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Fast Color/Texture Segmentation For Outdoor Robots

Morten Rufus Blas, Motilal Agrawal, Aravind Sundaresan, Kurt Konolige

Abstract— We present a fast integrated approach for online
segmentation of images for outdoor robots. A compact color and
texture descriptor has been developed to describe local color
and texture variations in an image. This descriptor is then
used in a two-stage fast clustering framework using K-means
to perform online segmentation of natural images. We present
results of applying our descriptor for segmenting a synthetic
image and compare it against other state-of-the-art descriptors.
We also apply our segmentation algorithm to the task of
detecting natural paths in outdoor images. The whole system
has been demonstrated to work online alongside localization,
3D obstacle detection, and planning.

I. INTRODUCTION

Autonomous navigation for outdoor, unstructured environ-

ments is an important research problem in robotics with

numerous applications. The ability to recognize navigable

terrain and avoid obstacles is a critical component for au-

tonomous navigation. Current state-of-the-art systems em-

ploy a range sensor such as stereo cameras or LADAR

to reason about the geometry of the world and identify

geometrical obstacles. However, geometrical reasoning alone

is unlikely to result in intelligent behavior of the robot. For

example, it is hard to distinguish between tall grass and a

short wall based on geometry alone. In addition, learning is

a very important component of an intelligent system. If the

robot has traversed over tall grass earlier, it can learn that

as traversable terrain and mark it as such if it sees it again.

It is clear that appearance-based terrain recognition plays an

important role in such intelligent behaviors and segmentation

is the first step toward recognition.

Appearance-based segmentation is a classical problem in

computer vision. For robotics, the specific challenge is to

be able to do reliable segmentation of outdoor scenes in

an efficient manner so that it can be used online. In our

experience, color alone is not a reliable feature. For example,

in Figure 1(a) it is hard to distinguish between the bushes

and the darker grass on the ground based on color. However,

the texture of the grass and the bushes is very different.

In this paper, we present an online segmentation algorithm

that combines color with texture information to group similar

regions. Our algorithm has several novel features.
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Fig. 1. Various steps of our segmentation algorithm on a typical outdoor
image. (a) The image from one of the stereo cameras. (b) Each pixel
assigned to a texton. (c) Each histogram of textons gets assigned to a
histogram profile. (d) A path is recognized (in yellow)

• Compact texture/color descriptors. It is important to

have compact representations of the information nec-

essary to distinguish textures. Here we carefully choose

a small local neighborhood vector that incorporates the

important aspects of texture and color.

• A two-stage unsupervised online learning process. For

each image, we cluster neighborhood vectors to find

a small set of basis vectors (textons [1]) that charac-

terize scene textures (Figure 1(b)). Then, we cluster

histograms of textons over larger areas to find more

coherent regions with the same mixture of textons

(Figure 1(c)).

Note that the problem we are interested in here is online,

unsupervised segmentation, not classification based on a

library. One application is finding paths in off-road terrain,

where the path appearance may be unlike anything seen

previously (Figure 1(d)). We have successfully demonstrated

online path detection in a complete outdoor navigational

system that uses stereo-vision as its primary sensor.
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II. ALGORITHM OVERVIEW AND RELATED

WORK

A. Texture Representation

Approaches to texture representation include co-

occurrence probabilities [2], Markov modeling [3], [4], [5],

multichannel filtering [6], [7], [8], [9], Local Binary Patterns

(LBP) [10], and texton-based approaches [9], [11], [1]. The

more recent approaches use either a filter bank or a small

neighborhood as a feature descriptor for each pixel – for

example, LBP’s are formed by subtracting the intensity of

the center in a small local neighborhood and then binarizing

the intensity variation in the neighborhood.

In a seminal paper, Leung and Malik [1] showed that many

textures could be represented and re-created using a small

number of basis vectors extracted from the local descriptors;

they called the basis vectors textons. While Leung and Malik

used a filter bank, later Varma and Zisserman [12] showed

that small local texture neighborhoods may be better than

using large filter banks. In addition, a small local neighbor-

hood vector can be much faster to compute than multichannel

filtering such as Gabor filters over large neighborhoods.

Many schemes exist for combining local texture with color

information [9], [11], [13]. The sheer number of variations

makes it hard to decide what is a good representation

of both color and texture for segmentation. In this paper,

we describe a segmentation algorithm that uses a compact

descriptor for representing color and texture. Our descriptor

fits into the class of local texture neighborhoods and in

that sense is similar to LBP’s. For each local neighborhood

(a 3x3 or 5x5 region centered at a pixel), the descriptor

is composed of the color information of the center and

the relative change in intensity in the neighborhood. This

is computed by subtracting out the intensity of the center

from the intensities in the neighborhood. Unlike LBP, we do

not binarize the center subtracted intensity values, thereby

retaining the actual gradient values. In contrast with other

local neighborhood descriptors, ours is more compact since

we do not store the color variation in the neighborhood. For

a typical 3x3 window size, for example, our descriptor is an

11-dimensional vector, whereas storing the raw RGB values

will result in a 27-dimensional vector. A compact descriptor

becomes crucial for the clustering step to be fast and real

time.

B. Segmentation

The raw descriptors must be grouped to segment the

image; a number of clustering algorithms exist for this task.

The K-means algorithm and its many variations is a standard

way of doing this [14], [15]. Graph-cut-based approaches [9]

generally result in better and sharper boundaries but are com-

putationally more demanding. Self-Organizing Maps [16]

yield clusters such that neighborhood relations between the

clusters are preserved, allowing one to better visualize the

input space. Another approach are level-sets [13] which

handles boundaries by first finding homogeneous areas in the

image and then propagates these areas to unlabelled parts of

the image.

In our algorithm we use two-stage, unsupervised clustering

to find smooth similar regions based on the descriptors. The

choice of clustering framework was largely dictated by the

need for it to be fast and efficient. In our method, we use

the K-means algorithm to perform clustering – K-means has

the best trade-off between good results and speed.

For the first clustering step, our descriptors are computed

at each pixel and are then clustered using K-means to find

the basis vectors or textons. Each pixel then gets assigned to

the closest texton. This is shown in Figure 1(b). As can be

seen, a segmentation based on simple pixel classification is

very noisy. To capture statistics of larger areas, we compute

a histogram of these textons over a window, and cluster the

histograms again using K-means to find similar regions in

the image. Histograms of textons are computed efficiently

using integral images [17]. Regions that are close together

are then merged to give the final segmentation. Figure 1(c)

shows the final segmentation results.

Not only is our descriptor compact and faster to compute

but it captures all the local texture variations, resulting in

better segmentations. We present experimental results of

comparing these texture descriptors to segment a synthetic

image. While there has been previous work [12] on compar-

ing the different types of texture descriptors for the task of

texture classification, to our knowledge no comparisons have

been done earlier for the task of texture segmentation.

C. Path Finding

Finally, for an application, we use the segmentation al-

gorithm to recognize natural paths in outdoor images. The

image is segmented, and then we look for regions that share

the geometric attributes of a path. Because there are only

a small number of regions, various combinations of regions

that could possibly be a path can all be checked. This path

detection algorithm runs online on the robot in real time and

we present results of our path detection algorithm on several

types of outdoor paths. Other work has previously been done

in road detection where we mention the work by Fernandez

and Price [18] who used region growing in HSI color values

to find the road borders. Others include Dahlkamp et al. [19],

who used self-supervised learning on color images to extend

roads found by LADAR. In the area of stereo-vision Soquet

et al.[20] used a stereo-based color segmentation algorithm

to determine road segments. Texture has also been used

as seen in Zhang and Nagel [21], who explore anisotropic

texture features of roads for segmentation.

While all the individual components of our segmentation

algorithm are known, we have judiciously selected each step

of the processing pipeline so that we are able to run our

algorithm online on the robot in real time. It is the integration

of these fast techniques, coupled with our compact texture

descriptor and a two-stage online learning process, that

characterizes our work.

The rest of the paper is organized as follows. Section

III describes our segmentation algorithm in detail, and the

results of our segmentation algorithm for a synthetic image

are presented and compared with other texture descriptors
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in Section IV. Our path recognition algorithm is discussed

in Section V and results of this algorithm are discussed in

Section VI. Section VII concludes the paper and discusses

ongoing and future work.

III. SEGMENTATION ALGORITHM

The first step of our segmentation algorithm is to learn

a set of textons (basis descriptor vectors) for the image. A

local descriptor (3x3 or 5x5 window) is computed at each

pixel location, and the ensemble of descriptors is clustered

to find a small set of textons. Each pixel location then gets

assigned to one of these textons by comparing its descriptor

using Euclidean distance.

A. Textons

Our descriptor is composed of color and texture infor-

mation for a 3x3 or 5x5 pixel neighborhood. The image

is first transformed to the CIE*LAB colorspace using an

efficient lookup table to do the RGB to LAB conversion.

Colors in LAB are more perceptually linear than in the

RGB space, thereby resulting in better clusters. This gives

the brightness information L and the color channels a, b.

The texture information is taken as the surrounding pixel

intensities minus the center intensity. Each pixel location pi

in the image can then be represented using the descriptor:

pi =



















W1 ∗ Lc

W2 ∗ ac

W2 ∗ bc

W3 ∗ (L1 − Lc)
...

W3 ∗ (L8 − Lc)



















(1)

Here (Lc, ac, bc) is the color of the center pixel, and

L1, L2, ..., L8 are the intensities of the surrounding pixels.

The set of weights {W1 = 0.5, W2 = 1, W3 = 0.5} is used

to balance how much to rely on color, texture, and brightness

for the clustering. These were set as to weigh chrominance

higher than luminance. Also, since texture takes up many of

the descriptor rows it must be downweighted so the color

still has an impact on the clustering. The assumption here

is that in a local neighborhood the color does not vary

much, so including the color channels for all 3x3 pixels

does not provide additional information. The Lc, ac, bc

components could also be computed as an average of the 3x3

neighborhood but this was not done to speed up computation.

See top of Figure 2 for an overview. The 5x5 version of

the descriptor is similar but uses a larger neighborhood size

resulting in a 27-dimensional descriptor.

B. Clustering to Textons

The K-means algorithm seeks to minimize

J =

n
∑

i=1

min
j

|pi − cj |
2
, (2)

where pi is each descriptor in the image and cj are the

textons; basically, it finds a set of basis descriptors such that

Histogram window

3D Texture path

L3

L4

L5

c1c2 c5 c3 c1

c4c1ck c4

c3 c1 c2 c4

c1c2ck

c1 c4c2c2

c1c2

L1

L8

L7

L2

Lc

L6

pi =























W1 ∗ Lc

W2 ∗ ac

W2 ∗ bc

W3 ∗ (L1 − Lc)
W3 ∗ (L2 − Lc)

...
W3 ∗ (L8 − Lc)























J =
∑n

i=1
minj |pi − cj|

2

Pi =

c1 c2 c3 . . . ck

Fig. 2. The segmentation algorithm works in two steps. First textons are
learned from the image. Then histograms are constructed from textons and
clustered. The missing values in the histogram window represent outliers.

the Euclidean distance between them and all descriptors is

minimized. j = 1, .., k is the number of textons we desire

to learn. For our outdoor robotic sequences k = 16 gave

a good trade-off between accuracy and efficiency. In the

K-means iterations, reclassification attempts are not made

for points that lie less than half the mean absolute distance

away from their currently classified center (similar to [22]).

This considerably speeds up the implementation without a

significant loss in precision.

C. Histogram Clustering

Once the 16 textons for a given image have been es-

tablished, each pixel is classified as belonging to one of

these using Euclidean distance. A simple threshold identifies

outliers. Integral images [17] are then constructed for each

of the 16 textons. An entry in the integral image at location

x is simply the sum of the count of each of the 16 textons

in the rectangle formed by the point x and the origin. With

the integral image calculated, it takes only four additions to

calculate the total number of each texton over any upright,

rectangular area, independent of its size. This is then used

to extract a histogram profile for a window neighborhood

across the image. Experimentally, a 32x32 window gives the

best results for our image size. This is similar to what was

observed in [13] where the window was chosen to 1-2% of

the total image size.

K-means is then run on the histograms to extract a set

of histogram profiles, using Euclidean distance as the norm.

Boundary conditions between areas of different texture are

not explicitly treated and thus may receive their own cluster

representing ”mixed terrain”. The choice of histogram clus-

ters (k = 8) was set so as to slightly over-segment the image.

Texton outliers are not included in the histogram clustering.

See bottom of Figure 2 for an overview.

Finally, the Earth Movers Distance [23] was used to merge

similar clusters if the threshold was below 100. EMD is a

good distance measure for histograms, but too computation-
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Fig. 3. Synthetic texture mosaic used (provided by USC via its website).
The left image is the texture mosaic. The right image shows which texture
regions belong to which texture.

ally expensive to be used directly in the K-means clustering.

The EMD ground distance matrix for the histograms was set

to the Euclidean distance between each basis texton. Given

two textons ct,i and ct,j the Euclidean distance between them

can be written as dt,ij :

dt,ij = ‖ct,i − ct,j‖
2

(3)

Given that we have 16 basis textons this gives a 16x16 dis-

tance matrix D for comparing two histograms (generalized

for an m-by-n matrix):

D =















0 dt,01 dt,02 · · · dt,0n

dt,10 0 dt,12 · · · dt,1n

dt,20 dt,21 0 · · · dt,2n

...
...

...
. . .

...

dt,m0 dt,m1 dt,m2 · · · 0















(4)

The EMD then attempts to solve the transportation prob-

lem of

WORK(P, Q,F) =

m
∑

i=1

n
∑

j=1

dt,ijfij (5)

subject to a number of constraints on fij as described in [23].

P and Q are the two compared histograms and F is the flow

that minimizes the above cost. If the flow is very small the

clusters are similar and are merged based on a threshold.

Last, the image is reclassified using the computed his-

togram profiles. Histograms that are not close to the com-

puted histogram profiles are thresholded as outliers.

IV. SEGMENTATION RESULTS

It is important that the textons contain the information

necessary to accurately discriminate between different tex-

tures. We compare our texture descriptor to various other

state-of-the-art descriptors by applying them to the task of

segmenting a synthetic image into different textures.

The University of Southern California (USC) hosts the

Brodatz texture database and also provides texture mosaics

that are a number of Brodatz textures stitched together in

a jigsaw-type pattern. texmos3 was selected as the texture

mosaic for benchmarking our texton descriptors. Figure 3

shows this mosaic along with the ground truth segmenta-

tion. This mosaic has eight textures and does not contain

color, which tests the descriptors’ ability to discriminate

textures. Four basic descriptors are tested: a 48-dimensional

descriptor composed of the responses from the Leung-Malik

filter bank (LM,32); a 75-dimensional descriptor of 5x5

raw RGB (RGB,5x5,32) values as used in [11] (which in

effect is 25-dimensional on grayscale images); the LBP in

a 3x3 neighborhood (LBP,3x3,32); and two versions of our

descriptor – the 3x3 neighborhood (11-dimensional with the

L,a,b color components set to zero), (SRI,3x3,32) and a 5x5

neighborhood (SRI,5x5,64) with the descriptor components

still being the intensities minus the center intensity. For the

test, the LM filter bank is the only one where the descriptors

are not learned on the image itself. For all other descriptors,

32 textons are learned from the image itself. Our 5x5 version

used 64 textons illustrating our best possible result. The

lack of color information meant that more textons were

needed to discriminate the textures. The second stage of

clustering is then applied to give the segmentation results.

It is important to note that the underlying segmentation

algorithm is the same (as described in section III) for each

of these descriptors.

Each descriptor is then scored using two scores – the

detection rate and the confusion rate. The detection rate

gives a measure of how much of a given texture it managed

to classify correctly. The confusion rate gives a measure

of how many correct versus false detections to expect. A

good segmentation will have a high detection rate and a low

confusion rate. For the detection rate we look only at texture

regions that are entirely inside our 32x32 histogram window

(so only one texture is present inside the window). This is

done by eroding the borders of each texture region with a

flat 16 pixel radius circle structuring element. This gives

us a maximum on the number of possible correct inliers

Dmax,t for a given texture. The cluster that takes up the

most area of a given texture is chosen as the cluster that

belongs to that texture. For a specific texture t, the number

of correct detections is called Dc,t, and the number of false

detections is Df,t. The two scores for a specific texture are

then calculated as

Confusion Rate = 100 ×
Df,t

Dc,t + Df,t

(6)

Detection Rate = 100 ×
Dc,t

Dmax,t

(7)

The total confusion and detection rates are simply the sums

over all the eight textures.

Total Confusion Rate = 100 ×

8
∑

t=1

Df,t

8
∑

t=1

(Dc,t + Df,t)

(8)

Total Detection Rate = 100 ×

8
∑

t=1

Dc,t

8
∑

t=1

Dmax,t

(9)
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(a) (b) (c) (d) (e)

Fig. 4. Results for the synthetic texture segmentation. Each color represents a different histogram cluster. An overlay shows which regions should have
homogeneous colors. (a) LM Filter, 32, (b) RGB 5x5, 32, (c) LBP 3x3,32, (d) SRI 3x3,32, (e) SRI 5x5,64.

% LM,32 RGB LBP SRI,3x3 SRI,5x5

Total Conf. 50 56 46 38 34

Total Det. 40 53 68 79 68

TABLE I

TOTAL RATES

The actual segmentations obtained for each descriptor can

be seen in Figure 4. Figures 5 and 6 show the two scores for

each of the eight textures present in the mosiac. The total

confusion and detection rates are shown in Table I. The LM

filter bank performs the worst, as it has higher confusion

and lower detection rates than all the other descriptors.

This fits with the observations in [12]. The raw intensity

value descriptor also performs poorly. LBP has problems

discriminating between textures 2 and 8 but is otherwise

clearly better than the raw intensities and LM filter bank. Our

descriptors do a much better job at discriminating between

textures 2 and 8, which indicates that the intensity gradients

are necessary to do this and that it is not enough to rely

just on the gradient direction. All the methods find it hard

to discriminate between textures 3 and 4 except the LBP,

which aids it greatly in the total scores. The results for our

descriptor are on average better than the other methods on

this dataset. Interestingly, for our descriptors the 3x3 version

actually gets a better total detection rate than the 5x5 version

at the cost of a higher total confusion score.

The results presented here are typical for other mosaics in

the synthetic dataset and have been omitted beacuse of space

constraints.

V. APPLICATION: PATH RECOGNITION

This work has been carried out in conjunction with a

larger research project entitled Learning Applied to Ground

Robotics (LAGR). The project deals with outdoor navigation

in unstructured environments using stereo vision. The goal

is to navigate a robot autonomously to a GPS waypoint

through unknown terrain at a speed of roughly 1m/s. Many

of the environments tested include small paths in the form

of dirt/asphalt roads as well as more natural paths such as

beaten-down tracks through vegetation. Many of the paths

do not have a clear signature in the 3D output of the stereo-

vision sensor. We have used our segmentation algorithm to
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Fig. 5. Detection rate of the individual textures for the five tested feature
descriptors on the artificial dataset.
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recognize these paths, using geometrical constraints from the

stereo sensors (flatness, width) to find segmented regions that

could be paths.

Figure 7 illustrates a sample image (a), the texture-based

segmentation (b), the disparity map computed from stereo

(c), and the ground plane inliers (d). The ground plane

is computed from stereo information. The objective is to

determine if any of the segments in the image (b) constitute

a path. We project the segmented image onto a 2D grid on

the ground plane (Figure 8 (a)) to obtain the segmentation

map (Figure 8 (b)), which is a bird’s-eye view of the textures

placed on the ground plane. In order to determine if a set of

segments constitutes a path, we first obtain the corresponding

path map (Figure 8 (c)) and compute path statistics on the

path map as described in Section V-B. The statistics such as

the width profile help us determine if the selected segments

actually constitute a path. In Section V-A, we describe how

different segments or textures are combined to detect paths.

A. Path Detection Using a Segmented Image

We sample the segmented image on a 2D grid on the

ground plane to obtain the “segmentation map”. The grid

points are illustrated in Figure 8(a) and the correspond-

ing Ni × Nj “segmentation map”, Ti,j , is illustrated in

Figure 8(b). We note that the path can be composed of

a single segment or a combination of segments. For a

given combination of segments, S, the width profile can be

computed directly from the segmentation map as

wS
i =

Nj
∑

j=1

∑

k∈S

δ(Ti,j − k). (10)

The mean and deviation (15)-(16) serve as a simple means

to identify segments or combinations of segments that could

constitute a path. A set of segments is detected as a path

if its mean width, deviation, and length lie within certain

predetermined thresholds. In the LAGR experiments, for

example, we considered paths whose width was in the range

0.5 m to 2 m, with deviation less than 0.15 m and length

greater than 4 m and the thresholds were set accordingly.

The simple width profile can be computed quickly and is

also linear in the number of segments, i.e.,

wS
i (S1 + S2) = wS

i (S1) + wS
i (S2). (11)

We see from (11) that it is easy to compute the width

profile of a path comprising multiple segments using the

width profile of the component segments. The width profile

computed in this manner can be used to identify single

and compound segments that constitute a path for different

combinations of segments. Once we obtain a list of candidate

segments we can check for both row-wise and column-wise

spatial coherence (next subsection). For a compound segment

path consisting of the set of segments, S, the path map is

assigned as

pi,j =











0 Ti,j = 0

1, Ti,j ∈ S

−1, otherwise.

(12)

Figure 8(c) illustrates the path map obtained by combining

segments labeled red and yellow. Figure 8(d) illustrates the

width at each pixel (Wi,j) as well as the path center that was

computed by fitting a quadratic curve.

B. Computing the Path Profile

We describe how we compute the width profile and other

statistics of a Ni × Nj 2D path map such as the one in

Figure 8 (c). The path map is a 2D grid on the ground

plane whose grid points are labeled as “path”, “not path”,

or “unknown” with values as follows.

Pixel pi,j is labeled as











path, if pi,j = 1

not path, if pi,j = −1

unknown, if pi,j = 0

(13)

The basic idea is to determine the existence of a consistent

path by computing its width profile, i.e, its width in each

row. We first determine the simple width profile (wS), and

then consider the spatial coherency in each row (wR), and

finally across the columns (wC ). We compute the simple

width profile, wS
i , which is the width of the path in the ith

row, as the number of pixels that are labeled as path in each

row.

wS
i =

Nj
∑

j=1

δ(pi,j − 1) (14)

The mean width and the deviation can be computed for a

width profile as

µ =
1

Nj

∑

i

wi (15)

d =
1

Nj

∑

i

|wi − µ| (16)

While wS is a simple means of testing if the width is

consistent, it fails to take into account if the path pixels are

spatially adjacent. We therefore compute a “running average”

of the path width centered at each pixel using a window of

length 2L + 1, which is computed as

Wi,j = +

j
∑

k=j−L

pi,k + −

j+1
∑

k=j+L

pi,k (17)

where

+

j
∑

k=0

xk = max

(

0, +

j−1
∑

k=0

xk + xj

)

, and (18)

−

j
∑

k=L

xk = max

(

0,−
j+1
∑

k=L

xk + xj

)

. (19)

The two terms in (17) describe the widths on the left and

right of the pixel (i, j). These can be computed recursively

(18-19) and are constrained to be nonnegative. The new

width profile, wR
i , of row i is computed as

wR
i = max

j
Wi,j (20)
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Fig. 7. Images illustrating the information used in path detection. (a) The image from one of the stereo cameras. (b) Assigned texture labels. (c) Disparity
values of the pixels; red is closer, blue is farther away. (d) The inliers in the ground plane in green overlay, computed from (c).
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Fig. 8. Computing the path map and path statistics. (a) Ground plane uniform grid projected onto the image. (b) The texture values at the grid points
(segmentation map), showing an overhead geometrical view of the textures on the ground plane. Note the main path texture (red) is now clearly a path. (c)
A path map obtained by combining the red and yellow textures. The hypothesized path is in white, textures that are “not path” are in black, and unknown
areas are in gray. (d) The width of the hypothesized path at each pixel. The center of the path is marked by a white dot.

and takes into account spatial coherency in each row. Thus,

if a row has a certain number of path pixels, its width is

highest when all of them are adjacent.

We next check the spatial consistency of the path across

rows. We note that Wi,j in each row obtains the maximum

value at the center of the path and we obtain the column

corresponding to the maxima of Wi,j for each row i : jmax
i =

argj maxWi,j . We then fit a quadratic curve to the set of

points (i, jmax
i ) using RANSAC to obtain the path center in

each row. The column-wise spatially coherent width profile,

wC
i is computed as the path width at the fitted path center

wC
i = Wi,ji

, (21)

where ji is the fitted path center at row i.

VI. PATH RECOGNITION RESULTS

As part of the LAGR program, an independent testing

group ran monthly blind tests of the perception and control

software. The nine competing teams in the LAGR program

were compared to a baseline system; each team was scored

based on the time taken by its robot to reach the goal. Figure

7(a) is one of the tests. Here, a path can be identified as a

dirt section among the grass.

In real time tests, we run the segmentation algorithm at

slightly slower than a 1 Hz rate. The perception system

passes information about paths to the planner, along with

other information about obstacles and freespace. Figure 9

shows the trail amongst the bushes detected as a path. This

information is then passed onto the planner. Figure 10 shows

the planner operating on the information returned by the

perception algorithms. The path segmentation contributes the

LM,32 RGB LBP SRI,3x3 SRI,5x5

Time (s) N/A 5.14 2.59 1.11 3.01

TABLE II

SEGMENTATION TIMES

yellow center section, which is preferred by the planner.

Using the path helps the robot to stay away from the bushes

surrounding the path (where the robot wheels might get

stuck). Also, since path costs are lower, the robot avoided

squeezing through the open space between the bushes. This

behavior is similar to that of a person, who would prefer the

easy path rather than more dense terrain among the bushes.

Because of the strong geometric tests, no false positives of

recognized paths have been experienced in any of the LAGR

tests.

Timings for our segmentation algorithm on a 512 by

384 color image are shown in Table II. The computational

platform is a 2 GHz Pentium-M machine. For our K-means

algorithm, the maximum number of iterations was fixed at

100. In practice, K-means converges much before that and is

stopped when it has converged. It takes about 1 s to perform

the two-stage online learning process, and about 150 ms to

classify a 512 by 384 image using our 3x3 descriptor. The

LM filters have not been implemented to work with color

and so are excluded from the timings.

VII. CONCLUSIONS

We have presented a segmentation algorithm suitable for

robotic applications in outdoor environments. Our segmen-

tation algorithm uses a compact feature descriptor in a two-
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Fig. 9. Example of path classification. The costmap in Fig. 10 was created
by driving along this path. The yellow color indicates the detected path.
Green is ground plane and blue are obstacles. The two horizontal lines are
estimates for the location of the horizon.

Fig. 10. Example of a costmap built by the LAGR robot and subsequently
used by the planner. Blue is unknown terrain. Obstacles are shown in red.
Ground plane is shown in various shades of green (with brighter colors
indicating lower cost). The yellow region is the detected path. The robot
position is marked with a red line. The cyan line indicates the planned
trajectory. The green line indicates where the robot has driven. The super-
imposed grid squares have a length of 1m.

stage K-means-based clustering algorithm. We have shown

that our descriptor does a better job at texture segmentation

than other commonly used texture descriptors. We have also

applied our segmentation algorithm for recognizing natural

paths in outdoor environments in real time. The approach

has been demonstrated online for following natural paths on

an outdoor robot. Although false positives have not been

experienced in the LAGR tests, they could potentially occur

if the segments happen to resemble a path geometrically.

Another failure mode could occur if the path is segmented

into too many regions. We also need to look into the

maximum angle and distance relative to the robot at which

the path can be detected.

The segmentation algorithm forms a basis for perform-

ing appearance-based terrain classification. We are currently

looking into building a database of commonly seen terrain

types such as tall grass, sandy soil, gravel, and mulch; textons

can be learned offline for each class, and then online each

segment can be classified into one of these terrain types. Such

terrain classification can also be performed entirely online,

wherein the robot learns from its own experience. For each

terrain type that the robot has been on, the robot can learn its

color, texture, and navigability characteristics. Subsequently,

it can predict the navigability characteristics of an unknown

terrain by recognizing its color and texture. Indeed, such

behaviors can make the robot appear ‘intelligent’.
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