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Fast-charging high-energy lithium-ion batteries
via implantation of amorphous silicon nanolayer in
edge-plane activated graphite anodes
Namhyung Kim 1, Sujong Chae1, Jiyoung Ma1, Minseong Ko1,2 & Jaephil Cho1

As fast-charging lithium-ion batteries turn into increasingly important components in forth-

coming applications, various strategies have been devoted to the development of high-rate

anodes. However, despite vigorous efforts, the low initial Coulombic efficiency and poor

volumetric energy density with insufficient electrode conditions remain critical challenges

that have to be addressed. Herein, we demonstrate a hybrid anode via incorporation of a

uniformly implanted amorphous silicon nanolayer and edge-site-activated graphite.

This architecture succeeds in improving lithium ion transport and minimizing initial capacity

losses even with increase in energy density. As a result, the hybrid anode exhibits an

exceptional initial Coulombic efficiency (93.8%) and predominant fast-charging behavior

with industrial electrode conditions. As a result, a full-cell demonstrates a higher energy

density (≥1060Wh l−1) without any trace of lithium plating at a harsh charging current

density (10.2 mA cm−2) and 1.5 times faster charging than that of conventional graphite.
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W
ith rapidly increasing demands to reduce the charging
time of portable electronics and electric vehicles,
achieving fast charging in lithium-ion batteries (LIBs)

with high-energy density has been intensively pursued as the
most important criterion for practical utilization in forthcoming
applications. However, conventional graphite anodes have been
limited in terms of fast charging by the metallic lithium plating
phenomenon caused by its sluggish intercalation kinetics1–3 and
low lithiation voltage (0.08 V vs. Li/Li+)4. In particular, at a high
charging current, large anode polarization pushes the graphite
potential to the threshold for metallic Li deposition5. The
deposited Li also undergoes electrical isolation6 and reaction with
the electrolyte7, 8, which increase the internal resistance and
decrease the energy density9, 10. In general, it is known that
conventional graphite electrodes suffer from Li deposition giving
rise to rapid capacity fading, even at a charging current density of
4 mA cm−211, 12.

Alternatively, silicon has been highlighted as a feasible candi-
date with a gravimetric capacity (3572 mAh g−1) that is 10 times
that of graphite and a safer lithium-alloying potential (0.22 V vs.
Li/Li+), which prevents undesirable Li plating4, 13. Nevertheless,
its fast charge performance deteriorates owing to the extreme
volume change (> 300%) and poor electrical conductivity (~10−4

S m−1), resulting in disintegration of the electrode and a high
charge-transfer resistance13–17.

For these reasons, various strategies have been explored
to enhance the rate property of both the anodes via the designing
of porous structures (e.g., KOH etched graphite12, MoOx-
catalyzed porous graphite18, or 3D mesoporous silicon19, 20) and
composites with a conductive matrix (e.g., graphite with vapor-
grown carbon fibers21, carbon-nanotube–graphene anchored
silicon22, 23, or silicon–metal composites24, 25). However, even
though such approaches can enhance the reactivity with Li+ ions
and electron transport through largely exposed surface areas and
conducting material, their application in high-energy LIBs are still
hindered by the poor initial CE, low tapping density, and
excessive proportion of the conducting matrix.

In order to realize high-energy density in electrodes, the fab-
rication process should be designed by taking into consideration
the industrial conditions involving high areal capacity loading
(≥3.0 mAh cm−2) and high electrode density (~1.6 g cm−3) under
the limited amount of binder (≤3 wt%) and conductive materials
(≤1 wt%). Since such electrode parameters are regarded as major
limiting factors of the capability for fast charging26, electro-
chemical evaluation under these conditions is necessary to eval-
uate the feasibility of achieving fast-charging characteristics while
maintaining high-energy density. However, most previously
reported anodes designed for fast (dis)charging were simply
studied under mild electrode conditions to demonstrate plausible
electrochemical performance by using low areal mass loading,
uncalendered electrodes, and excessive amounts of binders and
conductive agents, which, in turn, bring about low-energy den-
sity. Therefore, it is important to design and fabricate fast-char-
ging anodes with high-energy density.

To address these problems, we propose a novel Si–Graphite
composite design, which not only possesses the enhanced kinetics
for Li+ but also satisfies the aforementioned industrial electrode
conditions. We prepare a composite consisting of an edge-plane-
activated graphite and a-Si nanolayer (SEAG) through nickel-
catalyzed hydrogenation (Ni + Cgraphite + 2H2→Ni + CH4)

27, 28

and chemical vapor deposition (CVD) using both acetylene
(C2H2) and silane (SiH4) gas. In contrast to earlier approaches,
the material design in the current work provided multiple
attractive advantages. First, the catalytic reaction primarily acti-
vates the Li+-reactive edge plane of graphite28–31. According to
previous studies, the mass-transfer kinetics of graphite can be

improved by creating exposed edge sites32–34. As a result, the
kinetics is enhanced with the minimized surface area, leading to a
high initial CE. Second, the remaining Ni nanoparticles, which act
as a catalyst for the activation reaction, improve the electric
conductivity of SEAG35. Third, despite the catalytic hydrogena-
tion, the graphite core still remains as a supporting framework
that withstands high mechanical pressure during electrode
calendering36. Besides, since the dense core may have sustained
the tap density of the composite24, 37, such features are more
favorable to the attainment of high electrode density. Fourth, the
nanoscale Si coating layer increases the energy density of the
material and allows fast Li diffusion owing to its high specific
capacity, and shortened the Li+ diffusion length38, 39. Finally, all
the synthesis methods consist of simple processes. In particular,
the heat treatment, including the catalytic hydrogenation, and
CVD procedures can be conducted as a continuous process in the
same furnace. Together, these advantages strengthen the com-
mercial feasibility of SEAG in fast-charging high-energy LIBs.

Results
Materials synthesis and structural design. The schematic
in Fig. 1a illustrates the procedures for the fabrication of
SEAG composite. Mesocarbon microbeads (MCMBs), which are
widely adopted as a commercial anode with high tap density
(1.38 g cm−3) and excellent CE in the 1st cycle (95.7%), were used
as pristine graphite. At first, spherical nickel nanoparticles with a
size of ~500 nm were formed on the pristine graphite via a simple
reflux method at 80 °C. The sample was then calcined at 1000 °C
in a hydrogen (H2) atmosphere to trigger the catalytic hydro-
genation reaction between nickel and graphite. As carbon atoms
were hydrogenated, the adsorbed Ni nanoparticles penetrated the
graphite core with methane (CH4) gas evolution, resulting in a
holey structure. Note that it was thermodynamically more
favorable for the catalytic gasification of carbon to take place on
the edge plane than on the basal plane of graphite27–31. As a final
step, a graphitic carbon shell and an amorphous Si (a-Si) nano-
layer were homogeneously distributed on nickel and graphite,
respectively, via consecutive CVD processes using C2H2 and SiH4

gases (details are given in the “Methods” section). Additionally,
the elemental composition of SEAG was analyzed by various
kinds of methods, including inductively coupled plasma optical
emission spectrometry, thermogravimetric analysis, and ele-
mental analyzer (Supplementary Fig. 1 and Supplementary
Table 1).

For the detailed elucidation of its unique structural character-
istics, the cross-section of SEAG is schematically shown in Fig. 1b.
The Ni nanoparticle pierces the graphite along the edge plane,
while it functions as a catalyst for the gasification of carbon. A
high-resolution transmission electron microscope (HR-TEM)
image of the embedded Ni is shown in Fig. 1c. Owing to the
catalytic reaction, unrevealed edge planes emerged, and these
activated edges improved the mass-transfer property of Li+ ions
with enlarged electrochemically active sites. To demonstrate the
enhanced kinetics for Li+, we conducted cyclic voltammetry and
estimated the relative electrochemically active surface area of the
edge-activated graphite (EAG) from the relationship between the
peak current and scan rate, described by the Randles–Sevcik
equation (Fig. 1d and Supplementary Fig. 2)40. According to this
equation, the slope of the plot in Fig. 1d is proportional to the
active surface area (details are described in Supplementary
Note 1). As a result, the Li+-reactive surface area in EAG was
about twice that of pristine graphite. Furthermore, despite the
activation process, SEAG still had the inner core as a ductile
framework, which enabled it to be easily calendered to yield a
high electrode density.
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The alloying reaction of the remaining Ni nanoparticles in EAG
into Ni silicide inevitably occurred under the SiH4 atmosphere,
before the gas decomposition temperature was reached, because of
the high reactivity with Si (Supplementary Fig. 3)41–43. Unfortu-
nately, this alloying reaction had critical influences on the
electrochemical performance, such as decreasing the gravimetric
capacity by Si consumption, reducing the electrical conductivity of
Ni44, and causing an irreversible capacity with a poor initial CE45.
Thus, a well-defined barrier against silicide formation was
necessary to secure good battery performance. Hence, the CVD
processes using C2H2 and SiH4 were successively employed to
develop the protective carbon shell on Ni, followed by a Si coating
layer. Because of the high carbon solubility of nickel46, the
electrically conductive graphitic shell was deposited mainly on the
nickel nanoparticles, and then the Si layers were uniformly formed
on both the surface of this shell and graphite without the
formation of Ni silicide. The homogeneous a-Si nanolayer led to
fast Li+ diffusion and alleviated volume expansion while attaining
high-energy density. These Si layers synthesized by the CVD
method could establish good electrical contact with graphite by
adhering well onto the graphite surface38. Scanning electron
microscope (SEM) images of pristine graphite, graphite with
adsorbed Ni, and SEAG are shown in Fig. 1e–g, respectively.

Physical characterization. We carried out X-ray diffraction
(XRD) measurements, the analysis for the particle size distribu-
tion and tap density, and Brunauer–Emmett–Teller (BET) mea-
surements to evaluate the physical properties of SEAG (Fig. 2).
The characteristic peaks in the XRD pattern (Fig. 2a) indicate the
existence of graphite; however, Si peaks are absent because the Si
layer on the SEAG was amorphous47. The average diameter of the
SEAG particles was 22 μm, which is almost the same as that of
pristine graphite (Fig. 2b). Moreover, the tap density was mea-
sured as 1.27 g cm−3 in SEAG, which is comparable to that of
pristine graphite but higher than that of conventional natural
graphite (NG) (Fig. 2c). The BET-specific surface area of SEAG
was estimated to be 2.49 m2 g−1 (Fig. 2d), which is slightly higher
than that of pristine graphite, but still in the range obtained for
conventional NG. Since irregular particle-size distribution, low
tap density, and excessively large surface area are unfavorable for
electrode preparation owing to inhomogeneous slurry mixing48,
SEAG is expected to be advantageous for conventional electrode
fabrication.

Structural characterization of SEAG composite. We performed
SEM analysis with a focused ion beam (FIB) and HR-TEM
analysis with a high-angle annular dark field scanning

Graphite
Edge-activated 

graphite (EAG)
 Si/Edge-activated 

graphite (SEAG)

Ni-catalyzed

hydrogenation

CH4
H2

Heat treatment

Graphitic carbon and

a-Si deposition

CVD

Ni adsorption

Ni adsorbed graphite

Reflux

SiH4
C2H2

Ni + Cgraphite+ 2H2 Ni + CH4

a

f g

c d

e

8
Edge-activated graphite

Graphite

Slope = 5.80

Slope = 3.03

7

P
e
a
k
 c

u
rr

e
n
t 

(m
A

)

6

5

4

3

2

1

0.2 0.4 0.6 0.8 1.0

v
1/2 (mV/s)

Nickel

0.34 nmGraphite

Edge-plane

b

Li+

Li+

Li+

Ni

Si

a-Si: ♦ Fast Li diffusion

        ♦ Enhanced electrical contact

        ♦ Energy density increase

        ♦ Expansion alleviation

Activated

Edge site: ♦ Improved Li
+
 mass transfer

                 ♦ Void space for Si

     

♦ Supporting frameworkCore

Graphitic carbon

encapsulated Ni 

: ♦ Electric conductivity

  ♦ Blocked silicide formation

Fig. 1 Schematic of the procedures for fabrication and characterization of SEAG. a Fabrication of SEAG: the adsorbed Ni penetrated graphite via catalytic

hydrogenation at 1000 °C, which led to edge-plane activation on the surface of graphite. b Cross-sectional illustration showing the detailed structural

characteristics of SEAG. c HR-TEM image of a Ni nanoparticle embedded in EAG. d Relationship between the square root of the scan rate and the peak

current: the slope indicates the relative electrochemically active surface area. SEM images of pristine graphite e, graphite with adsorbed Ni on its surface f,

and the SEAG composite g. Scale bars, 5 nm c, 5 μm e, f, g

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00973-y ARTICLE

NATURE COMMUNICATIONS |8:  812 |DOI: 10.1038/s41467-017-00973-y |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


transmission electron microscope (HAADF-STEM) for detailed
characterization of SEAG (Fig. 3). As shown in the cross-sectional
SEM image (Fig. 3a), SEAG retained the sturdy inner graphite
framework that withstands mechanical pressure even though it
underwent catalytic hydrogenation, which is advantageous for

increasing the electrode density. The HAADF-STEM image
shows the magnified cross-sectional morphology of the SEAG
(Fig. 3b). Contrary to the dense interior of pristine graphite
(Supplementary Fig. 4), the micrometer-sized holes (average
depth of 4 μm) in SEAG were well arranged on the surface in one
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side of the particle, and the Si layer coated the inner holes as well
as the outer surface of graphite. It was clarified via energy-dis-
persed X-ray spectroscopy (EDS) mappings of elemental carbon
(cyan) and Si (orange) in SEAG (Fig. 3b). In addition, the HR-
TEM image with fast Fourier transform analysis shows that the a-
Si layer with thickness of ~18 nm coated the graphite surface
(Fig. 3c). Such incorporation of nanoscale a-Si in graphite could
alleviate the stress and strain induced by the volume expansion
and allow fast Li+ diffusion38, 49, 50. X-ray photoelectron spectra
(XPS) indicates the presence of a thin oxide layer on the a-Si
surface due to the air exposure (Supplementary Fig. 5).

As shown in Fig. 3d and e, a Ni nanoparticle that pierced the
graphite core is completely enclosed within the graphitic carbon
shell, leaving no space between Ni and carbon. Even though this
graphitic carbon shell was only 10-nm thick, it completely
covered the entire Ni nanoparticle and blocked the penetration of
SiH4 during the decomposition process. As shown by the EDS
mapping analysis (Fig. 3e), elemental Ni (green) and Si (orange)
are apparently separated from each other in the SEAG particle.

The HR-TEM image (Fig. 3f) and XRD analysis (Supplementary
Fig. 6) clearly confirm the segregated existence of Ni, graphitic
carbon, and a-Si. Unlike amorphous carbon, the graphitic carbon
provided high electrical conductivity51 and minimized the
irreversible capacity loss caused by Li+ trapping52. In short, the
graphitic carbon shell could help address the crucial problems
resulting from the formation of Ni silicide by efficiently blocking
the penetration of SiH4. In addition, it enhanced the electro-
chemical properties of SEAG with its high electrical conductivity
and low trapping of Li+.

Electrochemical performance of SEAG composite in half-cell.
The electrochemical properties of SEAG were evaluated with a
coin-type half-cell at 25 °C to investigate the favorable effects of
SEAG design on battery performance, especially the capability for
fast charging (Fig. 4). All electrodes were fabricated with high
areal capacity (3.5 mAh cm−2), high electrode density (1.6 g cm−3,
~33% of electrode porosity), and minimum use of binder
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materials (1.5 wt% of carboxymethyl cellulose and styrene buta-
diene rubber (SBR)) and conductive agent (1.0 wt% of carbon
black). Even under these challenging electrode conditions, the
SEAG achieved an outstanding CE (93.8%) with high specific
capacity (525 mAh g−1) in the 1st cycle (Fig. 4a). To the extent of
our knowledge, this is one of the highest values for initial CE
among the previously reported graphite–Si composites. Accord-
ing to the differential capacity plot in Supplementary Fig. 7, it is
clear that its higher specific capacity is owing to the contribution
of Si nanolayer, and the total capacity of SEAG coincides well
with the calculated value based on ICP-OES result (Supplemen-
tary Note 2). In addition, SEAG exhibited superior cycling sta-
bility for 50 cycles (Fig. 4b) with 99.3% capacity retention at a
current density of 1.75 mA cm−2 (extended cycle performance
and magnified plot of cycling efficiency are presented in Sup-
plementary Figs. 8, 9). The outstanding electrochemical perfor-
mances of SEAG are attributed to the uniform a-Si nanolayers
and the enhanced electrical conductivity derived from the gra-
phitic carbon capped with Ni nanoparticles. The post-cycling
TEM analysis was conducted to verify the structural stability of
SEAG during cycles (Supplementary Fig. 10). Furthermore, the
effect of electrolyte additives on the cycle performance of SEAG
was investigated and the result is shown in Supplementary
Fig. 11. SEAG with Ni silicide exhibited an inferior electro-
chemical performance that included lower specific capacity (435
mAh g−1), poor CE in the 1st cycle (88.5%), and severe capacity
fading for 50 cycles (88% of initial capacity), indicating that
blocking the formation of Ni silicide is of great importance for
better performance.

To examine the lithiation behavior, which is highly affected by
the over-potential, the rate capability of each sample was
measured by only the galvanostatic method with lithiation
current densities of 0.7–10.5 mA cm−2 (Fig. 4c). At higher applied
currents, the lithiation capacity of graphite severely deteriorated,
and exhibited only about 2% of the initial capacity (8 mAh g−1) at
a high current density of 10.5 mA cm−2. On the other hand, EAG
demonstrated improved lithiation behavior with high lithiation
capacity at a current density of 7 mA cm−2, which was over twice
that of graphite (Supplementary Fig. 12). In addition, such EAG
electrode exhibited better fast-charging performance than that of
graphite electrode containing 5 wt% of carbon black (Supple-
mentary Fig. 13). These improvements suggest that the activation
of unrevealed edge plane and embedded Ni nanoparticles could
enhance both the mass and charge transfer kinetics during
lithium intercalation. To the best of our knowledge, considering
the electrode conditions, the lithiation rate capability of EAG in
this study is the best performance reported among the graphite
anodes (Supplementary Table 2).

Moreover, the rate property of SEAG was further improved
with the incorporation of a-Si nanolayer. A specific lithiation
capacity was obtained at 10.5 mA cm−2, which is almost 20% of
the initial capacity (100 mAh g−1) and is 10 times the value
obtained for graphite. This remarkable improvement supports
our hypothesis that a homogeneous a-Si nanolayer allows high
reactivity and fast diffusion for Li-ion transport49, 50. Addition-
ally, the differential capacity plot clearly shows that the enhanced
performance of SEAG is owing to the unrevealed edge plane and
a-Si nanolayer (Supplementary Fig. 14).

The fully lithiation properties, which were determined via both
galvanostatic and potentiostatic methods, were further investi-
gated in detail (Fig. 4d). The results are consistent with the
previous rate properties estimated using only the galvanostatic
stage: while SEAG showed a relatively mitigated voltage drop at
each current density, graphite rapidly reached the cut-off voltage
with severe over-potential, which is considered the main reason
for both the long potentiostatic stage and Li-plating phenomenon.

As seen in the inset of Fig. 4d, most of the lithiation capacity (93
and 97% at 7.0 and 10.5 mAh cm−2, respectively) of graphite
originated at the potentiostatic stage and almost 119 min were
needed for fully lithiation at 10.5 mAh cm−2 (Supplementary
Fig. 15). In contrast, a relatively large portion of lithiation
capacity of SEAG was derived from the galvanostatic region with
shorter charging time (66 min at 10.5 mA cm−2) because of its
alleviated over-potential. It should be noted that it was difficult to
control the charging time in the potentiostatic method because
the current density became variable, and thus attaining fully
lithiation on time was impeded by the prolonged potentiostatic
process, even under high charging current density.

Fast-charging performance and volumetric energy in full-cell.
To demonstrate the viability of using SEAG in practical appli-
cations, we performed a pouch-type full-cell evaluation with high-
voltage LiCoO2 (LCO) as a cathode in the voltage range of
2.7–4.35 V (Fig. 5). The electrochemical performance of LCO in
the half-cell is presented in Supplementary Fig. 16. The capacity
ratio of negative to positive electrode (N/P ratio) was fixed at 1:1,
with an areal cathode capacity of 3.4 mAh cm−2. At the formation
cycle (at 0.34 mA cm−2), SEAG exhibited a high discharge capa-
city of 3.25 mAh cm−2 with a high CE of 92%, which are com-
parable with the values obtained for graphite (3.33 mAh cm−2

with 94% CE) (Supplementary Fig. 17). Also, SEAG demonstrated
a competitive cycle stability at the current density of 1.7 mA cm−2

compared to that of pristine graphite (Supplementary Fig. 18).
Moreover, the cycling tests were conducted with various charging
current densities (5.1, 7.7, and 10.2 mA cm−2) to investigate the
fast-charging capability of each sample. The 1st voltage profiles at
each current (Fig. 5a–c) clearly show that the SEAG occupies a
lower over-potential with a shorter potentiostatic region than that
of graphite. This result agrees well with the half-cell data pre-
sented in Fig. 4.

The cycling tests showed that the SEAG demonstrated better
capacity retention over 50 cycles at all the current densities,
whereas graphite exhibited drastic capacity fading after just 10
cycles (Fig. 5d–f). In the Coulombic efficiency plot, SEAG rapidly
achieved a stabilized efficiency of > 97% at the 1st CE, regardless
of the applied charging current. On the other hand, graphite
suffered from extremely unstable efficiency with increasing
current density, especially during 10 cycles, with a low 1st cycle
efficiency of 92, 86, and 83% at each current density. These severe
energy losses with the inferior CE are believed to be the result of
irreversible Li metal plating on the electrode surface5–11. The
overall voltage profiles of the cycling tests are presented in
Supplementary Fig. 19.

In addition, we plotted the time required to charge to 80% of
the state of charge (SOC) as applied charge current density
(Fig. 5g). The SEAG electrode reached the SOC faster than
graphite at all charging rates; the charging time of SEAG was
much shorter (by a factor of ~1.5) because of its lower over-
potential. Furthermore, the energy density is plotted as a function
of charging current density in Fig. 5h (details of the measure-
ments are given in Supplementary Table 3). As the applied
current density was increased, a significant energy loss was
observed at the graphite electrode (726Wh l−1 at 10.2 mA cm−2).
However, the SEAG electrode retained the highest volumetric
energy even under a high charging current density (1060Wh l−1

at 10.2 mA cm−2).

Discussion
To interpret the result of the fast-charging cycling tests, the
irreversible change in the electrode thickness was analyzed via
dilatometry in the full-cell (Fig. 6a). Liu et al. reviewed the adverse
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effects of lithium plating, which brought about a drastic energy
loss and raised the internal resistance of the cell; these results
originated from the irreversible consumption of Li+ ions and a
thickened solid electrolyte interphase layer that involved the
depletion of electrolyte5. In addition, the continuous growth of
metallic lithium induces an internal short circuit, which is con-
sidered a safety issue8. Therefore, Li plating is regarded as a
critical index for battery degradation and as a guide to under-
standing the rapid energy fading and unstable efficiency, espe-
cially under a high charging current density. In this study,
we characterized the lithium plating through irreversible
dilation, which was estimated by measuring the difference in cell
thickness in the delithiated state at high and standard charging
rates (7.7 and 1.7 mA cm−2, respectively)53.

Surprisingly, a much smaller thickness change was measured in
SEAG when compared with that in graphite, even though Si,
which causes large volume expansion, was incorporated into the
SEAG. The rapid and continuous increase in the dilation of
graphite, which was the result of metallic lithium deposition,
signified the drastic capacity degradation. Photographs and SEM
images of the electrode that was subjected to high charging cur-
rent density (7.7 mA cm−2) for 50 cycles are shown in Fig. 6b–g.
The electrode composed of SEAG showed a relatively clear sur-
face without any trace of lithium deposition (Fig. 6b–d). In
contrast, a considerable amount of metallic lithium can be
observed on the surface of the graphite electrode; the lithium
passivated the electrode to reach a thickness of 30 μm, leading to
severe energy loss and irreversible dilation (Fig. 6e–g).
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In summary, an elaborate SEAG composite, consisting of a-Si
nanolayer and edge-plane-activated graphite, was prepared via a
simple synthetic route to realize a fast-charging high-energy
anode. With this well-developed SEAG, the electrochemical per-
formance of both a half-cell and full-cell were evaluated even
under industrial electrode conditions such as high areal capacity
loading (≥3.4 mAh cm−2) and high electrode density (~1.6 g cm
−3) with a limited content of conducting agents (≥1 wt%). In the
half-cell, the SEAG achieved a high specific capacity (525 mAh g
−1) with remarkable CE (93.8%) in the 1st cycle and good capacity
retention (99.3%) for 50 cycles. Moreover, at a high charging
current density (10.5 mA cm−2), the lithiation capacity of SEAG
(with relatively stable voltage behavior) was ten times that of the
conventional graphite. In the full-cell with high-voltage LCO, the
SEAG electrode exhibited enhanced fast charge performance with
mitigated polarization and rapidly stabilized CE, leading to a
higher volumetric energy density (1060Wh l−1) with 1.5 times
shorter charging time than that of conventional graphite even at a
harsh charging current of 10.2 mA cm−2. Furthermore, despite
the Si content in SEAG, a much smaller irreversible increase in
the electrode thickness (2 μm) was observed than in the graphite
(9 μm), without any trace of lithium plating at a high charging
current density (7.7 mA cm−2). Concomitantly, we believe that
the fast-charging properties can be further improved by
increasing the ionic and electric conductivities with electrolyte
modifications and advancement in cathode materials. Such

excellent electrochemical performance of SEAG clearly demon-
strates its viability in fast rechargeable high-energy battery
applications.

Methods
Synthesis of SEAG. For the Ni adsorption on the graphite, 50 g of pristine gra-
phite (MCMB, Osaka gas), 6 g of nickel chloride hexahydrate (NiCl2· 6H2O,
>97.0%, JUNSEI), and 0.2 g of sodium hydroxide (anhydrous NaOH, >98.0%, bead
form, SAMCHUN) were dissolved in methanol (>99.5%, SAMCHUN)/deionized
water (5:5, v/v), followed by the addition of 1 ml of hydrazine monohydrate
(N2H4·H2O, 98.0%, Sigma-Aldrich). The solution was heated at 78 °C for 30 min in
air atmosphere by reflux technique. The Ni adsorbed graphite was obtained
through the centrifugation. In order to trigger the catalytic hydrogenation, the
prepared samples were annealing in the furnace at 1000 °C for 3 h under H2

(99.999%, KOSEM) atmosphere (1000 sccm). In succession, for the formation of
both the graphitic carbon shell and a-Si nanolayer on the graphite, C2H2 gas
(10.0%, N2 balance, KOSEM) was flowed at 900 °C for 10 min (1000 sccm) and
then SiH4 gas (99.9999%, KOSEM) was introduced into the furnace at 500 °C for
30 min (50 sccm). In case of SEAG with Ni silicide, the process of C2H2 flow was
omitted.

Materials characterization. Structural characterization of the samples was carried
out using SEM (Verios 460, FEI). Dual beam FIB (Helios 450HP, FEI) was per-
formed for scanning the particles in the cross-sectional view. HR-TEM (JEM-
2100F, FEI) was conducted for detailed analysis. EDS was utilized in SEM (EDS,
XFlash 6130, Bruker) and in HR-TEM (EDS, Aztec, Oxford). The oxide layer on a-
Si surface was analyzed by XPS (K-alpha, Thermo Fisher). XRD (D/Max2000,
Rigaku) was carried out for the powder analysis using Cu-Ka radiation, a scan
range of 20°–80°, a step size of 0.02°, and a counting time of 5 s. Particle size
distribution was measured by the Fraunhofer approximation by laser diffraction
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particle size analysis instrument (Microtrac S3500, Microtrac). Tap density was
determined by density analyzer (GeoPyc 1360, micromeritics). Specific surface area
was estimated with the BET theory with porosity and surface area analyzer (TriStar
II, micromeritics).

Electrochemical characterization. For fabrication of the working electrode, the
slurry composed of the active material, the conductive agent (Super P, Timcal), and
the binder materials (sodium carboxymethyl cellulose (CMC, Nippon paper) and
SBR (Zeon)) was uniformly mixed by homogenizer in the mass ratio of 96:1:1.5:1.5
and casted onto the copper foil up to 3.5 mAh cm−2 of areal capacity loading. In
sequence, the electrode was dried at 80 °C and calendared for 1.6 g cm−3 of elec-
trode density by roll press. The electrode underwent vacuum drying at 110 °C for
12 h. In order to assemble the cell, CR2032 (half-cell) and pouch (full-cell) type cell
were utilized in argon-filled glove box and dry room, respectively. In case of half-
cell, lithium metal (>99%, Honjo metal) was used as counter electrode. The
electrolyte was 1.3 M LiPF6 in mixture of ethylene carbonate/ethyl methyl carbo-
nate/diethyl carbonate (3/5/2, by volume) with 10% of fluoroethylene carbonate,
0.2% of lithium tetrafluoroborate, 0.5% of vinylene carbonate, 3% of succinonitrile,
and 1% of propane sultone (Panax Starlyte). As a separator, microporous poly-
ethylene (15 μm, Celgard) was used. Electrochemical properties of the half-cell
were estimated under the potential window from 0.005 to 1.5 V for the first cycle,
and from 0.005 to 1.0 V for the rest of cycles. In full-cell, single-crystal lithium
cobalt oxide (LCO, homemade) was adopted as cathode electrode with 1:1 of N/P
ratio. The cathode electrode was fabricated with active material, carbon black, and
polyvinylidene fluoriade binder (PvdF, Solef) in mass ratio of 96:2:2. The mass
loading level of the cathode was 20 mg cm−2 and the electrode density was tuned
up to 3.6 g cm−3. Electrochemical tests of the full-cell were performed in the voltage
window between 2.7 and 4.35 V. All electrochemical tests were conducted using a
battery cycler (TOSCAT-3100, Toyo system).

Dilatometry. The irreversible volume expansion of the electrode was measured at
delithiated state as the thickness difference between in case of high charging rate
(7.7 mA cm−2) and standard charging rate (1.7 mA cm−2). The discharging current
density was fixed as 1.7 mA cm−2 in both cases. Thickness change was estimated by
dilatometer (Mitutoyo).

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its Supplementary Information files. All
other relevant data supporting the findings of this study are available on request.
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