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Abstract

Image denoising is one of the most critical problems in

mobile photo processing. While many solutions have been

proposed for this task, they are usually working with syn-

thetic data and are too computationally expensive to run on

mobile devices. To address this problem, we introduce the

first Mobile AI challenge, where the target is to develop an

end-to-end deep learning-based image denoising solution

that can demonstrate high efficiency on smartphone GPUs.

For this, the participants were provided with a novel large-

scale dataset consisting of noisy-clean image pairs captured

in the wild. The runtime of all models was evaluated on the

Samsung Exynos 2100 chipset with a powerful Mali GPU

capable of accelerating floating-point and quantized neural

networks. The proposed solutions are fully compatible with

any mobile GPU and are capable of processing 480p reso-

lution images under 40-80 ms while achieving high fidelity

results. A detailed description of all models developed in

the challenge is provided in this paper.

1. Introduction

Despite the recent advances in mobile camera sensors,

image denoising still remains one of the most challeng-

ing tasks when it comes to processing mobile photo and

video data. The hardware constraints do not allow to signif-

icantly increase the size of mobile cameras, which together

with increased sensor resolutions and smaller pixels leads
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to high noise levels on images taken in low-light conditions.

To deal with this problem, many classical approaches have

been proposed in the past [41, 43, 13, 6, 7, 49, 48, 54].

Much better quantitative results were obtained later with

CNN-based deep learning approaches [16, 55, 66, 65, 1, 3].

Despite the good fidelity scores, these works were using ei-

ther artificial training and validation data [55, 66, 65] or a

very small set of indoor images [2, 1, 3], thus limiting their

application to real noisy camera data. Besides that, the pro-

posed methods were not optimized for computational effi-

ciency, which is essential for this and other tasks related to

image processing and enhancement [22, 23, 37] on mobile

devices. In this challenge, we take one step further in solv-

ing this problem by using a more advanced real data and by

putting additional efficiency-related constraints on the de-

veloped solutions.

When it comes to the deployment of AI-based solutions

on mobile devices, one needs to take care of the particu-

larities of mobile NPUs and DSPs to design an efficient

model. An extensive overview of smartphone AI acceler-

ation hardware and its performance is provided in [33, 30].

According to the results reported in these papers, the latest

mobile NPUs are already approaching the results of mid-

range desktop GPUs released not long ago. However, there

are still two major issues that prevent a straightforward de-

ployment of neural networks on mobile devices: a restricted

amount of RAM, and a limited and not always efficient sup-

port for many common deep learning layers and operators.

These two problems make it impossible to process high

resolution data with standard NN models, thus requiring a

careful adaptation of each architecture to the restrictions of

mobile AI hardware. Such optimizations can include net-

work pruning and compression [12, 26, 42, 45, 50], 16-bit /

8-bit [12, 40, 39, 62] and low-bit [10, 59, 38, 46] quantiza-

tion, device- or NPU-specific adaptations, platform-aware

neural architecture search [19, 56, 61, 60], etc.
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Figure 1. Sample crops from the original and denoised images from the collected dataset. Best zoomed on screen.

While many challenges and works targeted at efficient

deep learning models have been proposed recently, the eval-

uation of the obtained solutions is generally performed on

desktop CPUs and GPUs, making the developed solutions

not practical due to the above mentioned issues. To address

this problem, we introduce the first Mobile AI Workshop and

Challenges, where all deep learning solutions are developed

for and evaluated on real mobile devices. In this compe-

tition, the participating teams were provided with a large-

scale image denoising dataset obtained with a recent Sony

mobile camera sensor capturing photos in the burst mode.

The obtained for each scene images were averaged to get a

clean photo, and the resulting noisy-clean image pairs were

used to train an end-to-end deep learning solution for this

task. Within the challenge, the participants were evaluating

the runtime and tuning their models on the Samsung Exynos

2100 platform featuring a powerful Mali-G78 MP14 mobile

GPU that can accelerate floating-point and quantized neural

networks. The final score of each submitted solution was

based on the runtime and fidelity results, thus balancing be-

tween the image reconstruction quality and efficiency of the

proposed model. Finally, all developed solutions are fully

compatible with the TensorFlow Lite framework [57], thus

can be deployed and accelerated on any mobile platform

providing AI acceleration through the Android Neural Net-

works API (NNAPI) [4] or custom TFLite delegates [14].

This challenge is a part of the MAI 2021 Workshop and

Challenges consisting of the following competitions:

• Learned Smartphone ISP on Mobile NPUs [21]

• Real Image Denoising on Mobile GPUs

• Quantized Image Super-Resolution on Mobile NPUs [31]

• Real-Time Video Super-Resolution on Mobile GPUs [28]

• Single-Image Depth Estimation on Mobile Devices [24]

• Quantized Camera Scene Detection on Smartphones [25]

• High Dynamic Range Image Processing on Mobile NPUs

The results obtained in the other competitions and the de-

scription of the proposed solutions can be found in the cor-

responding challenge papers.

2. Challenge

To develop an efficient and practical solution for mobile-

related tasks, one needs the following major components:

1. A high-quality and large-scale dataset that can be used

to train and evaluate the solution on real (not syntheti-

cally generated) data;

2. An efficient way to check the runtime and debug the

model locally without any constraints;

3. An ability to regularly test the runtime of the designed

neural network on the target mobile platform or device.

This challenge addresses all the above issues. Real train-

ing data, tools, and runtime evaluation options provided to

the challenge participants are described in the next sections.

2.1. Dataset

To handle the considered image denoising problem, a

large scale dataset consisting of noisy-clean images was col-

lected. For this, we used a recent Sony mobile camera sen-

sor and captured photos in the burst mode: for each scene,

20 images were obtained and then averaged to get a clean

photo. The illumination conditions varied from moderate to

completely dark throughout the data collection process, the

images were shot indoors and outdoors to get a variety of

in-the-wild scenes with different noise patterns. The photos

of more than 1000 different scenes were obtained and then

checked manually to remove out-of-focus images and the

ones where the built-in optical image stabilization caused

misalignments. It should be additionally mentioned that we

shot RAW photos using Android Camera2API [11] to avoid
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Figure 2. Loading and running custom TensorFlow Lite models with AI Benchmark application. The currently supported acceleration

options include Android NNAPI, TFLite GPU, Hexagon NN, Samsung Eden and MediaTek Neuron delegates as well as CPU inference

through TFLite or XNNPACK backends. The latest app version can be downloaded at https://ai-benchmark.com/download

any effects from smartphones’ integrated image denoising

ISP modules, and the resulting images were then converted

to RGB format using a stand-alone classical ISP system

with disabled noise correction options. The resolution of

the images was 4000×3000 pixels, around 650 scenes were

used for training the models, while the remaining photos

were reserved for validation and testing. An example set of

collected images is shown in Fig. 1.

2.2. Local Runtime Evaluation

When developing AI solutions for mobile devices, it is

vital to be able to test the designed models and debug all

emerging issues locally on available devices. For this, the

participants were provided with the AI Benchmark applica-

tion [30, 33] that allows to load any custom TensorFlow Lite

model and run it on any Android device with all supported

acceleration options. This tool contains the latest versions

of Android NNAPI, TFLite GPU, Hexagon NN, Samsung

Eden and MediaTek Neuron delegates, therefore supporting

all current mobile platforms and providing the users with

the ability to execute neural networks on smartphone NPUs,

APUs, DSPs, GPUs and CPUs.

To load and run a custom TensorFlow Lite model, one

needs to follow the next steps:

1. Download AI Benchmark from the official website1 or

from the Google Play2 and run its standard tests.

1https://ai-benchmark.com/download
2https://play.google.com/store/apps/details?id=

org.benchmark.demo

2. After the end of the tests, enter the PRO Mode and

select the Custom Model tab there.

3. Rename the exported TFLite model to model.tflite and

put it into the Download folder of the device.

4. Select mode type (INT8, FP16, or FP32), the desired

acceleration/inference options and run the model.

These steps are also illustrated in Fig. 2.

2.3. Runtime Evaluation on the Target Platform

In this challenge, we use the Samsung Exynos 2100 SoC

as our target runtime evaluation platform. This chipset con-

tains a powerful 14-core Mali-G78 GPU capable of accel-

erating floating point and quantized models, being ranked

among the top three mobile platforms by AI Benchmark at

the time of its release [5]. Within the challenge, the partic-

ipants were able to upload their TFLite models to an exter-

nal server and get a feedback regarding the speed of their

model: the runtime of their solution on the above men-

tioned Mali GPU or an error log if the model contains some

incompatible operations. The models were parsed and ac-

celerated using Samsung Eden delegate designed and tuned

for high-end Exynos mobile platforms. The same setup was

also used for the final runtime evaluation. The participants

were additionally provided with a detailed model optimiza-

tion guideline demonstrating the restrictions and the most

efficient setups for each supported TFLite op.
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Team Author Framework Model Size, KB PSNR↑ SSIM↑ Runtime, ms ↓ Final Score

NOAHTCV noahtcv TensorFlow 209 37.52 0.9150 39 53.99

Megvii chengshen TensorFlow 14276 37.83 0.9072 84 38.52

ENERZAi Research Minsu.Kwon TensorFlow 81 36.33 0.8930 11 36.77

MOMA-Denoise npzl TensorFlow 1404 37.37 0.9087 54 31.67

ENERZAi Research ∗ myungje.lee TensorFlow 118 36.22 0.9023 23 15.1

Mier q935970314 PyTorch / TensorFlow 1528 36.34 0.9066 314 1.31

GdAlgo TuningMan PyTorch / TensorFlow 18288 37.84 0.9157 5019 0.65

Table 1. Mobile AI 2021 Real Image Denoising challenge results and final rankings. The runtime values were obtained on 480p (720×480)

images. Team NOAHTCV is the challenge winner. ∗ The second solution from ENERZAi Research team did not participate in the official

test phase, its scores are shown for general information only.

2.4. Challenge Phases

The challenge consisted of the following phases:

I. Development: the participants get access to the data

and AI Benchmark app, and are able to train the mod-

els and evaluate their runtime locally;

II. Validation: the participants can upload their models to

the remote server to check the fidelity scores on the

validation dataset, to get the runtime on the target plat-

form, and to compare their results on the validation

leaderboard;

III. Testing: the participants submit their final results,

codes, TensorFlow Lite models, and factsheets.

2.5. Scoring System

All solutions were evaluated using the following metrics:

• Peak Signal-to-Noise Ratio (PSNR) measuring fidelity

score,

• Structural Similarity Index Measure (SSIM), a proxy

for perceptual score,

• The runtime on the target Exynos 2100 platform.

The score of each final submission was evaluated based

on the next formula (C is a constant normalization factor):

Final Score =
2
2·PSNR

C · runtime
,

During the final challenge phase, the participants did not

have access to the test dataset. Instead, they had to submit

their final TensorFlow Lite models that were subsequently

used by the challenge organizers to check both the runtime

and the fidelity results of each submission under identical

conditions. This approach solved all the issues related to

model overfitting, reproducibility of the results, and consis-

tency of the obtained runtime/accuracy values.

3. Challenge Results

From above 190 registered participants, 8 teams entered

the final phase and submitted valid results, TFLite models,

codes, executables and factsheets. Table 1 summarizes the

final challenge results and reports PSNR, SSIM and run-

time numbers for the top solutions on the final test dataset

and on the target evaluation platform. The proposed meth-

ods are described in section 4, and the team members and

affiliations are listed in Appendix A.

3.1. Results and Discussion

Nearly all submitted solutions demonstrated a very high

efficiency: the majority of models are able to process one

480p (720×480 px) image under 60 ms on the target Sam-

sung Exynos 2100 SoC, while the reported runtime results

on full-resolution camera images are less than 0.8 seconds

for most networks. All proposed solutions were derived

from a U-Net [51] like architecture which is not surpris-

ing: when feature maps are downsampled in its encoder

block, the noise is also removed very efficiently, thus this

model type suits perfectly for the considered problem. The

major differences, however, come from the way in which

the participants optimized their solutions for better runtime

and fidelity results. The challenge winner, team NOAHTCV,

used Neural Architecture Search (NAS) to find the opti-

mal model design, the same approach was also utilized by

MOMA-Denoise. ENERZAi Research team based its solu-

tion on an efficient knowledge transfer approach consisting

of the joint training of two (tiny and large) models sharing

the same feature extraction block. Their model achieved the

fastest runtime and the smallest size (only 81 kilobytes) in

this challenge. Another interesting approach was proposed

by Megvii that presented a modified decoder block splitting

and processing feature maps in two parallel channels to re-

duce the number of multiply-accumulate operations.

The best fidelity scores and visual results were obtained

by team GdAlgo – this was achieved at the price of using

a relatively large multiscale model requiring around five

seconds to process one image on Mali GPU. It should be

also mentioned that though some of the proposed solutions
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demonstrated nearly the same speed on desktop CPUs and

GPUs, their results on the target Samsung platform differ

more than 2-5 times. This explicitly shows that the runtime

values obtained on common deep learning hardware are not

representative when it comes to model deployment on mo-

bile AI silicon: even solutions that might seem to be very

efficient can struggle significantly due to the specific con-

straints of smartphone AI acceleration hardware and frame-

works. This makes deep learning development for mobile

devices so challenging, though the results obtained in this

competition demonstrate that one can get a very efficient

model when taking the above aspects into account.

4. Challenge Methods

This section describes solutions submitted by all teams par-

ticipating in the final stage of the MAI 2021 Real Image

Denoising challenge.

4.1. NOAHTCV
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Figure 3. Image denoising network proposed by team NOAHTCV.

Team NOAHTCV applied Neural Architecture Search

(NAS) [53] to find an optimal model for this task. The

authors started from a multi-scale architecture and used

the challenge scoring formula as a target NAS metric.

The space of available operators and layers was narrowed

to those that are fully supported on mobile devices. To

enhance NAS performance, the authors additionally used

knowledge distillation to explore more promising candi-

dates and accelerate the optimization procedure. During the

fine-tuning stage, each model candidate was optimized by

utilizing both the target clean images and the reconstruction

results from a larger pre-trained “teacher” model.

Fig. 3 demonstrates the final model architecture. The au-

thors especially emphasize the role of skip connections on

fidelity scores and the effect of upsampling and downsam-

pling operations on the runtime results. The models were

trained on patches of size 256×256 pixels using Adam op-

timizer with a batch size of 64 for 200 epochs. The learning

rate was set to 1e− 4 and decreased to 1e− 5 by applying a

cosine decay. L2 loss was used as the main fidelity metric.

4.2. Megvii
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Figure 4. A U-Net based model with modified decoder blocks pre-

sented by team Megvii.

Team Megvii proposed a light U-Net [51] based archi-

tecture with a modified decoder block (Fig. 4). To improve

the efficiency of the model, the authors used small 3×3 con-

volutional filters in all layers, and set the size of the feature

maps to be multiple of eight. No residual blocks were used

in the model to decrease its runtime. Each decoder mod-

ule contains two layers: the output of the first convolutional

layer is split into two groups and fed to two convolutions

of the second layer, both having half of the channels to de-

crease the number of FLOPs and multiply-accumulate oper-

ations (MACs). The model was trained to maximize PSNR

loss using Adam with a batch size of 64 for 162K itera-

tions. The learning rate was set to 2e − 4 and was steadily

decreased to 1e−6 using the cosine annealing strategy. The

network was trained on 448×448 patches, vertical and hor-

izontal flips and the Mixup [64] strategy were applied for

data augmentation.

4.3. ENERZAi Research

The solution proposed by ENERZAi Research is in-

spired by the Once-for-All approach [8] and consists of two

models: one super-network and one sub-network. They

both share the same U-Net [51] like module, and the differ-

ence comes from their top layers: the sub-network has one
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Figure 5. The model architecture proposed by ENERZAi Research

team. Semitransparent residual dense block belongs to the super-

network and is detached after training.

convolutional layers, while the super-network additionally

contains several residual dense blocks as shown in Fig. 5.

Both models are first trained jointly using a combination

of L1 and MS-SSIM loss functions. The super-network is

then detached after the PSNR score goes above a predefined

threshold, and the sub-net is further fine-tuned alone. The

model was trained on 256×256px patches using Adam opti-

mizer with a batch size of 8 and a learning rate of 1e−3. The

resulting model is able to process 2432×3000px images un-

der 300 ms on the Samsung Galaxy S21 smartphone.

Figure 6. A shallow U-Net based model (top) and a densely con-

nected block (bottom) proposed by ENERZAi Research team.

The second model proposed by this team (which did not

officially participate in the final test phase) is demonstrated

in Fig. 6. Same as above, the authors started from a stan-

dard U-Net based architecture and inserted an additional

dense block with skip connections [20] in its bottleneck

layer. The authors used PReLU activations to get better fi-

delity results and compressed the model using knowledge

distillation technique [18, 17]. The model was trained with

a combination of L1 and MS-SSIM losses using a dynamic

learning rate [52] ranging from 1e− 4 to 5e− 7.

4.4. MOMA-Denoise

Figure 7. The training NAS-based pipeline and the architecture

proposed by MOMA-Denoise team.

MOMA-Denoise team used an in-house Xiaomi Au-

toML Framework-MOMA to find the best architecture with

Neural Architcture Search. The authors used a light-weight

U-Net based network consisting of separable convolutions,

maxpooling and upsampling layers as a base model, and

searched for the best filter and channel sizes using NAS

(Fig. 7). To get more training data, the authors unpro-

cessed the provided JPEG images to RAW format, added

artificial Poisson-Gaussian noise and mapped the resulting

images back to RGB format to mimic real noise present

on smartphone photos. The considered image processing

pipeline included black level correction, digital gain, demo-

saicing, device RGB to sRGB mapping, gamma correction

and global tone mapping operations. The model was trained

to minimize L1 loss using Adam optimizer with a learning

rate of 1e−3 decreased to 1e−7 within the training process.

4.5. Mier

Figure 8. A small U-Net model proposed by Mier team.

Team Mier developed a small U-Net like architecture

presented in Fig. 8. This model starts with two convolu-

tions with a stride of 2 to reduce the size of the features,

followed by four residual blocks with skip connections and
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two deconvolutional layers. During the training, the authors

used asymmetric convolutions [44, 15] to enhance the ker-

nel skeleton, which were fused after training. The model

was trained on 256×256px patches, Charbonnier loss was

used as a target fidelity metric. The model parameters were

optimized using Adam with a batch size of 16 and an ini-

tial learning rate of 1e − 4 decreased to 1e − 7 using the

cosine annealing strategy. It should be mentioned that the

original model was trained in PyTorch and then exported to

TensorFlow and TFLite formats.

4.6. GdAlgo

Figure 9. Guided Attention U-Net and a channel attention block

designed by GdAlgo team.

Team GdAlgo proposed a Guided Attention U-Net

(GAU-net) model demonstrated in Fig. 9. The standard con-

volutional layers in this model are replaced by channel at-

tention blocks to get better visual and fidelity results. In-

spired by the Multi-Stage Image Restoration approach [63],

the authors adopted the corresponding multi-stage learning

strategy. The model was trained to minimize Charbonnier

loss function, the edge loss was discarded as no improve-

ment was observed in the experiments.

5. Additional Literature

An overview of the past challenges on mobile-related

tasks together with the proposed solutions can be found in

the following papers:

• Image Denoising: [1, 3]

• Learned End-to-End ISP: [32, 36]

• Perceptual Image Enhancement: [35, 29]

• Bokeh Effect Rendering: [27, 34]

• Image Super-Resolution: [35, 47, 9, 58]
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