.

To make our comparison robust to outliers, for each method and each model, we optimize five times,
but ignore all runs except the one that attains the median final objective value.

5.1 Comparison to ADVI

ADVI has two phases that contribute to runtime: During the first phase, a learning rate is selected
based on progress made by SGD during trials of 50 (by default) “adaptation” SGD iterations, for
as many as six learning rates. During the second phase, the variational objective is optimized with
the learning rate that made the most progress during the trials. If the number of adaptation iterations
is small relative to the number of iterations needed to optimize the variational objective, then the
learning rate selected may be too large: what appears most productive at first may be overly “greedy”
for a longer run. Conversely, a large number of adaptation iteration may leave little computational
budget for the actual optimization. We experimented with both more and fewer adaptation iterations

8

than the default but did not find a setting that was uniformly better than the default. Therefore, we
report on the default number of adaption iterations for our experiments.

Case studies. Figure 1 and Appendix B show the optimization paths for several models, chosen to
demonstrate typical performance. Often ADVI does not finish its adaptation phase before TrustVI
converges. Once the adaptation phase ends, ADVI generally increased the objective value function
more gradually than TrustVI did, despite having expended iterations to tune its learning rate.

Quality of optimal points. For 126 of the 183 models (69%), on sets of five runs, the median optimal
values found by ADVI and TrustVI did not differ substantively. For 51 models (28%), TrustVI found
better optimal values than ADVI. For 6 models (3%), ADVI found better optimal values than TrustVI.

Runtime. We excluded model-threshold pairs from the runtime comparison that did not require at
least five iterations to solve; they were too easy to be representative of problems where the choice
of optimization algorithm matters. For 136 of 137 models (99%) remaining in our study set, TrustVI
was faster than ADVI. For 69 models (50%), TrustVI was at least 12x faster than ADVI. For 34
models (25%), TrustVI was at least 36x faster than ADVI.

5.2 Comparison to HFSGVI

HFSGVI applies Newton’s method—an algorithm that converges for convex and deterministic
objective functions—to an objective function that is neither. But do convergence guarantees matter
in practice?

Often HFSGVI takes steps so large that numerical overflow occurs during the next iteration: the
gradient “explodes” during the next iteration if we take a bad enough step. With TrustVI, we reject
obviously bad steps (e.g., those causing numerical overflow) and try again with a smaller trust region.
We tried several heuristics to workaround this problem with HFSGVI, including shrinking the
norm of the very large steps that would otherwise cause numerical overflow. But “large” is relative,
depending on the problem, the parameter, and the current iterate; severely restricting step size would
unfairly limit HFSGVI’s rate of convergence. Ultimately, we excluded 23 of the 183 models from
further analysis because HFSGVI consistently generated numerical overflow errors for them, leaving
160 models in our study set.

Case studies. Figure 1 and Appendix B show that even when HFSGVI does not step so far as to
cause numerical overflow, it nonetheless often makes the objective value worse before it gets better.
HFSGVI, however, sometimes makes faster progress during the early iterations, while TrustVI is
rejecting steps as it searches for an appropriate trust region radius.

Quality of optimal points. For 107 of the 160 models (59%), on sets of five runs, the median optimal
value found by TrustVI and HFSGVI did not differ substantively. For 51 models (28%), TrustVI
found a better optimal values than HFSGVI. For 1 model (0.5%), HFSGVI found a better optimal
value than TrustVI.

Runtime. We excluded 45 model-threshold pairs from the runtime comparison that did not require
at least five iterations to solve, as in Section 5.1. For the remainder of the study set, TrustVI was
faster than HFSGVI for 61 models, whereas HFSGVI was faster than TrustVI for 54 models. As
a reminder, HFSGVI failed to converge on another 23 models that we excluded from the study set.

6 Conclusions

For variational inference, it is no longer necessary to pick between slow stochastic first-order
optimization (e.g., ADVI) and fast-but-restrictive deterministic second-order optimization. The
algorithm we propose, TrustVI, leverages stochastic second-order information, typically finding
a solution at least one order of magnitude faster than ADVI. While HFSGVI also uses stochastic
second-order information, it lacks convergence guarantees. For more than one-third of our
experiments, HFSGVI terminated at substantially worse ELBO values than TrustVI, demonstrating
that convergence theory matters in practice.

9

References

[1] Diederik Kingma and Max Welling. Auto-encoding variational Bayes. In International Conference on
Learning Representations, 2014.

[2] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In International Conference on Machine Learning, 2014.

[3] Michalis Titsias and Miguel Lázaro-Gredilla. Doubly stochastic variational Bayes for non-conjugate
inference. In International Conference on Machine Learning, 2014.

[4] Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M. Blei. Automatic
Differentiation Variational Inference. Journal of Machine Learning Research, 18(14):1–45, 2017.

[5] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer, 2nd edition, 2006.

[6] Jeffrey Regier et al. Learning an astronomical catalog of the visible universe through scalable Bayesian
inference. arXiv preprint arXiv:1611.03404, 2016.

[7] Jeffrey Fike and Juan Alonso. Automatic differentiation through the use of hyper-dual numbers for second
derivatives. In Recent Advances in Algorithmic Differentiation, pages 163–173. Springer, 2012.

[8] Barak A Pearlmutter. Fast exact multiplication by the Hessian. Neural Computation, 6(1):147–160, 1994.

[9] Kai Fan, Ziteng Wang, Jeffrey Beck, James Kwok, and Katherine Heller. Fast second-order stochastic
backpropagation for variational inference. In Advances in Neural Information Processing Systems, 2015.

[10] Sara Shashaani, Susan Hunter, and Raghu Pasupathy. ASTRO-DF: Adaptive sampling trust-region op-
timization algorithms, heuristics, and numerical experience. In IEEE Winter Simulation Conference, 2016.

[11] Geng Deng and Michael C Ferris. Variable-number sample-path optimization. Mathematical Programming,
117(1):81–109, 2009.

[12] Ruobing Chen, Matt Menickelly, and Katya Scheinberg. Stochastic optimization using a trust-region
method and random models. Mathematical Programming, pages 1–41, 2017.

[13] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians.
Journal of the American Statistical Association, 2017.

[14] James Spall. Introduction to stochastic search and optimization: Estimation, simulation, and control.
John Wiley & Sons, 2005.

[15] Bradley Efron and Charles Stein. The jackknife estimate of variance. The Annals of Statistics, pages
586–596, 1981.

[16] Nicholas Gould, Stefano Lucidi, Massimo Roma, and Philippe Toint. Solving the trust-region subproblem
using the Lanczos method. SIAM Journal on Optimization, 9(2):504–525, 1999.

[17] Felix Lenders, Christian Kirches, and Andreas Potschka. trlib: A vector-free implementation of the GLTR
method for iterative solution of the trust region problem. arXiv preprint arXiv:1611.04718, 2016.

[18] OpenBugs developers. Dyes: Variance components model. http://www.openbugs.net/Examples/
Dyes.html, 2017. [Online; accessed Oct 8, 2017].

[19] OpenBugs developers. Rats: A normal hierarchical model. http://www.openbugs.net/Examples/
Rats.html, 2017. [Online; accessed Oct 8, 2017].

[20] Andrew Gelman and Jennifer Hill. Data analysis using regression and multilevel/hierarchical models.
Cambridge University Press, 2006.

[21] Bob Carpenter et al. Stan: A probabilistic programming language. Journal of Statistical Software, 20, 2016.

[22] Stan developers. https://github.com/stan-dev/example-models, 2017. [Online; accessed Jan
3, 2017; commit 6fbbf36f9d14ed69c7e6da2691a3dbe1e3d55dea].

[23] OpenBugs developers. Alligators: Multinomial-logistic regression. http://www.openbugs.net/
Examples/Aligators.html, 2017. [Online; accessed Oct 4, 2017].

[24] OpenBugs developers. Seeds: Random effect logistic regression. http://www.openbugs.net/
Examples/Seeds.html, 2017. [Online; accessed Oct 4, 2017].

[25] David Lunn, Chris Jackson, Nicky Best, Andrew Thomas, and David Spiegelhalter. The BUGS book:
A practical introduction to Bayesian analysis. CRC press, 2012.

10

http://www.openbugs.net/Examples/Dyes.html
http://www.openbugs.net/Examples/Dyes.html
http://www.openbugs.net/Examples/Rats.html
http://www.openbugs.net/Examples/Rats.html
https://github.com/stan-dev/example-models
http://www.openbugs.net/Examples/Aligators.html
http://www.openbugs.net/Examples/Aligators.html
http://www.openbugs.net/Examples/Seeds.html
http://www.openbugs.net/Examples/Seeds.html

