
13

Fast Candidate Generation for Real-Time Tweet Search
with Bloom Filter Chains

NIMA ASADI and JIMMY LIN, University of Maryland at College Park

The rise of social media and other forms of user-generated content have created the demand for real-time
search: against a high-velocity stream of incoming documents, users desire a list of relevant results at the
time the query is issued. In the context of real-time search on tweets, this work explores candidate generation
in a two-stage retrieval architecture where an initial list of results is processed by a second-stage rescorer
to produce the final output. We introduce Bloom filter chains, a novel extension of Bloom filters that can
dynamically expand to efficiently represent an arbitrarily long and growing list of monotonically-increasing
integers with a constant false positive rate. Using a collection of Bloom filter chains, a novel approximate
candidate generation algorithm called BWAND is able to perform both conjunctive and disjunctive retrieval.
Experiments show that our algorithm is many times faster than competitive baselines and that this increased
performance does not require sacrificing end-to-end effectiveness. Our results empirically characterize the
trade-off space defined by output quality, query evaluation speed, and memory footprint for this particular
search architecture.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search and
Retrieval

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Scalability, efficiency, top-k retrieval, tweet search, bloom filters

ACM Reference Format:
Asadi, N. and Lin, J. 2013. Fast candidate generation for real-time tweet search with bloom filter chains.
ACM Trans. Inf. Syst. 31, 3, Article 13 (July 2013), 36 pages.
DOI: http://dx.doi.org/10.1145/2493175.2493178

1. INTRODUCTION

This article focuses on real-time search in the context of Twitter, a communications
platform on which users can send short, 140-character messages, called tweets, to their
followers, which are other users who subscribe to those messages. Conversely, users
can receive tweets from people they follow via a number of mechanisms, including Web
clients, mobile clients, and SMS. As of Winter 2012, Twitter had over 200 million active
users worldwide who collectively post over 400 million tweets per day—translating into
an average of several thousand tweets per second, with short bursts of activity at even
higher velocities. One salient aspect of Twitter is that users demand to know what is
happening right now, especially in response to breaking news stories around the world,
such as natural disasters, celebrity deaths, or mass protests. For this, they desire
real-time search capabilities.

This work has been supported by NSF under awards IIS-0916043, IIS-1144034, and IIS-1218043.
Authors’ addresses: N. Asadi, Department of Computer Science, University of Maryland at College Park;
email: nima@cs.umd.edu; J. Lin, The iSchool, College of Information Studies, University of Maryland at
College Park; email: jimmylin@umd.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1046-8188/2013/07-ART13 $15.00

DOI: http://dx.doi.org/10.1145/2493175.2493178

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

13:2 N. Asadi and J. Lin

d
d
d
d
d
d
d

1
2
3
4
5
6

7

Candidates

...
d k

Final Results

d
d
d
d
d
d
d

r

...
d

Candidate
Generation

Query

1
r2
r3
r4
r5
r6
r7

rk

Collection
Document
Rescoring

Fig. 1. A two-stage retrieval architecture for real-time search: given query Q, the first stage generates
candidates; the second stage rescores the candidates to compose the final results.

Let us begin by more precisely defining the real-time search task. We assume a
stream of documents being created at a high velocity, which in our case consists of
tweets.1 Against this stream of incoming documents, the user issues a query repre-
senting an information need and desires documents that meet the need at that time,
taking into account both traditional relevance criteria, such as topicality, as well as
temporality—in general, more recent documents are preferred over older documents.
In terms of result presentation, whether tweets are displayed in reverse chronological
order (as in Twitter’s current search interface) or arranged in relevance order (as in
a traditional Web search engine) is primarily an interface issue that can be decou-
pled from the underlying scoring algorithms. This formulation matches the microblog
search task in recent TREC evaluations [Ounis et al. 2011, Soboroff et al. 2012a, 2012b;
McCreadie et al. 2012] and represents an initial if not emerging consensus on how the
real-time search problem should be framed.

We envision a real-time search architecture comprising two distinct stages: candidate
generation and document rescoring (see Figure 1). In the first stage, a list of candidate
documents is generated, sorted using a simple scoring function. In the second stage,
these candidate documents are then rescored by a separate component. Mirroring the
basic architecture of Web search engines today, we assume that candidate generation
is cheap and fast and that the second stage uses more sophisticated algorithms (e.g.,
machine-learned models operating over a panoply of features).

Within this real-time search architecture, our work focuses on the candidate genera-
tion stage, where we believe that speed is the most important consideration, even more
so than output quality. In a two-stage retrieval architecture, candidate generation only
needs to be “good enough”, since the second-stage rescorer is able to identify relevant
documents by exploiting effective machine-learned models and rich features. Further-
more, due to an emphasis on early precision in most search tasks today—we simply
need to make sure there are enough relevant documents for the second-stage rescorer
to identify. As such, our goal is to generate candidate documents as quickly as possible,
even at the cost of introducing approximations and sacrificing some (component-level)
effectiveness. However, as we experimentally show, we can achieve a multiple-fold
increase in speed without sacrificing end-to-end effectiveness.

Building on a previous short paper [Asadi and Lin 2012b], we achieve fast candidate
generation by introducing a novel variant of Bloom filters, which are probabilistic data
structures that support approximate membership tests. In our indexing algorithm,
postings are inserted into dynamically-allocated in-memory inverted lists in chrono-
logical order with increasing document ids. In addition, postings are stored in Bloom

1Following standard IR parlance, we refer to the unit of indexing generically as a “document”, even though
in actuality it may be a tweet, a webpage, a blog post, etc.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

Fast Candidate Generation for Real-Time Tweet Search 13:3

filter chains, a novel data structure we propose. We introduce a variant of the WAND

query evaluation algorithm [Broder et al. 2003; Ding and Suel 2011], which we call
BWAND, that takes advantage of the Bloom filter chains to either perform postings
intersection (conjunctive query processing) or top k retrieval (disjunctive query pro-
cessing). Experiments show that our candidate generation algorithm is several times
faster than competitive baselines, and that in terms of end-to-end effectiveness with
a second-stage rescorer, our algorithm produces NDCG and precision scores that are
statistically indistinguishable from the much slower exact algorithms. The trade-off is
that our approach requires additional memory to hold the Bloom filter auxiliary data
structures, but we show that the requirements are reasonable given modern server
configurations.

Contributions. We view this work as having three contributions.

(1) We propose a novel variant of Bloom filters called Bloom filter chains that can
dynamically expand to efficiently represent an arbitrarily long and growing list of
monotonically-increasing integers with a constant false positive rate. We describe
how to organize a large collection of Bloom filter chains in a compact data structure
capable of supporting two primary operations: INSERT for element insertion and
PROBE for membership tests.

(2) We describe a novel algorithm for candidate generation that takes advantage of
Bloom filter chains in the context of real-time search on tweets. Our algorithm,
called BWAND (short for Bloom WAND) introduces a number of optimizations that
take advantage of characteristics specific to tweets. Experiments show that our
algorithm is several times faster than competitive baselines.

(3) In the context of candidate generation in a two-stage retrieval architecture for real-
time search on tweets, we empirically characterize the trade-off space defined by
output quality, query evaluation speed, and memory footprint. Our experimental
results help us better understand the various contributions to important design
aspects of retrieval engines.

2. BACKGROUND AND RELATED WORK

This section sets the stage for our work in several steps, since it builds on and draws
from diverse threads of research. We begin by discussing the standard two-stage rank-
ing architecture for Web search that follows from modern learning-to-rank techniques.
Within this architecture, one fundamental design choice is whether queries are pro-
cessed conjunctively or disjunctively: we overview both approaches.

Next, we discuss how the problem of real-time search differs from traditional Web
search. These differences hold important implications for the design of retrieval en-
gines, the most significant of which is the need to make documents immediately search-
able. As a reference design, we describe the salient aspects of Earlybird, Twitter’s pro-
duction real-time retrieval engine, which forms the starting point of this work. We then
outline our previous idea of how Bloom filters can be exploited for efficient postings
intersection, which we extend into our BWAND algorithm.

2.1. The Two-Stage Architecture for Web Search

There is consensus in the information retrieval community that the challenge of Web
ranking is best addressed using machine-learning techniques, known as learning to
rank. In particular, ensembles of tree-based learners have proven effective, as docu-
mented in both the academic literature [Liu 2009; Li 2011; Ganjisaffar et al. 2011] and
in production in commercial search engines such as Bing [Burges 2010]. This approach
generally assumes that a candidate list of potentially-relevant documents has already

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

13:4 N. Asadi and J. Lin

been gathered by other means.2 Thus, learning to rank is actually a reranking (or
equivalently, rescoring) problem [Liu 2009]. Hence, modern Web search can be viewed
as a two-stage process: candidate generation followed by reranking [Tatikonda et al.
2011; Ding and Suel 2011; Asadi and Lin 2012b; Macdonald et al. 2012; Tonellotto
et al. 2013]. In the first phase, a fast, cheap algorithm is applied to generate a can-
didate list of potentially-relevant documents. A popular choice is to use BM25 [Liu
2009; Cambazoglu et al. 2010; Tatikonda et al. 2011; Macdonald et al. 2012], pos-
sibly in combination with a query-independent score, for example, PageRank [Page
et al. 1999], HITS [Kleinberg 1999], SALSA [Lempel and Moran 2000], a page quality
score [Cormack et al. 2011], etc. These candidate documents are then reranked by a
slower, expensive but higher-quality (usually, machine-learned) algorithm, which typi-
cally considers features that would be too costly to compute in the first phase (e.g., term
proximity features). A few examples include gradient-boosted regression trees [Burges
2010; Ganjisaffar et al. 2011], additive ensembles [Cambazoglu et al. 2010], and cas-
cades of rankers [Matveeva et al. 2006; Wang et al. 2011]. Macdonald et al. [2012]
recently studied this two-stage architecture in detail, examining issues such as the
size of the candidate list and metrics for training learning-to-rank models in the Web
context. Our work also adopts this architecture, focusing on candidate generation for
real-time tweet search.

Candidate generation is usually accomplished with document-sorted inverted in-
dexes [Zobel and Moffat 2006]. A fundamental distinction of retrieval algorithms is
whether queries are processed conjunctively or disjunctively. In conjunctive query pro-
cessing, only documents that have all the query terms are considered—in other words,
the query terms are AND’ed together. For Web-scale collections, there is evidence that
this approach leads to higher early precision [Broder et al. 2003] (although this work
predates much of the modern work on learning to rank). Conjunctive query processing
is equivalent to intersection of postings lists [Demaine et al. 2001; Barbay et al. 2006;
Tsirogiannis et al. 2009; Culpepper and Moffat 2010; Tatikonda et al. 2011], with well-
known solutions such as the small adaptive and SvS algorithms. Conjunctive query
processing is very fast for a few reasons. The algorithms generally eschew a scoring
model, so there is no need to compute document scores or to maintain a heap of scored
documents. Many researchers have studied the problem, and thus the algorithms have
received much attention and refinement. Finally, index structures for conjunctive query
processing are smaller since there is no need to store payloads such as term frequencies;
this decreases the amount of data that need to be processed during query evaluation.

The alternative to conjunctive query processing is disjunctive query processing, often
referred to as top k retrieval. In this approach, a document that contains any query
term is potentially a candidate for retrieval (i.e., the query terms are OR’ed together).
Disjunctive query processing only makes sense in the context of a scoring model, where
the algorithm returns the top k results in terms of document scores. The primary weak-
ness of disjunctive query processing is much slower query evaluation speed compared
to conjunctive query processing, since any document that contains a query term may
need to be considered. Over the years, researchers have developed clever algorithms
and optimizations to increase the speed of disjunctive query processing, for example,
by arranging postings so that promising documents are considered early [Anh et al.
2001; Anh and Moffat 2005; Strohman and Croft 2007] or by skipping documents that
cannot possibly make it into the top k ranking [Brown 1995; Turtle and Flood 1995;
Broder et al. 2003; Strohman et al. 2005; Ding and Suel 2011]. The two state-of-the-art

2Liu [2009] calls this the document sampling process and refers to candidate documents as “samples”. We
prefer the more neutral term “candidate documents” because sampling evokes other connotations that may
be misleading.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

Fast Candidate Generation for Real-Time Tweet Search 13:5

disjunctive query processing algorithms are Block-Max WAND [Ding and Suel 2011] and
the technique of Stroham and Croft [2007]. However, the latter requires impact-sorted
indexes, which are inappropriate for our problem formulation (see next section).

The literature also discusses a wide range of systems engineering techniques
for controlling efficiency-related factors, such as query latency and throughput.
Examples include inter-datacenter query routing [Kayaaslan et al. 2011], different
partition strategies within a single datacenter [Baeza-Yates et al. 2007], and caching
techniques [Skobeltsyn et al. 2008]. Overall, these designs are not specific to infor-
mation retrieval, but represent general principles for building large-scale distributed
systems [Hamilton 2007; Barroso and Hölzle 2009]. We consider systems engineering
orthogonal to our work in the sense that we focus on an individual retrieval engine,
which serves as a building block in large-scale search services.

2.2. Web vs. Real-Time Search

There is, of course, more to information retrieval than searching (relatively) static
Web content. Our problem of interest—real-time search on a high velocity stream of
documents—shares two similarities with traditional Web search.

—Low-latency, high-throuughput query evaluation. Users are impatient and demand
results quickly. Google reports that as little as an additional 100 milliseconds of
search latency causes a measurable drop in search usage [Brutlag 2009].

—In-memory indexes. The only practical way to achieve performance requirements is to
maintain index structures in memory so that query evaluation never (or very rarely)
involves disk. This is the approach adopted by commercial Web search engines today,
for example, Google’s Jeff Dean has on multiple occasions disclosed that Google’s Web
indexes are served from memory.

Despite these similarities, there are important differences as well.

—High ingestion rate and immediate data searchability. In real-time search, docu-
ments arrive at a high velocity, often with sudden spikes corresponding to “flash
mobs”. Users expect content to be searchable within a short amount of time—on
the order of a few seconds. In other words, the indexer must operate incrementally
and achieve both low latency and high throughput. This requirement departs from
common assumptions in typical search environments, where indexing is considered
a batch operation. Although modern Web crawlers achieve high throughput, it is
not expected that crawled content be available for searching immediately. Depend-
ing on the type of content, an indexing delay of minutes, hours, or even days may
be acceptable. This allows engineers to trade off latency for throughput in running
indexing jobs on batch systems, such as MapReduce [Dean and Ghemawat 2004]. Al-
ternatively, substantially more machine resources can be brought to bear to reduce
indexing latency using the Percolator architecture [Peng and Dabek 2010], but it is
unclear if this alternative achieves the speed required for real-time search. Although
there is work in the information retrieval literature on low-latency indexing with a
focus on explicitly making documents rapidly searchable [Büttcher and Clarke 2005;
Strohman and Croft 2006; Guo et al. 2007], the research deals with disk-resident
indexes and therefore is not applicable to our environment (see preceding).

—Importance of the temporal signal. The nature of real-time search means that tem-
poral signals are important for document scoring, with more recent documents gen-
erally favored over older documents. This stands in contrast to Web search, where
the time stamp or creation date of a webpage has a relatively minor role in relevance
ranking (news search being the obvious exception).

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

13:6 N. Asadi and J. Lin

These two distinguishing characteristics of the real-time search problem create an
important design requirement. Indexing must be online and incremental—documents
must be searchable within a short time (seconds) after they are created. These char-
acteristics also yield a natural architectural constraint: inverted indexes should be
document-sorted. While there is much research on efficient query evaluation with
impact-sorted indexes [Anh et al. 2001; Anh and Moffat 2005; Strohman and Croft
2007], such an index organization does not appear to be practical for real-time search.
Assuming that ingested documents are assigned sequentially-increasing document ids,
in a document-sorted index, the postings will be sorted in chronological order. Given
the importance of the temporal signal and the bias toward retrieving more recent doc-
uments, it is natural to traverse postings lists backwards during query evaluation (i.e.,
from their ends), so that newer documents are considered before older documents.

2.3. Postings Allocation for In-Memory Incremental Indexing

The problem of incremental indexing, of course, is not new [Cutting and Pedersen 1990;
Tomasic et al. 1994; Büttcher and Clarke 2005; Lester et al. 2006, 2008]. However, pre-
vious work focused on a different point in the design space, making the assumption
that the inverted lists are too large to fit in memory. Most algorithms operate by per-
forming in-memory inversion within a bounded and relatively small buffer (e.g., [Heinz
and Zobel 2003]), which inevitably must be “flushed” to disk once the buffer is full. The
core challenge is controlling how this happens and how to best merge inverted lists in
memory with those that are already on disk. Lester et al. [2008] outlined three basic
options: to rebuild the index on disk from scratch, to modify postings in place on disk,
or to selectively merge in-memory and on-disk segments and rewrite to another region
on disk. In particular, they explored a geometric partitioning and hierarchical merging
strategy that limits the number of outstanding partitions, thereby controlling query
costs (cf. [Büttcher and Clarke 2005]). Since these approaches all involve disk opera-
tions, they are not appropriate for our application, which demands in-memory indexes.

Allocating memory for postings lists to support rapid incremental indexing boils
down to a Goldilocks problem. As memory remains relatively scarce (at least compared
to disk), we would like the solution to be fast yet parsimonious with respect to memory
usage. This process needs to be dynamic because postings lists grow as the collection
increases in size. Furthermore, postings lists vary significantly in size, since term
occurrences are roughly Zipfian. As a result, it is tricky to a priori choose the optimal
amount of memory to allocate for each term’s postings. Selecting a value that is too large
leads to inefficient memory utilization, because most of the allocated space for storing
postings will be empty. On the other hand, selecting a value that is too small leads to
waste: time, obviously, for memory allocation (which is a relatively costly operation),
but also space because noncontiguous postings require pointers to chain together (in
the limit, allocating one posting at a time is akin to a linked list).3 Furthermore, during
postings traversal, blocks that are too small also result in suboptimal memory access
patterns (e.g., due to cache misses, lack of memory prefetching, etc.). Ideally, we would
like to strike a balance and find a “sweet spot”.

As a reference solution, we describe Twitter’s Earlybird retrieval engine, which forms
the starting point of our work. The Java-based system, which comprises the core of
Twitter’s production search service, is detailed in a previous paper [Busch et al. 2012],
but here we discuss the salient aspects. To our knowledge, this is the only detailed
exposition of a production solution to the incremental in-memory indexing problem that
we are aware of, and thus serves as a good foundation to build on. Earlybird implements

3The alternative index organization, retaining contiguous inverted lists, requires copying around data and
thus is too slow for production requirements.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

Fast Candidate Generation for Real-Time Tweet Search 13:7
1

7
11

4

Fig. 2. Organization of an index segment in Earlybird. Increasingly larger slices are allocated in large pools
to hold postings lists. Except for slices in pool 1 (the bottom pool), the first 32 bits of each slice are used for
storing the backpointer that links the slices together. Pool 4 (the top pool) can hold multiple slices for a term.
In this figure, dark gray slices are allocated, white slices are free, and the light gray slices marked with the
arrow (i.e., tail pointer) comprise the postings list for a particular term.

a dynamic postings allocation policy that allocates increasingly-larger “slices” from a
small number of large, fixed pools of memory.

In Earlybird, each posting is simply a 32-bit integer: 24 bits are devoted to storing the
document ID and 8 bits for the term position. Since tweets are limited to 140 characters,
8 bits are sufficient to hold term positions.4 A postings list is simply an integer array,
and indexing new documents involves inserting elements into a pre-allocated array.
Postings traversal in reverse chronological order corresponds to iterating through the
array backwards. This organization allows every array position to be a possible entry
point for postings traversal. In addition, it allows for efficient binary search (to find a
particular document ID)5 and does not require any additional skip-list data structures
to enable faster traversal through the postings lists. Finally, this organization is cache
friendly, since array traversal involves linear memory strides and this predictable
access pattern provides reliable prefetch cues to the hardware.

Note, critically, that postings lists are not compressed. To understand this design de-
cision, we must first realize that an important aspect of real-time search in production
is managing concurrent (i.e., multithreaded) access to index structures—query evalu-
ation is interleaved with indexing, which means that index structures may be mutated
while the postings lists are simultaneously being traversed for retrieval. Maintaining
proper invariants to guarantee search correctness is difficult and something that Busch
et al. [2012] discuss. In the Earlybird design, each instance of the retrieval engine holds
roughly a dozen index segments, and each segment holds a relatively small number of
tweets (since the docid is limited by a 24-bit integer space). Ingested tweets first fill up
a segment before proceeding to the next one. Therefore, at any given time, there is at
most one index segment actively being modified, whereas the remaining segments are
read-only. Once an index segment stops accepting new tweets, it can be converted from
a write-friendly structure into an optimized, compressed, read-only structure. Sepa-
rating the active index segment from the read-only index segments has the advantage
of isolating the scope of concurrent index read/write operations, which simplifies con-
currency management. Due to the rapid rate at which tweets arrive, an index segment
does not spend too long in the uncompressed state, and therefore working with uncom-
pressed integer arrays is acceptable from a memory usage perspective. Concurrency
management is not a focus of this work, but we return to discuss this issue later.

The Earlybird solution to the Goldilocks problem is to create four separate pools
for holding postings, shown in Figure 2. Conceptually, each pool can be treated as an

4If a term appears in the tweet multiple times, it will be represented with multiple postings.
5In contrast, block-based compression techniques, such as PForDelta, are not friendly to binary search, since
an element probe requires decoding an entire block of postings.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

13:8 N. Asadi and J. Lin

unbounded integer array, but in practice, pools are large integer arrays allocated in
blocks. Slices are allocated from the pools to hold individual postings belonging to a
term. In each pool, the slice sizes are fixed: they are 21, 24, 27, and 211, respectively.
For convenience, we refer to these as pools 1 through 4, respectively. When a term is
first encountered, a 21 integer slice is allocated in the first pool, which is sufficient
to hold postings for the first two term occurrences. When the first slice runs out of
space, another slice of 24 integers is allocated in pool 2 to hold the next 24 − 1 term
occurrences (32 bits are used to serve as the backpointer, discussed next). After running
out of space, a slice is allocated in pool 3 to store the next 27 − 1 term occurrences, and
finally a slice in pool 4 to store the following 211 − 1 term occurrences. Additional space
is allocated in pool 4 in slices of 211 integers as needed.

One advantage of this strategy is that no array copies are required as postings lists
grow in length, which means that there is no garbage to collect (important for memory-
managed languages such as Java). Furthermore, the data structure is compact in the
sense that there is very little memory overhead (e.g., in terms of object headers and
alignment padding), since we are mostly manipulating primitive integer arrays (once
again, important in a language such as Java). However, the trade-off is that postings
are noncontiguous and we need a mechanism to link the slices together. Addressing
slice positions is accomplished using 32-bit pointers: 2 bits are used to address the
pool, 19–29 bits are used to address the slice index, and 1–11 bits are used to address
the offset within the slice. This creates a symmetry in that postings and addressing
pointers both fit in a standard 32-bit integer. The dictionary maintains pointers to the
current tail of the postings list using this addressing scheme (thereby marking where
the next posting should be inserted and where query evaluation should begin). Pointers
in the same format are used to link the slices in different pools together and possibly
multiple slices in pool 4. In all but the first pool, the first 32 bits of each slice are used
to store this backpointer.

Note that Earlybird’s design can be extended to an arbitrary number of pools and
pool sizes; we can create more memory pools or use different slice sizes—this is further
explored in Asadi et al. [2013] A particular instantiation of this general strategy can
be described by P = {P1, P2, . . . , Pm}, where m is the number of pools and where pool n
has slices of size 2Pn. For example, in the default setup, P = {1, 4, 7, 11}.

2.4. Efficient Postings List Intersection with Bloom Filters

Finally, we arrive at the last piece of background: efficient postings list intersection
with Bloom filters, described in our recent short paper [Asadi and Lin 2012b]. The intu-
ition is that in a two-stage retrieval architecture, the second-stage rescorer is relatively
insensitive to the quality of the candidate documents. As long as this intermediate prod-
uct is of reasonable quality, the final output will remain high quality—particularly in
the Web context due to an emphasis on early precision. Thus, our goal is to generate
candidate documents as quickly as possible, even at the cost of introducing approxi-
mations. Recently, this approach was echoed by the work of Tonellotto et al. [2013],
who selectively applied aggressive and unsafe pruning in the candidate generation
stage to control end-to-end effectiveness/efficiency trade-offs in the context of a similar
two-stage retrieval architecture.

In Asadi and Lin [2012b], we introduced a novel algorithm for postings list inter-
section using Bloom filters, which are probabilistic data structures that support O(1)
approximate membership tests [Bloom 1970]. Previously, Bloom filters have been used
in information retrieval applications for P2P retrieval [Li et al. 2003] and signature
files [Shepherd et al. 1989; Tirdad et al. 2011]. In our approach, each postings list is
stored both as a compressed sequence of integers and as a Bloom filter, that is, the

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

Fast Candidate Generation for Real-Time Tweet Search 13:9

Bloom filter representation of a postings list allows us to quickly answer the question,
is this document ID contained in the postings list?

A Bloom filter is comprised of a bit array of size mand κ hash functions that generate
values in the range [0, m− 1]. To insert an element into the filter, κ hash values are
computed, and the corresponding bit positions in the underlying bit array are set to
one. Hash collisions are ignored, that is, if a bit has already been set to one previously,
it is left untouched. To probe the filter (i.e., determine if an element is a member of
the Bloom filter), κ hash values of the test element are computed using the same hash
functions used in the insertion process. The corresponding bit positions are probed.
The membership test passes if all the bit positions are set (i.e., 1), and it fails when
any of the bit positions are unset (i.e., 0). A common lookup optimization is to compute
the hash values one at a time and terminate when the probed bit position is not set (to
save unnecessary hash value computations).

Bloom filters only support approximate membership tests, where false positives are
possible, that is, a Bloom filter may assert true on a membership test when in fact
the element was never inserted. However, false negatives are impossible, that is, if
a membership test fails, the test element is guaranteed never to have been inserted.
False positives occur when there are hash collisions and increase as more elements are
inserted into the Bloom filter. Fortunately, the false positive rate can be theoretically
predicted and controlled given the values m and κ. Assuming the hash functions select
a bit position in the array of m bits with equal probability, the probability that a bit is
not set by one hash function during the insertion is equal to 1 − 1

m. Therefore, with κ
hash functions and n inserted elements, the probability that a bit is set to one is

p = 1 −
(

1 − 1
m

)κn

. (1)

During a membership test, a false positive is possible when all κ bit positions (computed
by the hash functions) are set to one. The error thus should be

pκ =
(

1 −
(

1 − 1
m

)κn)κ

≈
(
1 − e

−κn
m

)κ

. (2)

This commonly-cited bound is actually incorrect, since it assumes independence for
the probabilities of each bit being set. Bose et al. [2008] showed that the preceding
expression is the lower bound on false positive error, with the actual upper bound is

pκ ×
⎛
⎝1 +

κ
p

√
ln m−2κ ln p

m

1 − κ
p

√
ln m−2κ ln p

m

+ 2√
m

⎞
⎠ . (3)

Nevertheless, for large enough values of mand small values of κ, the difference between
pκ and the actual false positive rate is negligible. In our work, we specify m in terms
of r, the number of bits that we devote to an element in the Bloom filter (i.e., r = m/n);
as we shall see, this is a more natural formulation in our application.

Our postings list intersection algorithm proceeds as follows: for a query Q with |Q|
terms, we find the term q with the smallest document frequency (i.e., rarest query
term) and look up its standard postings list. We refer to this as the base postings list.
The algorithm traverses this postings list and probes the Bloom filter representation
of the other query terms to compute the set intersection. A document is added to the
candidate list if all membership tests pass. The approximation aspect of our algorithm
lies in the fact that Bloom filters can produce false positives, that is, a filter can assert
that an element is contained within it, even when in reality that element was never

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

13:10 N. Asadi and J. Lin

inserted. In other words, the test can erroneously assert that a document contains a
query term when in fact it does not.

Although this exposition captures the gist of our idea, we refer the reader to Asadi and
Lin [2012b] for additional details. In particular, the short paper describes experiments
that empirically characterize the trade-offs between effectiveness (result quality), time
(retrieval speed), and space (index size). We show that for a range of parameter set-
tings, our approximate postings list intersection algorithm with Bloom filters achieves
very high relative recall with respect to an exact postings list intersection baseline.
Furthermore, in end-to-end experiments with a simple second-stage machine-learned
ranking model, the approximations introduced by Bloom filters do not yield significant
differences in NDCG@{1,3,5,10,20} compared to a baseline using exact postings inter-
section. However, postings lists intersection with Bloom filters is substantially faster
but at the cost of additional memory necessary for storing the auxiliary data structures.

3. BLOOM FILTER CHAINS

Bloom filter chains are extensions of standard Bloom filters that can dynamically
expand to efficiently represent an arbitrarily long and growing list of monotonically-
increasing integers with a constant false positive rate that is specified a priori. In
this section, we present a compact data structure for managing an arbitrarily-large
collection of Bloom filter chains. This data structure is compact in the sense that it
requires minimal memory overhead in terms of space not directly devoted to storing the
data (e.g., object headers and alignment padding). At a high level, this data structure
can be thought of as adapting Earlybird’s memory allocation policy to create chains of
Bloom filters on demand.

We define two primitives that our collection of Bloom filter chains supports.

—INSERT(t, e) inserts an element e into the list of monotonically-increasing integers
associated with t.

—PROBE(t, e) performs an approximate membership test to determine if e is an element
of the list of monotonically-increasing integers associated with t.

Importantly, our proposed data structure does not support the following operation.

—GET(t) returns the list of monotonically-increasing integers associated with t.

That is, we do not support an operation for enumerating the list of integers associated
with a particular key, only an element membership test via the PROBE operation. Finally,
we define one additional optional operation.

—DELETE(t, e) removes element e from the list of sorted integers associated with t.

Although this data structure was designed to support our approximate candidate
generation algorithm (where the lists of monotonically-increasing integers represent
document ids), it may be useful for other applications as well.

3.1. Expandable Bloom Filters

It is clear, based on the analysis in Section 2.4, that standard Bloom filters are not
appropriate for representing sets whose cardinalities are not known a priori. Since
Bloom filters are constructed with a fixed number of bits m, as we insert more elements,
the false positive rate increases. When trying to pre-size Bloom filters, we encounter
exactly the Goldilocks problem discussed in Section 2.3. If we allocate too much space
to begin with, we waste memory. If we allocate too little space, the false positive rate
may grow too high to be acceptable for the application.

The scalability of Bloom filters is not a new problem. Almeida et al. [2007] addressed
this issue by using not one, but a series of Bloom filters of geometrically-increasing sizes.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

Fast Candidate Generation for Real-Time Tweet Search 13:11

When a Bloom filter reaches capacity, a new one is created and added to the list. For a
membership test, all Bloom filters in the list are probed; the membership test passes
if any of the Bloom filters assert a positive result. There are a few drawbacks to this
approach. First, membership tests become progressively slower as the number of Bloom
filters increases. Second, false positive rates compound with multiple filters, which
must be counteracted by increasing their size according to a geometric progression
to maintain a desired false positive rate. Finally, Almeida et al. do not discuss how
memory would be efficiently allocated for a large number of these Bloom filters. In
a naı̈ve implementation, each Bloom filter would be represented as an object, which
leads to a proliferation of objects of varying sizes if we have a large collection of such
lists of Bloom filters.

Our proposed data structure addresses these issues: for each key, the associated
Bloom filter chain can accommodate a growing, arbitrarily-sized list of monotonically-
increasing integers and support efficient probing by exploiting the sorted behavior of
the inserted elements. In addition, we describe an efficient memory allocation policy
for managing a large collection of Bloom filter chains.

3.2. Element Insertions and Probes

Bloom filter chains grow in a manner similar to how space for postings are allocated
in Earlybird (see Section 2.3). The first time we encounter a term, we construct a
Bloom filter with a fixed length. Since we are interested in maintaining a constant
false positive rate, from this fixed length we can calculate the maximum number of
elements that the Bloom filter can safely accommodate. Once a Bloom filter reaches its
capacity, we allocate another Bloom filter with a larger size and link it to the last filter.
In the end, we have a linked list of Bloom filters, each storing a portion of the sorted
list (hence, a Bloom filter chain).

One important difference that distinguishes our Bloom filter chains from the work of
Almeida et al. [2007] is in deciding which Bloom filter to probe. They require probing
all the Bloom filters, but in our case, since elements are monotonically increasing, each
Bloom filter in the chain contains a non-overlapping range of elements. That is, if the
nth Bloom filter contains elements in the range [bn, ln], where bn and ln indicate the
first and last element inserted into the Bloom filter, respectively, then ln < bn+1. This
means that we can compare the query element with the range associated with each
Bloom filter to determine whether the queried element might have been inserted into
that filter; these range checks tell us the right Bloom filter to probe, and thus we can
save unnecessary membership tests. To enable this comparison, we must keep track of
bn and ln for every Bloom filter in the chain; however, since bn < ln and we know that
ln < bn+1, storing bn’s alone suffices.

Abstractly, each Bloom filter chain can be viewed as a linked list of Bloom filters.
However, a naı̈ve linked list implementation would be inefficient in terms of memory
use, since each individual Bloom filter would be represented by an object, which trans-
lates into substantial overhead for object headers and other associated bookkeeping
metadata. To address this problem, we allocate memory for each Bloom filter in the
chain using the approach implemented in Earlybird; this structure is illustrated in
Figure 3. Let us assume we have a pool structure consisting of m memory pools with
slice sizes P = {P1, P2, . . . , Pm}. We can view each memory pool as an unbounded array
of 32-bit integers, although in practice, we dynamically grow each pool as necessary.
In each pool, the slices are numbered numerically starting from one, such that a tuple
〈n, s〉, consisting of a pool number and a slice number, uniquely identifies a particular
region in memory (we can pack both values in a 32-bit integer for compact storage).
For example, 〈1, 1〉 starts at index position 0 in pool 1 and has length 2P1 ; 〈1, 2〉 starts
at index position 2P1 in pool 1 and has the same length. In general, 〈n, s〉 refers to a

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

13:12 N. Asadi and J. Lin
n

=
2

Bloomπ θ

π θ

π θ

π

n
=

1
n

=
3

n
=

4

Bloom

Bloom

s=1 s=2 s=3

Φ

Φ

Φ

Fig. 3. Organization of a collection of Bloom filter chains: φ is the backpointer, π is the counter, and θ is the
first document ID inserted into the Bloom filter. In this figure, dark gray slices are allocated, white slices are
free, and the light gray slices comprise the Bloom filter chain for a term.

region in memory in pool n, starting at index position (s − 1)2Pn. It is in these regions
that we allocate space for the Bloom filters that comprise the chains. Next, we explain
in detail element insertions and the membership tests.

The implementation of the INSERT operation is as follows (see Algorithm 1). Before
indexing begins, we must specify a target false positive rate by setting r, the number of
bits per element in the Bloom filters, and κ, the number of hash functions. The impact
of these parameters is explored in our experiments. The first time we encounter a term,
we allocate a slice from pool 1 (the next available s). A slice from the first pool, if used
entirely for a Bloom filter, can accept a maximum of 32 × 2P1/r elements without com-
promising the false positive rate. Recall that slice sizes are denoted in units of 32-bit
integers so that they can be efficiently implemented as integer arrays and manipulated
via standard bitwise operators. However, we must keep track of the number of elements
that has been inserted into a Bloom filter in order to trigger the expansion mechanism.
To achieve this, we use one integer as a counter and treat the rest of the slice as a Bloom
filter. As a result, the actual capacity of a slice from pool 1 is C1 = 32 × (2P1 − 1)/r. We

ALGORITHM 1: INSERT(t, e)
Input: t – key
Input: e – element to be inserted into the Bloom filter chain
Given: P – memory pools {P1, P2, . . . , Pm}

〈n, s〉 ← DICTIONARY.LOOKUP(t)
if 〈n, s〉 = ∅ then

n ← 1
s ← ALLOCATESLICEFROMPOOL(1)
π〈n,s〉 ← 1
F〈n,s〉.INSERT(e)
DICTIONARY.SET(t, 〈n, s〉)

else if π〈n,s〉 < CAPACITYn then
F〈n,s〉.INSERT(e)
π〈n,s〉 ← π〈n,s〉 + 1

else
n′ ← MIN(n + 1, |P|)
s′ ← ALLOCATESLICEFROMPOOL(n′)
π〈n′,s′〉 ← 1
φ〈n′,s′〉 ← 〈n, s〉
θ〈n′,s′〉 ← e
F〈n′,s′〉.INSERT(e)
DICTIONARY.SET(t, 〈n′, s′〉)

end if

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

Fast Candidate Generation for Real-Time Tweet Search 13:13

denote the Bloom filter at 〈n, s〉 as F〈n,s〉, and use π〈n,s〉 to denote the value of the associ-
ated counter, which keeps track of the number of elements that has been inserted. We
stop inserting new elements into the first Bloom filter once π〈n,s〉 reaches its capacity, C1.

Insertion of elements into a Bloom filter requires computing κ hashes: the hash
computations must be fast, and the hash values must distribute the keys as evenly as
possible. In our implementation, we construct an arbitrary number of hash functions
using Jenkin’s integer hash, of the form h(x, S) mod L, where S is a seed and L is the
length of the Bloom filter. For κ = 1, we simply use a large prime number as the seed.
For κ > 1, we compute the nth hash value by setting the seed to hn−1(x, S).

Every time an element is inserted into a Bloom filter F〈n,s〉, we increment π〈n,s〉. Once
we have reached the Bloom filter’s maximum capacity, the algorithm allocates another
slice from pool n + 1 (unless we have reached the last pool, in which case we continue
allocating slices from the same pool). For n > 1, we reserve three integers to hold
metadata and use the rest of the slice for the Bloom filter itself. The three metadata
elements, each 32 bits, are the following.

(1) π〈n,s〉. A counter storing the number of inserted elements (same as in pool 1).
(2) φ〈n,s〉. A backpointer which links the current slice to the previous slice.
(3) θ〈n,s〉. The first document ID inserted into the Bloom filter.

The capacity of the Bloom filter in pool n > 1 is Cn = 32 × (2Pn − 3)/r. Thus, the final
capacity function used in Algorithm 1 is defined as follows.

CAPACITY〈n,s〉 =
{

32×(2P1 −1)
r , n = 1;

32×(2Pn−3)
r , n > 1,

where P = {P1, P2, . . . , Pm} are the slice sizes, and r is the number of bits per element
in a Bloom filter.

To support the insertion operation, we assume the existence of a dictionary, which
holds the mapping from keys to the tail pointers to the last slices of the chains. As
previously described, this tail pointer is represented as a tuple 〈n, s〉 and stored in a
32-bit integer. Overall, it is easy to see that INSERT is an O(1) operation.

Next, we describe the implementation of the PROBE operation (see pseudo code in
Algorithm 2). We wish to quickly determine if element e is contained in the Bloom filter
chain associated with key t. The Bloom filter chain is identified by the tail pointer in
the dictionary, which contains a unique tuple 〈n, s〉 that identifies the current end of
the chain. Testing for membership begins by comparing the test element e with θ〈n,s〉.
There are three possible outcomes.

(1) e = θ〈n,s〉. The membership test passes.
(2) e > θ〈n,s〉. This means that e must have been inserted into F〈n,s〉. In this case, we

probe the current Bloom filter to determine if e is a member.
(3) e < θ〈n,s〉. It is clear that if e had been inserted, it must be contained in an earlier

Bloom filter in the chain. In this case, we follow the backpointer φ〈n,s〉 to the previous
Bloom filter and repeat this comparison. Note that when we reach the first Bloom
filter, we probe the filter regardless of e.

Technically, PROBE is an O(n) operation where n is the length of the list associated with
t, but in practice only a few range checks are necessary to find the correct Bloom filter to
probe, an O(1) operation. In Section 4, we introduce a simple optimization that reduces
the complexity of PROBE operations to O(1) in the context of our candidate generation
algorithm.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

13:14 N. Asadi and J. Lin

ALGORITHM 2: PROBE(t, e)
Input: t – key
Input: e – test element
Given: P – memory pools {P1, P2, . . . , Pm}
Output: true if the Bloom filter chain contains the test element, false otherwise

〈n, s〉 ← DICTIONARY.LOOKUP(t)
while e < θ〈n,s〉 AND n > 1 do

〈n, s〉 ← φ〈n,s〉
end while
return F〈n,s〉.CONTAINS(e)

3.3. Element Deletions

On the collection of Bloom filter chains, we define a third optional operation,
DELETE(t, e), which removes element e from the list of sorted integers associated with t.
We describe how deletes can be handled, although since there are no deleted documents
in our experiments, this operation is not implemented.

The fundamental challenge we face is that Bloom filters do not support deletes. There
is a simple solution, however: we can separately record the deletes, and before returning
results of the PROBE operation, check against this record to make sure that the element
still exists. There are a number of choices for storing deletes: an obvious approach
would be a hash table, but we could be clever and store the deletes themselves in
another Bloom filter. In this case, the potential false positive behavior of Bloom filters
matches user expectations: our data structure would never assert the presence of a
deleted document via the PROBE operation, but might falsely deny the existence of a
document—this serves to compound the error associated with membership tests but
can be analytically modeled and thus controlled.

There is, of course, the question of how to size the Bloom filters used for storing
deletes. We could use the technique of Almeida et al. [2007] (note that deletes may be
arbitrarily ordered), but an alternative solution would be to rebuild the entire collection
of Bloom filter chains from scratch periodically. This is similar to how deletes are often
applied in standard inverted indexes [Chiueh and Huang 1999; Guo et al. 2007]: since
random accesses to postings are expensive, deletes are first stored separately, and the
cost of deletions are later amortized across index rebuilds (which might happen for
independent reasons). Deletes in the log-structured merge-tree data structures that
underlie Bigtable [Chang et al. 2006] and many NoSQL stores are handled in a similar
fashion—by first separately recording deletes and then actually purging records during
a compaction cycle.

4. EFFICIENT CANDIDATE GENERATION WITH BLOOM FILTERS

In this section, we introduce an efficient candidate generation algorithm that takes
advantage of the collection of Bloom filter chains described in the previous section.
Using this data structure to complement traditional inverted lists (i.e., sorted lists
of integers), we describe a novel variant of the WAND algorithm, called BWAND (short
for Bloom WAND), that is many times faster. Like WAND, BWAND is capable of both
conjunctive query processing as well as disjunctive query processing. In end-to-end
experiments with a second-stage rescorer, BWAND produces precision and NDCG (at
various cut-offs) that are not significantly different from candidates generated by ei-
ther the SvS postings intersection algorithm in the conjunctive case or exhaustive OR

evaluation in the disjunctive case.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

Fast Candidate Generation for Real-Time Tweet Search 13:15

Before delving into the algorithm particulars, we begin with a general discussion of
pertinent issues. Conjunctive query processing is equivalent to postings intersection
and does not take advantage of a scoring model—in this sense, the output is an un-
sorted set. However, for practical reasons, to limit the number of candidates that are
considered by the second stage, we wish to return only k results. In the context of the
real-time search task, it makes sense to return the k most recent results, correspond-
ing to a reverse chronological sort order. Since documents are inserted into inverted
lists in chronological order, if we traverse postings lists from their ends, we can early
terminate as soon as we find k candidate documents.

On the other hand, disjunctive query processing (i.e., top k retrieval) necessitates a
scoring model. We use BM25 [Robertson et al. 1995] as the reference scoring model,
which has been shown to produce effective rankings in a wide variety of settings. The
score of a document D with respect to a query is defined as follows.

SCOREBM25(Q, D) =
∑
q∈Q

(k1 + 1) · tf(q, D)
K + tf(q, D)

log
[

N − df(q) + 0.5
df(q) + 0.5

]
, (4)

where tf(q, D) is the term frequency of query term q in D, df(q) is the document fre-
quency of q, and N is the number of documents in the collection. K is defined as
k1[(1 − b) − b · (|D|/|D|′)], where |D| is the length of document D and |D|′ is the average
document length. Finally, k1 and b are free parameters.

Abstractly speaking, BM25 comprises three components: a score component based on
the term frequency (the first term in the summation), a score component based on the
document frequency (the second term in the summation), and a length normalization
factor (K). Applying these three score components to tweets, we make two observa-
tions. First, tweets are short and limited to 140 characters, which suggests that length
normalization should not have much of a scoring impact. Second, also due to the short
length of tweets, term frequency is one almost all the time (we empirically verify this
later). Thus, when scoring tweets, it seems the only statistic that really matters is
document frequency of the matching query terms.

Let us operationalize these observations by simplifying BM25 to the sum of the
document frequency score component of matching query terms—in other words, if a
query term is contained in a document, we simply assume that its term frequency is one
and ignore document length normalization. More precisely, we define the IDF scoring
model as follows.

SCOREIDF(Q, D) =
∑

q∈Q∩D

log
[

N − df(q) + 0.5
df(q) + 0.5

]
≡

∑
q∈Q∩D

IDF(q). (5)

These simplifications allow us to exploit a number of optimizations that substantially
increase the speed of candidate generation. We experimentally examine the effective-
ness of this simplified scoring model later.

Next, we provide an overview of WAND: this algorithm for top k retrieval uses a pivot-
based pointer-movement strategy which enables the algorithm to skip over postings of
documents that cannot possibly be in the top k results. In this approach, each postings
list has a current pointer that moves forward as the algorithm proceeds. Postings to
the left of the pointer have already been examined, while postings to the right have yet
to be considered. The algorithm keeps postings lists sorted in increasing order of the
current document ID. In addition, each postings list is associated with a score upper
bound, indicating the maximum score contribution of the term. At first, the algorithm
creates an empty heap of size k. At each step, the algorithm finds a pivot term: it does
so by adding up the score upper bounds of each term (in sorted order). The pivot term
is the first term where the sum exceeds a given threshold, typically set to the lowest

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

13:16 N. Asadi and J. Lin

Obama

Tree

Family

max: 1.0

max: 0.6

max: 0.4

230

290
pivot

100

(a)

Tree

Obama

Family

max: 1.0

max: 0.6

max: 0.4

235

290
pivot

230

(b)

Tree

Obama

Family

max: 1.0

max: 0.6

max: 0.4

235

290
pivot

235

(c)

Fig. 4. Illustration of the WAND algorithm on a three-term query in which the current pointers point to
documents 100, 230, and 290. With a score threshold of 1.4, WAND selects “tree” as the pivot term (a). Since
the current pointer for “Obama” points to a document ID that is less than 230, the algorithm moves its
current pointer to the posting whose document ID is at least 230, and resorts the lists (b). Current pointers
now point to 230, 235, and 290, and document 235 becomes the pivot. Due to the same reason as in (a), the
first term’s (now, “tree”) current pointer is moved to the posting whose document ID is at least 235, resulting
in (c). Finally, since the pivot term’s document ID is equal to that of its preceding term, the algorithm
computes the score for document 235, and adds it to the heap if its actual score is greater than the threshold.

score in the heap, that is, a document’s score must be higher than this value to appear
in the top k results. If no such term exists, then the algorithm terminates. Otherwise,
there are two cases. If all the preceding terms’ current document ids are equal to that
of the pivot term, the candidate document pointed to by the pivot term is scored, and
the document is added to the heap if the actual score exceeds the threshold. Otherwise,
the algorithm moves the current pointer for one of the preceding terms to the posting
whose document ID is greater than or equal to that of the pivot term, and the algorithm
repeats.

As an example, assume that we are given the query “Obama family tree”, where the
score upper bounds for “Obama”, “family”, and “tree” are 1.0, 0.4, and 0.6 respectively.
Further assume that, as illustrated in Figure 4(a), the current pointers point to docu-
ments 100, 290, and 230 for the query terms. WAND sorts the postings lists such that the
current document IDs are in ascending order. Suppose the current threshold is set to
1.4 (the current lowest score in the heap). Therefore, “tree” is selected as the pivot term
(1.0 + 0.6 > 1.4). The algorithm can now confidently claim that the smallest document
ID that can make it into the top k is 230. Because the current document id for “Obama”
is not equal to 230, the algorithm moves its pointer to the posting whose document ID
is greater than or equal to 230 and resorts the lists, resulting in Figure 4(b). Current
pointers now point to documents 230 for “tree”, 235 for “Obama”, and 290 for “family”.
Note that document 230 is never fully scored because it does not contain “Obama”. The
term “Obama” is selected as the pivot next, and similar to the case in Figure 4(a), the
pointer for “tree” is moved to the posting whose document ID is at least 235, resulting
in Figure 4(c). Since the current document ID for the pivot term is equal to that of its
preceding term, the algorithm computes the score for document 235, and if its actual
score is greater than the threshold 1.4, it adds the document to the heap.

Recently, Ding and Suel [2011] introduced an optimization on top of WAND, called
Block-Max WAND, that substantially increases query evaluation speed. The idea is that
instead of using the global maximum score of each term to compute the pivots, the
algorithm uses a piecewise upper-bound approximation of the scores for each postings
list. Note what happens with WAND if we switch to the simplified IDF scoring model
described in Equation (5). We see that the Block-Max optimization becomes irrelevant!
Because we assume that all term frequencies are one and ignore length normalization,
the score contribution for the matching query term in all documents is identical.

A critical limitation of our proposed Bloom filter data structure is the inability to
support a GET operation, to enumerate the list of documents that contain a term. In
this sense, it is impossible to traverse a Bloom filter chain. We get around this by using

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

Fast Candidate Generation for Real-Time Tweet Search 13:17

ALGORITHM 3: BWAND(Q, k, ω)
Input: Q – query consisting of |Q| terms
Input: k – number of documents to retrieve
Input: ω – conjunctive/disjunctive tuning parameter
Output: top k documents ranked by IDF scoring model

H ← new Heap(k)
θ ← ω × ∑

qi∈Q IDF(qi)
qb ← argmini[DICTIONARY.DF(qi), qi ∈ Q]
Pb ← GETPOSTINGS(qb)
while Pb.HASNEXT() AND θ <

∑
qi∈Q IDF(qi) do

d ← Pb.GETDOCID()
s ← IDF(qb)
for qi ∈ Q− qb do

if PROBE(qi, d) = TRUE then
s ← s + IDF(qi)

end if
end for
if s > θ then

H.INSERT(〈d, s〉)
if H.ISFULL() then

θ ← H.MINSCORE()
end if

end if
end while
return H

the Bloom filter chains as an auxiliary data structure, only for its PROBE operation. In
our BWAND algorithm, we traverse the normal inverted list of the rarest query term
and probe the Bloom filter chains corresponding to the other query terms. This has the
effect that candidate documents must contain the rarest query term. We experimentally
explore the impact of this heuristic on end-to-end effectiveness later.

Having laid out the preliminaries, we are now ready to more formally describe our
BWAND candidate generation algorithm, whose pseudocode is shown in Algorithm 3.
Note that the operation of our algorithm is “flipped” with respect to the standard left-
to-right operation of WAND, where “left” refers to the beginnings of postings lists and
“right” refers to the ends. Since we traverse postings lists from their ends in order to
consider documents in reverse chronological order, our algorithm conceptually operates
from right to left.

The input to our BWAND algorithm consists of a query Q, the number of hits to
retrieve k, and a tuning parameter ω that controls whether the algorithm operates in
conjunctive or disjunctive query processing mode. The algorithm begins by creating a
heap of size k and computing an initial score threshold θ , which is equal to ω times the
sum of the IDF scores of all the query terms. The algorithm then identifies the rarest
query term and fetches its postings list—we refer to this as the base postings list. Query
evaluation proceeds by traversing this base postings list backwards from the end, as
previously discussed. The initial score of the document under consideration is the rarest
term’s IDF score. The algorithm then probes the Bloom filter chains associated with the
other query terms. For every membership test that passes, it adds the IDF score of the
corresponding term to the document score. If the final score is strictly greater than θ ,
the document is placed in the heap. When the heap is full, every time a document is
added to the heap, θ is adjusted to the minimum score in the heap (i.e., that of the kth
document).

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

13:18 N. Asadi and J. Lin

Initializing ω to 0 yields disjunctive query processing (although our algorithm still
enforces that the rarest query term must be present), whereas setting ω to 1 − ε yields
conjunctive query processing. Values between the extremes control the extent to which
query evaluation is more disjunctive-like or conjunctive-like (similar to an equivalent
parameter in WAND). A straightforward optimization in pure conjunctive query
processing mode is to short circuit the membership tests once a PROBE fails and proceed
to the next document in the base postings list. We also note that the strict comparison
with θ guarantees that ties are broken in favor of more recent documents—this also
means that conjunctive evaluation can early-terminate as soon as the heap is full.

As another optimization, in the PROBE operation we can take advantage of the fact
that test document ids are monotonically decreasing (since we are traversing the base
postings list backwards). Assuming we probed slice s in pool n to perform a membership
test for di, we can begin Algorithm 2 from the same location to perform the membership
test for di+1. In other words, instead of starting from the last slice in the Bloom filter
chain each time, we can begin with the last Bloom filter probed. This optimization
improves performance by reducing pointer chasing to find the right slice, and makes
the PROBE operation O(1) in the context of the candidate generation algorithm.

5. EXPERIMENTAL SETUP

We performed experiments on a server running Red Hat Linux, with dual Intel Xeon
Westmere quad-core processors (E5620 2.4GHz) and 128GB RAM. This particular ar-
chitecture has a 64KB L1 cache per core, split between data and instructions; a 256KB
L2 cache per core; and a 12MB L3 cache shared by all cores of a single processor. We
used Java 1.6.0u37, with a heap size of 100GB given to the Java Virtual Machine, of
which only a small fraction was actually used in our experiments.

In what follows, we describe the evaluation data, implementation details of the
candidate generation algorithms, the second-stage rescorer in our end-to-end search
pipeline, and metrics used to evaluate our approach.

5.1. Test Collections and Evaluation Methodology

Our experiments used the Tweets2011 collection, created for the TREC 2011 and TREC
2012 microblog tracks [Ounis et al. 2011; Soboroff et al. 2012a; McCreadie et al. 2012;
Soboroff et al. 2012b].6 The collection includes approximately 16 million tweets over
a period of two weeks (24 January 2011 until 8 February, inclusive), which covers
both the time period of the Egyptian revolution and the U.S. Superbowl. Different
types of tweets are present, including replies and retweets, in English as well as other
languages.

Analysis of the collection reveals that term frequency is one for 96% of all term
instances and is two for 3.5% of the instances. Most of the terms that appear more than
once in a tweet do not appear to be important from a retrieval perspective. Examples
include “rt”, “http”, “haha”, “like”, “da”, “youtub”, “video”, top level domains (e.g., “com”,
“edu”). Often, spam tweets have terms with high term frequencies due to attempts at
keyword stuffing. However, cursory examination does reveal that, occasionally, terms
of interest (such as “world”, “TSA”) appear multiple times in tweets.

For evaluation, we used three different sets of queries.

—The TREC 2005 terabyte track “efficiency” queries (50,000 queries total).7 Since there
are no relevance judgments for these queries, they were used solely for efficiency
experiments.

6http://trec.nist.gov/data/tweets/.
7http://www-nlpir.nist.gov/projects/terabyte/.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

Fast Candidate Generation for Real-Time Tweet Search 13:19

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 3 4 5 6 7 8 9+

Fr
ac

tio
n

of
 q

ue
rie

s

Query Length

TREC terabyte
AOL

TREC Microblog

Fig. 5. Query-length distribution for the AOL, TREC terabyte, and TREC microblog queries.

—A set of 100,000 queries sampled randomly from the AOL query log [Pass et al.
2006], which contains approximately 10 million queries in total. Our sample retains
the query length distribution of the original dataset. Similar to the TREC 2005
terabyte track queries, we used these queries only to evaluate efficiency.

—The TREC microblog track topics from 2011 and 2012, 110 in total. These queries
comprise a complete test collection in that we have relevance judgments, but there
are too few queries for meaningful efficiency experiments.

Figure 5 shows the query-length distribution for these query sets.
One final detail about our evaluation methodology: in the efficiency experiments, we

performed retrieval after all tweets in the collection have been added to the index, even
though in a production setting, queries are issued at different times, interleaved with
arriving documents. This simplification was made so that all queries operated over
the same exact index—otherwise, some queries might execute faster by the mere fact
that they were issued earlier over a smaller index. Furthermore, the TREC efficiency
queries are not associated with time stamps, and the AOL query time stamps are
not meaningful in our search context, so we do not have a realistic model of query
arrival rates. Our evaluation methodology allowed us to measure variance and analyze
latency by query length in a meaningful way. To be consistent, for the effectiveness
experiments on the microblog queries, we adopted the same methodology, but post-
filtered the results to discard tweets after the query time associated with each topic,
prior to evaluation. Following the evaluation guidelines from the TREC 2012 microblog
track, we constructed the final ranked list by simply sorting documents by score (more
details later).

We realize that this evaluation methodology does not fully exercise the real-time
aspects of our search problem, where documents and queries arrive in arbitrarily-
interleaved order, but defend our choice as follows. First, in a high-fidelity simulation
of real-time query and tweet arrival, our implementations would need to address the
concurrency challenges discussed in Section 2.3, which would require a substantial
software engineering effort. We see concurrency management primarily as a system’s
issue orthogonal to the trade-offs we examine here. Any production implementation
must deal with program correctness in a multithreaded execution environment, but
there is nothing about our candidate generation algorithm that makes concurrency
management more difficult. We return to discuss this issue as part of future work in
Section 7 but note here that since the concurrency challenges affect all implementations

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

13:20 N. Asadi and J. Lin

equally, the fact that we set aside the issue will not affect our experimental results.
Second, even if we wished to evaluate the concurrency aspects of the real-time search
problem, it is not completely clear how we should design the experiments and what
exactly to measure. For example, how do we quantify mean query latency if each query
was issued against a different index? What are the arrival rates of queries relative
to documents? A proper evaluation methodology that accounts for these and other
complexities remains an open question, worthy of a separate study in its own right.
For these two reasons we have simplified the query-time aspects in our experiments,
but do not believe that this choice alters our findings.

5.2. Implementation of Candidate Generation Algorithms

We implemented the algorithms presented in this article in Java on top of the open-
source Ivory toolkit.8 The choice of Java puts us at a disadvantage compared to imple-
mentations in C or C++. This is especially true when measuring short query latencies,
because fundamental aspects of Java such as object overhead become a nontrivial frac-
tion of the total running time. Thus, our efficiency numbers should be interpreted with
this caveat in mind. However, since our task is an intermediate step in an end-to-end
retrieval pipeline, the ability to easily integrate our software as a component within a
larger system is important. For this goal, Java holds a number of advantages in today’s
software ecosystem. As an example, Twitter’s production Earlybird retrieval engine
(described in Section 2.3) serves over two billion queries per day and is entirely writ-
ten in Java. Other organizations such as LinkedIn have also adopted the Java Virtual
Machine as a platform for search and data processing. Although some may find our
language choice to be unusual given our focus on efficiency, we believe our design is
well supported by existing commercial services in production.

We organized our index using the same parameters reported in Busch et al. [2012].
Our index size is capped at 224 (about 16 million) tweets, and coincidentally, the entire
Tweets2011 collection fits in one segment. To build the inverted index, we used four
memory pools for the base postings lists, P = {1, 4, 7, 11}, as prescribed by Busch et al.
For the collection of Bloom filter chains P ′, recall that we require one integer in the
first slice to store a counter—thus, a choice of P ′

0 = 1 would make little sense, since
there would only be 32 bits left over for the Bloom filter. Therefore, we set P ′

0 to 2 in
the collection of Bloom filter chains. Otherwise, the configuration is the same as with
the base postings lists, with P ′ = {2, 4, 7, 11}. Following standard practice, terms in
tweets were stemmed and stopwords were removed prior to indexing.

In order to evaluate the performance of our proposed candidate generation algorithm,
we implemented four baselines. For conjunctive retrieval (i.e., postings list intersec-
tion), we implemented the small adaptive and the SvS algorithms [Demaine et al.
2001; Culpepper and Moffat 2010]. For disjunctive retrieval, we used WAND [Broder
et al. 2003] with the simplified IDF scoring model (see Section 4) and exhaustive OR.
Because these algorithms were not designed to work on our linked lists of memory
slices, we had to adapt them, as described next. In all cases, the candidate generation
stage returned 1,000 hits.

To ensure a fair comparison, we have put in a best-faith effort to optimize our imple-
mentation of small adaptive, SvS, and WAND. We are confident that observed differences
are not caused by neglect or an underperforming baseline. Finally, we note that all im-
plementations are presently single-threaded.

5.2.1. Small Adaptive. The small adaptive algorithm for postings list intersection works
on standard document-sorted inverted lists as follows: it sets an eliminator e to the

8http://ivory.cc.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

Fast Candidate Generation for Real-Time Tweet Search 13:21

first document ID of the first postings list. It then cycles through the postings lists,
searching for the current eliminator. The search is carried out using a one-sided binary
search, or galloping search. If e exists in all postings lists, the algorithm adds e to the
candidate list and repeats this process for the next document ID. If a list L does not
contain e, then the algorithm picks the smallest element in L that is larger than e as
the eliminator and repeats the cycle. In the standard implementation, the algorithm
starts at the beginnings of the postings lists and searches for increasing document IDs.
In our implementation, everything is flipped around since we start at the ends of the
postings lists, for example, the search for eliminators proceeds backwards. The other
implementation difference concerns the fact that our postings lists are not contiguous:
when the search for an eliminator on a postings list L overshoots a slice, we follow the
backpointer to retrieve its previous slice. The algorithm terminates when all elements
of any postings list are examined or when it accumulates k elements in the candidate
list. Since we are traversing the postings in reverse chronological order, the results are
also sorted in this manner.

5.2.2. SvS. The SvS algorithm for postings list intersection first sorts the postings
lists in increasing length. It begins by intersecting the two smallest lists. Then, at each
step, the algorithm intersects the current result set with the next postings list, until all
lists have been consumed. In our implementation, we use galloping search to intersect
postings lists. Unlike small adaptive, the SvS algorithm has no mechanism for early
termination, and thus must exhaustively compute the entire intersection. Once the
intersection set is constructed, the algorithm returns the most recent k documents.

5.2.3. WAND. The WAND algorithm was discussed in Section 4. We used the simplified
IDF scoring model, which obviates the need for the Block-Max optimization of Ding
and Suel [2011]. Note that our implementation is also flipped around with respect to
the standard implementation, since we traverse postings from their ends. As with the
other algorithms, since our inverted lists are stored in discontiguous slices, we adapted
how the pointers move—but other than these differences, our implementation of WAND

is what one would expect.

5.2.4. OR. Finally, we implemented exhaustive OR, which considers all documents that
have at least one query term. Note that unlike in the WAND algorithm, with exhaustive
OR, we compute the full BM25 document scores. We include this condition as a reference
to assess the impact of approximations introduced by the other algorithms.

5.3. Second-Stage Rescorer

Although the focus of this work is on fast candidate generation, to illustrate end-
to-end retrieval effectiveness, we implemented a learning-to-rank model to rescore
the candidate documents. We used the simple yet effective greedy feature selection
algorithm described by Metzler [2007]. In this approach, we trained a linear ranking
function where features are iteratively added to the model, one at a time, according to a
greedy selection criterion. At each iteration, the feature that yields the largest marginal
increase in effectiveness is selected. This algorithm continues until the difference in
effectiveness between successive iterations drops below a given threshold.

Our model used the standard set of features described by Metzler, detailed in Asadi
and Lin [2012a]. We use two families of scoring functions, based on the Dirichlet score
from language modeling and BM25. Each family consists of a unigram feature, a bigram
proximity feature that takes term order into account (parameterized with a window
w ∈ {1, 2, 4, 8, 16}), and a bigram feature score for unordered terms (parameterized
with a window w ∈ {2, 4, 8, 16, 32}). In total, there are 22 features. Similar features
were used in related work on Web retrieval [Wang et al. 2011; Tonellotto et al. 2013], as

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

13:22 N. Asadi and J. Lin

well as the highly-ranked run of Metzler and Cai [2011] in the TREC 2011 microblog
track. Two models were trained separately on the TREC 2011 and 2012 microblog
queries using NDCG [Järvelin and Kekäläinen 2002] and evaluated on the other set
(i.e., two-fold cross validation).

We readily concede that there is nothing novel about our choice of features and that
our feature set neither captures tweet-specific characteristics nor temporal signals [Li
and Croft 2003; Jones and Diaz 2007; Dakka et al. 2008; Efron 2010; Elsas and Dumais
2010]. However, we stress that the focus of this work is not on learning-to-rank for
tweet search, but rather candidate generation in a two-stage retrieval architecture.
Our rescoring model is only meant to provide context for end-to-end experiments and
thus only needs to be reasonably competitive with existing approaches.

As an aside, we also experimented with gradient-boosted decision trees (GBRTs),
which represent the state of the art in learning to rank, using the jforests open-source
implementation [Ganjisaffar et al. 2011].9 However, due to the relatively small number
of features, it was very easy to overfit and required significant parameter tuning. Even
in the best configuration, GBRTs on our particular feature set performed only about as
well as our linear model. Hence, we opted for the simpler method.

5.4. Evaluation Metrics

There are three important considerations in the design of search engines: the quality
of the results, query evaluation speed (time), and memory footprint (space). Each of
the algorithms explored in this article represents a trade-off point in this design space,
which we seek to better understand. For the BWAND algorithm, these three considera-
tions are influenced by the parameters used in the Bloom filters: r (number of bits per
element) and κ (number of hash functions). Based on preliminary calculations from
theoretical bounds (see Section 2.4), we restricted our consideration to r = {8, 16, 24},
and κ = {1, 2, 3}. Note that these values are fixed for all Bloom filters.

Speed is measured in terms of query latency: the amount of time it takes to perform
candidate generation and return a list of top k = 1,000 documents. In conjunctive
retrieval, the returned documents contain all query terms and are sorted in reverse
chronological order, whereas in disjunctive retrieval, documents are sorted with re-
spect to the scoring model. Elapsed time is measured using Java’s System.nanoTime()
method and reported in microseconds. We compute average latency across five trials
on each query set, and also break down the results by query length. Since our current
implementation is single-threaded, throughput (i.e., queries per second) is simply the
inverse of latency—there is presently no mechanism to trade off those two measures.

We define index size as the number of 32-bit integers that have been allocated to
ingest a collection of documents (recall that postings lists and Bloom filters are simply
integer arrays). To measure index size, we index the entire document collection and
then compute the total number of allocated 32-bit integers. For the base postings lists,
this includes slices that have been allocated but may contain few postings (i.e., the
last allocated slice which has not filled up yet). For example, let us suppose that for
term t, we just allocated a 211 slice in pool 4 and then the indexing process finished.
The entire slice would count toward memory usage, even though most of the slice is
“wasted” and will never be filled. For the Bloom filter chains, we include space occupied
by all allocated Bloom filters, regardless of whether or not they have reached capacity.
Note that the Bloom filter chains are auxiliary data structures required for BWAND in
addition to the standard base postings lists.

Finally, let us discuss effectiveness. This work focuses on candidate generation in
a two-stage retrieval architecture, but since we introduce approximations that trade

9http://code.google.com/p/jforests/.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

Fast Candidate Generation for Real-Time Tweet Search 13:23

Table I. End-to-End Effectiveness in Terms of Precision and NDCG at Various
Cut-offs for Different Candidate Zeneration Algorithms

(a) Conjunctive Query Processing
Precision NDCG

@5 @10 @30 @1 @3 @5 @10

SvS 0.36 0.30 0.19 0.30 0.28 0.27 0.25
BWAND (8,1) 0.39∗ 0.34∗ 0.22∗ 0.30 0.29 0.29∗ 0.27∗

BWAND (24,3) 0.35 0.30 0.19 0.30 0.28 0.27 0.25

(b) Disjunctive Query Processing
Precision NDCG

@5 @10 @30 @1 @3 @5 @10

OR 0.49 0.45 0.36 0.37 0.37 0.38 0.38
WAND 0.49 0.46 0.37 0.38 0.37 0.38 0.38
BWAND (8,1) 0.48 0.43 0.34 0.38 0.37 0.38 0.37
BWAND (24,3) 0.48 0.44 0.35 0.38 0.37 0.38 0.37

Note: ∗indicates statistical significance wrt. SvS and OR.

effectiveness for speed, it makes sense to report both component-level and end-to-end
metrics. At the component level, we measured effectiveness in terms of relative recall
with respect to the exact baseline: SvS in the case of conjunctive query processing and
exhaustive OR in the case of disjunctive query processing. That is, of all documents
retrieved by the baseline, what fraction is retrieved by our candidate generation
algorithm? In the conjunctive case, this metric captures the false positive errors
introduced by the Bloom filters, and in the disjunctive case, this metric additionally
captures a number of simplifications and approximations in the scoring model com-
pared to BM25. Relative recall is computed via macro-averaging (i.e., computed per
topic, then averaged across topics), which has the effect of disproportionately weighting
topics that have fewer matching documents. Note that since we are concerned with
generating a candidate list that will be passed to a second-stage rescorer, precision or
any metric that incorporates precision such as average precision or NDCG is not an
appropriate component-level measure.

The other aspect of quality is end-to-end effectiveness. Given the emphasis on
early precision in the web context, we measured precision and NDCG at various cut-
offs [Järvelin and Kekäläinen 2002]. The ubiquity of Twitter mobile usage also suggests
that these metrics are appropriate—the limited screen size of mobile devices means
that we should emphasize early precision. Following the evaluation guidelines from the
TREC 2012 microblog track, we constructed the final ranked list by sorting documents
by score, without taking into account the tweet creation time.

6. RESULTS

6.1. Effectiveness: End-to-End Results

We begin with the most important question about our proposed BWAND algorithm: in
terms of end-to-end effectiveness, how does it compare to the exact baselines?

Precision and NDCG at various cut-offs for all 110 microblog topics from TREC 2011
and 2012 are shown in Table I. In all cases, the candidate generation algorithms re-
turned 1,000 hits that are then rescored by the second stage, as described in Section 5.3.
For conjunctive query processing, SvS served as the baseline and was compared against
BWAND in conjunctive query processing mode. For disjunctive query processing, exhaus-
tive OR served as the baseline and was compared against WAND and BWAND in disjunc-
tive query processing mode. For BWAND, the relevant Bloom filter parameter settings

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

13:24 N. Asadi and J. Lin

Table II. Statistics for Retrieved Results at Rank Ten Cut-off for
Different Candidate Generation Algorithms

(a) Conjunctive Query Processing
#topics unjudged 0 1 2

SvS 81 43 207 168 155
BWAND (8,1) 101 120 350 200 165
BWAND (24,3) 82 50 210 168 155

(b) Disjunctive Query Processing
#topics unjudged 0 1 2

OR 110 97 510 281 212
WAND 110 91 511 284 214
BWAND (8,1) 110 97 531 261 211
BWAND (24,3) 110 94 527 267 212

Note: Last three columns indicate relevance grades: nonrelevant (0),
relevant (1), highly-relevant (2).

are r (number of bits per element) and κ (number of hash functions): in these experi-
ments, we report results for r = 8, κ = 1, denoted (8,1) in the tables, and r = 24, κ = 3,
denoted (24,3) in the tables; these represent the extremes of the parameter value ranges
we explored. A paired t-test (p < 0.05) was used to determine the statistical signifi-
cance of differences observed with respect to the baselines. Table II provides statistics
for retrieved results at rank ten to offer more context: it shows the number of topics for
which the algorithm retrieved results, the number of unjudged tweets, and the number
of retrieved tweets that were nonrelevant (0), relevant (1), and highly-relevant (2).

Let us first examine the conjunctive query processing results: the SvS algorithm
returned results for only 81 of 110 topics, whereas the BWAND (8,1) condition returned
results for 101 topics; the BWAND (24,3) condition returned results for 82 topics. Note
that in all cases the effectiveness metrics in Table I were computed over all 110 topics.
Some examples of queries for which SvS did not return any results include “Pakistan
diplomat arrest murder” and “Dog Whisperer Cesar Millans techniques”. For the most
part, they are long queries that appear to over-specify the information need. For the
BWAND (8,1) condition, the false positive errors associated with Bloom filters are advan-
tageous in returning results that do not actually contain all the query terms. In cases
where exact postings list intersection (SvS) returns an empty set, something is always
better than nothing. On the other hand, in cases where exact postings list intersection
returns a non-empty set, the false positives introduce noise, but it appears that the
second-stage rescorer is not adversely affected by these spurious documents. Overall,
BWAND (8,1) achieves significantly higher precision at all cut-offs and NDCG at cut-offs
five and ten. For BWAND (24,3), we observe no significant differences compared to SvS.
There is a simple explanation of the effect of different Bloom filter settings, which will
become apparent in the next section.

Turning our attention to the disjunctive query processing results, let us first
review what the experimental conditions were designed to reveal: the exhaustive OR

condition scores candidates with the full BM25 model and serves as the reference
to assess the impact of approximations and simplifications introduced by the other
approaches. The WAND condition adopts the simplified IDF scoring model, which
ignores term frequencies and length normalization, but is otherwise exact in the sense
that it produces a precise ranking (without any errors). In the BWAND conditions,
we introduce the additional constraint that retrieved documents must contain the
rarest query term and the possibility of false positives from the Bloom filters. The

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

Fast Candidate Generation for Real-Time Tweet Search 13:25

Table III. Relative Recall for Different Bloom Filter Chain Settings with
Respect to SvS for Conjunctive Query Processing and Exhaustive OR

for Disjunctive Query Processing

(a) Conjunctive
r\κ 1 2 3

8 0.981 0.993 0.997
16 0.991 0.998 0.999
24 0.994 0.998 0.999

(b) Disjunctive
r\κ 1 2 3

8 0.354 0.365 0.368
16 0.364 0.369 0.370
24 0.367 0.370 0.370

results in Table I show no significant differences between exhaustive OR and WAND in
disjunctive query processing mode. There are also no significant differences between
exhaustive OR and BWAND in disjunctive query processing mode, with either Bloom
filter parameter setting. Looking at Table II, we can confirm that these results do
not appear to be the product of unjudged documents or idiosyncrasies in the way that
judgment pools were constructed during the TREC evaluations.

In absolute terms, how do these figures compare to official runs submitted for the
TREC microblog evaluations? Recall that since the focus of our work is candidate
generation and not learning-to-rank for tweet search per se, our goal is to build a
reasonable second-stage rescorer to illustrate characteristics of our candidate genera-
tion algorithm. In this respect, our results compare favorably. According to the TREC
2012 microblog track overview paper (notebook version) [Soboroff et al. 2012b], the
best performing run achieved a P30 of 0.27. In TREC 2011, we observed higher scores
using query expansion, for example, Metzler and Cai [2011] achieved a P30 score of
0.45 by using Latent Concept Expansion [Metzler and Croft 2007], but this does not
represent a fair comparison with our runs, since expansion techniques are substan-
tially slower. Regardless, the results reported here are well above the median scores
from TREC 2011 and 2012, and thus we believe that the conclusions drawn here are
trustworthy.

Overall, we see that disjunctive query processing is more effective than conjunctive
query processing. The small size of the document collection, we believe, is a major
cause; for approximately one quarter of the topics in our test collection, SvS returned
zero results. We will return to discuss this issue in Section 7 but note here that our
tweet collection is only a small sample of the entire tweet stream—it is perhaps possible
that we would obtain different results using a larger collection.

All considered, here is the bottom line: experiments confirm that our BWAND candi-
date generation algorithm with Bloom filter chains yields end-to-end effectiveness that
is statistically indistinguishable from exact algorithms, in either conjunctive query
processing mode or disjunctive query processing mode.

6.2. Effectiveness: Bloom Filter Parameters

Our next set of experiments examined the impact of Bloom filter parameter settings
on component-level and end-to-end effectiveness. Table III shows the relative recall of
BWAND with different Bloom filter configuration parameters, r (bits per element) and
κ (number of hash functions), for both conjunctive and disjunctive query processing.
That is, of the documents retrieved by the baselines (SvS and exhaustive OR), what
fraction is retrieved by BWAND? Table IV shows relative recall figures, but only with
respect to relevant documents.

In the conjunctive query processing case, with BWAND we achieve nearly perfect recall
in all cases. This means that nearly all documents retrieved by the exact algorithm are
also retrieved by our approximate algorithm and available to the second-stage rescorer.
Documents are lost in that the false positive errors associated with Bloom filters cause

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

13:26 N. Asadi and J. Lin

Table IV. Relative Recall for Different Bloom Filter Chain Settings Considering only
Relevant Documents with Respect to SvS for Conjunctive Query Processing and

Exhaustive OR for Disjunctive Query Processing

(a) Conjunctive
r\κ 1 2 3

8 0.972 0.992 0.997
16 0.989 0.999 1.0
24 0.994 1.0 1.0

(b) Disjunctive
r\κ 1 2 3

8 0.684 0.707 0.711
16 0.704 0.714 0.715
24 0.708 0.714 0.714

Fig. 6. End-to-end effectiveness of BWAND with various Bloom filter settings (κ, r) in both conjunctive and
disjunctive query processing mode.

BWAND to erroneously include documents in the top k that do not contain all query
terms, which crowds out documents that actually do, since we only return 1,000 hits in
the candidate generation stage. If we performed full postings list intersection without
limiting the size of the result set, the Bloom filter errors would not lower relative recall,
but just create a bigger results set. Focusing on only the relevant documents, relative
recall decreases but is still well above 97%. In the disjunctive query processing case,
relative recall with respect to exhaustive OR is low (as expected), but when focused only
on relevant documents, relative recall increases substantially. That is, although with
BWAND we lose documents that would have been retrieved under OR (with full BM25
scoring), the lost documents have a greater tendency to be nonrelevant.

Tables III and IV together show that relative recall can be controlled by appropriately
tuning Bloom filter parameters, and the trade-offs are exactly what we would expect.
Increasing the number of hash functions κ reduces the false positive rate and thus
improves relative recall. Similarly, increasing the number of bits per element r reduces
hash collisions, which also reduces the false positive rate and increases relative recall.
However, larger values of κ reduce speed and larger values of r increase memory
requirements. We further explore these trade-offs in Sections 6.3 and 6.4.

What is the impact of various Bloom filter settings on end-to-end effectiveness?
The answer is shown in Figure 6, where we plot precision and NDCG at various
cut-offs for all 110 TREC microblog topics from 2011 and 2012. We find that different
settings of r and κ do not yield any significant differences; in fact, in many cases, the
absolute values do not change at all. However, we do notice a trend for conjunctive
query processing: increasing r or κ results in a slight drop in effectiveness, although
not statistically significant. We explain this as follows: smaller values of r and κ
generate more false positives, where the candidate generation algorithm retrieves
documents that may not actually contain all query terms. This makes query evaluation
more “disjunctive-like”, and these documents are often relevant, as identified by the

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

Fast Candidate Generation for Real-Time Tweet Search 13:27

Table V. Average Query Latency (in microseconds) for the TREC 2005 Terabyte Track Queries
and the AOL Queries to Retrieve 1,000 Candidate Documents, Averaged Across Five Trials

with 95% Confidence Intervals

(a) Conjunctive Query Processing
S. A. SvS r\κ 1 2 3

T
R

E
C

05 223
(±2)

175
(±2)

8 61 (±1) 75 (±1) 89 (±1)
16 73 (±2) 78 (±3) 83 (±1)
24 70 (±1) 82 (±1) 83 (±2)

A
O

L 292
(±1)

193
(±1)

8 65 (±1) 82 (±1) 88 (±1)
16 71 (±1) 72 (±1) 84 (±3)
24 73 (±1) 76 (±1) 89 (±1)

(b) Disjunctive Query Processing
OR WAND r\κ 1 2 3

T
R

E
C

05 42,079
(±418)

1,527
(±7)

8 347 (±44) 376 (±47) 396 (±52)
16 367 (±49) 386 (±50) 426 (±47)
24 359 (±49) 387 (±48) 413 (±46)

A
O

L 156,291
(±3928)

2,777
(±12)

8 475 (±22) 516 (±24) 529 (±21)
16 463 (±21) 497 (±23) 527 (±23)
24 477 (±22) 509 (±23) 586 (±24)

second-stage rescorer. Increasing r or κ makes the candidate results closer to exact
postings intersection, which is actually undesirable because disjunctive query process-
ing yields higher effectiveness overall. In other words, the errors introduced by the
Bloom filters serendipitously increase end-to-end effectiveness.

6.3. Query Evaluation Speed

Having established that our BWAND candidate generation algorithm is statistically
indistinguishable from exact baselines in terms of end-to-end effectiveness, we now
turn our attention to query evaluation speed. The question is how much speed can we
gain by “cutting corners”?

Table V shows the average query latency of BWAND for different values of r (bits per
element) and κ (number of hash functions). For these efficiency experiments, there are
not enough queries from the microblog track to produce meaningful results, and so we
used queries from the TREC 2005 terabyte track and the AOL query logs. The table
also includes query latencies of the baseline algorithms for reference. Reported values
represent the average across five trials for each parameter setting and include the 95%
confidence intervals.

For conjunctive query processing, we find that the SvS algorithm is faster than small
adaptive (abbreviated “S. A.” in the table), even though it does not have the ability to
early-terminate upon finding k hits (unlike with small adaptive). This finding appears
to be consistent with results reported by Culpepper and Moffat [2010]. With the fastest
setting of BWAND (r = 8, κ = 1), we observe nearly a threefold increase in speed over
SvS. At the other extreme of parameter settings we explored (r = 24, κ = 3), BWAND is
still more than twice as fast as SvS.

For disjunctive query processing, we observe that BWAND with r = 8, κ = 1 is more
than four times faster than WAND on the TREC queries and is more than five times
faster on the AOL queries. With r = 24, κ = 3, BWAND is still more than three times
faster than WAND on the TREC queries and more than four times faster on the AOL
queries. Exhaustive OR is included here only for reference; unlike the other algorithms,
we did not make a significant effort to optimize its implementation.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

13:28 N. Asadi and J. Lin

Fig. 7. Effect of query length on latency (μs) for BWAND performing conjunctive retrieval (r = 8).

Fig. 8. Effect of query length on latency (μs) for BWAND performing disjunctive retrieval (r = 8).

How do Bloom filter settings impact query latency? From first principles, we can
reason that increasing the number of hash functions κ will increase average query
latency because the algorithm needs to compute more hash values and probe additional
bit positions for membership tests. From Table V, we do see that this prediction is borne
out: query evaluation becomes slower with increasing values of κ. However, larger
values of κ have the advantage of reducing Bloom filter false positives, thus yielding
higher component-level recall, per the results in Tables III and IV.

Increasing the bits per element parameter r brings into play two counteracting
factors. On the one hand, increasing r leads to more individual Bloom filters in the
chain (since the capacity of each is reduced), hence more pointer chasing and less
locality. This translates into more cache misses and longer memory latencies. On the
other hand, as the size of the Bloom filters increases, the false positive rate drops.
Therefore, fewer hash computations are needed to reject a nonexistent document ID.
From the results in Table V, we see that query latency is relatively insensitive to r;
using three times more bits per element only increases query latency slightly. In some
cases, r = 24 is actually faster than r = 16. From Tables III and IV, we see the benefit
of increasing r in terms of higher relative recall.

Figures 7 and 8 show the average query latency for the TREC terabyte queries and
the AOL queries broken down by query length for conjunctive and disjunctive query
processing using r = 8. For r = 16 and r = 24, the plots appear similar, so they are
not included for brevity. Due to different query characteristics, results differ slightly
from one query set to another, but the trends are consistent. For single-term queries,

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

Fast Candidate Generation for Real-Time Tweet Search 13:29

Fig. 9. Effect of query length on latency (μs) for baseline algorithms.

both conjunctive query processing and disjunctive query processing are very fast; this
is because BWAND can early terminate as soon as it reads k documents from the posting
list associated with the query term. For multitoken queries, longer queries are not
necessarily slower, for example, with conjunctive query processing, seven-term queries
are actually faster than three-term queries (this is possible because longer queries
tend to contain rarer query terms). A similar, though weaker, effect is observed for
disjunctive query processing—query latency appears to be relatively insensitive to the
length of queries (except for very long queries).

As a reference, query latencies for the baseline algorithms, broken down by query
length, are shown in Figure 9. Interestingly, for conjunctive query processing, the
behavior of SvS and small adaptive diverge for longer queries. Small adaptive steadily
becomes slower as query length increases, but SvS actually becomes faster in some
cases (once again, because longer queries tend to contain rarer query terms). For
disjunctive query processing, WAND latency grows with the number of query terms;
note that the y axis of Figure 9(b) is in log scale.

Finally, what is the impact of these observed candidate generation speedups on
end-to-end query latency? This is a tough question to answer, which will obviously
depend on the features and the implementations of the feature extraction algorithm
and the second-stage rescorer. Nevertheless, it may be helpful to present the reader
with some rough figures to contextualize our results. Note that we have made no effort
to optimize our feature extraction and rescorer implementations, so our results should
be interpreted with this caveat in mind. With 1,000 candidates, it takes roughly two
milliseconds per query for feature extraction in Java and roughly 0.3 milliseconds
per query for rescoring using a Python script. Note that the feature extraction time
is for computing all features that are presented to the learner—only a subset are
actually selected in the final scoring model. Applying these figures to the AOL queries,
with BWAND (r = 8, κ = 1) we can reduce end-to-end latency by roughly 5% in the
conjunctive query processing case (compared to SvS) and roughly 45% in the disjunctive
query processing case (compared to WAND). Since conjunctive query processing is much
faster, it occupies a smaller fraction of the overall retrieval time, so improving candidate
generation speed has a smaller overall effect. These figures should be interpreted as
lower bounds, since with more optimized implementations of the feature extractor
and the second-stage rescorer, a greater fraction of the overall time budget will be
occupied by candidate generation (but of course, if we introduce more computationally-
intensive features, feature extraction will take longer). Although the end-to-end latency
improvements will depend on the exact composition of the search pipeline, these rough

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

13:30 N. Asadi and J. Lin

Fig. 10. Effect of r (bits per element) on the size of the Bloom filter chains for the Tweets2011 collection,
with the size of the base postings lists as reference. Index size is measured in the number of allocated 32-bit
integers.

calculations show that the optimizations introduced in BWAND can have a real and
noticeable effect.

6.4. Index Size

The final dimension of evaluation is index size, which is the amount of space required by
the Bloom filter chains and the base postings lists. Index size is illustrated in Figure 10
as a function of r, number of bits per element; numbers are reported in units of 32-bit
integers. These figures include all allocated space, including slices in the base postings
lists that have not yet been filled and slices for Bloom filters that have not yet reached
capacity. For each case we have broken down memory usage by the different pools. Note
that the uneven memory usage in each pool is not a cause for concern. Conceptually,
the pools represent unbounded integer arrays from which slices are allocated, but they
are implemented as arrays that grow in fixed but large blocks.

Note that for our BWAND candidate generation algorithm to work, we need the Bloom
filter chains in addition to the standard postings lists. For example, with r = 8, we re-
quire about 45% more memory than we would otherwise need for the exact algorithms.
Therein lies the true cost of our approach: results from the previous sections show that
we can substantially reduce query latency without giving up end-to-end effectiveness,
but the extra memory requirements are unavoidable. In essence, we are trading space
for time by building auxiliary data structures that increase the speed of candidate
generation. However, for modern retrieval environments where query latency has a
direct impact on site usage [Brutlag 2009], we believe this is a justifiable trade-off.

The final takeaway message from these experiments is that with our Bloom filter
chains, there is no free lunch. Although different values of r and κ do not have an im-
pact on end-to-end effectiveness, different settings affect component-level effectiveness
in candidate generation. This metric may be important in cases where BWAND is used
to analyze tweet collections for other purposes beyond search, for example, as the first
step in an event summarization system (where recall would be more important). It is
possible to achieve higher relative recall, but at the cost of longer query latencies or
a larger memory footprint. If we wish to make the Bloom filter chains more compact,
we must either sacrifice speed or quality, and so on. The balance between these var-
ious trade-offs is shown by our experiments, but it is up to a developer to select the

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

Fast Candidate Generation for Real-Time Tweet Search 13:31

parameter setting that is most appropriate for a particular hardware configuration and
application context.

7. LIMITATIONS AND FUTURE WORK

The starting point of our work is the observation that in a two-stage retrieval archi-
tecture, candidate generation only needs to be good enough, since the second-stage
rescorer can take advantage of machine-learned models and rich features to provide
high-quality results. Thus, we hypothesized that it is possible to cut corners in candi-
date generation by introducing approximations that do not adversely impact end-to-end
effectiveness. Experiments do indeed confirm this hypothesis. We are well aware, how-
ever, that many of our techniques are tweet-specific and not applicable to the general
case, for example, we depend on the 140-character length limitation as justification to
ignore term frequencies and length normalization. These tricks are applicable to few
other retrieval domains (SMS, perhaps), and may leave the reader somewhat unsatis-
fied. However, this work should be viewed as a study of domain-specific retrieval: there
are plenty of other retrieval problems (e.g., patent search, enterprise search, genomics
search, etc.) that benefit from specialized techniques without general applicability to IR
problems. We believe that Twitter, or at least the idea of broadcasting short messages
to interested parties, has acquired sufficient critical mass that it cannot be dismissed
as a passing fad—thus, it is worthwhile to explore retrieval techniques optimized for
such types of documents.

We readily concede that a limitation of this work is that our conclusions are arrived
at using test collections from recent TREC microblog tracks, which represent only
one particular view of the types of information needs that tweet collections might be
useful for. Most NIST assessors are retired intelligence analysts and do not match the
demographic characteristics of the typical Twitter user today—so how do they know
what Twitter queries should look like? It is likely that the TREC microblog topics are
representative of some class of information needs, but we have no idea which and, more
importantly, the relationship of these topics to the broader range of information needs
on tweets. In the Web context, researchers are familiar with Broder’s taxonomy [2002],
and the field has come to understand that TREC ad hoc topics are representative of so-
called “torso” queries—this allows researchers to better contextualize results without
overstating their claims. Since the real-time search task on tweets has only come to
the attention of researchers recently, we have no comparable framework on which
to hang our results. There is also the important element of time: the current tweet
collection spans a short two-week window in January 2011, which constrains the types
of topics that are practical. Would the types of information needs change qualitatively if
assessors were given a much larger collection for topic development? Or a more recent
collection? To what extent would different topics alter the conclusions presented here?
The answer is that we do not know for sure and that more work in understanding
information needs is needed.

There has been some work that begin to answer these questions: Efron [2011] dis-
cussed some of the issues presented here and defined different types of searches on
microblogs. Teevan et al. [2011] attempted to formulate a taxonomy of Twitter search,
but their log data came from Twitter queries gathered via the Bing search toolbar,
not Twitter search logs. Lin and Mishne [2012] studied the temporal characteristics of
actual Twitter search queries but did not attempt to categorize the queries topically or
develop a taxonomy. Clearly, there is much more work here to be done.

Of the findings presented in this article, the one most potentially affected by idiosyn-
crasies in the test collection is the relative effectiveness difference between conjunctive
and disjunctive query processing. Conventional wisdom suggests that with sufficiently
large collections, conjunctive query processing is adequate because it will return enough

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

13:32 N. Asadi and J. Lin

candidates for the second-stage rescorer to compose a final ranked list with high early
precision. This, however, does not appear to be true in our experiments—for nearly a
quarter of the topics, postings list intersection returned zero results. A closer examina-
tion shows that these are queries such as “Dog Whisperer Cesar Millans techniques”,
which appear to over-specify the information need. To what extent are these queries
“natural” or representative of “real” needs? We do not know the answer, and this is
exactly the research we question discussed that demands more attention. The effec-
tiveness difference between conjunctive and disjunctive retrieval is perhaps the direct
result of the small size of our tweet collection, which is only a sample of the full Twit-
ter stream. Would the same queries have returned zero results on a larger collection?
Once again, we do not know, and answering this question is difficult because of data
collection issues.

Another limitation of this work is the heavy influence of the Earlybird architecture,
which of course represents only a single point in the design space of real-time retrieval
engines. Earlybird makes a number of assumptions, such as relatively small uncom-
pressed index segments and delayed compression of postings, and employs a specific
strategy for postings allocation. While these design choices are carefully justified in
Busch et al. [2012], Earlybird nevertheless represents only one possible architecture.
Since our work extends this design, we inherit all its assumptions. On the other hand,
work in the space of real-time search architectures is so sparsely populated that we
are not aware of similarly-detailed expositions of production systems that can serve as
the basis of further academic research. This is an underexplored topic in the literature,
and we hope to see more contributions from industry and academia in the future.

In addition to many open questions about information needs in the context of
tweets previously discussed, there are many interesting directions for future work.
One important issue to address is the current single-threaded implementation of our
candidate generation algorithm, which under-utilizes multicore processors. Tatikonda
et al. [2011] recently examined the problem of postings intersection on multicore ar-
chitectures, but in the real-time search context, we additionally face the concurrency
challenges discussed earlier, where the retrieval engine needs to coordinate concurrent
reads and writes to shared index structures as queries and documents arrive in an
interleaved order. Busch et al. [2012] described the use of memory barriers to maintain
search correctness, eschewing heavyweight mechanisms such as locks to ensure atomic
index updates. For our Bloom filter chains, we face similar issues: indexing operations
on one thread might be setting Bloom filter bits while another is probing the same filter.
Since both indexing and multiterm queries involve accesses to multiple Bloom filters,
interleaved execution orders might yield incorrect search results—although without
more data (i.e., execution traces from production servers) it is difficult to know the
extent to which this is actually an issue. Similar to Earlybird, locking multiple Bloom
filters to guarantee atomic index updates will result in very poor performance because
there will be significant lock contention on frequently-occurring terms. Perhaps one
solution to this challenge is to not explicitly guarantee search correctness, but model
inconsistencies as part of the Bloom filter errors—since we are dealing with approxi-
mate data structures anyway, this can be viewed as yet another source of approximation
error. Nevertheless, to explore this issue in more detail requires access to larger tweet
collections and actual query logs, both of which are currently not available to academic
researchers.

Other future directions include taking advantage of improved variants of Bloom
filters that have been developed since the original formulation, for example, Tirdad
et al. [2011] recently proposed a type of Bloom filter for representing documents that are
aware of co-occurring terms, which has the effect of substantially reducing false positive
error rates. It may be possible to adapt this idea to our usage scenario, for example,

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

Fast Candidate Generation for Real-Time Tweet Search 13:33

by making our Bloom filters aware of document similarity, that is, documents that
are likely to be retrieved by the same query. Another possible extension is to relax our
assumption in the IDF scoring model that all term frequencies are one by using counting
Bloom filters [Fan et al. 2000], which, as the name suggests, allow us to store counts
associated with keys. These data structures could be used to store term frequencies—
the advantage is that BWAND would now have applicability beyond tweets to retrieval in
other domains, where term frequencies are important. Another interesting extension
to our work would be to apply Bloom filters to computing proximity-based features.
Determining whether two query terms are part of a phrase or within a window of w
terms also boils down to traversals of sorted integer sequences (of term positions, in
this case). Since term proximity is an important feature used by many ranking models,
faster algorithms for computing such features are worth exploring.

8. CONCLUSION

This work tackles the problem of candidate generation in a two-stage retrieval archi-
tecture for real-time tweet search. We bring together two previously unrelated threads
in the literature: a dynamic postings allocation policy for incremental indexing and a
retrieval algorithm based on Bloom filters. These two ideas come together in a data
structure for holding a collection of Bloom filter chains, which are novel extensions of
standard Bloom filters that can dynamically expand to efficiently represent a growing
list of monotonically-increasing integers with a constant false positive rate. By storing
postings in both sorted integer lists and Bloom filter chains, we are able to devise a
novel candidate generation algorithm capable of performing both conjunctive and dis-
junctive query processing. In end-to-end experiments with a second-stage rescorer, our
algorithm yields precision and NDCG scores that are statistically indistinguishable
from candidates generated by exact algorithms, but is multiple times faster.

ACKNOWLEDGMENTS

N. Asadi’s deepest gratitude goes to Katherine for her invaluable encouragement and wholehearted support.
J. Lin is grateful to Esther and Kiri for their loving support and he dedicates this work to Joshua and Jacob.
Finally, we wish to thank three anonymous reviewers whose feedback has helped us significantly improve
this work.

REFERENCES

ALMEIDA, P. S., BAQUERO, C., PREGUIÇA, N., AND HUTCHISON, D. 2007. Scalable Bloom filters. Inform. Process.
Lett. 101, 6, 255–261.

ANH, V., DE KRETSER, O., AND MOFFAT, A. 2001. Vector-space ranking with effective early termination. In
Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR’01). 35–42.

ANH, V. AND MOFFAT, A. 2005. Simplified similarity scoring using term ranks. In Proceedings of the 28th
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR’05). 226–233.

ASADI, N. AND LIN, J. 2012a. Document vector representations for feature extraction in multi-stage document
ranking. Inform. Retriev. To appear.

ASADI, N. AND LIN, J. 2012b. Fast candidate generation for two-phase document ranking: Postings list intersec-
tion with Bloom filters. In Proceedings of the 21st Annual International ACM Conference on Information
and Knowledge Management (CIKM’12). 2419–2422.

ASADI, N., LIN, J., AND BUSCH, M. 2013. Dynamic memory allocation policies for postings in real-time twitter
search. arXiv:1302.5302. http://arvix.org/abs/1302.5302.

BAEZA-YATES, R., CASTILLO, C., JUNQUEIRA, F., PLACHOURAS, V., AND SILVESTRI, F. 2007. Challenges on distributed
web retrieval. In Proceedings of the 23rd IEEE International Conference on Data Engineering (ICDE’07).
6–20.

BARBAY, J., LÓPEZ-ORTIZ, A., AND LU, T. 2006. Faster adaptive set intersections for text searching. In Proceedings
of the 5th International Workshop on Experimental Algorithms (WEA’06). 146–157.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

13:34 N. Asadi and J. Lin

BARROSO, L. AND HÖLZLE, U. 2009. The Datacenter as a Computer: An Introduction to the Design of Warehouse-
Scale Machines. Morgan & Claypool.

BLOOM, B. 1970. Space/time trade-offs in hash coding with allowable errors. Comm. ACM 13, 7, 422–426.
BOSE, P., GUO, H., KRANAKIS, E., MAHESHWARI, A., MORIN, P., MORRISON, J., SMID, M., AND TANG, Y. 2008. On the

false-positive rate of Bloom filters. Inform. Process. Lett. 108, 210–213.
BRODER, A. 2002. A taxonomy of Web search. SIGIR Forum 36, 2, 3–10.
BRODER, A., CARMEL, D., HERSCOVICI, M., SOFFER, A., AND ZIEN, J. 2003. Efficient query evaluation using a

two-level retrieval process. In Proceedings of the 12th International Conference on Information and
Knowledge Management (CIKM’03). 426–434.

BROWN, E. W. 1995. Fast evaluation of structured queries for information retrieval. In Proceedings of the 18th
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR’95). 30–38.

BRUTLAG, J. 2009. Speed matters for Google web search. Tech. rep. Google, Mountain View, CA.
BURGES, C. 2010. From RankNet to LambdaRank to LambdaMART: An overview. Tech. rep. MSR-TR-2010-82,

Microsoft Research, Redmond, WA.
BUSCH, M., GADE, K., LARSON, B., LOK, P., LUCKENBILL, S., AND LIN, J. 2012. Earlybird: Real-time search at

Twitter. In Proceedings of the 28th International Conference on Data Engineering (ICDE’12). 1360–
1369.

BÜTTCHER, S. AND CLARKE, C. L. A. 2005. Indexing time vs. query time: Trade-offs in dynamic information re-
trieval systems. In Proceedings of the 14th ACM International Conference on Information and Knowledge
Management (CIKM’05). 317–318.

CAMBAZOGLU, B. B., ZARAGOZA, H., CHAPELLE, O., CHEN, J., LIAO, C., ZHENG, Z., AND DEGENHARDT, J. 2010. Early
exit optimizations for additive machine learned ranking systems. In Proceedings of the 3rd ACM Inter-
national Conference on Web Search and Data Mining (WSDM’10). 411–420.

CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WALLACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND

GRUBER, R. 2006. Bigtable: A distributed storage system for structured data. In Proceedings of the 7th
USENIX Symposium on Operating System Design and Implementation (OSDI’06). 205–218.

CHIUEH, T. AND HUANG, L. 1999. Efficient real-time index updates in text retrieval systems. Tech. rep. State
University of New York and Stony Brook, Stony Brook, NY.

CORMACK, G. V., SMUCKER, M. D., AND CLARKE, C. L. A. 2011. Efficient and effective spam filtering and re-ranking
for large web datasets. Inform. Retriev. 14, 5, 441–465.

CULPEPPER, J. S. AND MOFFAT, A. 2010. Efficient set intersection for inverted indexing. ACM Trans. Inf.
Syst. 29, 1, Article 1.

CUTTING, D. AND PEDERSEN, J. 1990. Optimization for dynamic inverted index maintenance. In Proceedings
of the 13th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR’90). 405–411.

DAKKA, W., GRAVANO, L., AND IPEIROTIS, P. G. 2008. Answering general time-sensitive queries. In Proceedings of
the 17th International Conference on Information and Knowledge Management (CIKM’08). 1437–1438.

DEAN, J. AND GHEMAWAT, S. 2004. MapReduce: Simplified data processing on large clusters. In Proceedings of
the 6th Symposium on Operating System Design and Implementation (OSDI’04). 137–150.

DEMAINE, E. D., LÓPEZ-ORTIZ, A., AND MUNRO, J. I. 2001. Experiments on adaptive set intersections for text
retrieval systems. In Revised Papers from the 3rd International Workshop on Algorithm Engineering and
Experimentation (ALENEX’01), Lecture Notes in Computer Science, vol. 2153, Springer Verlag, Berlin
Heidelberg, 91–104.

DING, S. AND SUEL, T. 2011. Faster top-k document retrieval using block-max indexes. In Proceedings of
the 34th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR’11). 993–1002.

EFRON, M. 2010. Linear time series models for term weighting in information retrieval. J. Amer. Soc. Inf. Sci.
Technol. 61, 7, 1299–1312.

EFRON, M. 2011. Information search and retrieval in microblogs. J. Amer. Soc. Inf. Sci. Technol. 62, 6, 996–
1008.

ELSAS, J. L. AND DUMAIS, S. T. 2010. Leveraging temporal dynamics of document content in relevance ranking.
In Proceedings of the 3rd ACM International Conference on Web Search and Data Mining (WSDM’10).
1–10.

FAN, L., CAO, P., ALMEIDA, J., AND BRODER, A. Z. 2000. Summary cache: A scalable wide-area web cache sharing
protocol. IEEE/ACM Trans. Netw. 8, 3, 281–293.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

Fast Candidate Generation for Real-Time Tweet Search 13:35

GANJISAFFAR, Y., CARUANA, R., AND LOPES, C. 2011. Bagging gradient-boosted trees for high precision, low
variance ranking models. In Proceedings of the 34th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR’11). 85–94.

GUO, R., CHENG, X., XU, H., AND WANG, B. 2007. Efficient on-line index maintenance for dynamic text collections
by using dynamic balancing tree. In Proceedings of the 16th International Conference on Information
and Knowledge Management (CIKM’07). 751–759.

HAMILTON, J. 2007. On designing and deploying Internet-scale services. In Proceedings of the 21st Conference
on Large Installation System Administration (LISA’07). 18:1–18:12.

HEINZ, S. AND ZOBEL, J. 2003. Efficient single-pass index construction for text databases. J. Amer. Soc. Inf. Sci.
Technol. 54, 8, 713–729.

JÄRVELIN, K. AND KEKÄLÄINEN, J. 2002. Cumulative gain-based evaluation of IR techniques. ACM Trans. Inf.
Syst. 20, 4, 422–446.

JONES, R. AND DIAZ, F. 2007. Temporal profiles of queries. ACM Trans. Inf. Syst. 25, 3, Article 14.
KAYAASLAN, E., CAMBAZOGLU, B. B., BLANCO, R., JUNQUEIRA, F., AND AYKANAT, C. 2011. Energy-price-driven query

processing in multi-center Web search engines. In Proceedings of the 34th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR’11). 983–992.

KLEINBERG, J. M. 1999. Authoritative sources in a hyperlinked environment. J. ACM 46, 5, 604–632.
LEMPEL, R. AND MORAN, S. 2000. The stochastic approach for link-structure analysis (SALSA) and the TKC

effect. Comput. Netw. 33, 387–401.
LESTER, N., MOFFAT, A., AND ZOBEL, J. 2008. Efficient online index construction for text databases. ACM Trans.

Datab. Syst. 33, 3, 19:1–19:33.
LESTER, N., ZOBEL, J., AND WILLIAMS, H. E. 2006. Efficient online index maintenance for contiguous inverted

lists. Inf. Proces. Manag. 42, 4, 916–933.
LI, H. 2011. Learning to Rank for Information Retrieval and Natural Language Processing. Morgan &

Claypool Publishers.
LI, J., LOO, B. T., HELLERSTEIN, J. M., KAASHOEK, M. F., KARGER, D. R., AND MORRIS, R. 2003. On the feasibility of

peer-to-peer Web indexing and search. In Proceedings of the 2nd International Workshop on Peer-to-Peer
Systems (IPTPS’03). 207–215.

LI, X. AND CROFT, W. B. 2003. Time-based language models. In Proceedings of the 12th International Conference
on Information and Knowledge Management (CIKM’03). 469–475.

LIN, J. AND MISHNE, G. 2012. A study of “churn” in tweets and real-time search queries. In Proceedings of the
6th International AAAI Conference on Weblogs and Social Media (ICWSM’12). 503–506.

LIU, T.-Y. 2009. Learning to rank for information retrieval. Found. Trends Inf. Retriev. 3, 3, 225–331.
MACDONALD, C., SANTOS, R. L., AND OUNIS, I. 2012. The whens and hows of learning to rank for Web search.

Inf. Retriev. To appear.
MATVEEVA, I., BURGES, C., BURKARD, T., LAUCIUS, A., AND WONG, L. 2006. High accuracy retrieval with multiple

nested ranker. In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR’06). 437–444.

MCCREADIE, R., SOBOROFF, I., LIN, J., MACDONALD, C., OUNIS, I., AND MCCULLOUGH, D. 2012. On building a
reusable Twitter corpus. In Proceedings of the 35th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR’12). 1113–1114.

METZLER, D. 2007. Automatic feature selection in the Markov random field model for information retrieval.
In Proceedings of the 16th ACM Conference on Information and Knowledge Management (CIKM’07).
253–262.

METZLER, D. AND CAI, C. 2011. USC/ISI at TREC 2011: Microblog track. In Proceedings of the 20th Text
REtrieval Conference (TREC’11).

METZLER, D. AND CROFT, W. B. 2007. Latent concept expansion using Markov random fields. In Proceedings
of the 30th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR’07). 311–318.

OUNIS, I., MACDONALD, C., LIN, J., AND SOBOROFF, I. 2011. Overview of the TREC-2011 Microblog Track. In
Proceedings of the 20th Text REtrieval Conference (TREC 2011).

PAGE, L., BRIN, S., MOTWANI, R., AND WINOGRAD, T. 1999. The PageRank citation ranking: Bringing order to the
Web. Stanford Digital Library Working Paper SIDL-WP-1999-0120, Stanford University, Standford, CA.

PASS, G., CHOWDHURY, A., AND TORGESON, C. 2006. A picture of search. In Proceedings of the 1st International
Conference on Scalable Information Systems (InfoScale’06).

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

13:36 N. Asadi and J. Lin

PENG, D. AND DABEK, F. 2010. Large-scale incremental processing using distributed transactions and notifica-
tions. In Proceedings of the 9th Symposium on Operating System Design and Implementation (OSDI’10).
251–264.

ROBERTSON, S. E., WALKER, S., HANCOCK-BEAULIEU, M., GATFORD, M., AND PAYNE, A. 1995. Okapi at TREC-4. In
Proceedings of the 4th Text REtrieval Conference (TREC-4). 73–96.

SHEPHERD, M. A., PHILLIPS, W. J., AND CHU, C.-K. 1989. A fixed-size Bloom filter for searching textual documents.
Comput. J. 32, 3, 212–219.

SKOBELTSYN, G., JUNQUEIRA, F. P., PLACHOURAS, V., AND BAEZA-YATES, R. 2008. ResIn: A combination of results
caching and index pruning for high-performance Web search engines. In Proceedings of the 31st Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’08).
131–138.

SOBOROFF, I., MCCULLOUGH, D., LIN, J., MACDONALD, C., OUNIS, I., AND MCCREADIE, R. 2012a. Evaluating real-
time search over tweets. In Proceedings of the 6th International AAAI Conference on Weblogs and Social
Media (ICWSM’12). 579–582.

SOBOROFF, I., OUNIS, I., MACDONALD, C., AND LIN, J. 2012b. Overview of the TREC 2012b Microblog Track. In
Proceedings of the 21st Text REtrieval Conference (TREC’12).

STROHMAN, T. AND CROFT, W. B. 2006. Low latency index maintenance in Indri. In Proceedings of the Open
Source Information Retrieval Workshop (OSIR’06). 7–11.

STROHMAN, T. AND CROFT, W. B. 2007. Efficient document retrieval in main memory. In Proceedings of the 30th
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR’07). 175–182.

STROHMAN, T., TURTLE, H., AND CROFT, W. B. 2005. Optimization strategies for complex queries. In Proceedings
of the 28th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR’05). 219–225.

TATIKONDA, S., CAMBAZOGLU, B. B., AND JUNQUEIRA, F. 2011. Posting list intersection on multicore architectures.
In Proceedings of the 34th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR’11). 963–972.

TEEVAN, J., RAMAGE, D., AND MORRIS, M. R. 2011. #TwitterSearch: A comparison of microblog search and
Web search. In Proceedings of the 4th ACM International Conference on Web Search and Data Mining
(WSDM’11). 35–44.

TIRDAD, K., GHODSNIA, P., MUNRO, J. I., AND LÓPEZ-ORTIZ, A. 2011. COCA filters: Co-occurrence aware Bloom fil-
ters. In Proceedings of the 18th International Symposium on String Processing and Information Retrieval
(SPIRE’11). 313–325.

TOMASIC, A., GARCÍA-MOLINA, H., AND SHOENS, K. 1994. Incremental updates of inverted lists for text docu-
ment retrieval. In Proceedings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD’94). 289–300.

TONELLOTTO, N., MACDONALD, C., AND OUNIS, I. 2013. Efficient and effective retrieval using selective pruning.
In Proceedings of the 6th ACM International Conference on Web Search and Data Mining (WSDM’13).

TSIROGIANNIS, D., GUHA, S., AND KOUDAS, N. 2009. Improving the performance of list intersection. In Proceedings
of the 35th International Conference on Very Large Data Bases (VLDB’09). 838–849.

TURTLE, H. AND FLOOD, J. 1995. Query evaluation: Strategies and optimizations. Inf. Proces. Manage. 31, 6,
831–850.

WANG, L., LIN, J., AND METZLER, D. 2011. A cascade ranking model for efficient ranked retrieval. In Proceedings
of the 34th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR’11). 105–114.

ZOBEL, J. AND MOFFAT, A. 2006. Inverted files for text search engines. ACM Comput. Sur. 38, 6, 1–56.

Received August 2012; revised January, March 2013; accepted March 2013

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 13, Publication date: July 2013.

