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Abstract The use of Surrogate Based Optimization (SBO) is widely spread in engi-

neering design to reduce the number of computational expensive simulations. However,

“real-world” problems often consist of multiple, conflicting objectives leading to a set

of competitive solutions (the Pareto front). The objectives are often aggregated into a

single cost function to reduce the computational cost, though a better approach is to

use multiobjective optimization methods to directly identify a set of Pareto-optimal

solutions, which can be used by the designer to make more efficient design decisions

(instead of weighting and aggregating the costs upfront). Most of the work in multiob-

jective optimization is focused on MultiObjective Evolutionary Algorithms (MOEAs).

While MOEAs are well-suited to handle large, intractable design spaces, they typically

require thousands of expensive simulations, which is prohibitively expensive for the

problems under study. Therefore, the use of surrogate models in multiobjective opti-

mization, denoted as MultiObjective Surrogate-Based Optimization (MOSBO), may

prove to be even more worthwhile than SBO methods to expedite the optimization

of computational expensive systems. In this paper, the authors propose the Efficient

Multiobjective Optimization (EMO) algorithm which uses Kriging models and multi-

objective versions of the Probability of Improvement (PoI) and Expected Improvement

(EI) criteria to identify the Pareto front with a minimal number of expensive simula-

tions. The EMO algorithm is applied on multiple standard benchmark problems and

compared against the well-known NSGA-II, SPEA2 and SMS-EMOA multiobjective

optimization methods.

Keywords multiobjective optimization · expected improvement · probability of

improvement · hypervolume · Kriging · Gaussian Process

1 Introduction

Surrogate modeling techniques, also known as metamodeling, are becoming rapidly

popular in the engineering community to speed up complex, computational expensive
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design problems [37,22]. Surrogate models, or metamodels, are mathematical approx-

imation models that mimic the behavior of computational expensive simulation codes

such as mechanical or electrical finite element simulations, or computational fluid dy-

namic simulations. This paper deals with the use of surrogate models for expediting

the optimization of time-consuming (black-box) problems of a deterministic nature, in

contrast to stochastic simulation.

While several types of surrogate modeling uses can be distinguished, this work is

concerned with the integration of surrogate models into the optimization process, often

denoted by Surrogate Based Optimization (SBO) or Metamodel-Assisted Optimization

(MAO). SBO methods typically generate surrogate models on the fly that are only

accurate in certain regions of the input space, e.g., around potentially optimal regions.

The generated surrogate models can then be used to intelligently guide the optimization

process to the global optimum.

The focus of this work is the global SBO method based on the Probability of

Improvement (PoI) and Expected Improvement (EI), popularized by Jones et al. [25].

These “statistical criteria” guide the selection of new data points in such a way that the

objective function is optimized, while minimizing the number of expensive simulations.

The advantage of EI and PoI is that, besides the prediction (mean), the uncertainty

(variance) of the surrogate model is taken into account as well, providing a balance

between exploration1 and exploitation2. Most often EI or PoI is used in conjunction

with the Kriging surrogate model (Gaussian Processes) [27] which provides by con-

struction a prediction of the mean as well as the variance, but other surrogate models

are also possible, such as Radial Basis Functions (RBF), Support Vector Regression

(SVR) [13], etc.

The single-objective SBO problem is well described in literature, however, most

(if not all) “real-world” problems actually consists of multiple, conflicting objectives

leading to a set of Pareto-optimal solutions. Often the objectives are aggregated into a

single cost function, e.g., using a weighted sum, that can be optimized by standard opti-

mization techniques. Subsequently, by repeating this process many times using varying

starting conditions, e.g., different set of weights, several solutions on the Pareto front

can be found. On the other hand, a multiobjective optimization method can optimize

the different objective functions simultaneously, and try to find the Pareto front in

just a single run. Examples of such methods are primarily the MultiObjective Evolu-

tionary Algorithms (MOEAs), e.g., the “Non-dominated Sorting Genetic Algorithm II”

(NSGA-II; [14]), the “Strength Pareto Evolutionary Algorithm 2” (SPEA2; [44]) and

the “S-Metric Selection Evolutionary MultiObjective Algorithm” (SMS-EMOA; [5]).

Unfortunately, MOEAs typically require a massive amount of function evaluations,

which is infeasible for computational expensive simulators. Hence, it is vital to econo-

mize on the number of function evaluations, e.g., by using surrogate models. MultiOb-

jective Surrogate-based Optimization (MOSBO) methods only appeared quite recently

in literature. Most work is focused on integrating surrogate models in MOEAs [41].

Gaspar et al. [21] use neural networks to either approximate the fitness function or as

a local approximation technique to generate search points more efficiently. Voutchkov

et al. [35] apply the NSGA-II algorithm to Kriging models instead of the expensive sim-

1 Improving the overall accuracy of the surrogate model (space-filling).
2 Enhancing the accuracy of the surrogate model solely in the region of the (current) opti-

mum.
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ulator. For an overview of available techniques and approaches the reader is referred

to [30,42].

While the PoI and EI approach is well-developed and used for single-objective

SBO, its use in MOSBO is not well spread. Single-objective versions of EI and PoI are

utilized by Knowles et al. [28,29] to solve MOSBO problems. This approach, known

as ParEGO, uses Kriging and EI to optimize a weighted sum of objective functions.

By randomizing the weights every iteration several solutions along the Pareto front

can be identified. More recently, Keane [26] proposed multiobjective versions of PoI

and Euclidean distance-based EI. At the same time Emmerich et al. [17] proposed the

hypervolume-based EI criterion. Similarly to a weighted sum, the multiobjective ver-

sions of EI and PoI aggregate information from the surrogate models into a single cost

function, balancing between exploration1 and exploitation3. Unfortunately, only for-

mulae for two objective functions are given by Keane as the statistical criteria become

rather cumbersome and complex for a higher number of objective functions. Similarly,

while Emmerich et al. [16] describe formulae for an arbitrary number of dimensions for

the hypervolume-based EI, the computation cost increases at least exponentially with

the number of objectives and, hence, has only been applied to two objectives.

The key contribution of this paper is the Efficient Multiobjective Optimization

(EMO) algorithm which is a much more efficient method of evaluating multiobjective

versions of the PoI and EI criteria for multiobjective optimization problems. In fact,

the problem at hand is similar to calculating the hypervolume (a Pareto set quality

estimator) [45] as will be shown below and, hence, hypervolume algorithms can be

adapted to aid in the evaluation of the statistical criteria. Moreover, a new statistical

criterion is proposed, based on the hypervolume-based EI, which is significantly cheaper

to compute while still delivering promising results.

In section 2 the Kriging surrogate model is briefly discussed. In section 3, an

overview of the EMO algorithm is given, including general expressions for the PoI

and several variants of EI. Subsequently, a fundamental part needed for the calculation

of the statistical criteria is discussed in section 3.4. Afterwards, in section 4 the EMO

algorithm is tested on several functions from the DTLZ benchmark suite [15]. Lastly,

in section 5 conclusions and future work are discussed.

2 Kriging

Kriging is a popular surrogate model to approximate deterministic noise-free data,

and has proven to be very useful for tasks such as optimization [25], design space

exploration, visualization, prototyping, and sensitivity analysis [37].

A thorough mathematically treatment of Kriging is given in [33,19]. Basically,

Kriging is a two-step process: first a regression function h(x) is constructed, and,

subsequently, a centered Gaussian process Z with variance σ2 and a correlation matrix

Ψ is constructed through the residuals.

Y (x) = h(x) + Z(x). (1)

Consider a set of n samples, (x1, . . . ,xn)
⊤ in d dimensions (see Equation 2) and

associated function values, y = (y1, . . . , yn)
⊤, where (·)⊤ is the transpose of a vector

or matrix.

3 Improving or augmenting the Pareto front.
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X =
(

x1, . . . ,xn

)⊤

=









x1,1 . . . x1,d
...

. . .
...

xn,1 . . . xn,d









(2)

Essentially, the regression part is encoded in the n× p model matrix F using basis

functions bi(x) for i = 1 . . . p,

F =









b1(x1) b2(x1) · · · bp(x1)
...

...
...

...

b1(xn) b2(xn) · · · bp(xn)









,

while the stochastic process is mainly defined by the n× n correlation matrix Ψ ,

Ψ =









ψ(x1,x1) . . . ψ(x1,xn)
...

. . .
...

ψ(xn,x1) . . . ψ(xn,xn)









,

where ψ(·, ·) is the correlation function. ψ(·, ·) is parameterized by a set of hyperpa-

rameters θ. The choice of correlation function is crucial to obtain good accuracy. This

paper focuses on using the Matérn correlation function [34], with ν = 3/2,

ψ(x,x′)Matérn
ν=3/2 =

(

1 +
√
3l
)

exp
(

−
√
3l
)

,

with l =

√

∑d
i=1 θi(xi − x′i)

2. In addition, the popular Gaussian correlation func-

tion is also used,

ψ(x,x′)Gauss = exp

(

−
d
∑

i=1

θi|xi − x′i|2
)

.

The hyperparameters θ are identified by Maximum Likelihood Estimation (MLE).

In particular, the negative concentrated log-likelihood is minimized,

argmin
θ

− n

2
ln(σ2)− 1

2
ln(|Ψ |),

where σ2 = 1
n (y−Fα)⊤Ψ−1(y−Fα). Subsequently, the prediction mean and prediction

variance of Kriging are derived, respectively, as,

µ(x) =Mα+ r(x) · Ψ−1 · (y−Fα), (3)

s2(x) = σ2
(

1− r(x)Ψ−1r(x)⊤ +
(1− F⊤Ψ−1r(x)⊤)

F⊤Ψ−1F

)

, (4)

where M =
(

b1(x) b2(x) . . . bp(x)
)

is the model matrix of the predicting point x,

α is a p × 1 vector denoting the coefficients of the regression function, determined by

Generalized Least Squares (GLS), and r(x) is an 1× n vector of correlations between

the point x and the samples X.
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Fig. 1: Flow chart of the Efficient Multiobjective Optimization (EMO) algorithm.

3 Efficient Multiobjective Optimization (EMO)

3.1 Overview

A flow chart of the EMO algorithm is shown in Figure 1. First an initial set of points X

is generated and evaluated on the expensive objective functions fj(x), for j = 1 . . .m.

Each objective function fj(x) is then approximated by a Kriging model. Based on

the Kriging models useful criteria can be constructed that help in identifying Pareto-

optimal solutions. After selecting a new point it is evaluated on the expensive objective

functions fj(x), the Kriging models are updated with this new information and this

process is repeated in an iterative fashion until some stopping criterion is met.

Of particular interest are the Probability of Improvement (PoI) and Expected Im-

provement (EI) statistical criteria which are widely used for single-objective optimiza-

tion [24,10]. Hence, it may be useful to extend the concept of the PoI and EI directly

to multiobjective optimization. Multiobjective versions of the PoI and EI are defined

for an arbitrary number of objective functions in sections 3.2 and 3.3.

For ease of notation in the forthcoming sections, the output of all the Kriging

models can be considered as mutually independent Gaussian random variables Yj(x),

Yj(x) ∼ N (µj(x), s
2
j (x)) for j = 1 . . .m. (5)

The associated probability density function φj and cumulative distribution function

Φj of Yj(x) are compactly denoted as,

φj [yj ] , φj [yj ;µj(x), s
2
j (x)], (6)

Φj [yj ] , Φj [yj ;µj(x), s
2
j (x)]. (7)

Given a set of n pointsX as in (2), a Pareto set P can be constructed that comprises

v ≤ n Pareto-optimal (non-dominated) solutions,
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P =
{

f(x∗
1), . . . , f(x

∗
v)
}

. (8)

Each solution f(x∗
i ) is a vector that contains the objective function values for an

associated input point x∗
i ∈ X, for i = 1 . . . v,

f(x∗
i ) =

(

f1(x
∗
i ), . . . , fm(x∗

i )
)

. (9)

3.2 Probability of Improvement (PoI)

Evaluating the probability that the objective function values of a new input point x are

located inside a well-defined region A in the objective space requires a multidimensional

integration over that region. Naturally, several variants of the multiobjective PoI can

be constructed as the concept of improvement is ambiguously defined in the context of

multiobjective optimization. This is reflected in the selection of the integration region

A, e.g., A can be the non-dominated part of the objective space or A can be the region

in the objective space that solely extends (and does not dominate) the Pareto set,

etc. In general, the probability that a new input point x yields improvement over the

Pareto set P is denoted by the PoI P [I],

P [I] =

ˆ

y∈A

m
∏

j=1

φj [yj ]dyj . (10)

To evaluate Equation (10), the integration area A can be decomposed into q (hyper-

)rectangular cells, which yields a finite summation of contributing terms, see Figure

2a. The lower and upper bound [lk,uk] of each cell, for k = 1 . . . q, will be computed

in section 3.4.

P [I] =

q
∑

k=1

±
m
∏

j=1

(Φj [u
k
j ]− Φj [l

k
j ]). (11)

While the cells can be chosen to disjointedly cover the integration area A, the

algorithm described in section 3.4 decomposes the region A in overlapping cells. In

this case, cells may negate the overlapping contribution of other cells by subtraction,

denoted by the ± symbol in Equation (11).

3.3 Expected Improvement (EI)

While the PoI criterion is already quite useful and insensitive to the scaling of the

objective functions, it does not, necessarily, encourage the generation of a uniform

Pareto set. The EI quantifies the amount of improvement using an improvement func-

tion I(y,P) and, thus, prefers solutions that are lying farther from existing members

of the Pareto set. The EI integral is defined as,

E[I] =

ˆ

y∈A

I(y,P)

m
∏

j=1

φj [yj ] dyj . (12)
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1
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2

(b)

Fig. 2: Illustration of a Pareto set of two objective functions. The dots represent the

Pareto points f i, for i = 1 . . . v, while fmin and fmax denote the ideal and anti-ideal

point, respectively. a) The dark and light shaded regions denote the non-dominated

and dominated region, respectively. The volume of the latter region is the hypervolume

indicator, bounded by a reference point r = fmax + ǫ. b) The integration area A of

the hypervolume-based PoI corresponds to the (light and dark) shaded region which is

decomposed into cells by a binary partitioning procedure. The exclusive hypervolume of

a point y relative to the Pareto set can be computed from existing cells and corresponds

to the dark shaded region.

In contrast to the various types of the PoI criteria (e.g., dominating 4 Pareto points

or extending the Pareto set as in section 3.2), it arguably makes more sense to only

integrate the EI criteria over the region A corresponding to the non-dominated part

of the objective space. The improvement function will automatically prefer new points

that dominate the most points within the Pareto set P (the largest improvement).

When no such points are found, the improvement function encourages the selection of

points that extend the Pareto set P in an uniform way. Consequently, the design of the

improvement function for the EI is crucial in identifying an optimal and uniform Pareto

set. A good theoretical overview of different types of EI is given by [36], including

work on scalar improvement functions [26,16] as well as using the single-objective

EI in a multiobjective setting [28,23]. Below we focus on evaluating the Euclidean

distance-based EI [26] as well as the hypervolume-based EI [17,16] efficiently for many

objectives. In addition, a simplified version of the hypervolume-based EI is proposed

that is significantly cheaper to compute.

3.3.1 Hypervolume-based improvement function

The hypervolume metric (or S-metric) [45] is widely used in multiobjective optimiza-

tion to assess the quality of a Pareto set or to drive multiobjective optimization algo-

rithms [5]. The hypervolume indicator H(P) denotes the volume of the region domi-

nated by the Pareto set P, bounded by a reference point r which needs to be dominated

by all points of the Pareto set, see Figure 2a. Larger values of the hypervolume indicates

better Pareto sets. Moreover, the exclusive hypervolume (or hypervolume contribution,

see Figure 2b) of a Pareto set P relative to a point p is defined as,
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Hexc(p,P) = H(P ∪ {p})−H(P). (13)

Hexc measures the contribution (or improvement) of the point p to the Pareto set

P and, hence, can also be used to define a scalar improvement function, namely,

I(p,P) =

{

Hexc(p,P) if p is not dominated byP
0 otherwise

. (14)

Subsequently, the integral of the hypervolume-based EI is,

Ehv[I] =

ˆ

y∈A

I(y,P)

m
∏

j=1

φj [yj ] dyj , (15)

where A is the non-dominated region (bounded by the reference point r).

Initially it was suggested to approximate the hypervolume-based EI using Monte

Carlo techniques [17]. Recently, Emmerich et al. [16] proposed a method to calculate

it exactly for an arbitrary number of dimensions by decomposing the non-dominated

region into a set of cells as is also done in this work. Unfortunately, in [16] the proposed

mathematical expressions assume that the non-dominated region is decomposed into

an uniform grid of cells based on the Pareto set, see the cells bounded by the dashed

lines in Figure 2a. Hence, the number of cells required to evaluate the criterion scales

at least exponentially with the number of Pareto points and objectives. Moreover,

for each cell a separate hypervolume calculation needs to be done and, hence, it is

infeasible to apply the method for three objectives or higher. This work develops a

new mathematical expression for the hypervolume-based EI that alleviates some of

its computational complexities by decomposing the non-dominated region into a much

smaller set of cells as well as removing the separate hypervolume calculations.

In contrast to other statistical criteria, the proposed expressions for the hypervolume-

based EI requires the non-dominated region to be covered by a set of disjoint cells,

then the hypervolume-based EI can be written in closed form as,

Ehv[I] =

q
∑

k=1

ICk (16)

where ICk denotes the improvement contribution of cell k, namely,

ICk =

ˆ uk
1

lk
1

. . .

ˆ uk
m

lkm

(H(P ∪ {y})−H(P))

m
∏

j=1

φj [yj ]dyj

=

ˆ uk
1

lk
1

. . .

ˆ uk
m

lkm

q
∑

k′=1

m
∏

j=1

(uk
′

j −max{lk
′

j , l
k
j })φj [yj ]dyj

=

q
∑

k′=1

m
∏

j=1

ˆ uk
j

lkj

(uk
′

j −max{lk
′

j , l
k
j })φj [yj ]dyj

=

q
∑

k′=1

m
∏

j=1

G(lkj , u
k
j , l

k′

j , u
k′

j ).

For each cell k′ = 1 . . . q contributions are calculated per dimension as follows,
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f
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Fig. 3: The Improvement Contribution (IC) of the dark shaded cell k is calculated by

multiplying different types of improvement (A, B or C) per dimension for all cells. The

final IC is obtained by summation over all cells.

Type G(lj , uj , aj , bj) = Condition

A (bj − aj)(Φj [max(aj , lj)]− Φj [lj ])+ bj > lj ∧ aj < uj

(bj − µj(x))(Φj [min(bj , uj)]− Φj [max(aj , lj)])+

s2j (x)(φj [min(bj , uj)]− φj [max(aj , lj)])

B (bj − aj)(Φj [uj ]− Φj [lj ]) aj ≥ uj

C 0 otherwise

.

There are several ways a cell k′ can contribute to the ICk depending on its position

relative to cell k, see Figure 3. Cell k is represented by the dark shaded cell. The pairs

(·, ·) inside each cell k′ = 1 . . . q denote the type of contribution (A, B or C) per

dimension. A, B and C refer to the Equations of the piecewise function G, see the

previous Table. If a cell is completely covered by cell k in any one dimension, its length

in that dimension is always included (type B). If a cell is only partially covered by

the cell k, the contribution is divided into two parts: the integration when the cell is

possibly fully covered (first line of A; zero if aj ≤ lj) and when the cell is partially

covered (second and third line of A). If a cell is not covered in any dimension, it also

does not contribute to the ICk (type C). The intermediary contribution ICk is obtained

by multiplying the different kinds of contributions for each dimension and summing it

over all cells k′ = 1 . . . q.

The correctness of this algorithm has been verified by an extensive numerical com-

parison against the publicly available code of Emmerich et al. [16] for the two objective

case. In addition, the two and three objective cases have been verified using Monte Carlo

methods.

Regardless of the fact that the new procedure is already significantly cheaper than

the method proposed by Emmerich et al. [16], this hypervolume-based EI is still more

expensive to evaluate than other statistical criteria. This is due to the computation

time being more sensitive to the number of cells as well as the reliance on a binary
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partitioning of the non-dominated region into disjoint cells, which requires more cells

to cover the integration area than the Walking Fish Group (WFG) algorithm explained

in section 3.4. Hence, a simplification of the hypervolume-based EI is proposed in the

next section which can be evaluated using the WFG algorithm.

3.3.2 Hypervolume-based PoI

Inspired by the definition of the hypervolume-based EI [16], the hypervolume-based

PoI can be written as the product of the improvement function I(µ,P) and the PoI

P [I], and so the advantages of using the hypervolume contribution can be preserved

while significantly reducing the overall computational complexity,

Phv[I] = I(µ,P) · P [I], (17)

where I(µ,P) is defined as in (14) and µ = (µ1(x), . . . , µm(x)) is a vector that contains

the prediction of the Kriging models of each objective function for a point x. In effect,

the prediction variance is not taken into account anymore for the improvement function,

in contrast to EIhv, as it is moved outside of the integral.

The integration area A of P [I] corresponds to the non-dominated region and, hence,

a closed-form expression of the hypervolume-based PoI can be derived from the same

set of cells used to evaluate P [I], see Figure 2b, namely,

Phv[I] =

(

q
∑

k=1

±V ol(µ, lk,uk)

)

· P [I] (18)

where,

V ol(µ, l,u) =

{

∏m
j=1(uj −max(lj , µj(x))) if uj > µj(x) for j = 1 . . .m

0 otherwise
.

3.3.3 Euclidean distance-based improvement function

Similarly to the hypervolume-based PoI, Keane et al. [26] defines the EI as the product

of the PoI P [I] and an Euclidean distance-based improvement function. Let fc be the

solution in P that is located closest to the centroid ŷ(x) of the P [I] integral,

f
c = argmin

fc∈P

√

√

√

√

m
∑

j=1

wj(ŷj(x)− fcj )
2, (19)

where the weight vector w = (w1, . . . , wm) is used to scale the objective functions into

the same range and,

ŷj(x) =

q
∑

k=1

ŷj(x; l
k,bk), (20)

with the centroid ŷ over arbitrary integral bounds [l,b] defined by,
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ŷj(x; l,b) =
´ u1

l1
...
´ um
lm

φ1[y1]...yjφ[yj ]...φm[ym] dym...dy1/P [I]

=

j−1
∏

j′=1

(Φj′ [uj′ ]− Φj′ [lj′ ])×
m
∏

j′=j+1

(Φj′ [uj′ ]− Φj′ [lj′ ])

×(µj(x)Φj [uj ]−s2j (x)φj [uj ]−µj(x)Φj [lj ]+s2j (x)φj [lj ])/P [I]. (21)

Lastly, Eeuclid[I] for an input vector x is defined as,

Eeuclid[I] =

√

√

√

√

m
∑

j=1

wj(ŷj(x)− fcj )
2 · P [I]. (22)

Like all other EI criteria the integration area A of P [I] and ŷ(x) is the non-

dominated region.

3.4 Decomposing the objective space into cells

In order to evaluate these statistical criteria efficiently, one or more integrals need to

be evaluated over an integration area A. As A is non-rectangular and often irregularly

shaped, especially for a higher number of objective functions, the integral must first

be decomposed into a sum of k integrals over rectangular cells. While these cells can

be identified analytically upfront for two objectives [26] or one can use the most fine-

grained cells possible (for a total of q ≈ (v + 1)m cells; [16]), this becomes rather

prohibitively complex and cumbersome for a higher number of objective functions

(> 2).

Instead, the authors propose to decompose the integration area in as few cells as

possible using an efficient computer algorithm, i.e., each cell encompasses a large part of

the integration area. A straightforward approach to determine the required bounds of

the cells for the evaluation of the criteria is to use binary partitioning [11], see Figure 2a.

While this approach is quite flexible as it allows to identify different kind of integration

areas (e.g., leading to several variants of statistical criteria), it becomes prohibitively

expensive as the number of objectives exceeds four. Nonetheless, by terminating the

binary partitioning early the statistical criteria can still be approximated fairly well

for a higher number of objectives.

However, the focus of this work is to improve the performance of the exact evalu-

ation of the criteria. To that end, it makes sense to take advantage of the numerous

algorithms for calculating the hypervolume. Formally, the hypervolume is the Lebesgue

integral,

H(P) =

ˆ

y∈A

1dy1 . . . dym, . (23)

where A is the region dominated by the Pareto set P and bounded by some reference

point r. As the statistical criteria are integrals evaluated over a similar area, but using

a different integrand, the idea is to adapt a hypervolume routine and retrieve the

integration area A as a set of cells instead of immediately calculating its (hyper)volume.

Exact algorithms [31,43,4,3] for calculating the hypervolume as well as approxima-

tions [28,7,8,20,1,2] and alternative versions of the hypervolume problem, e.g., finding



12

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

y
1

y
2

 

 

Exclusive hypervolume of p relative to {f
3
,f

4
}

f’
3

f’
4

r=f
max

+ε

f
min

−ε

f
v=4

f
3

f
2
=p

f
1

Fig. 4: One step in the WFG algorithm to calculate Hexc(f
2 = p; {f3, f4}), denoted

by the shaded region (f1 has already been processed). The exclusive hypervolume

slice is efficiently calculated as the volume of the cell bounded by p and r minus the

hypervolume of a reduced Pareto set, represented by the squares, where all points are

limited by the contributing point p. This creates many dominating points which can

be removed before continuing calculation. In this illustration the volume of the cell

bounded by f ′3 and r is subtracted to calculate the exclusive hypervolume.

the Pareto point(s) that contributes least to the hypervolume [9], have been suggested

in literature. While the algorithm proposed by Beume et al. [3] has the best worst case

complexity, the Walking Fish Group (WFG) algorithm [39] is actually faster on most

practical optimization problems and, hence, is adapted in this work to evaluate the

statistical criteria.

The basic WFG algorithm operates by defining the hypervolume as a sum of ex-

clusive hypervolumes, originally introduced by [18],

H(P) =

v
∑

i=1

Hexc(f(x
∗
i );P\{f(x∗

1), . . . , f(x
∗
i )}),

where each exclusive hypervolume in the summation corresponds to one of the slices

bounded by dashed lines in Figure 4. At first sight this may look expensive as by

definition the exclusive hypervolume (13) itself requires two separate hypervolume cal-

culations. Fortunately, several optimizations can be made based on the following main

ideas, see Figure 4.

– Slices to the left of the contributing point p (i.e., with smaller values than p in

the current objective) can be discarded as they contain no hypervolume that is

dominated by p.

– If p is dominated in the remaining (unprocessed) objectives it dominates no more

exclusive hypervolume.

Advantage of these insights can be taken by rewriting the exclusive hypervolume

from (13) as Hexc(p;P) = H({p}) − H(P ′), where P ′ = {limit(p,q)|q ∈ P} and

limit(p,q) = (max{p1, q1}, . . . ,max{pm, qm}). The first term H({p}) is simply the
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volume of the cell bounded by p and the reference point r, the second term H(P ′) is

a recursion where the hypervolume is calculated for P ′. P ′ is obtained by taking the

maximum (limit) of the contributing point and for each point in P, i.e., the points

are projected on p, see Figure 4. Obviously, many points will be introduced that are

dominated by some other point in P ′. These points do not contribute anything to the

hypervolume and can be removed by taking the non-dominated subset of P ′ before

continuing calculation. It is this last step that significantly improves the performance

as it has been shown that most datasets already lose over 50% of their points after

only one recursion.

Note that if the contributing point p has generally higher objective values then

likely more points can be pruned. Hence, it makes sense to process the worse Pareto

points first by sorting the Pareto set P descending on the current objective before each

iteration. Moreover, now the hypervolume calculation can also be sliced on the sorted

objective each recursion, hence the use of the terms current objective and unprocessed

objectives in the previous paragraph. Each recursion the current objective is sorted

and is not considered in subsequent calculations of Hexcl, for more information on this

optimization please see [38]. This is similar to the Hypervolume by Slicing Objectives

algorithm (HSO;[40]). A final optimization is the base case for two objectives, for which

we can easily calculate the hypervolume in O(v) assuming the Pareto set is sorted on

the current objective. The base case for two objectives is similar to the algorithm

proposed by [26] to calculate the Euclidean distance-based expected improvement and,

hence, the performance of the WFG algorithm is at least equal to it.

The WFG algorithm is easily adapted to keep a record of a cell’s lower- and upper-

bound instead of calculating its hypervolume. The adapted WFG algorithm, in case

of minimization, identifies the cells that are dominated by the Pareto set. Naturally,

the algorithm can be modified to find the dominated region by temporarily viewing

it as a maximization problem. However, for the evaluation of the statistical criteria,

especially the EI, it is much more useful to identify the non-dominated region. This is

achieved by subtracting the cells obtained from the adapted WFG algorithm from the

cell that covers ℜm (possibly bounded by a reference point r when using one of the

hypervolume-based criteria), see Figure 2a.

Hence, the adapted WFG algorithm can be used for statistical criteria where the in-

tegration area A corresponds to either the dominated or non-dominated region. Should

other integration areas be required, e.g., for calculating the probability that a new point

dominates at least two Pareto points, more flexible but slower methods such as binary

partitioning [11] can be used.

After q << (v + 1)m sets of cells (=integral bounds) have been identified the

actual PoI and EI statistical criteria can be evaluated using Equations (10), (20), (16)

or (18). While evaluating the criteria the point fmax + ǫ is replaced by (∞, . . . ,∞) or

r depending on the criterion.

A plot with the practical computation time and the number of the cells is shown

in Figures 5a and 5b, applying the adapted WFG algorithm to sets of Pareto points

randomly drawn from the first quadrant of a unit sphere (taking the mean values of

1000 repetitions). The computation time of the cells poses no problem for the evalu-

ation of the criteria (well within the seconds range). The limited factor of the EMO

algorithm is the number of cells the integration area A is decomposed into, as for each

cell the corresponding PoI or EI equations needs to be evaluated which can become

prohibitively expensive when many cells are required to identify the integration area

A.
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Fig. 5: a) Computation time of the integral bounds versus the number of Pareto points,

for a different number of objective functions. b) The number of cells versus the number

of Pareto points. The evaluation of the statistical criteria is limited by the number of

cells the integration area A is decomposed into. The computation time and number

of cells for one run of the exi2D algorithm [16] for an arbitrary input point x is also

included for the 2D case. In contrast to the proposed algorithm, the exi2D algorithm

needs to be run multiple times during optimization of the criteria.

The decomposition of the integration area A into cells and the actual evaluation

of the PoI and EI criteria is separate in the sense that the cells only need to be

identified once every sampling iteration, and then only if the (intermediate) Pareto set

has changed with respect to the previous iteration. Afterwards, the PoI and EI criteria

can be evaluated multiple times for a point x, e.g., during optimization, using the same

set of cells. Lastly, the hypervolume indicator is also easily obtained by summation of

the volume of the cells.
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Function d m Reference point r

DTLZ1 6 inputs 3 objectives (400, 400, 400)

DTLZ2 6 inputs 3 objectives (2.5, 2.5, 2.5)

DTLZ7 6 inputs 4 objectives (1, 1, 1, 50)

DTLZ5 6 inputs 6 objectives (2.5, 2.5, 2.5, 2.5, 2.5, 2.5)

Table 1: Summary of the DTLZ benchmark functions.

4 Examples

4.1 Introduction

A good set of configurable multiobjective benchmark problems has been proposed by

Deb et al. [15], of which four benchmark functions are chosen and adapted slightly to

benchmark the EMO algorithm. A summary of the selected benchmark functions is

found in Table 1. For a complete description of the benchmark functions the authors

refer to [15].

All benchmark functions are configured to have six input parameters. Specifically,

the first example is the DTLZ1 function with three objective functions where the Pareto

front lies on the plane y1 + y2 + y3 = 1. The second example is the DTLZ2 function

with three objective functions where the Pareto front is the first quadrant of an unit

sphere centered on the origin. The third example is the DTLZ7 function with four

objective functions which has 2m−1 = 24−1 = 8 disconnected Pareto-optimal regions

in the objective space. The last example, the DTLZ5 function configured to have six

objective functions, is similar to DTLZ2 except that the Pareto front is just one slice

of the unit hypersphere, i.e., the Pareto front is a (densely populated) curve in a m = 6

dimensional objective space.

4.2 Experimental setup

An initial set of 65 samples is generated by a near-optimal maximin Latin Hypercube

Design (LHD; [12]). Subsequently, a statistical criterion is optimized for each iteration

to select the next point to evaluate. The criterion is optimized using a combination of

Monte Carlo sampling and a local search. Specifically, 20 × n Monte Carlo candidate

points are generated and evaluated on the criterion. The best Monte Carlo candidate

is further refined using Matlab’s fmincon optimizer.

Various configurations of the EMO algorithm are applied on the benchmark func-

tions. In particular, EMO is configured with the EIeuclid and Phv criterion together

with Kriging models using the Matérn correlation function [32] with ν = 3
2 and a

constant regression function (M = 1 and F = 1). The hyperparameters of the Krig-

ing models are optimized using SQPLab [6] (http://www-rocq.inria.fr/~gilbert/

modulopt/optimization-routines/sqplab/sqplab.html), utilizing likelihood deriva-

tive information. The optional weight vector w of the EIeuclid criterion is set to 1 for

all benchmark functions, except for DTLZ7 where w = (1, 1, 1, 0.02) to scale the last

objective function into the same range as the other objective functions.

Furthermore, the EMO runs of the EIeuclid criterion are repeated with Kriging

models using the Gaussian correlation function, these runs are denoted by EIgausseuclid in
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the results. Lastly, extra EMO runs are configured for the DTLZ1 and DTLZ2 functions

using the expensive EIhv criterion with Kriging models using the Matérn correlation.

The EIhv criterion is not applied to the DTLZ5 and DTLZ7 problems. Each of the in

total 14 EMO runs is repeated 10 times for statistical robustness and halts when the

sample budget is met, namely, 250 samples.

The EMO runs are compared against the NSGA-II, SPEA2 and SMS-EMOA evo-

lutionary algorithms with a varying population size and maximum number of genera-

tions. The first run is configured with a population size of 25 and a maximum number

of generations of 10 (total sample budget 250) and the second run is configured with a

population size of 50 and a maximum number of generations of 50 (total sample budget

2500). The remaining parameters have been left to their default values. Similarly to

the EMO runs, the evolutionary algorithm runs are repeated 10 times.

Beside assessing the performance of the algorithms using the hypervolume metric,

the convergence measure is used too. The convergence measure is the mean distance

of every point of the Pareto set to the closest Pareto point of the known Pareto front.

In this work the known Pareto fronts are represented by 100000 Monte Carlo points.

4.3 Results

Results for the benchmark functions have been summarized in Table 2. Note that the

differences on the hypervolume metric are more significant than they appear because

of the conservative choice of the reference point r (needed to accommodate the results

of all test configurations).

In general, it is seen that the EMO runs have better performance than the MOEAs

in terms of hypervolume score for most functions except for DTLZ1. After a closer

examination it is observed that the accuracy of the Kriging models of DTLZ1 for most

statistical criteria is sub-optimal. In particular, the first objective function is difficult

to approximate using the Kriging models, see Figure 6a.

A plot of the final Pareto sets generated of the DTLZ2 problem is shown in Figure

7. It is seen that the hypervolume-based criteria emphasizes the edges of Pareto front

more while leaving a small gap between the edge and the inner portion of the Pareto

front. This is not unlike the DTLZ2 results as reported in [5] and is due to the nature

of the hypervolume indicator. Logically, the farther away the reference point is located,

the larger the exclusive hypervolume will be for points lying on the edge of the current

Pareto set (as the exclusive hypervolume is then solely bounded by the reference point).

Further research is needed to determine the influence of the choice of reference point r

on the statistical criteria [1].

While the EMO algorithm outperforms the MOEAs on the hypervolume indicator

on most problems, there are some limitations. The EMO algorithm, and other MOSBO

techniques, rely on the quality of the surrogate model to guide the selection of new

expensive data points. The Kriging models do not have to be accurate at the start of

the algorithm when using the EI and PoI criteria, but they should be able to capture

the behavior of the objective functions sufficiently well when enough samples become

available, which might not always be the case (see Figure 6 and the DTLZ1 results).

Furthermore, the construction of the Kriging models and the evaluation of the statisti-

cal criteria comes at a computational cost, similar to the computational cost of MOEAs

that rely on the hypervolume (i.e., SMS-EMOA), which might limit the practical usage

of the EMO algorithm for some (less expensive) optimization problems.
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Problem |X| Algorithm Convergence measure Hypervolume

Mean Std Mean Std

DTLZ1 250 EIeuclid 93.2833 18.7840 6.3498e7 2.4970e5

EI
gauss

euclid
100.6741 14.2258 6.3650e7 1.2418e5

EIhv 37.6112 2.9315 6.3940e7 6.0452e4

Phv 66.9199 14.0029 6.3838e7 7.4330e4

NSGA-II 75.8391 20.4219 6.3612e7 2.3441e5

SPEA2 104.6259 0 6.3482e7 0

SMS-EMOA 44.8818 7.9740 6.3976e7 8.0982e3

2500 NSGA-II 16.6888 4.8071 6.3991e7 1.0227e4

SPEA2 93.8381 0 6.3984e7 0

SMS-EMOA 9.5047 2.8750 6.4000e7 324.0575

DTLZ2 250 EIeuclid 0.0843 0.0205 14.9423 0.0181

EI
gauss

euclid
0.1481 0.0133 14.8994 0.0114

EIhv 0.0411 0.0052 14.8834 0.0165

Phv 0.0106 0.0021 15.0326 0.0054

NSGA-II 0.2725 0.0460 13.6238 0.2725

SPEA2 0.1643 0 14.4873 0

SMS-EMOA 0.0388 0.0071 14.9021 0.0160

2500 NSGA-II 0.1497 0.0185 14.6435 0.0460

SPEA2 0.1544 0.0298 14.8503 0

SMS-EMOA 0.0030 2.8954e-4 15.0280 3.4727e-4

DTLZ7 250 EIeuclid 4.3888 2.8159 42.4629 0.4042

EI
gauss

euclid
1.7066 1.4069 42.6332 0.3295

Phv 0.0280 0.0037 43.5404 0.0188

NSGA-II 13.9371 2.3112 23.2392 5.4733

SPEA2 10.1169 0 37.4830 0

SMS-EMOA 3.4186 2.2457 41.2087 1.6529

2500 NSGA-II 9.6799 2.3516 30.7966 4.2005

SPEA2 5.4330 0 42.1191 0

SMS-EMOA 0.0236 0.0015 43.7127 0.0953

DTLZ5 250 EIeuclid 0.2259 0.0019 197.1390 0.1453

EI
gauss

euclid
0.2286 0.0013 196.8852 0.1777

Phv 0.0835 0.0053 198.6425 0.1563

NSGA-II 0.0656 0.0376 192.1285 2.0064

SPEA2 0.1475 0 192.6617 0

SMS-EMOA 0.0467 0.0268 196.0038 0.6004

2500 NSGA-II 0.0727 0.0162 194.9017 0.3805

SPEA2 0.2151 0 194.3750 0

SMS-EMOA 0.1141 0.0070 198.5351 0.0343

Table 2: Results of the EMO algorithm, NSGA-II, SPEA2 and SMS-EMOA. The best

results for each test function are highlighted in bold, for each performance metric and

within the same sample budget. The best results among the different configurations of

the EMO algorithm are marked as italic.
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Fig. 6: 20-fold cross validation applied on the Kriging models based on 250 samples.

The black dots denote the cross validated prediction values versus the real objective

values. a) Final Kriging model of the first objective function of the DTLZ1 function.

It is seen that Kriging has problems approximating the larger values of the objective

function. b) Final Kriging model of the first objective function of the DTLZ5 function.

Kriging is able to approximate the objective function quite well.

Specifically, the construction of the Kriging models and the thorough optimization

of the statistical criteria make the EMO algorithm more expensive than SMS-EMOA.

Moreover, the EMO algorithm requires the storage of the integral bounds in memory,

which can be prohibitively expensive for a higher number of objectives.

5 Conclusion

The authors presented the Efficient Multiobjective Optimization (EMO) algorithm,

which uses multiobjective versions of the Probability of Improvement (PoI) and Ex-

pected Improvement (EI) to identify the Pareto front with a limited sample budget.

Different configurations of the EMO algorithm are compared against the well-known

SPEA2, NSGA-II and SMS-EMOA evolutionary methods with promising results. In

theory an arbitrary number of objective functions can be handled. However, in practice

due to the nature of the multiobjective EI and PoI statistical criteria the EMO algo-

rithm also does not escape the curse of dimensionality (no-free-lunch theorem) with

respect to the number of objective functions and number of Pareto points. Nevertheless,

the EMO algorithm can be applied to problems up to eight objectives. Furthermore, it

should be noted that in practice a high number of objectives are often aggregated to a

smaller number of objectives (≤ 4) using, e.g., weighted sums, as such high-dimensional

spaces are not easily interpretable for designers.

Future work will focus more on exploring the key benefits of the EMO algorithm

on various industrial applications and benchmark problems. Preliminary results show

that the benefits of the EMO algorithm are more pronounced when limited to a very

low number of function evaluations (< 100). Moreover, the benefits of using statistical

criteria, which balance exploration and exploitation automatically, may manifest more

for problems with a complex optimization landscape and multiple local Pareto fronts.

In addition, future work will focus on minimizing the number of cells and on an iterative
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(a) EIeuclid (|X| = 250)
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(b) Phv (|X| = 250)
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(c) EIhv (|X| = 250)
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(d) NSGA-II (|X| = 250)
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(e) SPEA2 (|X| = 250)
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(f) SMS-EMOA(|X| = 250)
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(g) NSGA-II (|X| = 2500)
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(h) SPEA2 (|X| = 2500)
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(i) SMS-EMOA (|X| = 2500)

Fig. 7: Generated Pareto sets of the DTLZ2 function. The hypervolume-based metric

focuses more on sampling the edge (extrema) of the Pareto front, while the Euclidean

distance-based criterion performs a seemingly more uniform search over the Pareto

front, though it performs slightly worse on the hypervolume metric.

update scheme for the cells, which will be considerable more efficient than recalculating

the cells almost each iteration. Indirectly, a speedup can also be achieved by selecting

multiple update points at a time. Finally, it may also be worthwhile to investigate the

use of approximated statistical criteria, namely, adapting hypervolume approximation

routines for decomposing the integration area into cells.
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