
evaluated and, if necessary, modified for each new assay.
Collaboration between laboratories and physicians is es-
sential in the setting up of new immunoassays.

Abbott Laboratories provided assay reagent and the assay
system without charge.
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Fast Colorimetric Method for Measuring Urinary Io-
dine, Daniella Gnat,1 Ann D. Dunn,2 Samar Chaker,1 Fran-
cois Delange,1,3 Francoise Vertongen,1 and John T. Dunn2,3*
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cil for the Control of Iodine Deficiency Disorders, Box
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ville, VA 22908; * author for correspondence: fax 434-243-
9195, e-mail jtd@virginia.edu)

International groups recommend the following median
urinary iodine concentration as the best single indicator of
iodine nutrition in populations: severe deficiency, 0–0.15
�mol/L (0–19 �g/L); moderate deficiency, 0.16–0.38
�mol/L (20–49 �g/L); mild deficiency, 0.40–0.78
�mol/L (50–99 �g/L); optimal iodine nutrition, 0.79–1.56
�mol/L (100–199 �g/L); more than adequate iodine
intake, 1.57–2.36 �mol/L (200–299 �g/L); and excessive
iodine intake, �2.37 �mol/L (�300 �g/L) (1 ). The range
in which the median falls is more important than the
precise number (2, 3).

Many methods for assessing urinary iodine exist (3–8),
most based on the Sandell–Kolthoff reaction (9 ), in which
iodide catalyzes the reduction of ceric ammonium sulfate
(yellow) to the colorless cerous form in the presence of
arsenious acid. Although iodide is the chemical form for
both the catalytic reaction and in urine, some preliminary
treatment is needed to rid urine of impurities, most
commonly by acid digestion (3, 5). We have extended
previous approaches (5, 6, 10) with improved conditions
and here present a new method (“Fast B”) that is rapid,
inexpensive, reliable, and flexible.

The equipment required for the Fast B method includes
a heating block, Pyrex test tubes (13 � 100 mm), two
fixed-volume pipettes (0.5 mL and 1.0 mL), one adjustable
pipette (0–200 �L), and a multipet (Eppendorf) for quick
reagent volume additions of 0.125 and 0.1 mL. The basic
chemicals used are potassium iodate, arsenic trioxide,
ammonium persulfate, ammonium cerium(IV) sulfate di-
hydrate, sodium chloride, ferroine, and sulfuric acid.

The solutions used in the assay are as follows:

(a) Ammonium persulfate solution: 114.0 g of ammo-
nium persulfate made up to 500 mL with water
(stable for at least 1 month at 20–25 °C away from
light)

(b) 2.5 mol/L H2SO4
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(c) Arsenious acid solution: 10 g of As2O3, 50 g of NaCl,
400 mL of 2.5 mol/L H2SO4, and 600 mL water;
heated gently to dissolve, diluted to a final volume
of 2 L, filtered, and stored in a dark bottle away
from light at 20–30 °C (stable for at least 6 months)

(d) Sodium chloride: 40 g in 200 mL of water
(e) 10.8 mol/L H2SO4
(f) Ceric ammonium sulfate: 16 g in 1 L of 1.35 mol/L

H2SO4 (stable for more than 6 months in a dark
bottle)

(g) Iodine calibrators: working solutions of 0.40
�mol/L (50 �g/L), 0.79 �mol/L (100 �g/L), and
2.37 �mol/L (300 �g/L), prepared from concen-
trated iodate solution [788 �mol/L (100 mg/L)],
made by dissolving 168.5 mg of potassium iodate in
1 L of water. Working solutions of other concentra-
tions can be prepared as needed

(h) Ferroine/arsenious acid solution: prepared shortly
before use by mixing 2 mL of 10.8 mol/L H2SO4, 2
mL of arsenious acid solution, 4 mL of 200 g/L
sodium chloride, and 2 mL of ferroine

We obtained fresh samples from healthy individuals
and hospitalized patients in Brussels and frozen samples
from epidemiologic studies in Europe and Africa. The
urine samples were not treated with acid, but thymol
crystals had been added to some of the samples in their
country of origin before transfer to the laboratory. Results
were compared with those obtained with the Technicon
AutoAnalyzer II (Bayer/Technicon Instruments) (11 ) in
use in our Brussels laboratory for more than 20 years and
periodically subjected to routine external quality control.

We investigated several conditions to improve the
previously described method (10 ), including use of am-
monium persulfate in place of the more toxic chloric acid,
a longer time for color development, and smaller sample
volumes.

The final procedure developed is as follows. Each tube,
containing 0.15 mL of urine or of calibrator and 1.0 mL of
ammonium persulfate solution, is heated for 1 h in the
block at 100 °C. After the solution is cooled at room
temperature, 0.5 mL of arsenious acid solution is added to
each tube and mixed on a vortex-mixer. At least 15 min
later, 0.125 mL of fresh ferroine–arsenious acid solution is
added. Tubes are mixed on a vortex-mixer and ranged in
racks as follows: three calibrators [0.40 �mol/L (50 �g/L),
0.79 �mol/L (100 �g/L), and 2.37 �mol/L (300 �g/L)],
followed by the urine samples and controls, and at the
end, a second set of the same three calibrators. Each batch
contains a total of 45–55 tubes, including samples, blanks,
and controls. To each tube we rapidly add 0.1 mL of ceric
ammonium sulfate solution with the multipipetter, with
rapid shaking of each rack, and observe all tubes closely.
After an initial blue color, samples first turn purple and
then orange/brown. The speed of the color change de-
pends on the iodine concentration. As each sample turns
purple, it is placed in another rack in order of color
change after addition of the ceric ammonium sulfate.
Thus, all tubes, including calibrators and samples, are

now ranked in order of color change. We then count the
number of samples falling into each of the four categories
[�2.37 �mol/L (�300 �g/L), 0.79–2.37 �mol/L (100–300
�g/L), 0.40–0.78 �mol/L (50–99 �g/L), and �0.40
�mol/L (�50 �g/L)] from the position of each tube
relative to the positions of the calibrators.

When we compared the results obtained for 286 urine
samples by the Fast B method with the results obtained
with the AutoAnalyzer II method (Table 1), 275 (96.2%)
were placed in the correct category by Fast B. Of the 11
discordant values, all were close to range cutoffs: 6 were
false positives (samples with concentrations of 0.63, 0.71,
0.74, and 0.76 �mol/L by the AutoAnalyzer II method
were placed in the 0.79–2.37 �mol/L range by the Fast B,
and samples with concentrations of 2.22 and 2.24 �mol/L
were placed in the �2.37 range), and 5 were false nega-
tives (samples with concentrations of 0.83 and 0.83
�mol/L by the AutoAnalyzer II method were placed in
the 0.40–0.78 range by the Fast B, and samples with
concentrations of 2.46, 2.52, and 2.39 �mol/L were placed
in the 0.79–2.37 range).

Approximately 45 samples, including 39 unknowns,
can be handled in each analytical run. The color change is
readily recognized visually. Under our conditions, sam-
ples with an iodine concentration �2.37 �mol/L (�300
�g/L) change color in �2 min, those with a concentration
of 2.37 �mol/L (300 �g/L) change color at �2 min, those
with a concentration of 0.79 �mol/L (100 �g/L) change
color at �5 min, those with a concentration of 0.40
�mol/L (50 �g/L) change color at �10 min, and those
with a concentration of 0.08 �mol/L (10 �g/L) change
color at �40 min. For most purposes, it is satisfactory
simply to record the number that have not changed before
the 0.40 �mol/L (50 �g/L) calibrator and not wait. We
have focused on calibrators that bracket the recom-
mended ranges for defining iodine nutrition (1 ). Other
calibrators between 0.40 and 2.37 �mol/L can be used to
define other ranges of interest. Our experiments were
conducted at a laboratory temperature of 20–25 °C. The
speed of the Sandell–Kolthoff reaction is influenced by
temperature and may need to be carried out at controlled
temperatures in hot or cold climates (12 ).

From three urine samples with different iodine concen-
trations [0.30 �mol/L (38 �g/L), 0.76 �mol/L (96 �g/L),
and 2.01 �mol/L (255 �g/L), respectively, authenticated
by the AutoAnalyzer], we ran 10 aliquots of each sample
separately in the same run; all 30 were correctly placed in
the three categories: �0.40 �mol/L (�50 �g/L), 0.40–0.78

Table 1. Comparison of iodine concentrations in 286 urine
samples measured by Fast B and AutoAnalyzer II.

Iodine concentration range,
�mol/L (�g/L)

No. of samples

Fast B AutoAnalyzer

�0.40 (�50) 39 39
0.40–0.78 (50–99) 74 76
0.79–2.37 (100–300) 112 109
�2.37 (�300) 61 62

Clinical Chemistry 49, No. 1, 2003 187
D

ow
nloaded from

 https://academ
ic.oup.com

/clinchem
/article/49/1/186/5638972 by guest on 16 August 2022



�mol/L (50–99 �g/L), and 0.79–2.37�mol/L (100–300
�g/L). We also analyzed an aliquot of each of the three
samples for 13 consecutive days (a total of 39 samples); 38
of the 39 (97.5%) were placed correctly, and the 39th was
placed in the category immediately above the correct
category.

We diluted a urine sample containing 6.3 �mol/L
iodine to give the following concentrations: 3.15, 2.10,
1.58, 1.05, 0.79, 0.63, and 0.53 �mol/L. The Fast B placed
each in the correct range except the last, which was
classified as �0.40 �mol/L. For comparison, the Auto-
Analyzer gave respective values of �1.97, �1.97, 1.45,
1.03, 0.79, 0.61, and 0.54 �mol/L. We added KIO3 to a
low-iodine sample (0.35 �mol/L) to produce samples
containing 0.67, 0.98, 1.30, and 1.62 �mol/L iodine. Mea-
surement by Fast B placed each in the correct range. For
comparison, the AutoAnalyzer gave values of 0.64, 1.03,
1.34, and 1.54 �mol/L, respectively.

Ascorbic acid at concentrations of 0, 3.78, 7.96, or 15.92
mmol/L added to a sample containing 1.15 �mol/L (146
�g/L) iodine did not change the iodine concentration
measured by the AutoAnalyzer (1.14–1.15 �mol/L) or by
Fast B [remaining in the 0.79–1.18 �mol/L (100–150
�g/L) category]; for this experiment, other KIO3 calibra-
tors were used to create the category of 0.79–1.18 �mol/L
(100–150 �g/L).

No change in iodine concentration was detected by
either the AutoAnalyzer or Fast B after the addition of
potassium thiocyanate at concentrations of 0.172, 0.344, or
0.688 mmol/L or of d-glucose up to 56 mmol/L (10.14
g/L).

The placement of values within the ranges described
here satisfies most epidemiologic purposes (1 ) and is
more cost-effective than analyzing and reporting individ-
ual samples. One technician can easily measure 200 sam-
ples in a working day, and depending on salaries, the cost
may be less than US $0.10/sample. One of us (D.G.)
trained two technicians from a developing country in
African to be proficient in the method after 3 days of
instruction and practice. The investment in equipment is
low, and except for pipettes, the only instrument is the
heating block, which might be replaced by a boiling water
bath if necessary.

In conclusion, the Fast B method described here is
rapid, simple, reliable, flexible, and inexpensive and pro-
vides an attractive means for assessing iodine nutrition in
populations, especially in developing countries.

We thank the Micronutrient Initiative (Ottawa, Canada)
for financial support, and colleagues in the International
Council for the Control of Iodine Deficiency Disorders
(ICCIDD) for providing samples and helpful discussion.
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For urinalysis, midstream collection is recommended (1–
3). Health-associated reference limits for leukocyte and
erythrocyte counts in female urine are important for
detecting hematuria, pyuria, and urinary tract infection
(3 ). To understand the effects of urinary collection and the
menstrual cycle on urinalysis, we examined first-stream
and midstream urine samples from healthy female stu-
dents with use of an automated dipstick reader and the
fully automated urine cell analyzer, UF-100.

Specimens were obtained from 64 healthy female stu-
dents (age range, 18–20 years) at the College of Medical
Technology. All were asymptomatic and had no extant
urologic disease. They were instructed to collect only first
and midstream urine samples in sterile containers at the
same time and not to wipe or spread the labia. The
volume of the first urine was measured, and the specimen
was analyzed within 2 h. The students provided written,
informed consent to participate in the study as well as
information about their menstrual cycles. Specimens were
classified into four groups according to the number of
days after menstruation as follows: menstrual (1–7 days
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