
Fast Collision Attack on MD5

Marc Stevens

Department of Mathematics and Computer Science,
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
m.m.j.stevens@student.tue.nl

Abstract. In this paper, we present an improved attack algorithm to find two-block colli-
sions of the hash function MD5. The attack uses the same differential path of MD5 and the
set of sufficient conditions that was presented by Wang et al. We present a new technique
which allows us to deterministically fulfill restrictions to properly rotate the differentials in
the first round. We will present a new algorithm to find the first block and we will use an al-
gorithm of Klima to find the second block. To optimize the inner loop of these algorithms we
will optimize the set of sufficient conditions. We also show that the initial value used for the
attack has a large influence on the attack complexity. Therefore a recommendation is made
for 2 conditions on the initial value of the attack to avoid very hard situations if one has
some freedom in choosing this initial value. Our attack can be done in an average of about 1
minute (avg. complexity 232.3) on a 3Ghz Pentium4 for these random recommended initial
values. For arbitrary random initial values the average is about 5 minutes (avg. complexity
234.1). With a reasonable probability a collision is found within mere seconds, allowing for
instance an attack during the execution of a protocol.

Keywords: MD5, collision, differential cryptanalysis

1 Introduction

Hash functions are among the primitive functions used in cryptography, because of their one-
way and collision free properties. They are used in a wide variety of security applications such as
authentication schemes, message integrity codes, digital signatures and pseudo-random generators.
MD5 [4] is a hash function developed by Rivest in 1992 and is based on the Merkle-Damg̊ard
construction.

Recently there have been significant advances in the cryptanalysis of MD5. In 2004, Wang et
al[6] presented the first MD5 collision. Later in [7] they presented their differential path and a set of
sufficient conditions for this differential path to happen. They also introduced message modification
techniques to efficiently find message blocks for which the conditions hold. In March 2005, Klima[2]
presented a new collision search algorithm to find collisions on a 1Ghz desktop pc in 4 hours. While
writing this, two new results[5,3] have been published which improve Wang’s message modification
techniques. In [3] a running time of 5 hours on a 1.7Ghz Pentium4 is mentioned.

In our attack we will use Klima’s algorithm to find the second block and we will present a new
algorithm based on Klima’s to find the first block. Both algorithms can deterministically choose
message blocks that satisfy the set of sufficient conditions for the first round. However certain
restrictions necessary for differentials to rotate properly are fulfilled probabilistically. With our new
technique we can also deterministically satisfy these restrictions for the first round. Furthermore
we optimize the set of conditions to optimize the inner loop of the algorithms. This allows us to
find full two-block collisions in an average of 5 minutes on a 3Ghz Pentium4. We will show that
the complexity of finding collisions based on Wang’s differential in general depends on the initial
value. To avoid some worst case initial values we recommend 2 conditions on the initial value. This
reduces the average to 67 seconds.

1

2 MD5 compression function

We use the same description of the compression function in MD5 as is used in [1]. The compression
function will take as input a block m of 512 bits together with an intermediate hash value IHV

of 128 bits and outputs the new intermediate hash value IHV ′ of 128 bits. The IHV for the first
block is fixed in MD5 and is called the MD5 initial value.

We will denote RL(x, n) and RR(x, n) for resp. left and right rotation of the word (32-bits
unsigned integer) x over n bits. Each block m is split into 16 words m0, . . . ,m15 and is expanded
into a series of 64 words Wt:

Wt =

mt, 0 ≤ t < 16;
m1+5t mod 16, 16 ≤ t < 32;
m5+3t mod 16, 32 ≤ t < 48;
m7t mod 16, 48 ≤ t < 64;

The compression function has a working state of Qt, Qt−1, Qt−2, Qt−3 which is initialized to the
intermediate hash value IHV split into 4 words IHV0, . . . , IHV3 in the following order:

Q0 = IHV1, Q−1 = IHV2, Q−2 = IHV3, Q−3 = IHV0.

There are 64 steps in the compression function where addition modulo 232, left rotation and a
nonlinear function ft are used. Here

ft(X, Y, Z) =

(X ∧ Y) ⊕ (X ∧ Z), 0 ≤ t < 16;
(Z ∧ X) ⊕ (Z ∧ Y), 16 ≤ t < 32;
X ⊕ Y ⊕ Z, 32 ≤ t < 48;
Y ⊕ (X ∨ Z), 48 ≤ t < 64.

Now step t for t = 0, . . . , 63 is defined as

Tt = ft(Qt, Qt−1, Qt−2) + Qt−3 + ACt + Wt;
Rt = RL(Tt, RCt); Qt+1 = Qt + Rt.

Here ACt and RCt are resp. the addition and rotation constants defined in MD5[4].

3 Conditions on Qt for block 1

In [1] a thorough analysis of the collisions presented by Wang et al. is presented. Not only a set of
sufficient conditions on Qt, similarly as those presented in [7], is derived but also a set of necessary
restrictions on Tt for the differential to be realized. These restrictions are necessary to correctly
rotate the add-differences in Tt to Rt. Efficiently finding collisions can therefore be done by finding
message blocks that satisfy the sufficient conditions on Qt and the necessary restrictions on Tt.

Fast collision finding algorithms as presented in [2] can choose message blocks which satisfy
the conditions for Q1, . . . , Q16. However the restrictions on Tt are fulfilled probabilistically.

The technique presented here allows to fulfill the restrictions on Tt by using extra conditions
on Qt+1 and Qt. By using the relation Qt+1 −Qt = Rt = RL(Tt, RCt) we can control specific bits
in Tt. In our analysis we searched for those restrictions on Tt, for t = 0, . . . , 20, with a significant
probability that they are not fulfilled. All these restrictions can be found in [1] with a description
why they are necessary for the differential.

To compactly describe bitconditions on Qt we use the notation Qt[b] (Tt[b]) for bit b in the
variable Qt (Tt) for t = −3, . . . , 64 and b = 0, . . . , 31. Bits are shown in the order Qt[31] . . . Qt[0].
For Qt[b] we adopt the following notation:

Qt[b] =

’.’ if there is no restriction
’0’, ’1’ if Qt[b] must be the value 0 or 1

’^’ if Qt[b] must be equal to Qt−1[b]
’!’ if Qt[b] must not be equal to Qt−1[b]

An overview of all conditions for block 1 is included in the tables A-1 and A-2.

2

3.1 Restriction: δT4 = −231

The condition T4[31] = 1 is necessary and sufficient for δT4 = −231 to happen. Bit 31 of T4 is
equal to bit 6 of R4, since T4 is equal to RR(R4, 7). By adding the conditions Q4[4] = Q4[5] = 1
and Q5[4] = 0 to the conditions Q4[6] = Q5[6] = 0 and Q5[5] = 1, it is guaranteed that T4[31] = 1.
Satisfying other Qt conditions, this also implies that Q6[4] = Q5[4] = 0.

Q5[6 − 4] 010 · · ·

Q4[6 − 4] 011 · · · −

R4[6 − 4] 11. · · · =

(The original set of sufficient conditions in [7] are shown in black, the added conditions for Tt will
be underlined and in blue.)

3.2 Restriction: add-difference −214 in δT6 must propagate to at least bit 15

This restriction implies that T6[14] must be zero. Since T6[14] = R6[31], the condition T6[14] = 0 is
guaranteed by the added conditions Q6[30− 28, 26] = 0. This also implies that Q5[30− 28, 26] = 0
because of other conditions on Qt.

Q7[31 − 23] 000000111 · · ·

Q6[31 − 23] 0000001.0 · · · −

R6[31 − 23] 0000000.. · · · =

Note: In [8] these conditions were also found by statistical means.

3.3 Restriction: add-difference +213 in δT10 must not propagate past bit 14

The restriction is satisfied by the condition T10[13] = R10[30] = 0. The conditions Q11[29 − 28] =
Q10[29] = 0 and Q10[28] = 1 are sufficient.

Q11[31 − 28] 0010 · · ·

Q10[31 − 28] 0111 · · · −

R10[31 − 28] 101. · · · =

3.4 Restriction: add-difference −28 in δT11 must not propagate past bit 9

This restriction can be satisfied by the condition T11[8] = R11[30] = 1. With the above added
condition Q11[29] = 1 we only need the extra condition Q12[29] = 0.

Q12[31 − 29] 000 · · ·

Q11[31 − 29] 001 · · · −

R11[31 − 29] 11. · · · =

3.5 Restriction: add-difference −230 in δT14 must not propagate past bit 31

For T14 the add difference −230 must not propagate past bit 31, this is satisfied by either T14[30] =
R14[15] = 1 or T14[31] = R14[16] = 1. This always happens when Q15[16] = 0 and can be shown
for the case if no carry from the lower order bits happens as well as the case if a negative carry
does happen. A positive carry is not possible since we are subtracting.

no carry negative carry from lower bits
Q15[16 − 15] 01 · · ·

Q14[16 − 15] 11 · · · −

R14[16 − 15] 10 · · · =

Q15[16 − 15] 01 · · ·

Q14[16 − 15] 11 · · · −

R14[16 − 15] 01 · · · =

3

3.6 Restriction: add-difference −27 in δT15 must not propagate past bit 9

This can be satisfied by the added condition Q16[30] = Q15[30]. Since then either T15[7] =
R15[29] = 1, T15[8] = 1 or T15[9] = 1 holds. This can be shown if we distinguish between Q15[30] = 0
and Q15[30] = 1 and also distinguish whether or not a negative carry from the lower order bits
happens.

no carry negative carry from lower bits
Q16[31 − 29] 001 · · ·

Q15[31 − 29] 011 · · · −

R15[31 − 29] 110 · · · =

Q16[31 − 29] 001 · · ·

Q15[31 − 29] 011 · · · −

R15[31 − 29] 101 · · · =

no carry negative carry from lower bits
Q16[31 − 29] 011 · · ·

Q15[31 − 29] 001 · · · −

R15[31 − 29] 010 · · · =

Q16[31 − 29] 011 · · ·

Q15[31 − 29] 001 · · · −

R15[31 − 29] 001 · · · =

3.7 Restriction: add-difference +225 in δT15 must not propagate past bit 31

This is satisfied by the added condition Q16[17] = Q15[17]. Since then either T15[25] = R15[15] = 0,
T15[26] = 0 or T15[27] = 0 holds. We compactly describe all cases by mentioning which values were
assumed for each result:

no carry
Q16[17 − 15] ... · · ·

Q15[17 − 15] !01 · · · −

R15[17 − 15] 011 · · · = (Q16[17 − 15] = .00)
100 · · · (Q16[17 − 15] = .01)
101 · · · (Q16[17 − 15] = .10)
110 · · · (Q16[17 − 15] = .11)

negative carry from lower bits
Q16[17 − 15] ... · · ·

Q15[17 − 15] !01 · · · −

R15[17 − 15] 010 · · · = (Q16[17 − 15] = .00)
011 · · · (Q16[17 − 15] = .01)
100 · · · (Q16[17 − 15] = .10)
101 · · · (Q16[17 − 15] = .11)

3.8 Restriction: add-difference +224 in δT16 must not propagate past bit 26

This can be achieved with the added condition Q17[30] = Q16[30], since then always either
T16[24] = R16[29] = 0 or T16[25] = R16[30] = 0.

no carry
Q17[30 − 29] .. · · ·

Q16[30 − 29] !1 · · · −

R16[30 − 29] 01 · · · = (Q17[30 − 29] = 00)
10 · · · (Q17[30 − 29] = 01)
01 · · · (Q17[30 − 29] = 10)
10 · · · (Q17[30 − 29] = 11)

4

negative carry from lower bits
Q17[30 − 29] .. · · ·

Q16[30 − 29] !1 · · · −

R16[30 − 29] 00 · · · = (Q17[30 − 29] = 00)
01 · · · (Q17[30 − 29] = 01)
00 · · · (Q17[30 − 29] = 10)
01 · · · (Q17[30 − 29] = 11)

3.9 Restriction: add-difference −229 in δT19 must not propagate past bit 31

This can be achieved with the added condition Q20[18] = Q19[18], since then always either
T19[29] = 1 or T19[30] = 1.

no carry
Q20[18 − 17] .. · · ·

Q19[18 − 17] !0 · · · −

R19[18 − 17] 10 · · · = (Q20[18 − 17] = 00)
11 · · · (Q20[18 − 17] = 01)
10 · · · (Q20[18 − 17] = 10)
11 · · · (Q20[18 − 17] = 11)

negative carry from lower bits
Q20[18 − 17] .. · · ·

Q19[18 − 17] !0 · · · −

R19[18 − 17] 01 · · · = (Q20[18 − 17] = 00)
10 · · · (Q20[18 − 17] = 01)
01 · · · (Q20[18 − 17] = 10)
10 · · · (Q20[18 − 17] = 11)

3.10 Restriction: add-difference +217 in δT22 must not propagate past bit 17

It is possible to satisfy this restriction with two Qt conditions. However T22 will always be cal-
culated in the algorithm we used, therefore it is better to verify directly that T22[17] = 0. This
restriction holds for both block 1 and 2.

3.11 Restriction: add-difference +215 in δT34 must not propagate past bit 15

This restriction also holds for both block 1 and 2 and it should be verified with T34[15] = 0.

4 Conditions on Qt for block 2

Using the same technique as in the previous section we found 19 Qt-conditions for block 2. An
overview of all conditions for block 2 is included in the tables A-3 and A-4.

– Restriction: add-difference +231 in δT2 must not propagate past bit 31.
Conditions: Q1[16] = Q2[16] = Q3[15] = 0 and Q2[15] = 1.

– Restriction: add-difference −231 in δT6 must propagate past bit 31.
Conditions: Q6[14] = 1 and Q7[14] = 0.

– Restriction: add-difference −231 in δT8 must propagate past bit 31.
Conditions: Q8[5] = 1 and Q9[5] = 0.

5

– Restriction: add-difference −227 in δT10 must not propagate past bit 31.
Conditions: Q10[11] = 1 and Q11[11] = 0.

– Restriction: add-difference −212 in δT13 must not propagate past bit 19.
Conditions: Q13[23] = 0 and Q14[23] = 1.

– Restriction: add-difference +230 in δT14 must not propagate past bit 31.
Conditions: Q15[14] = 0.

– Restriction: add-difference −225 in δT15 must not propagate past bit 31.
Conditions: Q16[17] = Q15[17].

– Restriction: add-difference −27 in δT15 must not propagate past bit 9.
Conditions: Q16[28] = 0.

– Restriction: add-difference +224 in δT16 must not propagate past bit 26.
Conditions: Q17[30] = Q16[30].

– Restriction: add-difference −229 in δT19 must not propagate past bit 31.
Conditions: Q20[18] = Q19[18].

– Restriction: add-difference +217 in δT22 must not propagate past bit 17. See previous section.
– Restriction: add-difference +215 in δT34 must not propagate past bit 15. See previous section.

5 Conditions on the Initial Value for the attack

The intermediate hash value used for compressing block 1 is called the initial value IV for the
attack. This does not necessarily have to be the MD5 initial value, it could also result from
compressing leading blocks. Although not completely obvious, the expected complexity and thus
running time of the attack does depend on this initial value IV .

The intermediate value IHV resulting from the compression of block 1 is used for compressing
block 2 and has the necessary conditions IHV2[25] = 1 and IHV3[25] = 0 for the collision in block
2 to happen. The IHV depends on the IV for the attack and Q61, . . . , Q64 of the compression of
block 1:

IHV0 = IV0 + Q61

IHV1 = IV1 + Q64

IHV2 = IV2 + Q63

IHV3 = IV3 + Q62

In [1] the sufficient conditions Q62[25] = 0 and Q63[25] = 0 are given. These conditions on
IHV2[25] and Q63[25] can only be satisfied at the same time when

– either IV2[25] = 1 and there is no carry from bits 0-24 to bit 25 in the addition IV 2 + Q63;
– or IV2[25] = 0 and there is a carry from bits 0-24 to bit 25 in the addition IV 2 + Q63.

The conditions on IHV3[25] and Q62[25] can only be satisfied at the same time when

– either IV3[25] = 0 and there is no carry from bits 0-24 to bit 25 in the addition IV 3 + Q62;
– or IV3[25] = 1 and there is a carry from bits 0-24 to bit 25 in the addition IV 3 + Q62.

Satisfying all these conditions at the same time can even be impossible if for instance IV2[25−0] =
0, or IV3[25] = 1 ∧ IV3[24 − 0] = 0, since the necessary carry can never happen.

Luckily this doesn’t mean the attack cannot be done for those IV ’s, since the conditions
Q62[25] = 0 and Q63[25] = 0 are only sufficient. They allow the most probable differential path at
those steps to happen, however there are other (less probable) differential paths that are also valid.
If this normally most probable differential path cannot happen or happens with low probability

6

(depending on the carry) then the average complexity of the attack depends on the probability
that other differential paths happen. Experimentations clearly indicated that the average runtime
for this situation is significantly larger than the average runtime in the situation where the most
probable differential path happens with high probability.

Therefore we relaxed all conditions on bit 25 of Q60, . . . , Q63 to allow those other differential
paths to happen. We also give a recommendation for the following two IV conditions to avoid this
worst case:

IV2[25] = IV2[24] ∧ IV3[25] = IV3[24]

6 Algorithm

The algorithm used for the second block is an algorithm proposed by Klima (in section 5.8.2 of
[2]). We propose a new similar algorithm for the first block where fulfilling conditions of Q17 no
longer happens probabilistically. Both algorithms use the fact that the value of Wt (= mk for some
k) can be calculated using the values of Qt−3, . . . , Qt+1 if step t is reversed.

Algorithm 6-1 Block 1 search algorithm

Note: conditions are listed in tables A-1 and A-2.

1. Choose Q1, Q3, . . . , Q16 fulfilling conditions;
2. Calculate m0, m6, . . . , m15;
3. Loop until Q17, . . . , Q21 are fulfilling conditions:

(a) Choose Q17 fulfilling conditions;
(b) Calculate m1 at t = 16;
(c) Calculate Q2 and m2, m3, m4, m5;
(d) Calculate Q18, . . . , Q21;

4. Loop over all possible Q9, Q10 satisfying conditions such that m11 does not change:
(a) Calculate m8, m9, m10, m12, m13;
(b) Calculate Q22, . . . , Q64;
(c) Verify conditions on Q22, . . . , Q64, T22, T34 and the iv-conditions for the next block.

Stop searching if all conditions are satisfied and a near-collision is verified.
5. Start again at step 1.

Algorithm 6-2 Block 2 search algorithm

Note: conditions are listed in tables A-3 and A-4.

1. Choose Q2, . . . , Q16 fulfilling conditions;
2. Calculate m5, . . . , m15;
3. Loop until Q17, . . . , Q21 are fulfilling conditions:

(a) Choose Q1 fulfilling conditions;
(b) Calculate m0, . . . , m4;
(c) Calculate Q17, . . . , Q21;

4. Loop over all possible Q9, Q10 satisfying conditions such that m11 does not change:
(a) Calculate m8, m9, m10, m12, m13;
(b) Calculate Q22, . . . , Q64;
(c) Verify conditions on Q22, . . . , Q64, T22, T34.

Stop searching if all conditions are satisfied and a near-collision is verified.
5. Start again at step 1.

7

To maximize the time spend in steps 4a, 4b and 4c, we can maximize the set of all possible Q9

and Q10. If we look at the relation following from step t = 11

m11 = RR(Q12 − Q11, RC11) − f11(Q11, Q10, Q9) − Q8 − AC11 ,

it is obvious that we can only change Q9 and Q10 if f11 = f11(Q11, Q10, Q9) does not change. Since

f11 = (Q11 ∧ Q10) ⊕ (Q11 ∧ Q9) ,

it follows that for any b if bit Q11[b] is 1 then f11[b] = Q10[b] and if it is 0 then f11[b] = Q9[b]. We
can use this by restricting Q11[b] so that if there is a condition on either Q9[b] or Q10[b] it will
always let the value of f11[b] depend on that condition. If for instance there is a condition Q9[b] = 1
and there is no condition on Q10[b] then we have a free bit in Q10[b] if and only if Q11[b] = 0. For
block 1 we have added in this manner the conditions

Q11[2 − 5, 9 − 11, 24 − 27] = 0 and Q10[14] = Q11[14] = Q11[23] = 1 .

These conditions always give the maximum number of 15 free bits total in Q9 and Q10 to choose.
For block 2 we have added in this manner the conditions

Q11[5, 27 − 28] = 0 and Q10[19] = Q11[19] = 1 .

These conditions also always give the maximum number of 15 free bits to choose. This allows us
to try 215 different messages starting at step t = 21 before we have to reinitialize. Most of the
work will therefore be done starting at step t = 21. In the tables A-1 and A-3 we have listed these
conditions, which are only needed to optimize above algorithms, in green.

7 Results

We have done an implementation using our proposed algorithm (see section 6) and our new Qt

conditions (listed in appendix A). We ran several tests on a 3Ghz Pentium4 using for IV either:

– the MD5 initial value

– random IV ’s satisfying our recommended conditions:
IV2[25] = IV2[24] ∧ IV3[25] = IV3[24]

– arbitrary random IV ’s

The complexity, average and maximum runtime in seconds and the total number of tests are
shown in table 7-1 for each case. It clearly shows a gap between random IV ’s with and without
the recommended IV -conditions, especially in the maximum runtime of the tests: 4 hours for
arbitrary random IV ’s compared to 11 minutes for recommended IV ’s.

For recommended IV ’s we have found that the average number of steps of the MD5 compres-
sion function for the first block is 233.6, due to early abortion in the compression function if a
condition is not met. This is the workequivalent of 227.6 full MD5 block compressions, since the
MD5 compression function has 64 = 26 steps.

At the time of this writing, the latest report[3] on MD5 collision finding using Wang’s differen-
tial mentions a running time of 5 hours on a Pentium4 1.7Ghz. However Klima already mentions
in [2] an average running time of over 4 hours on a Pentium 1Gz.

Our attack is a significant speedup of MD5 collision finding. If one has some freedom and can
choose a recommended initial value for the attack then the average running time can even be as
low as 67 seconds on a 3Ghz Pentium4. It should be noted that with a reasonable probability
a collision was found in mere seconds, therefore allowing for instance to find collisions during a
timeout in a protocol execution.

8

Table 7-1. Timing results

Avg. time Max. time Avg. complexity Nr. of tests

MD5 IV 64 428 232.25 1048
recommended IV ’s 67 660 232.33 1138
random IV ’s 291 15787 234.08 879

Note: Avg. complexity is the average number of MD5 block compressions.

8 Conclusion

Our presented algorithm together with new conditions we’ve found allows us to find full MD5
collisions in only minutes on a 3Ghz Pentium4. We have shown that the initial value for the
attack can have a significant impact in the average complexity of MD5 collision finding. Using
2 conditions on the initial value to avoid very hard situations we reduce our average running time
to 67 seconds. Also with reasonable probability a collision can be found in mere seconds, which
allows collision finding during a protocol execution.

References

1. Philip Hawkes, Michael Paddon, and Gregory G. Rose. Musings on the Wang et al. MD5 collision.
Cryptology ePrint Archive, Report 2004/264, 2004. http://eprint.iacr.org/2004/264.

2. Vlastimil Klima. Finding MD5 collisions on a notebook PC using multi-message modifications. Cryp-
tology ePrint Archive, Report 2005/102, 2005. http://eprint.iacr.org/2005/102.

3. Jie Liang and Xuejia Lai. Improved collision attack on hash function MD5. Cryptology ePrint Archive,
Report 2005/425, 2005. http://eprint.iacr.org/2005/425.

4. R.L. Rivest. The MD5 Message-Digest algorithm. Internet RFC, April 1992. RFC 1321.
5. Yu Sasaki, Yusuke Naito, Noboru Kunihiro, and Kazuo Ohta. Improved collision attack on MD5.

Cryptology ePrint Archive, Report 2005/400, 2005. http://eprint.iacr.org/2005/400.
6. Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Collisions for hash functions

MD4, MD5, HAVAL-128 and RIPEMD. Cryptology ePrint Archive, Report 2004/199, 2004.
http://eprint.iacr.org/2004/199.

7. Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In EUROCRYPT, 2005.
http://www.infosec.sdu.edu.cn/paper/md5-attack.pdf.

8. Jun Yajima and Takeshi Shimoyama. Wang’s sufficient conditions of MD5 are not sufficient. Cryptology
ePrint Archive, Report 2005/263, 2005. http://eprint.iacr.org/2005/263.

9

http://eprint.iacr.org/2004/264
http://eprint.iacr.org/2005/102
http://eprint.iacr.org/2005/425
http://eprint.iacr.org/2005/400
http://eprint.iacr.org/2004/199
http://www.infosec.sdu.edu.cn/paper/md5-attack.pdf
http://eprint.iacr.org/2005/263

A Block conditions

Table A-1. Optimized block 1 conditions - part 1

Conditions on Qt

t Qt[31] Qt[0] #

30...0... .0...... 3
4 1....... 0^^^1^^^ ^^^^1^^^ ^011.... 19 + 2
5 1000100. 01..0000 00000000 0010.1.1 22 + 5
6 0000001^ 01111111 10111100 0100^0^1 32
7 00000011 11111110 11111000 00100000 32
8 00000001 1..10001 0.0.0101 01000000 28
9 11111011 ...10000 0.1^1111 00111101 28
10 0111.... 0..11111 1101...0 01....00 16 + 3
11 00100000 1...0001 11000000 11000010 15 + 14
12 000...001000 0001...1 0....... 14 + 1
13 01....011111 111....0 0...1... 14
14 0.0...001011 111....1 1...1... 14
15 0.1...010 1.......0... 6 + 1
16 0!1.....!. 2 + 2
17 0!......0. ^.......^... 4 + 1
18 0.^.....1. 3
19 0.......0. 2
20 0.......!.. 1 + 1
21 0.......^. 2

Sub-total # conditions 257 + 30

10

Table A-2. Optimized block 1 conditions - part 2

Conditions on Qt

t Qt[31] Qt[0] #

22 0....... 1
23 0....... 1
24 1....... 1

25 − 45 0
46 I....... 0
47 J....... 0
48 I....... 1
49 J....... 1
50 K....... 1
51 J....... 1
52 K....... 1
53 J....... 1
54 K....... 1
55 J....... 1
56 K....... 1
57 J....... 1
58 K....... 1
59 J....... 1
60 I....... 1
61 J....... 1
62 I....... 1
63 J....... 1
64 0

Sub-total # conditions 19

Sub-total # Tt restrictions 2
(see section 3.10)

Sub-total # IV conditions from 2nd block 8

Total # conditions 284 + 30 + 2
= 316

Note: I, J, K ∈ {0, 1} and K = I.

11

Table A-3. Optimized block 2 conditions - part 1

Conditions on Qt

t Qt[31] Qt[0] #

−20. (1)
−1 ^....01. (3)
0 ^....00.0..... (4)

Total # IV conditions for 1st block (8)

1 !...010. ..1....00... .10..... 8 + 1
2 ^^^^110. ..0^^^^0 1..^1... ^10..00. 20 + 1
3 ^011111. ..011111 0..01..1 011^^11. 23 + 1
4 ^011101. ..000100 ...00^^0 0001000^ 26
5 !10010.. ..101111 ...01110 01010000 25
6 ^..0010. 1.10..10 11.01100 01010110 24 + 1
7 !..1011^ 1.00..01 10.11110 00.....1 20 + 1
8 ^..00100 0.11..10 1.....11 111...^0 18 + 1
9 ^..11100 0.....01 0..^..01 110...01 17 + 1
10 ^....111 1...1011 11001.11 11....00 18 + 2
11 ^..00...1101 11000.11 110...11 15 + 4
12 ^^^00^^^1000 0001.... 1....... 17
13 !0111111 0...1111 111..... 0...1... 17 + 1
14 ^1000000 1...1011 111..... 1...1... 17 + 1
15 01111101 00......0... 10 + 1
16 0.10....!. 2 + 2
17 0!......0. ^.......^... 4 + 1
18 0.^.....1. 3
19 0.......0. 2
20 0.......!.. 1 + 1
21 0.......^. 2

Sub-total # conditions 289 + 20

12

Table A-4. Optimized block 2 conditions - part 2

Conditions on Qt

t Qt[31] Qt[0] #

22 0....... 1
23 0....... 1
24 1....... 1

25 − 45 0
46 I....... 0
47 J....... 0
48 I....... 1
49 J....... 1
50 K....... 1
51 J....... 1
52 K....... 1
53 J....... 1
54 K....... 1
55 J....... 1
56 K....... 1
57 J....... 1
58 K....... 1
59 J....... 1
60 I....... 1
61 J....... 1
62 I....... 1
63 J....... 1
64 0

Sub-total # conditions 19

Sub-total # Tt restrictions 2
(see section 3.10)

Total # conditions 308 + 20 + 2
= 330

Note: I, J, K ∈ {0, 1} and K = I.

B Source Code

The source code will be made available at:

http://www.win.tue.nl/hashclash/

13

http://www.win.tue.nl/hashclash/

	1 Introduction
	2 MD5 compression function
	3 Conditions on Qt for block 1
	4 Conditions on Qt for block 2
	5 Conditions on the Initial Value for the attack
	6 Algorithm
	7 Results
	8 Conclusion
	References
	A Block conditions
	B Source Code

