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Fast Blind Recognition of Channel Codes
Reza Moosavi and Erik G. Larsson

Abstract— We present a fast algorithm that, for a given input
sequence and a linear channel code, computes the syndrome
posterior probability (SPP) of the code, i.e., the probability that
all parity check relations of the code are satisfied. According to
this algorithm, the SPP can be computed blindly, i.e., given the
soft information on a received sequence we can compute the SPP
for the code without first decoding the bits. We show that the
proposed scheme is efficient by investigating its computational
complexity.

We then consider two scenarios where our proposed SPP
algorithm can be used. The first scenario is when we are
interested in finding out whether a certain code was used to
encode a data stream. We formulate a statistical hypothesis
test and we investigate its performance. We also compare the
performance of our scheme with that of an existing scheme.
The second scenario deals with how we can use the algorithm
for reducing the computational complexity of a blind decoding
process. We propose a heuristic sequential statistical hypotheses
test to use the fact that in real applications, the data arrives
sequentially, and we investigate its performance using system
simulations.

Index Terms—Blind code detection; Blind decoding; Control
signaling; Sequential probability ratio test.

I. INTRODUCTION

TODAY’S wireless access systems need to offer high
throughput. At the same time, as more and more users

join the system, the channel resources (such as bandwidth)
have become scarce. Many sophisticated algorithms have been
devised to cope with the situation. A common approach is to
use adaptive modulation and coding (AMC) [2], i.e., instead of
using fixed transmission parameters, the transmitter changes
the modulation format and coding rate on the fly in order to
adapt to a changing channel quality. To support this, there
is typically a need for a control channel on which the AMC
parameters are signaled. However, it has recently been shown
that AMC can be achieved without explicitly signaling the
parameters, using so-called blind decoding. The idea is that
the receiver tries to blindly identify the AMC parameters from
the data collected from the channel. For instance in [3]–[5]
novel schemes for blind classification of modulation formats
have been proposed. In [6]–[9], blind identification of encoder
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parameters have been studied. In these studies, the receiver
uses some properties of the channel code such as algebraic
properties of the parity check matrix or a recursive structure of
the encoder (that happens for example for convolutional codes)
to blindly identify the encoder parameters. For an illustration
of how blind decoding is implemented in practice, see [10,
Section 16.4], where the procedure for the physical downlink
control channel (PDCCH) decoding in LTE is described.

Adaptive modulation and coding using blind decoding
comes at the price of a decoding delay and more importantly
energy consumption in the decoder on the receiver side. Given
that the receiver is a mobile device with limited battery
capacity, the latter is of some concern and any reduction in the
decoding complexity incurred by the blind decoding strategy
would be valuable.

In this paper, we are concerned with finding which channel
code out of a possible set of general linear channel codes
was used to encode the data. This problem is therefore
different from [3]–[9] in the sense that (i) we assume that
the modulation format is known a priori, and (ii) the objective
is to recognize or verify which one of the channel codes out
of the possible codes (which is denoted by the “candidate
set” from hereon) was used to encode the data stream. To
the best of our knowledge, there is very little work in the
literature addressing this problem in its generality. For instance
in [11], [12], two blind schemes for recognition of space-time
block codes and LDPC codes were proposed, respectively.
The proposed algorithm therein, after intercepting a number of
code blocks, computes the likelihood of each code candidate
and picks the most likely one. However, these schemes can
only be applied for recognition of specific codes. In [13], an
algorithm for blind recognition of a linear code in a binary
symmetric channel (BSC) was proposed. In order to determine
if a certain code with a given parity check matrix was used
to encode the data, the author therein proposed to first take
hard decisions on the received data to get a rough estimate of
the transmitted codeword, and then to find the inner products
between the estimated codeword and the rows of the parity
check matrix and use this quantity to determine whether the
data was encoded with the given channel code or not. We use
this latter scheme as a benchmark in our comparison.

A. Contribution

We present a fast algorithm that, for a given input sequence
and a given linear channel code, computes the probability that
all the parity check relations of the code are satisfied. We
call this probability the syndrome posterior probability (SPP)
of the code. Using this algorithm, the SPP can be computed
blindly, i.e., given the soft information on a received sequence
we can compute the SPP for the code without first decoding

0090-6778/10$25.00 c© 2014 IEEE
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the bits. We show that the proposed scheme for obtaining the
SPP is efficient by investigating the computational complexity
of the scheme. We also show that under some conditions, we
can approximate the log-likelihood ratio (LLR) of SPP with
a normal distribution and we then compute the mean and the
variance of it. This approximation gives us quantitative insight
on how the SPP behaves.

We then consider two scenarios where our proposed SPP
algorithm can be used. The first scenario is when we are
interested in finding out whether a certain code was used to
encode a data stream. We formulate a statistical hypothesis
test and we investigate the performance of the proposed test.
The second scenario deals with how we can use the proposed
algorithm for reducing the computational complexity of the
blind decoding process. We propose a heuristic sequential
statistical hypotheses test (SSHT) to use the fact that in
real applications, the data arrives in a sequential manner,
and we investigate its performance using system simulations.
The paper extends our conference paper [1], among others
by proposing the optimum statistical hypothesis test for the
detection problem and also the proposed SSHT test.

II. COMPUTING THE SYNDROME POSTERIOR

PROBABILITY

In this section, we provide a fast algorithm for computing
the syndrome posterior probability (SPP) for a given code.
More precisely, given the soft information for an arbitrary
sequence of encoded bits c, we compute the probability that all
the parity check relations for the code are satisfied. A prelim-
inary, slightly different version of the proposed algorithm was
introduced initially in our conference paper [1] for detecting
the presence of a channel code. A modified version of this
algorithm has subsequently been used to detect an additional
lonely bit piggybacked on a linearly encoded data stream [14].
Also, a similar algorithm has been used in [15], [16] in the
context of blind frame synchronization. Since this scheme
provides a basis for our further discussions, we will present it
again in this section. We will also use the same technique as
used in [16] to find analytical closed-form expressions for the
probabilities of false alarm and missed detection in Section III.
However, in addition to the work in [16], we also compute
the cross-correlations that we need in using the central limit
theorem (see Appendices A and B).

Consider a general communication link depicted in Figure
1. The information bits b = [b1, . . . , bK ] are first encoded to
obtain a sequence of coded bits c = [c1, . . . , cN ], (generally
N > K). The coded bits are then transmitted using a certain
modulation scheme. Upon reception of the received vector r,
the receiver computes the soft information � = [�1, . . . , �N ]
for the transmitted bits c. The soft information � i for the
ith encoded bit ci is usually presented as the posterior log-
likelihood ratio (LLR), that is,

�i = log

(
Pr(ci = 0|r)
Pr(ci = 1|r)

)
.

The proposed scheme for computing the SPP for a given code
uses the fact that any codeword c obtained from the channel
code with parity check matrix H , satisfies Hc = 0.1 That

1The computations are carried out in binary field F2.

is, all the codewords of this code satisfy N −K parity check
relations2 of the form

⊕
l
chil

= 0, for i = 1, . . .N −K,

where hil is the index of the lth nonzero element of the ith
row of the parity check matrix H . Since the encoded bits may
be corrupted during the transmission, if we would take hard
decisions on � to obtain estimates ĉ of the coded bits, Hĉ
may not be a zero vector even if the channel code with parity
check matrix H was used to encode the data. However, given
the soft information on c, we can compute the SPP as follows.
We are interested in finding

Γ � Pr (all syndrome checks are satisfied|r)

= Pr

(
N−K⋂
i=1

⊕
l
chil

= 0
∣∣∣r
)

≈
N−K∏
i=1

Pr

(
⊕
l
chil

= 0
∣∣∣r),

(1)

where we assumed in the last step that the syndrome checks
are independent in the sense that the two events ⊕

l
chil

= 0

and ⊕
l
chi′l = 0 are independent for i �= i′, given r.

This independence assumption should be justifiable for long
observation sequences and for channel codes with sparse parity
check matrices, but in any case it is not crucial for the
upcoming discussion.

The LLR associated with the ith syndrome check of the
code is given by

γi � log

⎛
⎜⎜⎝

Pr

(
⊕
l
chil

= 0
∣∣∣r)

1− Pr

(
⊕
l
chil

= 0
∣∣∣r)

⎞
⎟⎟⎠ = �

l
�hil

(2)

where � denotes the box-plus operation [17]. 3 From (2), we
have that

Pr

(
⊕
l
chil

= 0
∣∣∣r) = log

(
eγi

1 + eγi

)
. (4)

Using (4) in (1) and taking the logarithm yields

log(Γ) ≈
N−K∑
i=1

log

(
eγi

1 + eγi

)
= −

N−K∑
i=1

log(1 + e−γi). (5)

We call Γ the syndrome posterior probability (SPP) of the
code.

A. Computational Complexity of Computing SPP

In order to compute the SPP for a given code, we need to
compute (2) and (5), respectively. We examine each compu-
tation separately. First note that the box-plus operation can be
equivalently expressed as [18, Eq. (14)]

�1 � �2 = (6)

sign(�1)sign(�2)min(|�1|, |�2|) + f(|�1 + �2|)− f(|�1 − �2|),
2since H is an (N −K)×N matrix.
3More precisely, the definition of � is:

�1 � �2 � log

(
1 + tanh(�1/2) tanh(�2/2)

1− tanh(�1/2) tanh(�2/2)

)
(3)

with ��∞ = �, ��−∞ = −� and � � 0 = 0, see [17] for more details.
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Fig. 1. Schematic for a general communication link. The proposed scheme for computing syndrome posterior probability works on the soft information �
and computes the probability that all the parity check relations for a specific code is satisfied.

where f(x) � log(1 + e−x). The function f(x) is very well-
behaved and can be computed efficiently. 4 Moreover, the box-
plus operator has the associative property, that is

�1 � �2 � �3 = (�1 � �2)� �3,

which can be used to compute (2) recursively. This means that
the computational complexity of computing γ i is equal to the
number of nonzero elements of the ith row of the parity check
matrix, say Ji, and is generally small.5

Now looking at the second computation (5), we observe that
it can also be computed efficiently using the same function
f(x) described above. That is, the second operation also has
linear complexity with respect to the number of terms in
the corresponding expression. Therefore, the total number of
computations required to obtain the SPP is

∑N(1−R)
i=1

(
Ji+1

)
,

where R = K/N is the code rate. The overall computational
complexity of finding the SPP is thus O(N).

B. Parity Check Matrices and the SPP

We need to know the parity check matrix of the code in
order to find the SPP for that code. The parity check matrix for
block codes can be obtained from the corresponding generator
matrix. For convolutional codes, the parity check matrix can
be obtained from the syndrome former of the code [19]. For
LDPC codes, the parity relations are obtained from the code
graph.

Note that is some situations the transmitted bits c consist
of several smaller codewords. This is especially true for linear
block codes with low dimensions (such as Hamming codes).
More specifically, consider an (n, k) linear block code with a
given parity check matrix H̃ . For a received vector of length
N consisting of N/n codewords, we can define the overall
parity check matrix H consisting of N/n smaller and identical

4For x > 0, f(x) can be tabulated with arbitrary precision. For x < 0, we
can write f(x) = −x+ log(1 + ex) and then use the same table lookup.

5In practice, the number of nonzero elements in different rows need not be
the same, that is, Ji �= Ji′ , for i �= i′. However in many situations, all Ji
are indeed equal (such as for regular LDPC codes, where Ji is given by the
degree distribution of the code, or for convolutional codes).

(n− k)× n matrices H̃:

H =

⎡
⎢⎢⎢⎣
H̃

H̃
. . .

H̃

⎤
⎥⎥⎥⎦ . (7)

This is very useful for the approximations in the next section.

C. Approximation of the SPP

Using (5), we have

Γ = exp

(
N−K∑
i=1

log

(
eγi

1 + eγi

))
=

N−K∏
i=1

eγi

1 + eγi
, (8)

and thus the LLR associated with the SPP Γ is given by,

Λ(Γ) � log

(
Γ

1− Γ

)
(9)

=

N−K∑
i=1

γi − log

(
N−K∏
i=1

(1 + eγi)− exp

(
N−K∑
i=1

γi

))
.

If eγi � 0 (which happens, for instance, when the operating
SNR is high and the associated binary value is 0), the above
expression can be approximated as

Λ(Γ) ≈
N−K∑
i=1

γi. (10)

This approximation has been used in many works, mainly
for reducing the computational complexity, since it does not
significantly affect the performance [15], [16].

The box-plus operation can also be approximated using the
well-known approximation [17]

n
�
i=1

�i ≈
(

n∏
i=1

sign(�i)

)
min

i=1,...,n
|�i| . (11)

We will use the two approximations above later on to simplify
some of our expressions, see Section III. It is worth noting
that in [18], other better methods to approximate box-plus
were proposed. These approximation methods can be used to
compute the equations involving box-plus operations as in (2)
more accurately.
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III. USING SPP FOR BLINDLY IDENTIFYING A CHANNEL

CODE

In this section, we will consider the problem of detecting
whether a certain channel code was used to encode a sequence
of received baseband data or not. That is, given a soft
information � associated with coded bits c, we would like
to determine if a specific code, say the channel code C t with
parity check matrix H , was used to encode the data or not.
We study this problem by considering the following hypothesis
test. We consider two a priori equally likely hypotheses H0

and H1. Under hypothesis H1, we assume that the channel
code Ct was used to encode the data stream, whereas under
H0, we assume that the data stream is not encoded with any
channel code but instead the transmitted bits are i.i.d. and
may take 0 or 1 with equal probability. The specific choices
of modulation on the communication link does not affect
our discussion and thus we assume BPSK modulation over
an AWGN channel throughout the rest of the paper 6, and
we define the signal-to-noise ratio (SNR) to be the average
transmitted power divided by the noise variance.

The supporting rationale behind the assumption of i.i.d. bits
under hypothesis H0 lies in the fact that if c is obtained from
some channel code C ′ not equal to Ct with parity check matrix
H ′ (H ′ �= H), and if we construct the vector Hc, it will have
almost no structure such that we can assume that it contains
i.i.d. bits that take 0 or 1 with equal probability. The implicit
assumption here is that the two channel codes are “distinct”
in the sense that their corresponding parity check matrices do
not have any identical rows. However, the proposed algorithm
also works when we are interested in distinguishing between
two channel codes with parity check matrices that share a few
identical rows. The way to tackle these scenarios is to exclude
the common rows since they impose the same parity check
relations on the coded bits, and only consider the distinct
parity check relations. It is worth noting that many codes in
practice have indeed different (non-overlapping) parity check
matrices.

Another way to resolve the situations with similar channel
codes is to use different interleavers for each code which
essentially results almost always in distinct parity check matri-
ces. As an example, consider the case with two channel codes:
(i) the channel code C with a given parity check matrix H ,
and (ii) a randomly permuted version of C which is obtained
by first encoding the information bits with C followed by a
random interleaving of the coded bits. Let H ′ denote the
parity check matrix of the interleaved code. Consider now the
kth row of H and assume that the number of nonzero elements
of this row is Jk, with the parity check relation ⊕

l
chkl

= 0.

Assuming that all the N ! possible interleaver sequences are
equally likely, then by the union bound the probability that
H ′ has an identical row to the kth row of H is at most
IJk

Jk!(N−Jk)!
N ! , where N denotes the number of coded bits

c, and IJK denotes the number or rows that have Jk nonzero
elements. Since IJk

is at most N−K , this probability is upper

6This also simplifies the procedure that we will use later to derive
approximate closed-form expressions for the probabilities of false alarm and
missed detection.

bounded by (N−K) Jk!(N−Jk)!
N ! and is vanishingly small7, and

hence we can assume that the two codes have no overlapping
syndrome checks.

Having computed the SPP for the code Γ, the optimal test
for detecting the presence of Ct is

Λ(Γ)
H1

≷
H0

η. (12)

We can use the approximation (10) to simplify the test. Using
this approximation, the resulting test becomes

N−K∑
i=1

γi
H1

≷
H0

η. (13)

This suboptimal test coincides with the test that was proposed
in our conference paper [1].

A. Analysis of the Code Detection Performance

In order to analyze the performance of our detection al-
gorithm, we need to know the probability distribution of
Λ(Γ) under each hypothesis. The distributions are not known
in closed-form. However, using the suboptimal test (13) in
combination with the approximations provided in Section
II for the box-plus operation, we can use the central limit
theorem (CLT) to approximate the probability distribution of
Λ(Γ) under the two hypotheses in some cases. More precisely,
according to the CLT for a sequence of identically distributed
weakly stationary random variables {Zk} with mean mZ and
variance σ2

Z , if

V � σ2
Z + 2

∞∑
i=2

cov(Z1, Zi) < ∞, (14)

then 1
K

∑K
k=1 Zk approaches a Gaussian random variable with

mean mZ and variance V as K increases [20]. In the case
of i.i.d. random variables {Zk} this reduces to the law of
large number, i.e., 1

K

∑K
k=1 Zk can be approximated with a

Gaussian distribution with mean mZ and variance σ2
Z , as K

increases.
Now consider the ith syndrome check constraint. Approx-

imating γi using (11) and as our analysis in Appendix A
shows, the probability distribution of γi depends only on
the operating SNR and on the number of elements in the
corresponding box-plus operator (2), i.e., the number of ones
in the ith row of the parity check matrix J i. That is, all the
rows of the parity check matrix that have the same number
of nonzero elements produce identically distributed syndrome
check constraints. Therefore, if there are sufficiently many
rows with Ji nonzero elements, then we can approximate
their corresponding summation with a Gaussian distribution
given that the condition for the CLT are satisfied. The idea is
thus to split the γi into different sets where the γis in each
set have the same number of terms in their corresponding
box-plus operator (in other words, they corresponds to the
rows with the same number of nonzero elements) and then
apply the CLT to each set to approximate the summation
with a Gaussian distribution. Note that the γis in each set

7For instance for rate-1/2 code with N = 100 and Jk = 7, the probability
is roughly 10−10.
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are identically distributed. However in order to use the CLT,
two additional conditions are required: (i) the γ is must be
stationary (in the weak sense), and (ii) the inequality (14)
must hold. As the analysis in Appendix B shows, cov(γ i, γi′)
depends on the SNR, Ji, Ji′ and on the number of common
terms in the corresponding box-plus operations for γ i and γi′ ,
say λi,i′ . As λi,i′ decreases, cov(γi, γi′) also decreases and
hence, if λi,i′ is small, we can assume that γi and γi′ are
uncorrelated.

As an example consider LDPC codes. For these codes, due
to the sparsity of the parity check matrix, we can assume
that the γis are independent8 and hence based on the degree
distribution, we can split them into different sets as mentioned
above with each set containing the portion of γ is that corre-
spond to the rows with equal Ji. Let there be T such sets and
let Nt, t = 1, . . . , T denote the number of elements in each
set (obviously N1 + . . .+NT = N ). Then we can write

Λ(Γ) ≈
T∑

t=1

Nt∑
j=1

γ
(t)
j (15)

where γ
(t)
j , j = 1, . . . , Nt denotes γis in set t. If Nt is

sufficiently large,9 then we can approximate
∑Nt

j=1 γ
(t)
j with

a Gaussian distribution with mean zero and variance N tσ
(t)
0

2

under H0 and with mean Ntm
(t)
r and variance Ntσ

(t)
r

2
under

H1 using the law of large numbers. Consequently, Λ(Γ) can
also be approximated as a Gaussian random variable with
mean zero and variance

σ2
0 =

T∑
t=1

Ntσ
(t)
0

2

under H0, and with mean and variance,

mr =

T∑
t=1

Ntm
(t)
r , σ2

r =

T∑
t=1

Ntσ
(t)
r

2

under H1, respectively. Note that σ(t)
0

2
, m(t)

r and σ
(t)
r

2
can be

obtained using the analysis in Appendix A. Also note that for
regular LDPC codes, T = 1 which simplifies the expressions
above.

As another example, let us consider convolutional codes.
Since convolutional codes have memory, γ i are not inde-
pendent and hence the approximation is slightly more com-
plicated. However, we still can approximate Λ(Γ) with a
Gaussian random variable in some situations. We explain this
via an example. Consider the standard rate-1/2 convolutional
code with constraint length C = 4, depicted in Figure 2. Using
the syndrome former of the code, we get the following parity
check matrix10

H =

⎡
⎢⎢⎢⎣
1 1 1 0 1 1 1 1

1 1 1 0 1 1 1 1
. . .

. . .
. . .

. . .
1 1 1 0 1 1 1 1

⎤
⎥⎥⎥⎦ ,

(16)

8In other words λi,i′ is small for any i and i′, with i �= i′.
9in the order of 100 as we have seen from our numerical experiments.
10The rest of the entries in the matrix are zero.

bi

+

+ +

++

DD D

c
(1)
i

c
(2)
i

Fig. 2. The standard rate-1/2 convolutional code with constraint length 4.
The generators for this code are g1 = 15 and g2 = 17 in octal.

and hence by arranging the coded bits and defining a window
Si as follows,

� Si

· · · c
(1)
i−1 c

(1)
i c

(1)
i+1 c

(1)
i+2 c

(1)
i+3 c

(1)
i+4 . . .

· · · c
(2)
i−1 c

(2)
i c

(2)
i+1 c

(2)
i+2 c

(2)
i+3 c

(2)
i+4 . . .

we get Nb syndrome check constraints

⊕
(i,j)∈Si

c
(j)
i = 0, for i = 1, . . . , Nb,

where Nb denotes the number of information bits. Thus, by
defining

γi = �
(i,j)∈Si

�
(j)
i ,

and using (5), the SPP for this code can be found directly.
We use the following convention to specify the window S i,
which will be used later in Section V,

{c(1)i → (0, 1, 2, 3), c
(2)
i → (0, 2, 3)} (17)

meaning that the syndrome check constraint at time instant i
consists of coded bits c

(1)
i+j and c

(2)
i+j′ where j ∈ {0, 1, 2, 3}

and j ′ ∈ {0, 2, 3}.
For this code, all the rows of the parity check matrix have

J = 7 nonzero elements, and thus all γi are identically
distributed. Moreover, due to the recursive nature of the code,
cov(γi, γi′) depends only on the difference |i− i ′|. In fact for
this example, since Si and Si′ share no common coded bits
when |i−i′| ≥ 4, and since the transmitted bits are statistically
independent of each other, γi and γi′ are independent for
|i − i′| ≥ 4. That is, cov(γ1, γi) = 0, for i ≥ 4. This enables
us to approximate Λ(Γ) with a Gaussian random variable in
this case too.11

As the examples above showed, we can in many situations
approximate the distribution of Λ(Γ) with a Gaussian distri-
bution under the two hypotheses. According to Appendix A,
under H1, E {γi} depends on the operating SNR and is
inversely proportional to Ji (see (38)–(42)). This is intuitive,
since both decreasing the SNR and having many terms in the
ith parity check relation ⊕

l
chil

= 0 will increase the risk of

error in the received sequence and hence Pr

(
⊕
l
chil

= 0
∣∣∣r)

decreases. This is also seen from Figure 3, where we have
plotted E {γi} under H1 as a function of the SNR for different
values of Ji. Another important observation from equation

11Note that in this case, γis are stationary as discussed above.
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(38) is that at high SNR regime, E {γi} scales linearly with
SNR. This can also be seen from Figure 3.

Having computed the mean and variance under each hy-
pothesis, we can approximate the false alarm and the detection
probabilities as,

PF ≈ Pr

{
K∑
i=1

γi > η|H0

}
= Q

(
η

σ0

)
, (18)

PD ≈ Pr

{
K∑
i=1

γi > η|H1

}
= Q

(
η −mr

σr

)
, (19)

where σ2
0 denotes the variance under H0 and mr and σ2

r

denote the mean and the variance under H1, and Q(x) is the
Gaussian error integral (Q-) function, defined as

Q(x) =

∫ ∞

x

1√
2π

e−t2/2dt.

The receiver-operating-characteristics (ROC) is, therefore,
given by

PD = Q

(
σ0Q−1(PF )−mr

σr

)
. (20)

Note that in the above expression, σ0 and σr scale as
√
N

whereas mr scales as N .
We stress that while the analysis provided in this section is

restricted to some special cases, the proposed detection algo-
rithm as such is applicable to any linear channel code without
any modification including the tail-biting convolutional codes;
the corresponding syndrome checks have to be written down
in each specific case. The analysis provided in this section can
provide, for instance, a rule-of-thumb for the required number
of observations in order to achieve certain false alarm and
detection probabilities. As for the performance with different
rates, typically lower-rate codes are easier to detect than
higher-rate codes, because there are more syndrome checks
for lower-rate codes, and hence more reliable decisions can
be made.

B. Application of the Code Detection Scheme to Convolutional
Codes

In this section, we investigate the performance of our
detection scheme for standard rate-1/2 convolutional codes. In
particular, we consider three choices for the true channel code:
(a) C2 with constraint length 4 (depicted in Figure 2), (b) C 5

with constraint length C2 = 7, and (c) C7 with constraint
length 9. The generators for these codes are given in Table I.
For each scenario, we let hypothesis H0 denote the hypothesis
under which the transmitted bits are i.i.d. and hypothesis
H1 denote the hypothesis under which the corresponding
convolutional code is used to encode the data. We assume
that both hypotheses are equally likely a priori and that the
coded bits are transmitted over an AWGN channel using BPSK
modulation. Let Nb denote the number of information bits.
The syndrome check constraints for each code is given in
Table I.

As a benchmark for comparison, we also implemented the
test proposed in [13]. However, since the algorithm therein can
only be used in binary symmetric channels (BSC), we consider
an equivalent BSC channel with cross-over probability equal
to the error probability of the AWGN channel in our model
with BPSK modulation. Figures 4(a)–4(c) illustrate the ROC
curves of the different schemes for the case where the SNR is
0 dB and for two different values of Nb for the three convo-
lutional codes, respectively. More precisely, we have provided
ROC curves for (i) the statistical test given by (12), (ii) the
suboptimal test given by (13), (iii) the suboptimal test where
in addition to (13), we also used the approximation given
by (11) in computing γi, (iv) our analysis provided by (20),
and (v) the test using the algorithm in [13]. 12 As the results
show, the proposed statistical test (i) has better performance
compared to the other tests, specially compared to the test
in [13]. This is reminiscent of hard-decision decoding in an
AWGN channel which is known to be roughly 2 dB worse
than soft-decision decoding [21, pp. 612]. Additionally, we see
that the analysis provided by (20) is very close, specially when
Nb is large, to the empirical performance of the corresponding
suboptimal test (case (iii)). We also see, as expected that by
increasing the number of information bits, a better detection
performance is achieved. Also we see by comparing the ROC
curves for the three scenarios that it is easier to recognize the
convolutional code C2. This is expected since for this code
the number of non-zero elements in the parity check matrix
is smaller than for the other two convolutional codes with
constraint lengths 7 and 9. The mean values according to our
analysis in Section III-A are 0.154, 0.0411, and 0.017 for the
three codes C2, C5 and C7, respectively.

IV. USING SPP FOR REDUCING THE COMPUTATIONAL

COMPLEXITY OF BLIND DECODING

In a system where blind decoding is used, the receiver
is interested in blindly detecting the channel code used by
the transmitter as early as possible with a given probability

12Similar simulation results, but without the curves representing the optimal
test, the analysis and the comparison with [13], were provided in our
conference paper [1]. However, the definition of SNR given there contained
an error.
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Channel Code Const. Length Generators Syndrome Check Constraint

C1 3 (5,7) {c(1)i → (0, 1, 2), c
(2)
i → (1, 2)}

C2 4 (15,17) {c(1)i → (0, 1, 2, 3), c
(2)
i → (0, 2, 3)}

C3 5 (23,35) {c(1)i → (0, 2, 3, 4), c
(2)
i → (0, 1, 4)}

C4 6 (53,75) {c(1)i → (0, 2, 3, 4, 5), c
(2)
i → (0, 1, 3, 5)}

C5 7 (133,171) {c(1)i → (0, 3, 4, 5, 6), c
(2)
i → (0, 1, 3, 4, 6)}

C6 8 (247,371) {c(1)i → (0, 3, 4, 5, 6, 7), c
(2)
i → (0, 1, 2, 5, 7)}

C7 9 (561,753) {c(1)i → (0, 1, 3, 5, 6, 7, 8), c
(2)
i → (0, 4, 5, 6, 8)}

TABLE I
STANDARD RATE-1/2 CONVOLUTIONAL CODES WITH THEIR GENERATORS IN OCTAL REPRESENTATION AND ALSO WITH THEIR CORRESPONDING

SYNDROME CHECK CONSTRAINTS.

of error. Assume that there are in total M candidate codes
C1, . . . , CM , with the corresponding parity check matrices
H1, . . . ,HM . If all soft channel symbols are presented to
the receiver at once, then the optimal strategy would be
to compute the syndrome probabilities γ

(m)
1 , γ

(m)
2 , . . . for

all candidate codes m = 1, . . . ,M , and then compute the
SPP for each candidate code and pick the candidate code
that yields the maximum SPP. However, in practice the data
arrives sequentially and the objective is to decide on the code
candidate as soon as possible, subject to some constraints on
the detection performance. The performance criteria may be
expressed in terms of probabilities of detection and false alarm
as follows:

(i). The probability of detection should be above a certain
threshold, say Pmin

D .
(ii). The probability of false alarm should be smaller than a

certain threshold, say P max
F .

This problem can be formulated as a sequential procedure
for multiple hypothesis testing [22], [23]. When there are two
alternative hypotheses H0 and H1, that is, when there are two
possible candidate codes (M = 2), then the optimal test is
known and is found by the so-called sequential probability
ratio test (SPRT) [24]. Here, the optimality is in the sense
that among all hypothesis tests satisfying the above constraints
on detection and false alarm probabilities, the SPRT requires
the smallest number of observations N . However, when there
are more than two alternative hypotheses (M > 2), then the
optimal test is often not known, or the optimal test has a
very complicated structure that limits its use in practice [22].
In these cases, one may opt for heuristic solutions. In what
follows, we will propose a sequential test for our problem and
evaluate its performance via simulations.

A. Proposed Sequential Statistical Hypothesis Test

Let Hm, m = 1, . . . ,M denote the hypothesis under which
channel code Cm was used to encode the data, and let π0

m

denote the prior probability of this hypothesis, i.e. the proba-
bility of picking channel code Cm by the transmitter. Having
observed the received vector r, the minimum probability-of-
error detector chooses the hypothesis with the largest posterior
probability Pr (Hm|r) [25]. That is, the decision is

k = argmax
m

Pr (Hm|r). (21)

In our problem, we can find, for each candidate code Cm, the
syndrome posterior probability Γm using the corresponding

parity check matrix Hm;

Γm � P (all syndrome checks of Hm are satisfied|r). (22)

If the transmission was error-free, then Γm would be 1 for
the true code and it would be zero for the rest of the code
candidates. Due to errors introduced in the transmission, this
will not be the case in practice. However, we know that the
SPP for the true code is likely to be higher than that of the
others, and that the difference will be larger as the length of
the observed sequence increases. Therefore, we propose the
following sequential probability ratio test to detect the channel
code.

Proposed SSTH. Let Γn
m denote the syndrome posterior

probability for candidate code Cm obtained at stage n, i.e.,
after observing γ

(m)
1 , γ

(m)
2 , . . . , γ

(m)
n , and define the vector

Pn = [pn1 , . . . , p
n
M ], where

pnm =
Γn
m∑M

i=1 Γ
n
i

.

Given a threshold ζ (to be explained below), we use the
following rule as the stopping criterion

NA = first n ≥ 1, such that pnk ≥ ζ, for some k = 1, . . . ,M .
(23)

The decision rule at the stopping time is

k = argmax
m

pNA
m . (24)

Note that according to the proposed SSHT, the required
number of observations is finite. That is so because, we have

pnm =
Γn
m

M∑
i=1

Γn
i

=

exp

(
−

n∑
j=1

log
(
1 + e−γ

(m)
j

))

M∑
i=1

exp

(
−

n∑
j=1

log
(
1 + e−γ

(i)
j

))

=

⎛
⎜⎜⎝

M∑
i=1

n∏
j=1

(
1 + e−γ

(m)
j

)
n∏

j=1

(
1 + e−γ

(i)
j

)
⎞
⎟⎟⎠

−1

. (25)

Assume that the mth code was used by the transmitter to
encode the data. For the true code m, the syndrome probability
constraints γ

(m)
i are likely to be greater than zero (how much

greater they are than zero generally depends on the operating
SNR), whereas for a random code, the syndrome probability
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Fig. 4. Receiver Operating Characteristic curves for the different schemes at
an SNR of 0 dB.

constraints would take both positive and negative values with
equal probability. This means that as n increases

n∏
j=1

(
1 + e−γ

(m)
j

)
n∏

j=1

(
1 + e−γ

(i)
j

) → 0, if j �= m,

and hence pnm → 1 as n increases.

Remark 1. The overall error probability Pe of the proposed
scheme depends on the value chosen for the threshold ζ. While
it would be desirable to know the exact relation between
Pe and ζ, due to the unknown probability distribution of
the γ

(m)
i s, this relation is not known. The error probability

is, however, in the order of 1 − ζ. In Section V, we use a
greedy search algorithm for choosing ζ such that the desired
probability of error is achieved.

Remark 2. The implicit assumption is that the total number
of available observations is infinite. In other words, we may
continue sampling until one of pn

k is greater than ζ. In many
situations, however, there is a finite number of observations.
Those situations can be considered as sequential hypothesis
tests with finite horizon and the optimal solution may be found
using the method of backward induction [26]. More precisely,
if we reach the final stage N (where no more observations
are available), then the optimal decision is known, resulting
in a certain probability of error, say P N

e . The decision in the
previous stage N − 1 is thus to stop sampling if the expected
error probability in that stage is less than P N

e and to continue
and take the last sample, otherwise. The decision for the rest
of the stages can be found similarly. As the simulation results
in Section V show, the proposed SSHT scheme requires small
number of observations for most operating SNR and thus the
assumption of infinite available observations is not crucial in
this study.

Remark 3. If the threshold ζ is greater than 1/2, then at the
stopping time, only one of the codes can satisfy (23), since∑

m pnm = 1. Also, the threshold can be chosen differently for
different code candidates, i.e. if the cost of making a specific
error is larger than the others, then the corresponding threshold
may be chosen larger.

B. A Rule-of-Thumb for the Required Number of Observation

In this section, we provide an approximation of the error
rate of the suboptimal test with a fixed number of observations.
This approximation can be used to obtain a rule-of-thumb for
the required number of observations according to the different
schemes as explained below.

Let γ(m)
j , j = 1, . . . , N denote the LLR associated with the

jth parity check relation corresponding to the mth code candi-
date Cm. Using the suboptimal test (13), the error probability
under hypothesis Hm is,



MOOSAVI and LARSSON: FAST BLIND RECOGNITION OF CHANNEL CODES 9

Pe|Hm = Pr

(
N∑

j=1

γ
(i)
j >

N∑
j=1

γ
(m)
j , for some i ∈ I−m|Hm

)

= 1− Pr

(
N∑

j=1

γ
(i)
j ≤

N∑
j=1

γ
(m)
j , for all i ∈ I−m|Hm

)

≈ 1−
M∏
i=1
i�=m

Pr

(
N∑

j=1

γ
(i)
j ≤

N∑
j=1

γ
(m)
j

)
, (26)

where I−m � {1, 2,m−1,m+1, . . . ,M}. The approximation
in the last step is due to the independence assumption that we
have made among the events

(∑N
j=1 γ

(i)
j >

∑N
j=1 γ

(m)
j

)
and(∑N

j=1 γ
(i′)
j >

∑N
j=1 γ

(m)
j

)
, for i �= i′.13 Using the analysis

in Appendix A and B and applying the CLT, we can write

Pe|Hm
≈ 1−

M∏
i=1
i�=m

⎡
⎣1− Q

⎛
⎝ m

(m)
r√

σ
(m)
r

2
+ σ

(i)
0

2

⎞
⎠
⎤
⎦ (27)

where m
(m)
r and σ

(m)
r

2
denote the mean and the variance of∑N

j=1 γ
(m)
j and σ

(i)
0

2
denotes the variance of

∑N
j=1 γ

(i)
j under

Hm. Here also we assume that
∑N

j=1 γ
(m)
j and

∑N
j=1 γ

(i)
j

are independent, which as explained before happens when
the code candidates have distinct parity check matrices, see
Section III. The overall error probability is therefore,

Pe ≈ 1

M

M∑
m=1

Pe|Hm
. (28)

The ratio m
(m)
r /

√
σ
(m)
r

2
+ σ

(i)
0

2
scales as

√
N and hence we

can use the above approximation to find a rough estimate of
the required number of observations when applying the test
(with a fixed number of observations). More particularly, for
scenarios where we use a fixed given base code with different
interleavers to obtain different channel codes, then

m
(m)
r√

σ
(m)
r

2
+ σ

(i)
0

2
=

√
N · a, for all i,m = 1, . . . ,M

for some constant a that depends on J and on the SNR and
hence we have,

N(M) ≈ 1

a2

[
Q−1

(
1− (1− Pe)

1
M−1

)]2
. (29)

Equation (29) in combination with our findings via simulations
suggest a rule-of-thumb approximation for the number of
observations required by the different schemes, for scenarios
where we have a base code with different interleavers as the
code candidates. More precisely, if NM (Pe) is the number
of observations for a given candidate set size M and a given
error probability Pe, then for an arbitrary candidate set size
M ′ and arbitrary error probability P ′

e, we have NM′(P ′
e)

NM(Pe)
= d,

where

d �

⎡
⎣Q−1

(
1− (1− P ′

e)
1

M′−1

)
Q−1

(
1− (1− Pe)

1
M−1

)
⎤
⎦
2

. (30)

13Note that for the case with M = 2, this approximation is exact.

Using the above equation, if the required number of obser-
vations for specific choices of M and Pe is known, then we
can use that as a basis to compute the required number of ob-
servations for arbitrary candidate set sizes and arbitrary error
probabilities. The important observation is that the increase
in the number of required observations when we increase the
candidate set size from M to M ′ (M ′ > M ), is independent
of the choice of the base code, and in given by (30). Another
important observation that we get from (30) is that the increase
in the number of observations required when the candidate set
size is increased is logarithmic. For instance, the increase in
the required number of observations when we increase the
candidate set size from say 2 to 4 is larger than that when the
candidate set size is increased from 8 to 16. This might not be
immediately clear from (30), however we can see this by first
using the fact that for large x, Q(x) ≈ 1

2e
−x2/2. Therefore,

since Q(Q−1(x)) = x, we can write

Q
(
αQ−1(x)

) ≈ 1

2
(2x)α

2

. (31)

Now, using (31) in (30) in combination with the Taylor series
approximation

1− (1− Pe)
1

M−1 ≈ − log(1− Pe)

M − 1
,

we have

d ≈ log (M ′ − 1)− log (2 log(1− P ′
e))

log (M − 1)− log (2 log(1− Pe))
, (32)

which confirms the above observation.

V. SIMULATION RESULTS

In this section, we provide some simulation results for
the performance of our proposed SSHT scheme. We assume
as before BPSK transmission over an AWGN channel. We
consider two scenarios for the code candidates: (i) where we
use the standard rate-1/2 convolutional with constraint length 4
(depicted in Figure 2) in combination with different randomly
chosen interleavers to obtain different code candidates, and
(ii) where we consider a class of standard rate-1/2 convolu-
tional codes with different constraint lengths as our candidate
codes [21]. In this case, we consider 7 different rate 1/2
convolutional codes C1, . . . , C7 with constraint lengths 3 to 9
respectively. The octal representations of the generator polyno-
mials for different codes are given in Table I. Using syndrome
formers of the codes, we get Nb syndrome check constraints
for each of the codes (Nb is the number of information bits).
The syndrome check constraints are also presented in Table I
using the convention specified in Section III. All the codes
are equally likely to be chosen by the transmitter. For the
second scenario, the candidate set is constructed using the
convolutional codes C1, . . . , CM .

Table II and III show the average number of observations
NSSHT required by the proposed SSHT scheme for two values
of the error probability at an SNR of 3 dB, for the first and
the second scenario respectively. For comparison, the average
number of observations NFIX required to achieve the same error
rate as with the optimal test with a fixed observation length
and the corresponding reduction in the required number of
observations are presented as well. As the results show, a
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reduction of roughly 60% can be achieved with our proposed
SSHT scheme. This reduction is in accordance with the
expectations, as the number of required observations with
SPRT is typically about one-half to one-third of that with the
optimal test with a fixed number of observations [22]. For
the first scenario, we can apply the proposed rule-of-thumb to
obtain a rough estimates for NSSHT and NFIX. The corresponding
normalized values are also presented in Table II. We can see
that the results are very close to those predicted by equation
(30), where we use the case with M = 2 and Pe = 0.01 as
the basis for the computations.

For a more detailed comparison of the two schemes, we
have plotted the empirical error rate curves as a function of
the number of observations for the first scenario at SNR of 3
dB in Figure 5. Here also, the curves highlighted by dashed
lines represent the corresponding predictions via (30), where
for each M we take the case with Pe = 0.005 as the basis.
We see that the proposed rule-of-thumb offers quite accurate
predictions in all the cases. Also, we see that the proposed
SSHT scheme requires significantly fewer observations on the
average compared to the optimal test with a fixed number of
observations to achieve a certain probability of error. Another
observation is that as M increases, we need more observations
on the average to achieve a given error probability for both
tests, and that this increase is greater for smaller values of M ,
as predicted by (32).

To see the effect of the SNR on the performance, we have
plotted the average required number of observations to achieve
an error probability of 1% as a function of SNR for different
values of M for the first and the second scenario in Figures
6 and 7, respectively. For the first scenario, we also plotted
the corresponding predicted results using (30), where we have
used the results for M = 2 as the basis. Again, we see a close
match between the predicted results and the empirical results.
Also we see that for higher SNR, the proposed SSHT requires
very few observations in order to work.

We stress again that codes with parity check matrices that
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Fig. 6. Required number of observations as a function of SNR with our
proposed SSHT scheme and for the first scenario with error probability of
1%. The corresponding analytical results obtained from (30) are also presented
by dashed lines.

have a small number of nonzero elements in each row provide
better operating conditions for our proposed SPP scheme.
This is so because for such codes, the sum in (1) has fewer
terms. Since in this sum, each additional term contributes
an additional risk of making an error, having fewer terms
means less overall probability of error. This explains the
differences in the required number of observations for the
two different scenarios in Figures 6 and 7. For instance,
consider the case M = 2. In the first scenario, we have
two randomly interleaved convolutional rate-1/2 codes with
constraint length 4, whereas in the second scenario, we have
two rate-1/2 convolutional codes with constraint lengths 3 and
4 respectively. The syndrome check constraints consist of 5
and 7 terms for the constraint lengths 3 and 4 respectively
(see Table I). Therefore, we expect that the average required
number of observations in the second scenario is smaller than
in the first scenario, for a given error probability. This is also
the case in the presented results (see Tables II and III).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a fast algorithm for blindly
recognizing which channel code from a candidate set that was
used to encode a data stream. The proposed algorithm uses the
fact than any linear code satisfies a certain set of parity check
relations, including convolutional codes (with and without
tail-biting). Our algorithm obtains the probabilities that all
parity check constraints are satisfied, called the syndrome
posterior probability (SPP) of the code here, for all code
candidates and then compares these probabilities. We also
proposed a sequential hypothesis test that makes decisions be-
fore collecting all available data, hence saving computational
complexity. Quantitatively, under typical operating conditions,
the algorithm identifies the correct code (out of 16 candidates)
in 99% of the cases by observing less than 50 samples, at an
SNR of 4 dB.

The proposed scheme is potentially useful for complexity
reduction of the PDCCH decoding in LTE. A detailed study
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Pe = 0.01 Pe = 0.001
Set Size M = 2 M = 4 M = 8 M = 16 M = 2 M = 4 M = 8 M = 16
NSSHT 36 48 59 68 58 71 82 92
NFIX 82 108 129 148 146 173 201 217

Reduction 56% 55% 54% 54% 60% 59% 59% 58%
Normalized NSSHT 1 1.33 1.64 1.89 1.62 1.98 2.28 2.56
Normalized NFIX 1 1.32 1.58 1.80 1.78 2.11 2.45 2.65

d 1 1.36 1.64 1.90 1.76 2.14 2.43 2.69

TABLE II
REQUIRED NUMBER OF OBSERVATIONS BY THE PROPOSED SSHT SCHEME NSSHT AND BY THE OPTIMAL TEST WITH A FIXED OBSERVATION LENGTH

NFIX FOR DIFFERENT VALUES OF M AND AN SNR OF 3 DB, FOR THE FIRST SCENARIO. IN THIS TABLE, NORMALIZED VALUES OF NSSHT AND NFIX ARE

ALSO GIVEN TO FACILITATE EASY COMPARISON WITH d IN (30). THE NORMALIZATION FACTOR IS THE CORRESPONDING VALUES FOR THE CASE WITH

M = 2 AND Pe = 0.01.

Pe = 0.01 Pe = 0.001
Set Size NSSHT NFIX Reduction NSSHT NFIX Reduction
M = 2 23 56 59% 36 100 64%
M = 3 33 81 59% 49 140 65%
M = 4 48 114 58% 69 196 65%
M = 5 62 157 60% 87 274 68%
M = 6 80 205 61% 109 348 69%
M = 7 99 270 63% 140 450 69%

TABLE III
REQUIRED NUMBER OF OBSERVATIONS WITH OUR PROPOSED SSHT SCHEME AND ACCORDING TO THE OPTIMAL TEST WITH A FIXED OBSERVATION

LENGTH FOR DIFFERENT VALUES OF M AND AN SNR OF 3 DB, FOR THE SECOND SCENARIO.

0 0.5 1 1.5 2 2.5 3 3.5 4

10
2

10
3

 

 

A
ve

ra
ge

N
um

be
r

of
O

bs
er

va
tio

ns

SNR [dB]

M
=
2

M
=
3

M
=
4

M
=
5

M
=
6

M
=
7

Fig. 7. Average number of observations required as a function of SNR with
our proposed SSHT scheme for different values of the candidate set size M ,
at error probability of 1%, for the second scenario.

of this topic is a possible direction for the extension of this
work. Another potential application of our algorithm, that may
also be studied in future work, is to facilitate entirely blind
multiple access based on the terminals blindly recognizing
their payload data. In this case, the base station would not
signal any explicit control information or AMC parameters
at all. This may be facilitated either by assigning different
terminals different codes, or different interleaving sequences.
Since our algorithm tends to perform better for codes with low
variable node degrees, in this foreseen application appropriate
consideration has to be made when choosing the channel
codes.

APPENDIX A
COMPUTING THE MEAN AND THE VARIANCE OF γk

Assume, without loss of generality, that the modulation
scheme is BPSK, and consider the transmission of J bits

c1, c2, . . . , cJ over an AWGN channel with noise variance
N0/2 per real dimension. The received symbol at time instance
i is

ri = si + ni,

where si denotes the BPSK symbol (binary “0” is mapped to
+1, and binary “1” is mapped to -1) and n i is the additive
white Gaussian noise with mean zero and variance N0/2. We
consider two hypotheses:

• H1 under which we know that
J⊕

i=1
ci = 0, and

• H0 under which the transmitted bits are i.i.d. and take
0 or 1 with equal probability, which consequently means

that
J⊕

i=1
ci may take 0 or 1 with equal probability (no

structure).

We are interested in computing the mean and the variance
of

γ =

(
J∏

i=1

sign(�i)

)
J

min
i=1

|�i| ,

under the two hypotheses, where �i denotes the posterior
conditional LLR of ci. Let

X �
J∏

i=1

sign(�i), Y �
J

min
i=1

|�i| .

Since we assume BPSK transmission over an AWGN channel,
we have [21]

�i = Λ(ci|ri) = 4ri
N0

. (33)

According to our system model, ri has a mixture Gaussian
distribution. This allows us to use the following lemma to
simplify the computations for finding E {Y }.

Lemma. Consider two random variables:

1) W with a mixture Gaussian probability distribution of the
form pN (m,σ2) + (1 − p)N (−m,σ2), for some given
0 ≤ p ≤ 1, m ≥ 0 and σ2.
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2) A zero-mean Gaussian random variable Z with variance
σ2.

Then, |W | and |Z+m| have the same probability distribution.

Proof. Let fZ(z) denote the probability distribution function
(pdf) of Z , i.e.,

fZ(z) =
1√
2πσ

exp

(
− z2

2σ2

)
, (34)

and let FZ(z) denote its cumulative distribution function (cdf).
We start by finding the cdf for |W |. We have,

F|W |(w) = Pr {|W | < w} (35)

= Pr {−w < W < w} = FW (w) − FW (−w)

for w ≥ 0, and for w < 0, F|W |(w) = 0. Thus, for w ≥ 0 the
pdf of |W | is given by

f|W |(w) =
d

dw
F|W |(w) = fW (w) + fW (−w)

= pfZ(w +m) + (1− p)fZ(w −m)

+ pfz(−w +m) + (1− p)fZ(−w −m)

= fZ(w +m) + fZ(w −m), (36)

since fZ(z) = fZ(−z). Therefore,

f|W |(w) =
{

fZ(w +m) + fZ(w −m), w ≥ 0
0, otherwise.

(37)
It is straight forward to check that |Z +m| has the same pdf
too, which completes the proof.

A direct conclusion of this lemma is that |ni+1| and |ni−1|
have the same pdf, so

E {Y } =
4

N0
E

{
J

min
i=1

|ri|
}

=
4

N0
E

{
J

min
i=1

|ni + 1|
}
, (38)

under both hypotheses. That is, we may work with n i rather
than ri. The important observation is that ri, i = 1, . . . , J are
i.i.d. under H0 while under H1, they are not independent.
However as we will see later, the same technique can be
used to simplify the computations for finding the statistical
properties under H1. Before we continue further, it is worth
noting that since E

{
X2

}
= 1, E

{
γ2

}
is also the same under

both hypotheses and is given by

E
{
γ2

}
= E

{
Y 2

}
=

16

N2
0

E

{(
J

min
i=1

|ri|
)2

}

=
16

N2
0

E

{
J

min
i=1

|ri|2
}
. (39)

Now, we are ready to compute the means and the variances
of γ under the two hypotheses. Under hypothesis H0, since
⊕
i
ci is equally likely to be 0 or 1 (no structure), X and Y are

independent. More specifically, X will be a binary random
variable that takes one of the values {−1,+1} with equal
probability, and thus

E {γ|H0} = E {XY |H0} = E {X |H0}E {Y |H0} = 0, (40)

and therefore

σ2
0 � E

{
γ2|H0

}
= E

{
Y 2

}
=

16

N2
0

E

{
J

min
i=1

|ri|2
}
. (41)

Under hypothesis H1, X and Y are not independent.
Indeed, if there are no errors, then X = 1. To compute the
mean of γ under hypothesis H1, we can write

mt � E {γ|H1} = E {Y |H1, X = 1}Pr{X = 1|H1}
− E {Y |H1, X = −1}Pr{X = −1|H1}. (42)

The event {X = 1} implies that either there have been no
errors or there have been an even number of errors in the
received sequence. Similarly, the event {X = −1} implies
that there have been an odd number of errors in the received
sequence. Therefore,

Pr{X = 1} =

�J
2 �∑

i=0

(
J

2i

)
P 2i
e (1− Pe)

J−2i, (43)

where Pe is the bit error probability of the channel. Since, we
assume BPSK modulation, an error in the received sequence
ri occurs, when (i) ni < −1, and ci = 0, or (ii) ni > 1, and
ci = 1. Using this, and the results from the Lemma, we can
write

E {Y |H1, X = 1} =
4

N0
E

{
J

min
i=1

|ni + 1|
∣∣∣∣B1

}
(44)

E {Y |H1, X = −1} =
4

N0
E

{
J

min
i=1

|ni + 1|
∣∣∣∣B2

}
(45)

where the event B1 (B2) is defined as the event that among J
noise samples, none or an even (an odd, respectively) number
of the samples are smaller than -1. We can finally write

σ2
t � E

{
γ2|H1

}−m2
t =

16

N2
0

E

{
J

min
i=1

|ri|2
}
−m2

t . (46)

Note that the above quantities all depend only J and on the
noise variance N0/2 and can be found numerically. Once they
are computed, they can be saved in a look-up table for future
use. Also note that by increasing J , Pr{X = 1} decreases
and hence mt decreases too.

APPENDIX B
COMPUTING THE CORRELATION BETWEEN γk AND γk′

Consider again the same system model as presented in
Appendix A and consider the transmission of J + α (α ≥ 1)

bits c1, c2, . . . , cJ+α. Let z �
J⊕

i=1
ci and z̃ =

J+α⊕
i=α+1

ci. We

consider again two hypotheses:
• H1 under which both z and z̃ are zero, and
• H0 under which z and z̃ may take 0 or 1 with equal

probability (no structure).
We are interested in computing the correlation between γ

and γ̃ where as before,

γ =

(
J∏

i=1

sign(�i)

)
J

min
i=1

|�i| ,

and

γ̃ =

(
J+α∏

i=α+1

sign(�i)

)
J+α
min

i=α+1
|�i| .

Under hypothesis H0, since the transmitted bits are inde-
pendent of each other, γ and γ̃ are independent and hence

E {γγ̃|H0} = E {γ|H0}E {γ̃|H0} = 0. (47)
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Under hypothesis H1, if α ≥ J , then γ and γ̃ are
independent and hence for α ≥ J ,

E {γγ̃|H1} = E {γ|H1}E {γ̃|H1} = m2
t . (48)

For α < J , by defining

X �
J∏

i=1

sign(�i), X̃ �
J+α∏

i=α+1

sign(�i),

Y �
J

min
i=1

|�i| , Ỹ �
J+α
min

i=α+1
|�i|

we have

E {γγ̃|H1} = E

{
XX̃Y Ỹ |H1

}
= E

{
Y Ỹ |H1, XX̃ = 1

}
Pr

{
XX̃ = 1|H1

}
− E

{
Y Ỹ |H1, XX̃ = −1

}
Pr

{
XX̃ = −1|H1

}
Under hypothesis H1, since

(
sign(x)

)2
= 1, the event B �

{XX̃ = 1} implies that among J+α received symbols, either
there has been no error or there have been an even number of
errors in the first and the last α (total 2α samples) symbols.
Therefore,

Pr{B} =

α∑
i=0

(
2α

2i

)
P 2i
e (1− Pe)

2α−2i, (49)

where as before Pe is the bit error probability of the channel.
Using the result of the Lemma in Appendix A, we can write

E

{
Y Ỹ |H1,B

}
= (50)

16

N2
0

E

{(
J

min
i=1

|ni + 1|
)(

J+α
min

i=α+1
|ni + 1|

) ∣∣∣∣B
}
,

E

{
Y Ỹ |H1,Bc

}
= (51)

16

N2
0

E

{(
J

min
i=1

|ni + 1|
)(

J+α
min

i=α+1
|ni + 1|

) ∣∣∣∣Bc

}
,

where Bc denotes the complement of the event B.
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