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Abstract—As the CMOS technology is gradually scaling down
to inherent physical device limits, significant challenges emerge
related to scalability, leakage, reliability, etc. Alternative tech-
nologies are under research for next-generation VLSI circuits.
Memristor is one of the promising candidates due to its scal-
ability, practically zero leakage, non-volatility, etc. This paper
proposes a novel design methodology for logic circuits targeting
memristor crossbars. This methodology allows the optimization of
the design of logic function, and their automatic mapping on the
memristor crossbar. More important, this methodology supports
the execution of Boolean logic functions within constant number
of steps independent of its functionality. To illustrate the potential
of the proposed methodology, multi-bit adders and multipliers
are explored; their incurred delay, area and energy costs are
analyzed. The comparison of our approach with state-of-the-art
Boolean logic circuits for memristor crossbar architecture shows
significant improvement in both delay (4 to 500×) and energy
consumption (1.22 to 3.71×). The area overhead may decrease
(down to 44%) or increase (up to 17%) depending on the circuit’s
functionality and logic optimization level.

I. INTRODUCTION

As CMOS transistors gradually scale down to the

inherent physical device limits, CMOS technology faces

major challenges [1–4] such as increased leakage power

consumption, saturated performance improvement, reduced

reliability, and a more complicated fabrication process. To

address these challenges, novel technologies (e.g., memristors

[5,6], nanotube [7], graphene [8] and tunnel field-effect

transistors [9], etc.) are proposed as the alternative for

next-generation VLSI circuits. Among these technologies,

memristor is a promising candidate [10,11]. Typically,

numerous memristors can be mapped on crossbar architecture

where memristors are located in the intersections of horizontal

and vertical nanowires. Memristor crossbar is able to provide

great scalability, higher integration density, zero leakage

power consumption, CMOS fabrication compatibility [10,12–

14]. Several potential applications have been proposed such as

neuromorphic systems [15,16], non-volatile memories [10,17],

novel computing paradigms for data-intensive applications

[18], etc. To implement novel computing paradigms, it is

crucial to design fundamental components such as Boolean

logic functions [19].

Research on memristor-based logic circuits has attracted

significant attention both in academy and industry since the

first memristor device was fabricated by HP in 2008 [6].

Four types of logic circuits have been proposed: threshold

[20,21], majority [21], material implication [22,23], and

Boolean [24] logic. Threshold and majority logic circuits are

based on threshold and majority logic gates, respectively;

both of them are not suitable for crossbar arrays. However,

both material implication and Boolean logic have been

addressed for the memristor crossbar. In [23], the authors

proposed a methodology to implement logic functions using

a sequence of material implication operations. However,

this methodology suffers from low speed and requires new

algorithms to implement arithmetic operations such as addition

and multiplication [23,25,26]. In [24], the authors proposed

a systematic Boolean logic design methodology; its basic

unit is a logic block which implements a Boolean function

f=M1 + · · ·+Mi + · · ·+Mn=M1 · · · · ·Mi · · · · ·Mn, where

Mi denotes a minterm and n is the total number of minterms.

However, all the minterms are executed sequentially. As a

consequence, building a complex logic circuit with numerous

minterms will result in a very slow design. In addition, as

each logic function requires different numbers of execution

steps, the synchronization between different logic functions

is a complicated task.

To solve aforementioned issues, this paper proposes a novel

design methodology for crossbar-based Boolean logic circuits;

it is based on parallel execution of all minterms and therefore

significantly increases the overall performance. The contribu-

tions of this paper are:

• A methodology to design memristor logic circuits able to

execute any Boolean function within constant time.

• Several novel primitive operations (implementing logic

gates, copy operations, etc.) supporting the proposed

design methodology.

• A novel memristor crossbar architecture supporting the

proposed design methodology.

• A novel design technique to further optimize the proposed

design methodology by sharing minterms.

• A model to evaluate the delay, area and energy.

The remainder of this paper is organized as follows. Section II

briefly describes the background and related work. Section III

proposes the design methodology for Boolean logic circuits.

Section IV presents a one-bit full adder as a design case

study. Section V verifies and evaluates the proposed design

methodology. Finally, Section VI concludes the paper.
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Fig. 1: Snider’s Boolean Logic Circuits

II. BACKGROUND AND RELATED WORK

This section describes the memristor model, data represen-

tation, control voltages, and the working principle of the

previously proposed Boolean logic circuits [24].

A. Memristor Model

Although memristors have different physical mechanisms

[12,13,27], their circuit-level behaviour can be abstracted

by two parameters: switching threshold voltage Vth (with

or without a minimum voltage requirement for resistive

switching) [28] and resistive switching behaviour (abrupt or

smooth) [29]. Note that these two parameters are independent

of each other.

In this paper, we use a simplified memristor model based

on a switching threshold voltage and abrupt switching

[23,24]. For simplicity, this type of model is referred to as

THAB (THreshold-ABrupt) memristor model. The top part

of Fig. 1(a) illustrates the current-voltage relation of THAB

model. The memristor switches from one resistive state to

another when the absolute value of the voltage (either positive

or negative) across the device is greater than its threshold

voltage Vth; see I-V curve of Fig. 1(a). Otherwise, it stays

in its current resistive state. Normally, a memristor requires

two different switching threshold voltages to switch from low

to high resistance (RESET) and from high to low resistance

(SET) [28,30]; see the bottom part of Fig. 1(a). The black

squares represent the positive terminal of the memristor.

For simplicity, we assume that THAB model has the same

threshold voltage Vth (in absolute value) for both of them.

B. Data Representation and Control Voltages

A memristor has two resistive states: a high (Roff ) and low

(Ron) resistance. In this paper, all logic circuits use Roff and

Ron for logic 1 and 0, respectively. It is worth to note that

this is different from CMOS logic circuits which use high

and low voltages to represent logic 1 and 0, respectively.

To control memristor-based digital circuits, three different

voltages are required: Vw, Vwh, and GND; see Fig. 1(a). Vw

is used to program the resistance of a memristor; Vwh is

used to minimize the impact of sneak path currents by half-

select voltage strategy [17]; Vwh is then applied to memristors

which are not involved in particular operations. Vwh is also

used to support the implementation of basic logic gate as

in the case of NAND [24]. The relationship between Vw,

Vwh, GND and Vth is 0<Vwh=
Vw

2 <Vth<Vw. This relationship

guarantees Vw−Vwh=2Vwh−Vwh=Vwh<Vth which is able to

prevent undesired switching of non-accessed memristors [17].

C. Snider’s Boolean Logic Circuits

G. Snider proposed in [24] a design methodology for

memristor crossbar to implement Boolean logic. In this paper

we denote this design methodology by “SBLC” (Snider’s

Boolean Logic Circuits). As Fig. 1(b) shows, SBLC is

formed by an alternating cascade of latches and logic blocks;

synchronized by a CMOS control logic (realized by a FSM).

Each Boolean function is described as the format of

f=M1 + · · ·+Mi + · · ·+Mn=M1 · · · · ·Mi · · · · ·Mn, and is

implemented by a basic computing element (CE) as shown in

the bottom of Fig. 1(b). A CE consists of an input latch (IL),

an output latch (OL) and a logic block (LB). The LB consists

of all the minterms of the Boolean function; each Mi is

realized using a NAND gate consisting of several memristors

based on its number of inputs. The OL of a particular CE

is connected to the IL of the next CE by a low-resistance

path that consists of nanowires and memristors (which serve

as configurable routing switches). Each latch is composed of

several memristors depending on the number of inputs/outputs

of the Boolean function, and is used temporarily to store data.

The results of all minterms are accumulated at OL, which

operates as an AND gate.

SBLC requires an appropriate control to execute the steps

needed to compute a Boolean function. This is captured by

the state machine in Fig. 1(c); np represents the number

of minterms processed at each step, n the total number of

minterms. The state machine consists of six states:

1) INA: INItialize All the memristors of a CE to Roff .

2) RI: Receive Inputs. The IL of the CE receives the outputs

of the previous CE from its OL. The IL of the CE in

the first stage receives the inputs from primary inputs;

e.g., A.

3) CFM: ConFigure a Minterm. A particular minterm Mi

is configured by copying data from IL. Simultaneously,
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Fig. 2: Fast Boolean Logic Circuits.

the memristor located at the intersection of the column

implementing the minterm Mi and row of the output is

SET. This forms a low-resistance path between IL, Mi

and OL.

4) EVM: EValuate a Minterm. Mi is implemented by a

NAND gate and its result is accumulated at OL.

5) RSM: ReSet a Minterm. All the memristors of Mi are

RESET.

6) SO: Send Outputs. The results of all the outputs stored

in OL are sent to IL of the next CE.

Each minterm requires three steps: CFM, EVM and RSM.

The CE repeats these three steps until all the minterms are

evaluated. In conclusion, a CE with n minterms requires 3n+3

steps to compute the Boolean function. This sequential execu-

tion induces slow speed, and requires complex synchronization

between multiple LBs.

III. LOGIC CIRCUITS DESIGN METHODOLOGY

This section describes the proposed design methodology, its

primitive operations, and how the crossbar architecture should

be tuned to make it suitable for the proposed method.

A. Working Procedure and Primitive Operations

The major drawback of SBLC is the sequential execution of

minterms; this is due to two reasons. First, the minterms cannot

copy data from the input latches simultaneously. Second, all

the minterms accumulate their results in the same output latch

to produce the final result.

Motivated by these two reasons, we propose fast Boolean

logic circuit (FBLC) which requires the Boolean function

to be expressed in the sum-of-product format; i.e.,

f=M1 + · · · + Mi + · · · + Mn=M1 · · · · ·Mi · · · · ·Mn.

The concept of the proposed method is shown in Fig. 2(a).

Different from SBLC, FBLC employs a novel primitive

operation that allows all the minterms to copy their data

simultaneously from the input latch. In addition, all the Mi

are evaluated (based on NAND operations), and subsequently

the results of Mi are processed by an AND operation to

obtain the final result; this result is stored in OL. As a result,

FBLC can process all the minterms in parallel, and therefore

a Boolean function can be calculated in a constant number

of steps independent of the circuit’s functionality as will be

explained later in this section. It is worth to note that FBLC

uses both primary and complementary inputs as CEs in the

TABLE I: Summary of Primitive Operations

State Operation
Logic Values Control & Intermediate Signals

Input Output Vci Vco Vx Vom

INA RESET - 1 - - - Vw (>Vth)

RI SFC
1 1

Vw GND
GND 0 (<Vth)

0 0 Vw Vw (>Vth)

CFM MFC
1 1

Vw GND
GND 0 (<Vth)

0 0 Vw Vw (>Vth)

EVM
SFNAND A1 0

Vwh Vw
GND Vw (>Vth)

MFNAND AL0 1 Vwh Vw−Vwh (<Vth)

EVR AND
A1 1

Vw GND
GND 0 (<Vth)

AL0 0 GND Vw (>Vth)

INR INV
1 0

Vwh Vw
GND Vw (>Vth)

0 1 Vwh Vw−Vwh (<Vth)

SO SFC
1 1

Vw GND
GND 0 (<Vth)

0 0 Vw Vw (>Vth)

next stage typically require both.

FBLC requires 7 steps to compute a Boolean function indepen-

dent of its functionality. Fig. 2(b) shows the state machine that

generates the control signals for FBLC. The required primitive

operations of each state are:

• INA: INitialize All the memristors of a CE to Roff . This

state requires RESET operation.

• RI: REceive Inputs. The IL of the CE receives the OL of

the previous CE. The IL of the first stage CE receives the

inputs from primary inputs. Therefore, this state requires

single-fan-out copy (SFC) operation.

• CFM: ConFigure all Minterms. All the minterms are

configured simultaneously by copying inputs stored in

IL to each minterm in parallel. Hence, this state requires

multi-fan-out copy (MFC) operation.

• EVM: EValuate all Minterms. All the Mi are evaluated

simultaneously; again, the implementation is based on

an NAND operation. Hence, this state requires NAND

operations: a basic single-fan-out NAND (SFNAND)

used to evaluate the Mi, and an advanced multi-fan-out

NAND (MFNAND) used to further optimize FBLC; the

latter will be discussed in section IV.

• EVR: EVAluate Results. The results of EVM are feed to

an AND gate to determine f of the Boolean function; see

Fig. 2(a). Therefore, this state needs an AND operation.

• INR: INvert Results. The result of EVR need to be

inverted to achieve the final result f of the Boolean

function. Hence, an inversion (INV) operation is required.

• SO: Send Outputs. Finally the result captured in OL is

sent to IL of the next CE. Hence, a SFC is needed.

The left part of Table I summarizes the primitive operations

required at each state; the right part of the table presents

the implementation of primitive operations which will be

discussed in the next subsection. The first column shows the

states; the second column the required operations. Column

3 and 4 present the logic values of the inputs and outputs,

respectively; the logic value of a single-input operation is

either 1 or 0. For multi-input operations, we distinguish

between A1 (all inputs are 1) and AL0 (at least one input

is 0).
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B. Implementation of Primitive Operations

Fig. 3 shows the implementation of each primitive operation

consisting of one or multiple input and output memristors.

The output memristors are surrounded by a box with a

dashed-line and are all initialized to Roff prior to any

operation (i.e., RESET operation of state INA). In addition,

the implementation of each operation consists of a resistor Rs,

which satisfies the condition Ron�Rs�Roff ; this is required

to guarantee that the voltage across the output memristors

are close to the desired voltage (e.g., Vw, Vw−Vwh) for

appropriate operations [23].

The right part of Table I shows the control and intermediate

signals (for each primitive operation) related to the

implementation. Column ‘Vci’ and ‘Vco’ present the

control voltages applied to the input and output memristors,

respectively. Column ‘Vx’ presents the voltage of the floating

nanowires for given inputs of a particular operations; it is

the voltage across Rs and is used to explain the working

principle; see Fig. 3. Column ‘Vom’ shows the voltage across

the output memristor after all the control voltages are applied.

It indicates whether the output memristor remains Roff

(Vom<Vth) or switch to Ron (Vom>Vth).

The primitive operations are implemented as follows:

• State INA: State INA requires RESET operation; its

working principle has been explained in Fig. 1(a).

• State RI: State RI requires SFC operation; its working

principle is shown in Fig. 3(a). A voltage Vw>Vth (see

Fig. 1(a)) is applied to the negative terminal of the input

memristor while GND is applied to the output memristor.

In case the input is 1 (Roff ), Vx≈0 as Rs�Roff (see

Fig. 3(a)-Copy 1). Therefore, Vom=Vx−0≈0<Vth. As

a result, the output memristor stays at Roff . In case

the input is 0 (Ron), Vx≈Vw as Ron�Rs. Therefore,

Vom=Vx−0>Vth. As a result, the output memristor

switches to Ron (see Fig. 3(b)-Copy 0).

• State CFM: State CFM requires MFC operation; its

working principle is shown in Fig. 3(b) where a MFC

operation with fan-out of two is given as an example. Vw

is applied to the negative terminal of the input memristor

while GND is applied to all the output memristors. In

case the input is 1, Vx≈0 as Rs�Roff (see Fig. 3(b)-

Copy 1). Therefore, Vom=Vx−0≈0<Vth. As a result, the

output memristors stay at Roff . In case the input is 0,

Vx≈Vw as Ron�Rs (see the left part of Fig. 3(b)-Copy

0). Therefore, Vom=Vx−0≈Vw>Vth. As a result, the

output memristors switch to Ron. However, this operation

is destructive as shown in the right part of Fig. 3(b)-Copy

0. After output memristors switch to Ron, Vx changes

from Vw to 0. Therefore, the voltage across the input

memristor becomes Vx−Vw≈−Vw<−Vth. As a result,

the input memristor switches to Roff . Nevertheless, this

destructive operation has no impact on the correctness of

the CE as the data stored in IL is correctly copied to all

minterms.

• State EVM: State EVM requires SFNAND operation;

its working principle is shown in Fig. 3(c). A voltage

Vwh<Vth (see Fig. 1(a)) is applied to the positive terminal

of the input memristors while Vw is applied to the

output memristor. In case all the input are 1, Vx≈0 (see

Fig. 3(c)) and Vom=Vw−Vx≈Vw>Vth. As a result, the

output memristor switches to Ron. In case at least one

input is 0, Vx≈Vwh and Vom=Vw−Vx≈Vw−Vwh<Vth.

As a result, the output memristor stays at Roff .

• State EVR: State EVR requires AND operation; its work-

ing principle is shown in Fig. 3(e). Vw is applied to the

negative terminal of the input memristors while GND is

applied to the output memristor. In case all the inputs

are 1, Vx ≈0 and Vom=Vx−0≈0<Vth. As a result, the

output memristor stays Roff . In case at least one input

is 0, Vx is around Vw and Vom=Vx−0≈Vw>Vth. As a

result, the output memristor switches to Ron.

• State INR: State INR requires INV operation; its working

principle is shown in Fig. 3(f). Vwh is applied to the

positive terminal of the input memristor while Vw is

applied to the output memristor. In case the input is

1, Vx≈0 as Rs�Roff (see Fig. 3(f)-Invert 1). There-

fore, Vom=Vw−Vx≈Vw>Vth. As a result, the output

memristor switches to Ron. In case the input is 0,

Vx≈Vwh as Ron�Rs (see Fig. 3(f)-Invert 0). Therefore,

Vom=Vw−Vx≈Vw−Vwh<Vth. As a result, the output

memristor stays at Roff .

• State SO: State SO requires the same SFC operation the

one used in state RI.
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C. Computable Memristor Crossbar Architecture

FBLC requires an appropriate memristor crossbar architecture

that supports the implementation of all primitive operations.

Fig. 4 shows the computable memristor crossbar architecture

(CMCA); it is a variant of the normal crossbar architecture

[17] with two new features. First, a reference resistor (Rs) is

attached to each horizontal and vertical nanowire to implement

primitive operations. Second, two types of memristors are

required: active memristors which can switch, and disabled

memristors which are permanently in the high resistance

state [24]. In the figure, the arrow head presents the positive

terminal of the active memristor. Disabled memristors are

represented by a diagonal line only.

A CMCA consists of a memristor crossbar, CMOS control

logic, voltage drivers and a power supply. The memristor

crossbar implements a CE including IL, LB and OL. For

instance, the crossbar of Fig. 4 implements a 1-bit full adder;

row H1 implements IL, row H2 to H9 implement LB (i.e.,

minterms) and row H10 and H11 implement OL. More details

will be explained in the next section. The CMOS circuit

consists of voltage drivers, control logic (see Fig. 2(b)), and

power supply. Each nanowire is driven by a voltage driver.

The voltage drivers deliver different control voltages (i.e., Vw,

Vwh and GND) depending on the operation to be performed.

In addition, it can act as a high-impedance state resulting in

floating nanowires. The voltage driver can be implemented by

three transmission gates [17].

IV. DESIGN CASE STUDY AND OPTIMIZED FBLC

This section presents a one-bit full adder based on FBLC as a

case study. Subsequently, it presents how to further optimize

FBLC and a generic mapping process that maps arbitrary

Boolean functions to the crossbar.

A. Case Study: One-Bit Full Adder

The sum and carry of a one-bit full adder (FA) can be

expressed by Eq. 1. Each expression consists of four minterms.

The FBLC implementation of this 1-bit FA can be mapped to

CMCA as shown in Fig. 4 (a). For convenience, H# and V# are

used to denote a horizontal and vertical nanowire, respectively.

We present the position of a memristor by P(H#,V#). This 1-

bit FA can be implemented using a CE consisting of an IL,

LB and OL. The IL is mapped on the memristors located

at P(H1,V1-V6) as IL consists of primary inputs and their

complements. The remaining memristors on H1 are disabled.

The LB consisting of eight minterms is mapped on H2-H9.

Each minterm is implemented by placing active memritors at

junctions/positions formed by the horizontal nanowire (repre-

senting the minterm) and (a) the vertical nanowires associated

with the minterm’s inputs, or (b) an output for which the

minterm is part of. For example, ĀB̄C on H2 is a minterm

of Sum. Therefore, the junctions on H2 at P(H2,V2=Ā),

P(H2,V4=B̄), P(H2,V5=C) as well as at P(H2,V7=Sum)

consist of active memristors; while the remaining junctions

on H2 contain disabled memristors (non-active). The four

minterms of Sum and those of Carry (see Eq. 1) are then

ANDed in parallel by column V7=Sum and V8=Carry,

respectively. The OL is realized by H10 and H11. The results

provided by the two ANDs are then stored at P(H10=Sum,

V7) and P(H11=Carry, V8), which are thereafter inverted

and stored at P(H10, V9=Sum) and P(H11, V10=Carry),

respectively.

Sum = ĀB̄C · ĀBC̄ ·AB̄C̄ ·ABC

Carry = ĀBC ·AB̄C ·ABC̄ ·ABC (1)

To control the CE, different voltages are applied to each

nanowire during each state. After applying these voltages to
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TABLE II: Control Voltages for One-Bit Full Adder
State/Operation Horizontal Nanowire Vertical Nanowire
INA/RESET H1-H11:Vw V1-V10:GND
RI/SFC PSOL:Vw; H1:GND; H2-H11:Vwh V1-V6:F; V7-V10:Vwh

CFM/MFC H1:Vw; H2-H9:GND; H10-H11:Vwh V1-V6:F; V7-V10:Vwh

EVM/SFNAND H1:Vwh; H2-H9:F; H10-H11:Vwh V1-V6:Vwh; V7-V8:Vw; V9-V10:Vwh

EVR/AND H1:Vwh; H2-H9:Vw; H10-H11:GND V1-V6:Vwh; V7-V8:F; V9-V10:Vwh

INR/INV H1-H9:Vwh; H10-H11:F V1-V8:Vwh; V9-V10:Vw

SO/SFC H1-H9:Vwh; H10-H11:Vw; NSIL:GND V1-V6:Vwh; V7-V10:F
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Fig. 5: Mapping Process for an Arbitrary Boolean Function

nanowires, the related memristors perform the specific primi-

tive operations which together execute a Boolean function. The

applied voltages to each horizontal and vertical nanowire of the

1-bit FA during each state are summarized in Table II; they are

derived from Table I. PSOL and NSIL represent the OL of the

previous stage and the IL of the next stage, respectively. For

instance, to perform MFC operation (see Fig. 3(b)) required

by CFM state in order to configure all minterms in parallel,

Vw (Vci in the row CFM of Table I) is applied to horizontal

nanowire H1 while GND (Vco in the row CFM of Table I)

is applied to horizontal nanowires H2-H9; vertical nanowires

V1-V6 are floating (F) (Vx in the row CFM of Table I). Vwh

is applied to all the other horizontal and vertical nanowires in

order to minimize the impact of sneak path currents [31].

B. Optimized Fast Boolean Logic Circuits

We observed that the nanowires H8 and H9 in Fig. 4 (a)

compute the same minterm ABC but for the different outputs

Sum and Carry, respectively. Sharing this minterm would

reduce both area and energy consumption. Based on this, we

introduce a minterm-sharing strategy. Outputs with a common

minterm will be connected to a shared nanowire and employ

a MFNAND instead of SFNAND. The MFNAND operation

works similarly as SFNAND except that the results are ob-

tained in multiple output memristors as shown in Fig. 3(d).

Fig. 4(b) shows the result after applying the minterm-sharing

strategy to the 1-bit FA of Fig. 4(a); ABC is now presented

only by H8. FBLC with the minterm-sharing is referred to as

optimized FBLC (OFBLC).

C. Generic Mapping Process

The implementation of the 1-bit FA can be generalized and

any Boolean function can be mapped on CMCA by using its

truth table as shown in Fig. 5. First, an initial truth table is

created based on the Boolean function. This truth table can

be further optimized using existing logic optimization tools

(e.g., ESPRESSO [32]). Next, minterms are extracted from

the (optimized) truth table. Finally, the minterms are mapped

on the crossbar, similarly as shown for the 1-bit FA.

V. RESULTS AND EVALUATION

This section first verifies the 1-bit FA using SPICE simulation;

thereafter, it describes the evaluation metrics and comparison

between SBLC, FBLC and OFBLC.
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Fig. 6: OFBLC Simulation Result of a One-Bit Full Adder.

A. One-Bit Full Adder Verification

The one-bit full adder based on OFBLC shown in Fig. 4(b) is

verified by SPICE simulations. The memristor model, control

logic and voltage drivers are described by Verilog-A modules,

while the memristor crossbar circuit by a SPICE netlist.

The technology parameters and control voltages are listed in

Table III. The logic values 1 and 0 are represented by Roff

and Ron, respectively. As only a single CE is simulated, the

inputs are directly programmed in state RI (instead of copying

data from a previous CE) and state SO is ignored.

All the 8 possible input combinations of the 1-bit FA have been

TABLE III: Simulation Parameters
Parameter Value Parameter Value
Ron 100Ω Vw 1.4V
Roff 200kΩ Vwh 0.7V
Vth 1V Rs 1kΩ
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Fig. 7: CE Size for SBLC and (O)FBLC.

verified as shown in Fig. 6. The figure shows for each state

the resistance values of the inputs (i.e., A, A, B, B, C and C;

see Fig. 4(b) at P(H1,V1-V6)) and outputs (i.e., Sum, Carry,

Sum and Carry; see Fig. 4(b) at P(H9,V7), P(H10,V8),

P(H9,V9) and P(H10,V10), respectively). The inputs of the 1-

bit FA are programmed during state RI while the outputs are

valid at state INR. For instance, Fig. 6(a) shows the case the

inputs of the adder are all zeor (ABC=000). Its corresponding

outputs (Sum=1,Carry=1,Sum=0, Carry=0) are visible at

state INR.

B. Evaluation Metrics

The evaluation metrics delay, area and energy consumption

are used to compare the performance between SBLC and

(O)FBLC.

The delay is defined as the number of steps required to

execute a CE; each step, executed by a state, is assumed to

complete in one cycle. For a fair comparison, we add an extra

INR state to SBLC to compensate for the complementary

outputs. The delay of a CE that consists of nm minterms

requires 3nm+4 cycles for SBLC while 7 cycles for (O)FBLC

as summarized in Table IV.

Fig. 7 shows the layout dimensions of a generic CE for

SBLC, FBLC and OFBLC. In the figure, ni presents the

number of inputs, no the number of outputs, nm the total

number of minterms without considering minterm-sharing, and

nms (nms≤nm) the total number of minterms with minterm-

sharing. The calculated area is shown in Table IV and includes

both active and disabled memristors.

The energy consumption of a CE for a specific input combi-

nation is dominated by the resistive switching activity (from

high-to-low and low-to-high), as memristors have near-zero

leakage power consumption [10]. We assume that both high-

to-low and low-to-high resistive switching consume the same

amount of energy Esw. In addition, we assume that each input

combination occurs with the same probability. The average

energy consumption of all the input combinations is used as

energy metric.

C. Comparison

To compare (O)FBLC with SBLC, we designed CEs that

implement 2- and 4-bit full adders and multipliers. Based

TABLE IV: Delay and Area Calculation of a CE
Methodology Delay Area
SBLC 3nm+4 (2ni+no)(1+nm+2no)
FBLC 7 (2ni+2no)(1+nm+no)
OFBLC 7 (2ni+2no)(1+nms+no)

on the generic mapping process of Fig. 5, we developed

automated scripts that map the adders and multipliers on

the crossbar and subsequently evaluate their delay, area,

and energy consumption. Both initial and optimized (using

ESPRESSO [32]) truth tables are used for comparison. The

results are shown in Table V. SBLC with the initial truth

table as input is utilized as baseline for comparison. The

results of (O)FBLC are nomalized to this baseline which is

denoted by the improvement factor (IF).

From the table we conclude the following:

• For SBLC designs, the delay increases significantly when

the number of minterms increases. In contrast, the delay

of (O)FBLC designs is constant (7 cycles) for all the four

cases and up to 500 times faster than those of SBLC

designs.

• The area of OFBLC designs is typically smaller than

FBLC designs (up to 66% area improvement), while

FBLC designs perform area-wise always worse than

SBLC (up to 31% area increase). However, the area of

OFBLC designs can be larger or smaller than those of

SBLC designs depending on whether ESPRESSO is used

or not. In case ESPRESSO is not used, we observe that

the area of OFBLC designs is smaller than those of SBLC

designs (up to 56% area decrease) due to the minterm

sharing. In case ESPRESSO is used, we observe that the

area of OFBLC designs is typically larger than those of

SBLC designs (up to 17% area increase).

• OFBLC designs consume in all cases the lowest energy as

they have the least number of minterms, and therefore the

least number of switching memristors. In contrast, SBLC

designs perform worst; their energy consumption is 1.36

to 3.71 times higher than those of OFBLC designs.

• In case ESPRESSO is not used, OFBLC designs are able

to reduce the number of minterms significantly with re-

spect to SBLC and FBLC designs due to minterm sharing.

Therefore, OFBLC designs perform best in all these three

aspects. However, the benefit of minterm sharing reduces

when the logic optimization (i.e., ESPRESSO) is used.

The results of the experiments clearly show that although

(O)FBLC designs have typically a slight penalty in terms of

area with respect to SBLC designs, but it has a significant

improvement both in delay and energy consumption.

VI. CONCLUSION

Boolean logic circuits based on memristor crossbar are a

promising candidate for the next-generation VLSI circuits.

This paper proposed fast Boolean logic circuits (FBLC)

for memristor crossbars able to execute any Boolean func-

tion within constant time. Comparing with state-of-the-art

memristor-based Boolean logic circuits, FBLC has significant

improvement in terms of delay and energy consumption.

Moreover, FBLC provides a systematic design methodology

starting from Boolean functions all the way down to mem-

ristor crossbar implementations. This process is compatible

with existing logic optimization tools (e.g., ESPRESSO), and
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TABLE V: Evaluation of Logic Circuits
Full Adder Multiplier

Initial ESPRESSO Initial ESPRESSO
Metric SBLC FBLC OFBLC SBLC FBLC OFBLC Metric SBLC FBLC OFBLC SBLC FBLC OFBLC
Size (bits) 2 Size (bits) 2
nm 48 48 31 23 23 23 nm 14 14 9 8 8 7
nm IF 1 1 1.55 2.09 2.09 2.09 nm IF 1 1 1.56 1.75 1.75 2
Delay 148 7 7 73 7 7 Delay 46 7 7 28 7 7
Delay IF 1 21.14 21.14 2.03 21.14 21.14 Delay IF 1 6.57 6.57 1.64 6.57 6.57
Area 715 832 560 390 432 432 Area 276 304 224 204 208 192
Delay IF 1 0.86 1.28 1.83 1.66 1.66 Delay IF 1 0.91 1.23 1.35 1.33 1.44
Energy 352 259 174 142 100.50 100.50 Energy 100 73.75 53.75 58 43.88 39.88
Energy IF 1 1.36 2.02 2.48 3.50 3.50 Energy IF 1 1.36 1.86 1.72 2.28 2.51
Size (bits) 4 Size (bits) 4
nm 1280 1280 511 135 135 135 nm 678 678 225 156 156 128
nm IF 1 1 2.50 9.48 9.48 9.48 nm IF 1 1 3.01 4.35 4.35 5.30
Delay 3844 7 7 409 7 7 Delay 2038 7 7 472 7 7
Delay IF 1 549.14 549.14 9.40 549.14 549.14 Delay IF 1 291.14 291.14 4.32 291.14 291.14
Area 29693 36008 14476 3358 3948 3948 Area 16680 21984 7488 4152 5280 4384
Area IF 1 0.82 2.05 8.84 7.52 7.52 Area IF 1 0.76 2.23 4.02 3.16 3.80
Energy 14108 11553 4632 982 722 722 Energy 6812 5461.30 1837.30 1271 966.37 774.37
Energy IF 1 1.22 3.05 14.37 19.54 19.54 Energy IF 1 1.25 3.71 5.36 7.05 8.80

therefore, feasible to be integrated into existing design flows.

Based on the above features, FBLC can be used as one of the

candidates to design basic building blocks in memristor-based

VLSI circuits.
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