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Abstract.  The Bootstrap resampling method may be efficiently used to 
estimate the generalization error of nonlinear regression models, as artificial 
neural networks and especially Least-square Support Vector Machines. 
Nevertheless, the use of the Bootstrap implies a high computational load. In this 
paper we present a simple procedure to obtain a fast approximation of this 
generalization error with a reduced computation time. This proposal is based on 
empirical evidence and included in a simulation procedure. 

 
1. Introduction 

Model design has raised a considerable research effort since decades, on linear 
models, nonlinear ones, artificial neural networks, and many others. Model design 
includes the necessity to compare models (for example of different complexities) in 
order to select the “best” model among several ones. For this purpose, it is necessary 
to obtain a good approximation of the generalization error of each model (the 
generalization error being the average error that the model would make on an infinite-
size and unknown test set independent from the learning one). Nowadays there exist 
some well-known and widely used methods able to fulfill this task [1-6] and the 
Bootstrap is one of the more performing methods. The main problem when using the 
Bootstrap is the computation of the results that is really time consuming. In this paper 
we will show that, under reasonable and simple hypotheses usually fulfilled in real 
world applications, it is possible to provide a good estimate of the Bootstrap results 
with a considerably reduced number of modeling stages, thus saving a considerable 
amount of computation time. Previously, the Fast Bootstrap has been developed for 
the Radial Basis Functions Networks (RBFN). In this paper, the Fast Bootstrap is 
extended to Least-square Support Vector Machines (LS-SVM) [7-9].  The LS-SVM is 
presented in section 2. Then, the Bootstrap is presented in section 3 and finally, the 
Fast Bootstrap is introduced in section 4 using a toy example. 
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2. Least-Square Support Vector Machines (LS-SVM) 

Consider a given training set of N data points {xk, yk} with xk a n-dimensional input 
and yt a 1-dimensional output. In feature space SVM models take the form:  
 ( ) ( )Ty x x b= ω ϕ + , (1) 
where the nonlinear mapping ϕ(.) maps the input data into a higher dimensional 
feature space. In least squares support vector machines for function estimation, the 
following optimization problem is formulated: 
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This corresponds to a form of ridge regression. The Lagrangian is given by 
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for k = 1..N. After elimination of ek and ω, the solution is given by the following set 
of linear equations 
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where y = [y1; …; yN], = [1; …; 1], α = [α1
r

1; ...;αΝ] and the Mercer condition 
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has been applied. This finally results into the following LS-SVM model for function 
estimation 
 ( ) ( )Ty x x b= ω ϕ + , (8) 
where α and b are the solution to (6). For the choice of the kernel function ψ(.,.) one 
has several possibilities [7-9].  In this paper, Gaussian kernels are used: ψ(x, 
xk) = exp{-||x-xk||2/σ2} and the remaining unknowns are σ and γ. These model 
hyperparameters will be selected according to a model selection procedure detailed in 
the following of this paper. 
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3. Bootstrap for Model Structure Selection 

The bootstrap [4] is a resampling method that has been developed in order to estimate 
some statistical parameters (like the mean, the variance, etc). In the case of model 
structure selection, the parameter to be estimated is the generalization error (i.e. the 
average error that the model would make on an infinite-size and unknown test set). 
When using the bootstrap, this error is not computed directly. Rather the bootstrap 
estimates the difference between the generalization error and the training error 
calculated on the initial data set. This difference is called the optimism. The estimated 
generalization error will thus be the sum of the training error and of the estimated 
optimism. The training error is computed using all data from the training set. The 
optimism is estimated using a resampling technique based on drawing within the 
training set with replacement. Using notation   where the first exponent Aj denotes the 
training set while the second exponent Aj indicates the set used to estimate the model 
error, the Bootstrap method can be decomposed in the following stages: 
 
1.  From the initial set I, one randomly draws N points with replacement. The new set 
Aj has thus the same size that the initial set and constitutes a new training set. This 
stage is called the resampling. 
2.  The training of the various model structures q is done on the same training set Aj. 
One can compute the training error on this single set: 
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with θj
∗ the model parameters after learning, hq the qth model that is used, xi

Aj the ith 
input vector from set Aj, yi

Aj the ith output and N the number of elements in this set. 
Index j means that the error is evaluated on the jth new sample.  
3.  One can also compute the validation error on the initial sample which now plays 
the role of the validation set V=I: 
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Here again index j means that the error is evaluated on the jth new sample. 

4.  The difference between these two errors (9) and (10) is calculated and defined as 
the optimism by Efron [6]: 
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 .  (11)
5.  Steps 1 to 4 are repeated J times. The estimate of the optimism is then calculated 
as the average of the J values from (11): 
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6.  The training of the q model structures is done on the initial data set I and the 
training error is calculated on the same set. Two exponents I are used to indicate that 
the initial data set is used for both training and error estimation: 
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7.  An approximation of the generalization error is finally obtained by:  

),()(ˆ)(ˆ *, θ+= qEqismmoptiqE II
gen .  (14) 

Êgen(q) is an approximation of the generalization error for each model structure q. The 
best structure that will be selected is the one that minimizes this estimate of the 
generalization error. 
 
4. Fast Bootstrap and Toy Example 

In this section, an improvement of the Bootstrap methods is presented. This method is 
called Fast Bootstrap and allows reducing the computational time of the traditional 
Bootstraps [10-11]. This method is based on experimental observations and is 
presented on a function approximation example (represented in Figure 1). In this 
example, 200 inputs x has been drawn using a uniform random law between 0 and 1. 
The output y has been generated by the function: 
 , (9) sin(5 ) sin(15 ) sin(25 )y x x x= + + + ε

with ε a uniform random law between [-0.5 -0.5]. 
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Figure 1: Example of function (dots) and its approximation (solid line). 
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A LS-SVM is used to approximate this function. Two parameters still have to be 
determined, namely σ and γ. For a fixed σ = 0.1, the optimal γ is determined using the 
Bootstrap method. The set of γ that is tested ranges from 0 to 100 with a 0.1 step. The 
number of resamplings in (12) is equal to 100. 
The apparent error defined in (13) is computed and represented in Fig.2A. The 
optimism is computed using (12) and represented in Fig.2B. The generalization error 
is computed using (15) and represented in Fig.3. The value of γ that minimizes the 
generalization error is equal to 11. 
In Fig.2B, the optimism is very close from an exponential function of γ. This fact has 
been observed on other examples and benchmarks. Then, using this information, the 
number of values of γ to be tested can be considerably reduced. In this example, this 
set is indeed reduced to 5 to 100 with an incremental step of 5. An exponential 
approximation of the optimism is used. Thanks to the approximation, the number of 
Bootstraps is also reduced by a factor 10 in (12). The new optimism and 
generalization error are represented as dotted lines in Fig.2B and Fig.3 respectively. 
The optimum is close to the one that has been selected by the Bootstrap method. This 
new method, denoted Fast Bootstrap, is in this toy example 500 times quicker than the 
traditional Bootstrap. In other examples, the Fast Bootstrap is at least 100 times 
quicker than traditional Bootstrap for the selection of the γ parameter for a LS-SVM, 
without loss of precision. 
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Figure 2A: Apparent Error with respect to γ. Figure 2B: Optimism with respect to γ 
using Bootstrap (solid line) and Fast Bootstrap (dashed line). 
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Figure 3: Generalization Error with respect to γ using Bootstrap (solid line) and Fast 
Bootstrap (dashed line). 
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5. Conclusions 

In this paper we have shown that the optimism term of the Bootstrap estimator of the 
prediction error is approximatively an exponential with respect to the γ parameter of a 
LS-SVM. According to the results shown here and to other ones not illustrated in this 
paper, we recommend a conservative value of 10 for the number of Bootstrap 
replications before stopping the approximation computation. We would like to 
emphasize on the fact that the very limited loss of accuracy is balanced by a 
considerable saving in computation load, this last fact being the main disadvantage of 
the Bootstrap resampling procedure in practical situations. This saving is due to the 
reduced number of tested models and to the limited number of Bootstrap replications.  
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