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Abstract 

Background: The purpose of this study was to develop a software tool and evaluate different T1 map calculation 

methods in terms of computation time in cardiac magnetic resonance imaging.

Methods: The modified Look-Locker inversion recovery (MOLLI) sequence was used to acquire multiple inversion 

time (TI) images for pre- and post-contrast T1 mapping. The T1 map calculation involved pixel-wise curve fitting based 

on the T1 relaxation model. A variety of methods were evaluated using data from 30 subjects for computational 

efficiency: MRmap, python Levenberg–Marquardt (LM), python reduced-dimension (RD) non-linear least square, C++ 

single- and multi-core LM, and C++ single- and multi-core RD.

Results: Median (interquartile range) computation time was 126 s (98–141) for the publicly available software 

MRmap, 261 s (249–282) for python LM, 77 s (74–80) for python RD, 3.4 s (3.1–3.6) for C++ multi-core LM, and 1.9 s 

(1.9–2.0) for C++ multi-core RD. The fastest C++ multi-core RD and the publicly available MRmap showed good 

agreement of myocardial T1 values, resulting in 95% Bland–Altman limits of agreement of (− 0.83 to 0.58 ms) and 

(− 6.57 to 7.36 ms) with mean differences of − 0.13 ms and 0.39 ms, for the pre- and post-contrast, respectively.

Conclusion: The C++ multi-core RD was the fastest method on a regular eight-core personal computer for pre- or 

post-contrast T1 map calculation. The presented software tool (fT1fit) facilitated rapid T1 map and extracellular vol-

ume fraction map calculations.

Keywords: MRI, Heart, T1 mapping, Parameter estimation

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creat iveco mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco 
mmons .org/publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Cardiac T1 mapping in magnetic resonance imaging 

(MRI) is a non-invasive and quantitative method for the 

characterization of the myocardial tissue [1–4] and is 

particularly useful for the evaluation of diffuse myocar-

dial fibrosis [5]. It typically involves two separate image 

acquisitions: native T1 mapping (a.k.a. pre-contrast T1 

mapping) and post-contrast T1 mapping. Extracellular 

volume fraction (ECV), which is a biomarker for myo-

cardial fibrosis, can be attained in a pixel-wise manner 

from the pre- and post-contrast T1 maps [6, 7]. Due to 

its quantitative nature, cardiac T1 mapping is advanta-

geous over late gadolinium enhanced imaging, in which 

the accurate nulling of the healthy myocardial signals in 

an inversion recovery sequence is challenging in patients 

with diffuse myocardial fibrosis. �e pattern of diffuse 

myocardial fibrosis is typically observed in patients with 

non-ischemic heart disease, such as hypertrophic cardio-

myopathy (HCM), cardiac amyloidosis, and dilated car-

diomyopathy [5].
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T1 map calculation involves curve fitting for the quan-

tification of T1 longitudinal relaxation time on a pixel-

wise basis. �e curve fitting process is time-consuming in 

general, and low-level programming languages such as C 

and C++ are desirable for improved computational effi-

ciency. T1 parameters are estimated via non-linear least 

squares, and Levenberg–Marquardt (LM) optimization 

is typically utilized with good initial values of the param-

eters in the T1 fitting model. Alternatively, to overcome 

the issue of initialization of the parameters and to reduce 

the search space, Barral et al. presented a reduced dimen-

sion non-linear least squares (RD-NLS) approach, which 

resulted in initialization-free optimization and accelera-

tion in T1 map calculation [8]. In other studies, T1 map 

calculation was reported to take longer than a minute per 

image [9, 10]. Recent related studies of software develop-

ment in parameter mapping focused on magnetization 

transfer imaging [11] and neuroimage processing [12], 

and they lack the comparison of computational efficiency 

among different calculation methods.

�e existence of a variety of methods for T1 map calcu-

lation motivated us to develop a software tool for evalu-

ating the performance of the methods. In particular, we 

sought to develop a Python-based user interface that 

can also test a C++ implementation with pybind11 [13]. 

�e interface setup facilitates the comparison between 

Python-based and C++-based methods. Moreover, the 

Python language serves as a framework for deep learn-

ing libraries [14–16] and is commonly adopted for the 

development of deep learning algorithms, which may 

have potential for improving the performance in cardiac 

T1 mapping [17]. In an earlier study, we demonstrated 

fast T1 map calculation using the LM-based method 

implemented in C++, as a module for a comprehensive 

quantitative cardiac MRI analysis tool [18]. In the present 

study, we focus on evaluating the performance of differ-

ent T1 map calculation methods with an emphasis on the 

comparison between the LM method and the RD-NLS 

method implemented in C++ as well as an emphasis on 

the comparison between the RD-NLS method and the 

publicly available MRmap for T1 estimation accuracy in 

the myocardium.

Methods
We describe the T1 mapping sequence parameters, T1 

map calculation methods, and their implementations 

and evaluations. Figure  1 shows a custom user inter-

face tool for the study, which is available at https ://sites 

.googl e.com/site/yoonc kim1/softw are/t1_map_compa re. 

Fig. 1 A screenshot of the user interface for the calculation of pre- and post-T1 maps as well as an ECV map. The interface allows a user to select a 

T1 map calculation method for the comparison of computation time and accuracy. It also provides ECV map calculation as well as T1 fitting result in 

a user interactive way

https://sites.google.com/site/yoonckim1/software/t1_map_compare
https://sites.google.com/site/yoonckim1/software/t1_map_compare
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Source code is available at https ://githu b.com/prime 52/

fT1fi t.

Data acquisition

Cardiac MRI scans were performed on a 1.5  T scan-

ner (Siemens Avanto, Erlangen, Germany). Clinical MR 

examinations were approved by our institutional review 

board, and informed consent was obtained from the sub-

jects prior to MRI scans. Subjects with suspected car-

diovascular diseases were enrolled between May 2014 

and May 2015. Subjects who took cardiac pre- and post-

contrast T1 mapping scan exams were included for the 

present study. Subjects with inadequate image quality 

due to severe motion were excluded. A total of 30 sub-

jects were considered for our study. �ey consisted of 9 

HCM patients, 10 cardiac amyloidosis patients, 7 coro-

nary artery disease patients, and 4 healthy volunteers.

�e modified Look-Locker inversion recovery 

(MOLLI) sequence was used for cardiac T1 map-

ping [19, 20]. Imaging parameters were slice thick-

ness = 8  mm, echo time (TE) = 1.01  ms, spacing 

between slices = 20  mm, the number of phase encod-

ing steps = 104, pixel bandwidth = 1085  Hz, acquisi-

tion matrix = 192 × 120, image matrix = 384 × 288, pixel 

spacing = 0.9375  mm × 0.9375  mm, and field of view 

(FOV) = 360 mm × 270 mm. �e MOLLI protocols used 

were different for the pre-contrast and post-contrast 

T1 mapping. �e MOLLI 5(3)3 protocol used for pre-

contrast T1 mapping consisted of 5 inversion time (TI) 

image acquisitions after the first inversion pulse, a three-

heartbeat pause for the recovery of the longitudinal mag-

netization, and 3 TI image acquisitions after the second 

inversion pulse. �e MOLLI 4(1)3(1)2 protocol used for 

post-contrast T1 mapping consisted of 4 TI image acqui-

sitions after the first inversion pulse, a one-heartbeat 

pause, 3 TI image acquisitions after the second inversion, 

a one-heartbeat pause, and 2 TI image acquisitions after 

the third inversion. Since the post-contrast T1 relaxation 

time is approximately less than 500  ms, which is much 

shorter than the pre-contrast T1 (~ 950  ms for myocar-

dium and ~ 1500  ms for blood), the 3 inversion pulses 

used in the 4(1)3(1)2 protocol enables more adequate 

sampling of the early part of T1 relaxation than the 2 

inversion pulses used in the 5(3)3 protocol. Instead of 5 

images after the first inversion, 4 images were acquired 

in the post-contrast T1 mapping because for the short 

T1 (< 500 ms) relaxation the image from the fifth heart-

beat appears similar to the image from the fourth heart 

beat due to fast T1 recovery and thus is unnecessary [21]. 

�e TI images were acquired in a diastolic cardiac phase. 

All of the TI images were aligned using the motion cor-

rection algorithm [22]. �e TI images were exported 

as digital imaging and communications in medicine 

(DICOM) files for T1 map calculation.

T1 Map calculation

T1 map calculation was performed pixel-by-pixel. In 

general, the TI images can be available as either complex-

valued or magnitude-valued. In the present study, the 

DICOM dataset was available as magnitude TI images, 

and most cardiac MRI scanner systems in hospitals save 

the DICOM dataset in the magnitude scale by default. At 

each voxel’s location (x, y), the signal intensity S(t) can be 

modeled as the following T1 relaxation curve.

For a set of inversion times t = [TI1, TI2, …, TIN ] and a set 

of corresponding signals [ S(TI1), S(TI2), . . . , S(TIN ) ], 

there are N equations and 3 unknowns, which are a , b, 

and c. In the present study, N was 8 for the pre-contrast 

data, while N was 9 for the post-contrast data. Notably, b 

is the reciprocal of T1* (i.e., the apparent T1). �e objec-

tive function f  to be minimized was then given as the 

sum of squares of the difference between the relaxation 

model and the data.

�is is a nonlinear least squares problem, and the Lev-

enberg–Marquardt (LM) algorithm [23] can be used to 

iteratively estimate the parameters a , b, and c. We empiri-

cally selected the initial values for the parameter set ( a , 

b, c) = (350, 0.001, − 150) for the pre-contrast data and 

(350, 0.005, − 150) for the post-contrast data. Since our 

dataset was in the magnitude scale and S(t) of Eq. (1) can 

cover the negative-value range, we incrementally flipped 

the polarity of S(TI i) to find the best fit of Eq.  (1) [24]. 

Notably, the estimated T1* does not incorporate the 

effect of the tip down of the spin magnetization for every 

repetition time. Hence, the Look-Locker correction was 

applied in the following way to arrive at the corrected T1 

value:

Meanwhile, the RD-NLS (or RD) method expands the 

objective function Eq. (2) and finds the optimal estimates 

of the parameters separately (refer to Appendix B in Bar-

ral et  al. [8] for detailed mathematical derivations). �e 

function to be optimized for T1 is independent of the 

other two parameters. Hence, the decoupling leads to a 

one-dimensional search problem for T1 estimation.

(1)S(t) = a

(

1 − e
−bt

)

+ c

(2)f (a, b, c) =

N
∑

i=1

(

S(TI i) − a(1 − e−bTI i
)

− c)
2

(3)T1 = T1
∗

(

a

a + c
− 1

)

https://github.com/prime52/fT1fit
https://github.com/prime52/fT1fit
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Python and C++ implementation

For the LM method, we implemented the T1 map 

calculation in Python. To solve the non-linear least 

squares problem, we used the scipy.optimize.curve_fit() 

function, which is based on the Levenberg–Marquardt 

algorithm. �e method is referred to as LM_python. 

For the RD method, we converted the original MAT-

LAB script written by Barral et  al. (code available at 

http://www-mrsrl .stanf ord.edu/~jbarr al/t1map .html) 

to Python. We noted that the original RD algorithm 

failed to work in some cases where the two candidate 

TIs produced unsatisfactory fitting results. Hence, we 

modified the RD algorithm by introducing three candi-

date TIs. �is helped remove the unsatisfactory fitting 

and improved the accuracy (Fig.  2). �e method is 

referred to as RD_python.

We also implemented both the LM- and RD-based 

T1 map calculations in C++ and used pybind11 [13] 

to make the compiled C++ code compatible with the 

Python environment. �e C++ implementation was 

performed on a Windows OS, Microsoft Visual Studio 

2017 platform. For the LM-based T1 parameter estima-

tion, we used the solve_least_squares_lm function of the 

Dlib library [25]. In addition, for the multi-core imple-

mentation, we used the OpenMP library [26] for the 

parallelization of the ‘for’ loop in the pixel-wise T1 map 

calculation. We chose the static schedule option for par-

allelization. For evaluation, the methods are referred to 

Fig. 2 An example of improved fitting result after modification of the original RD-NLS method. The unsatisfactory performance of the original 

RD-NLS occurred when some inversion time (TI) values were very close such that the choice of minimal TI closest to 0 can be sensitive to noise. 

a A poor fitting result when the RD-NLS method was applied without any modification of the script. b A correction after the modification, which 

considered three candidate samples for polarity restorations (see arrows)

http://www-mrsrl.stanford.edu/~jbarral/t1map.html
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as LM_C++_single-core, RD_C++_single-core, LM_

C++_multi-core, and RD_C++_multi-core.

To ensure that the curve fitting is correctly performed 

at each pixel location and the samples are placed close to 

the T1 relaxation curve, we developed a graphical user 

interface (GUI) that enables a user to load the DICOM 

TI image data, select a method for T1 map calculation, 

and mouse-click a pixel location for displaying its curve 

fitting result. �e GUI also performs the calculation and 

display of the pre- and post-contrast T1 maps as well as 

the ECV map (Fig. 1). �e GUI was implemented using 

the PyQT library [27] on a 64-bit Windows PC.

Evaluation

We evaluated the following methods in terms of speed 

on a Windows PC (AMD Ryzen 7 1800X Eight-Core Pro-

cessor and 16.0  GB RAM): MRmap, LM_python, RD_

python, LM_C++_single-core, RD_C++_single-core, 

LM_C++_multi-core, and RD_C++_multi-core.

For the evaluation, we used the MRmap software 

[9], which is publicly available for download at https ://

sourc eforg e.net/proje cts/mrmap /. We chose the follow-

ing options for T1 map calculation: Limits of T1, T2, 

and Noise for pre-contrast were set to 3000, 350, and 0, 

respectively. Limits of T1, T2, and Noise for post-con-

trast were set to 1500, 350, and 0, respectively. Specifi-

cally, the setting of the Noise value had to be consistent, 

since the choice of the value significantly affected the 

computation speed. Registration was set to None. Pro-

cess was set to “T1 mapping—MOLLI,” and Correction 

was set to “Look-Locker.”

For the evaluation of accuracy in T1 value, we manu-

ally drew a region of interest (ROI) in the myocardium 

in either a pre- or a post-contrast T1 map of each subject 

and used the same ROI mask for the T1 maps estimated 

using MRmap and the RD_C++_multi-core method. 

Mean T1 values were calculated within the myocardial 

ROIs. Bland–Altman analysis was performed by com-

puting the mean difference and 95% limits of agreement 

between the two T1 measurements.

Results
Table  1 lists the computation time for MRmap, 

LM_python, RD_python, LM_C++_single-core, 

RD_C++_single-core, LM_C++_multi-core, and RD_

C++_multi-core for pre- and post-contrast TI image 

sets in 30 subjects. �e RD method was superior to the 

LM method in computation time for all three different 

ways of implementation: python, single-core C++, and 

multi-core C++. �e RD_C++_multi-core method 

took approximately 2  s for T1 map generation in both 

pre- and post-contrast T1 maps. �ere were statistically 

significant differences in computation time between 

RD_C++_multi-core and LM_C++_multi-core: 1.9  s 

vs. 3.4  s (p < 0.001) for pre-contrast and 2.1  s vs. 3.3  s 

(p < 0.001) for post-contrast. �e distributions of com-

putation time clearly exhibit the superior performance 

of RD_C++_multi-core (Fig. 3).

Qualitative comparisons of the methods in pre- 

and post-contrast T1 measurements are shown in an 

HCM patient (Fig.  4), and all the methods produced 

similar T1 measurements in the myocardium and 

blood regions of interest. �ese similarities were also 

observed in other subjects’ T1 map data. Curve fit-

ting examples for the pre-contrast and post-contrast 

MOLLI protocols are shown for the blood and myocar-

dium in a normal volunteer (Fig.  5). In particular, the 

post-contrast MOLLI 4(1)3(1)2 protocol, which uses 

three inversion pulses, is advantageous in estimating a 

short T1 value by fitting three samples in early TIs, over 

the pre-contrast MOLLI 5(3)3 protocol, which uses two 

inversion pulses.

T1 measurements in the myocardium for the four 

methods (i.e., LM_python, RD_python, LM_C++, RD_

C++) are shown in Fig. 6 for the pre-contrast (top row) 

and post-contrast (bottom row) cases. �e Bland–Alt-

man plots show good agreement between each of the 

four methods and the reference MRmap in all subjects 

except for a few outliers. Most of the T1 difference val-

ues lie within 2  ms. Table 2 shows Bland–Altman sta-

tistics for the four methods. For all the methods, the 

absolute mean difference was small (< 1 ms) for the pre- 

and post-contrast cases. �e 95% limit of agreement 

was wider for the post-contrast than for the pre-con-

trast, but this is likely due to the outlier whose differ-

ence value was approximately 18  ms (see the plots in 

the bottom row of Fig. 6). As expected, the amyloidosis 

group (AMYL) shows high pre-contrast T1 values in 

the myocardium (see the plots in the top row of Fig. 6).

Table 1 Comparison of  computation time in  the  pre- 

and  post-contrast T1 map calculations (n = 30). 

The measurements in  the  columns indicate median 

(interquartile range) expressed in seconds

* Eight cores were simultaneously used for the calculation

Method Pre-contrast Post-contrast

MRmap 126.0 (98.3–140.6) 111.8 (93.7–140.6)

LM_python 261.3 (249.3–282.4) 249.6 (242.6–262.1)

RD_python 77.0 (74.0–80.1) 77.8 (75.9–81.4)

LM_C++_single-core 28.6 (27.3–29.8) 28.0 (26.9–29.9)

RD_C++_single-core 15.2 (15.0–15.9) 16.2 (16.1–16.8)

LM_C++_multi-core* 3.4 (3.1–3.6) 3.3 (3.0–3.5)

RD_C++_multi-core* 1.9 (1.9–2.0) 2.1 (2.0–2.2)

https://sourceforge.net/projects/mrmap/
https://sourceforge.net/projects/mrmap/
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Discussion
We demonstrated a rapid T1 map calculation method, 

which only took approximately 2 s for 384 × 288 × 8 or 

384 × 288 × 9 images on a personal desktop computer 

equipped with an eight-core processor. �is is a signifi-

cant improvement over other methods demonstrated in 

the literature. For comparison, we measured computa-

tion time on MRmap, which was 126 s in pre-contrast 

and 112  s in post-contrast. In the literature, MRmap 

was reported to take 113  s for a set of 128 × 128 × 8 

images with a noise level of 0 [9]. �e MRmap code was 

written in Interactive Data Language (IDL), which is a 

high-level language so that it is computationally slow. 

Other software tools also deserve to be mentioned. �e 

T1 map calculation of Altabella et  al. was reported to 

take 66 s for the magnitude fitting on 31,080 fitted vox-

els from a set of 218 × 256 × 8 images [10]. �e T1 map 

calculation of Liu et  al., referred to as the vectorized 

Levenberg–Marquardt fitting, was reported to take 

60 s on average in MATLAB for a set of 256 × 256 × 8 

images. It is undeniable that the C++ nature of the 

proposed method was the main cause of the speed 

improvement. However, it is important to note that 

the way of implementation via the Python wrapper 

Fig. 3 Comparison of computation time. RD_C++_multi-core took shorter computation time than LM_C++_multi-core in both pre- and 

post-contrast cases. The outliers (i.e., the lowest value in all four methods) took the shortest computation time due to the smallest image 

dimensions (256 × 218), while most of the images are of the dimensions (384 × 288)

Fig. 4 Qualitative comparison of T1 mapping accuracy in a subject with hypertrophic cardiomyopathy. a Pre-contrast T1 maps. b Post-contrast T1 

maps. All the methods resulted in similar T1 measurements in the myocardium and blood
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facilitated code readability and maintenance. It is 

noted that a C++ implementation for T1 mapping was 

recently demonstrated by Werys et al. [28], although we 

did not compare their method with our methods.

�ere may be room for improvement in computa-

tional speed in the proposed method. First, the noise 

level (or the threshold level) can be applied to the 

images as was demonstrated in [9, 10]. By increasing 

the threshold up to an acceptable level, one can exclude 

a fairly large number of pixels whose intensity is not 

sufficiently high (e.g., the background air region) from 

the curve fitting process, and this could help reduce 

the computation time. Second, loop scheduling can be 

optimized when using the OpenMP library. In general, 

OpenMP provides three kinds of scheduling: static, 

dynamic, and guided. �ere may be an opportunity 

for speed improvement by, for example, trying these 

scheduling methods with different choices of chunk 

size in dynamic mode and finding the optimal one.

Python provides a convenient environment for devel-

opers in terms of code readability and thus facilitates the 

debugging process. �is was especially true in the design 

of a T1 map calculation algorithm and a graphical user 

interface in the present study. We first implemented a 

Python version of the T1 map calculation and translated 

it to a C++ version. For the verification of the C++ 

implementation in terms of accuracy, we compared the 

T1 maps generated by the Python implementation and 

the C++ method within the graphical user interface. 

�is was helpful in evaluating the accuracy of the C++ 

implementation.

In this study, different MOLLI sequence protocols 

were used in the acquisitions of pre-contrast and post-

contrast T1 data: MOLLI 5(3)3 for the pre-contrast and 

MOLLI 4(1)3(1)2 for the post-contrast. �ere are other 

Fig. 5 Curve fitting examples when the RD_C++_multi-core method was used. (Top row) curve fits of the samples acquired using the 

pre-contrast MOLLI 5(3)3 protocol. (Bottom row) curve fits of the samples acquired using the post-contrast MOLLI 4(1)3(1)2 protocol. The left 

plots represent curve fitting on a voxel corresponding to the left ventricular blood pool, while the right plots represent curve fitting on a voxel 

corresponding to the myocardium. The solid blue line denotes the estimated T1 relaxation curve after fitting. Note that the nulling time typically 

ranges 200–400 ms for the post-contrast, and acquiring three samples instead of two in early TIs in post MOLLI is helpful in estimating short T1 

values, which are typical in post-contrast tissue



Page 8 of 10Kim et al. BMC Med Imaging           (2021) 21:26 

MOLLI sequence variants reported in the literature 

(Table 2 of Kellman and Hansen [20]). Intra-individual 

comparisons among the MOLLI sampling schemes may 

be worth investigating because the curve fitting on dif-

ferent sampling schemes may affect the T1 map results 

as well as the ECV map results. However, implementing 

the intra-individual comparisons would be challenging 

due to patient discomfort as a result of repeated use of 

contrast agent and repeated breath-holds.

�e rapid computation framework based on pybind11 

and multicore C++ has the potential to be applied 

to three-dimensional (3D) T1 mapping [29], which 

has larger dimensions than 2D T1 mapping, as well 

as to other pixel-wise parameter estimation of T2, 

T2*, tissue perfusion, and permeability. For example, 

deconvolution process in model-based tissue perfusion 

quantification [30] can be accelerated using C++ and 

parallel processors.

�e current study has several limitations. First, 

this was a single-center study conducted using data 

acquired on the Siemens 1.5  T scanner, with a small 

number of subjects (n = 30) for evaluation. Second, the 

tool supported only the magnitude data rather than 

both magnitude and complex-valued data. �ird, the 

computation time was assessed on a single desktop 

computer only. Evaluation on other types of computers 

(e.g., mobile phone with a restricted capacity for cen-

tral processing unit (CPU) and memory, workstation 

computer with a higher capacity for CPU and memory) 

would be worth investigating.

Fig. 6 Bland–Altman plots for the four T1 calculation methods when compared with MRmap as reference. (Top row) pre-contrast T1 measurements 

in the myocardium. (Bottom row) post-contrast T1 measurements in the myocardium. From left to right, (1) LM_python, (2) RD_python, (3) LM_

C++_multi-core, and (4) RD_C++_multi-core

Table 2 Bland–Altman statistics for the myocardial T1 measurements with MRmap as the reference method

* T1 measurements between multi-core and single-core were the same

Pre-contrast Post-contrast

Mean Di�erence, ms 95% Limits of Agreement, ms Mean Di�erence, ms 95% Limits 
of Agreement, 
ms

LM_python  − 0.24  − 5.11 to 4.63 0.72  − 5.81 to 7.25

RD_python  − 0.13  − 0.83 to 0.58 0.60  − 5.95 to 7.14

LM_C++_multi-core*  − 0.04  − 1.34 to 1.25 0.63  − 5.96 to 7.22

RD_C++_multi-core*  − 0.13  − 0.83 to 0.58 0.39  − 6.57 to 7.36
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Conclusions
We evaluated the performance of the RD-NLS in terms 

of speed and accuracy compared with that of the LM 

method. �e RD-NLS implemented with C++ and paral-

lel processing library was the fastest, taking < 3 s in both 

pre- and post-contrast T1 map calculation on a regular 

desktop computer. �e Python wrapper has the potential 

to improve workflow in the implementation of rapid pix-

elwise parametric mapping, not merely of T1 estimation 

but also of tissue perfusion- and permeability-related 

parameter estimation. �e implementation details avail-

able as open source may be helpful resources for other 

researchers’ investigations and validation of new meth-

ods in parameter mapping.
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