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Compressed sensing (CS) has been applied to accelerate magnetic resonance imaging (MRI) for many years. Due to the lack of
translation invariance of the wavelet basis, undersampled MRI reconstruction based on discrete wavelet transform may result in
serious artifacts. In this paper, we propose a CS-based reconstruction scheme, which combines complex double-density dual-tree
discrete wavelet transform (CDDDT-DWT) with fast iterative shrinkage/so� thresholding algorithm (FISTA) to e	ciently reduce
such visual artifacts. �e CDDDT-DWT has the characteristics of shi� invariance, high degree, and a good directional selectivity.
In addition, FISTA has an excellent convergence rate, and the design of FISTA is simple. Compared with conventional CS-based
reconstruction methods, the experimental results demonstrate that this novel approach achieves higher peak signal-to-noise ratio
(PSNR), larger signal-to-noise ratio (SNR), better structural similarity index (SSIM), and lower relative error.

1. Introduction

Magnetic resonance imaging (MRI) is a powerful noninvasive
imaging modality, which is ubiquitously used in modern
medical diagnosis [1]. MRI provides comparable spatial reso-
lution with ultrasound and yields superior performance than
CT in so�-tissue imaging. Nevertheless, the long scanning
time limits its applications. Compressed sensing (CS) can
exploit the sparsity of MR images in the transform domain
and perfectly recover images from fewer measurements than
those suggested by the traditional Nyquist sampling theory
[2–4]. Furthermore, CS-MRI can reduce the number of
samples, e�ectively shorten the scanning time, and then
obtain successful recovery if two prerequisites are satis�ed:
(i) the raw imaging data must have a sparse representation
in a known transform domain and (ii) the undersampling
artifacts appear su	ciently incoherent in the sparsifying
transform domain [3]. However, the quality of the recon-
structed images is poor when the �-space data are highly
undersampled and the representation is not sparse enough.

In recent years, a variety of techniques have been pro-
posed to enhance the quality of MRI, which can be roughly

classi�ed into three categories [5]: incoherent undersampling
pattern [6], sparse representation [7], and nonlinear recon-
struction algorithms [8–11]. �e �rst strategy (e.g., variable
density random �-space sampling [6], spirals sampling [12],
radial sampling [13], and Gaussian random sampling [14])
takes advantage of designing the �-space sampling pattern to
shorten the sampling time, increase the imaging speed, and
reduce the motion artifacts. However, aliasing artifacts may
occur in these sampling methods. �e high-frequency part
contains less image information than the low-frequency part.
Hence, by using undersampling patterns, the information
about details is lost in the reconstructed images. Besides, the
substantial aliasing artifacts appear incoherent. In case that
the sampling ratio is extremely low, it is almost impossible
to remove the signi�cant aliasing artifacts from real signals
[6, 8, 9]. For the second approach, it is essential to �nd a
suitable sparsifying transform to recover images from highly
undersampling �-space data. �e discrete wavelet transform
(DWT) is widely applied inCS-MRI, but it is sensitive to shi�,
lacks information about phase, and has poor directionality
[15]. Wavelets cannot sparsely represent curves and may lead
to visible artifacts.�e contourlet sparse transform is another
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popular alternative that can e	ciently capture the contour
information. �is transform exhibits superior performance
in representing curves, but it may fail in representing sin-
gular points [16]. �e stationary wavelet transform (SWT)
can noticeably reduce pseudo-Gibbs artifacts [17]. Similar
to DWT, SWT can only possess three spatial directions.
�us, when the original image involves rich directional
information, the recovered images may become blurred. �e
complex double-density dual-tree discrete wavelet transform
(CDDDT-DWT) has the characteristics of antialiasing prop-
erties and shi� invariance and is approximate to continuous
wavelet transform. Moreover, it has excellent directional
selectivity that can better describe the direction of the original
image [18, 19]. �e third technique explores an e�ective
nonlinear reconstruction algorithm to solve the optimization
problem, which is usually a combination of least square
�tting and ℓ1-norm regularization.�ese approaches, such as
conjugate gradient [8], iterative shrinkage/so� thresholding
algorithm (ISTA) [20], two-step ISTA (TwIST) [21, 22], and
fast iterative shrinkage/so� thresholding algorithm (FISTA)
[23], have been investigated intensively in the literature.
However, each of them has limitations. For instance, the
convergence speed of conjugate gradient is very slow due to
the high time-complexity. ISTA is quite sensitive to the step
size and its convergence speed may be rather slow especially
when the measurement matrix is seriously ill-conditioned.
For TwIST and FISTA, their estimates are not only dependent
on the previous one, but also related to two or more previous
estimates. Moreover, the global convergence rate of TwIST
has not been thoroughly studied, while FISTA inspired by
Nesterov’s optimal algorithm [24] can be easily implemented
and is su	cient to solve large-scale convex problems. It has

been proved that the convergence rate of FISTA is �(1/�2),
where � is the number of iterations.

To enhance the image reconstruction quality and reduce
the reconstruction artifacts, in this paper, we propose a novel
reconstruction scheme, which combines CDDDT-DWTwith
FISTA. Although dual-tree complex wavelet transform has
also been exploited in the literature [25], its directional selec-
tivity is inferior to CDDDT-DWT. It may su�er from artifacts
as well, especially when the original image contains infor-
mation in several directions. �e CS-MRI combining with
CDDDT-DWT was �rst introduced in [15]. In comparison
with [15], the FISTA algorithm [23] with faster convergence
rate was utilized to replace conventional conjugate gradient
algorithm that costs more computational time.

�e remainder of this paper is organized as follows.
Section 2 presents the new sparsity transform and brie�y
describes the basics of CS as well as the proposed FISTA-
CDDDT method. �e experimental results of the proposed
approach and its comparisonwith other state-of-the-art tech-
niques are illustrated in Section 3. In Section 4, the discussion
for our algorithm is presented. Section 5 concludes the paper.

2. Materials and Methods

2.1. Complex Double-Density Dual-Tree DWT. �e CDDDT-
DWT is an overcompleted discrete wavelet transform that
combines double-density DWT [19] with dual-tree CWT

[26]. It consists of two scale functions�ℎ(�) and��(�) and four
distinct wavelets �ℎ,�(�) and ��,�(�)(� = 1, 2), where �ℎ,1(�) is
an o�set from �ℎ,2(�) by one-half and ��,1(�) is an o�set from
��,2(�) by one-half. One pair of wavelets �ℎ,�(�) and ��,�(�)(� =1, 2) form an approximation of the Hilbert transform pair
[18]; namely, ��,1(�) ≈H{�ℎ,1(�)}, ��,2(�) ≈H{�ℎ,2(�)}.

Two-dimensional (2D) double-density dual-tree DWT
includes 2D real double-density dual-tree DWT and 2D
complex double-density dual-tree DWT. �e former is con-
structed from two oversampled 2D double-density DWT in
parallel, which is redundant by a factor of two. Figure 1 shows
its �lter bank structure, where the row and the column �lters
produce two low-frequency subbands (i.e., 	0	0,
0
0) and
16 high-frequency subbands (i.e., 	0	1, 	0	2, 	1	0, 	1	1,	1	2, 	2	0, 	2	1, 	2	2, 
0
1, 
0
2, 
1
0, 
1
1, 
1
2,
2
0, 
2
1, and 
2
2) to describe the details of the
recovered image.

�e latter is formed by utilizing four oversampled 2D
double-density DWT in parallel to the input image. �e
�lter bank structure of this transform can be obtained by
extending the one illustrated in Figure 1. As shown in
Figure 2, 	� and 
� make up the �lter banks of the �rst-
level decomposition, where 	� represents a scale �lter and

� depicts eight wavelet �lters, while 	� and 
� denote
the �lter bank structures of the second-level decomposition.
Each level generates four low-frequency subbands (	 ��, � =
level, � = 1, . . . , 4) and 32 high-frequency subbands (
��,� = level, � = 1, . . . , 4) through 2D CDDDT-DWT transform.
Similar to other wavelet transforms, the redundant transform
is achieved by recursively applying low-frequency subbands
to complete the decomposition of each level. For each pair
of subbands, CDDDT-DWT takes their summation and
di�erence to produce the 32 oriented wavelets, describing
a total of 16 main directions. Besides, each main direction
contains two distinct wavelet representations, which indicate
the real part of a complex-valued 2Dwavelet function and the
imaginary part, respectively [27].

2.2. Proposed FISTA-CDDDT Algorithm. �eCS-MRI image
reconstruction problem is de�ned as follows:

min� � (
)
s.t. �����	
 − �����22 ≤ �,

(1)

where
 denotes the fully sampled image,� is the �-space data
acquired from a MR scanner, and � (� > 0) is a parameter
appropriately chosen based on the noise level, which controls
the di�erence between the object image and the recon-
structed one. �	 is the undersampled Fourier transform in
MRI. �(⋅) is called the regularization function in the trans-
form domain, which is generally nonsmooth. �is optimiza-
tion problem can be potentially solved by total variation-
(TV-) based approaches [10], but we will not discuss them in
this paper. Here, the constrained optimization problem in (1)
can be transformed into the following unconstrained one by
using Lagrangian function:


̂ = argmin�
1
2
�����	
 − �����22 + �� (
) , (2)
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Figure 1: �e �lter bank structure for real 2D double-density dual-tree DWT.
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Figure 2: �e two levels of 2D complex double-density dual-tree
DWT.

where � is a positive regularization parameter. To solve (2),
ℓ0 “norm” (‖
‖0 = |{� : ̸= 0}|) is chosen as the regularization
function. �(
) = ‖
‖0 especially provides the simplest way to
enforce the sparsity:


̂ = argmin�
1
2
�����	
 − �����22 + � ����Φ�
����0 ,

� = 1, 2, . . . , 16,
(3)

where 
 can be sparsely represented in this selected domain
Φ. Here, Φ� (� = 1, 2, . . . , 16) is the 16 high-frequency
subbands of CDDDT-DWT, which serves as a new sparse
basis. However, the solution of (3) is a NP hard problem,
which means that a solution within polynomial time is not
guaranteed [11].

As an alternative formulation, applying ℓ1-norm directly
to the regularization function produces the result formally
de�ned as


̂ = argmin�
1
2
�����	
 − �����22 + � ����Φ�
����1 ,

� = 1, 2, . . . , 16.
(4)

Since ℓ1-norm is nonsmooth and convex, (4) can be
considered as the convex relaxation of (3) to e�ectively
solve the quadratic convex problem. In the underdetermined

problem (4), �(
) = (1/2)‖�	
−�‖22 represents the quadratic
term, which is a convex function with Lipschitz continuous
gradient, and �(
) = �‖Φ�
‖1, � = 1, 2, . . . , 16 is a nonsmooth
convex regularizer.

�e FISTA algorithm is applied to solve the optimization
problem of (4). For a given point �
, we can get the gradient
of �(
) at �
 by

∇� (�
) = ��	 (�	�
 − �) ,

� = �
 − ���	 (�	�
 − �) ,

(5)

where ��	 (�	�
 − �) denotes the gradient of �(
) at the given
point �
, which is a speci�c combination of the previous
estimate values 

, 

−1.�e original FISTA based on wavelet
transform has been well studied in the literature with a
backtracking step size or a constant step size �, both of which
can provide an improved global convergence rate of �(1/�2)
[23]. For simplicity, most algorithms adopt a constant step
size in the direction of the negative gradient of the convex
function.

Applying the sparsity transform CDDDT-DWT to a local
optimal image 
�, we can get

 ℎ = � �����Φ�
������1 , � = 1, 2, . . . , 16, (6)

where  ℎ is the new wavelet coe	cients, which can be
adjusted by the proximal forward-backward iterative scheme
[28] to catch the accurate coe	cients. Although ℓ1-norm
is nonsmooth, it is separable and CDDDT-DWT has the
characteristics of tight frame. It is known that the shrinkage
thresholding function with threshold ! is utilized to obtain
the modi�ed wavelet coe	cients  �ℎ:

shrink ( ℎ, !) =  ℎ"""" ℎ"""" ∗max ("""" ℎ"""" − !, 0) ,

 �ℎ = shrink ( ℎ, !) .
(7)

�e recovered image 

 is updated by



 = Φ−1�  �ℎ, � = 1, 2, . . . , 16. (8)

In (8), the inverse CDDDT-DWT (Φ−1� , � = 1, 2, . . . , 16)
is applied by the synthesis �lter bank structure, constituted by
inverse order of the analysis �lter bank [27]. $ is a threshold
relaxation factor to adjust !, which optimizes ! and reduces
the calculation time. When the stop condition ! ≤ % is
satis�ed, we obtain the optimal solution of (4).

�e proposed algorithm combining the complex double-
density dual-tree and fast iterative shrinkage thresholding
algorithm (FISTA-CDDDT) for solving (4) is depicted as in
Algorithm 1.

3. Experiments

3.1. Experimental Setup. To evaluate the performance of
the proposed reconstruction algorithm, we implement the
complex double-density dual-tree wavelet and conventional
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Input: �1 = 
0, �1 = 1, �, �, !, $, %(1) for � = 1 to K do
(2) 
� = �
 − �∇�(�
)(3)  ℎ = �‖Φ�
�‖1, � = 1, 2, . . . , 16(4) shrink( ℎ, !) = ( ℎ/| ℎ|) ∗max(| ℎ| − !, 0)(5)  �ℎ = shrink( ℎ, !)(6) 

 = Φ−1�  �ℎ, � = 1, 2, . . . , 16(7) if ! > % then
(8) ! = ! ∗ $
(9) �
+1 = (1 + √1 + 4�2
)/2(10) �
+1 = 

 + ((�
 − 1)/�
+1)(

 − 

−1)(11) end if
(12) end for

Output: 


Algorithm 1: FISTA-CDDDT.

wavelet using the so�ware in [27, 29]. �e experiments
are conducted on three typical MR datasets: Shepp-Logan
phantom [17], axial brain MR data, and spine MR data, as
shown in Figures 3(a)–3(c). �e �rst Shepp-Logan phantom
is piecewise smooth and strictly sparse, which involves the
directional curves and thus can be used for testing the
proposed algorithm. �e complex �-space data of the axial
brain are acquired by a 3T GE MR750 scanner using fast
spin echo sequence (TR/TE = 500/12.9ms, �eld of view =
240 × 240mm, and slice thickness = 5mm). �e spine MR
data are a fully sampled �-space data obtained by a 3T GE
MR750 system with FRFSE sequence (TR/TE = 2500/110ms,
�eld of view = 240 × 240mm). For the sake of brevity, the size
of all testing images is scaled to 256 × 256. All experiments
are performed using MATLAB 2014b on a desktop computer
with a 3.2GHz Intel core i5-4460 CPU.

Gaussian random �-space pattern and radial undersam-
pling pattern are used to undersample the fully sampled �-
space raw data. For most of MR images, the �-space signal
with a large magnitude is generally localized in the central
part. Figure 4(a) shows a Gaussian random sampling pattern,
which randomly collects more low-frequency signals in the
central region of �-space and less high-frequency signals in
the peripheral region of �-space. �e radial undersampling
pattern displayed in Figure 4(b) contains 22 radial lines with
a sampling ratio of 9% in the Fourier transform domain.
�e sampling ratio, de�ned as the number of sampled points
divided by the total size of original image, depends on the
number of radial lines. �e more the radial lines are, the
higher the sampling ratio will be. It is worth noting that all the
experiments can use the spiral or Cartesian sampling pattern
as well.

3.2. Experimental Methods. In this work, FISTA based on
three di�erent sparsity transforms is utilized to solve the
optimization problem of (4). �ese three techniques are
implemented under the same conditions. �e �rst method
combines the discrete wavelet transformwith FISTA (FISTA-
DWT), the second algorithm integrates the complex dual-
tree wavelet transform with FISTA (FISTA-CDT), and the

third approach incorporates the complex double-density
dual-tree wavelet transform with FISTA (FISTA-CDDDT).
For both the simulation and experiments on in vivo data,
FISTA-DWT uses a Daubechies wavelet frame with four
decomposition levels as a sparsity basis. FISTA-CDT utilizes
a biorthogonal Daubechies wavelet with the 9/7 �lters in the
�rst stage and then exploits the Q-�lter by Kingsbury in the
second stage [25]. FISTA-CDDDT applies the �nite impulse
response (FIR) to perfectly reconstruct the �lter banks.

We �rst conduct the experiment on the Shepp-Logan
phantom image shown in Figure 3(a). �e optimal values are
experimentally set and all the three methods terminate a�er
100 iterations with 20% undersampling �-space data. In the
axial brain experiment, we set the optimal parameters % =
0.001, � = 1, $ = 0.9, and ! = 0.0095, while parameters in
the spine experiment are set as % = 0.0001, � = 1, $ = 0.9, and
! = 0.01. For di�erent testing datasets, the tuning parameter
� is set to di�erent values and the total number of iterations
in all the cases is set to 120. Additionally, in both simulation
and experiments on in vivo data, we addGaussianwhite noise
to simulate a realistic environment. For simplicity, the same
standard derivation ' = 0.01 is used.

�e peak signal-to-noise ratio (PSNR), signal-to-noise
ratio (SNR), structural similarity (SSIM) index, and relative
error (Rel.Err) are used to evaluate the FISTA-CDDDT recov-
ery performance. �e PSNR is calculated using the follow-
ing equation:

PSNR = 20 log10 MAX

√ 1
-; ∑
�=0∑��=0 (
 (�, �) − 
̂ (�, �))2

,
(9)

where 
 denotes images reconstructed from fully sampled
data,- and ; are the number of rows and columns in the
input image, respectively. MAX means the maximum possi-
ble pixel value in the input image data, and 
̂ is the recon-
structed image.

�e SNR is de�ned as

SNR = 10 log10
∑
�=0∑��=0 
 (�, �)2

∑
�=0∑��=0 (
 (�, �) − 
̂ (�, �))2
. (10)

�e de�nition of the SSIM index is given by

SSIM (?, @)

= (2B�B� + C1) (2E�E� + C2) (2E�� + C3)
(B2� + B2� + C1) (E2� + E2� + C2) (E�E� + C3)

, (11)

where ? and @ are the various local windows from the same
local window in the two di�erent images to be compared.
B� and B� are the mean of ? and @, respectively, while E�
and E� represent their variance. E�� is the covariance of ?
and @. C1, C2, and C3 are three variables used to increase the
stability of the results. Both SSIM index and SNR have the
same criterion as PSNR; that is, the reconstruction quality is
directly proportional to the value of the metrics.

�e Rel.Err is de�ned as

Rel.Err = ‖
 − 
̂‖2‖
‖2 × 100%. (12)
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(a) (b) (c)

Figure 3: �e MR images. (a) Shepp-Logan phantom, (b) axial brain, and (c) spine.

(a) (b)

Figure 4:�e undersampling patterns. (a) Gaussian random sampling at a sampling ratio of 20% and (b) radial sampling at a sampling ratio
of 9%.

A smaller Rel.Err indicates a higher similarity between the
original image and the reconstructed one.

3.3. Experimental Results. Note that, for all the �gures in
this part, various approaches are labeled by di�erent colors
below the images. �e green dotted lines mean FISTA-DWT,
the pink dotted lines denote FISTA-CDT, and the blue lines
represent the proposed FISTA-CDDDT.

Figure 5 gives the reconstructions by FISTA-DWT,
FISTA-CDT, and FISTA-CDDDT using di�erent sampling
schemes at the same sampling ratio. �e Gaussian random
sampling mask shown in Figure 5(a) is applied on Shepp-
Logan phantom. According to the reconstruction results pre-
sented in Figure 5, it can be seen that the image produced by
FISTA-DWT contains serious artifacts due to undersampling
and the one recovered by FISTA-CDT shows visible artifacts
which are visually better than FISTA-DWT, whereas the arti-
facts in FISTA-CDDDT recovery are much less notice-
able than FISTA-DWT and FISTA-CDT under the same

conditions. Using the radial sampling mask illustrated in
Figure 5(e), both FISTA-DWT and FISTA-CDT have the
streaking artifacts, while the image recovered by the proposed
method is the most similar one to the original image with no
streaking artifacts.�ese streaking artifacts may be caused by
low sampling ratio. Under such a sampling ratio, classic ℓ1-
norm based CS techniques may result in poor performance
with substantial artifacts. Consequently, CS methods cannot
guarantee the quality of the reconstructed image at low
sampling ratios.

Figure 6 illustrates that the proposed algorithm yields the
best result with the highest PSNR and the lowest Rel.Err,
where (a) and (c) describe the change of PSNR with the
increasing number of iterations. All the three methods based
on FISTA reconstruction have the same convergence rate.
Since CDDDT-DWT adopts more wavelets and performs
better in directional selectivity, the image reconstructed by
this novel algorithm is much better than those by FISTA-
CDT and FISTA-DWT, regardless of the adopted sampling
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Reconstructed results of Shepp-Logan phantom images using Gaussian random mask (a–d) and radial mask (e–h) with a 20%
sampling ratio among di�erent approaches. (a) Gaussian random sampling mask, (b) and (f) FISTA-DWT, (c) and (g) FISTA-CDT, (d) and
(h) FISTA-CDDDT, and (e) radial sampling mask.

patterns. Figures 6(b)–6(d) demonstrate that FISTA-CDDDT
has less reconstruction errors than FISTA-CDT and FISTA-
DWT.

For further analysis, the PSNRs of the reconstructed
images using di�erent methods are plotted at various sam-
pling ratios. It is clear from Figure 7 that, with the increase
of the sampling ratio, the PSNR of all algorithms grows as
well. Compared with traditional wavelet, the improvement
of PNSR is approximately 6 dB applying radial sampling
scheme. �erefore, the proposed scheme outperforms the
other two in simulation.

Figures 8 and 9 present all the reconstruction results of
FISTA-DWT, FISTA-CDT, and the proposed FISTA-CDDDT.
Additionally, images in the �rst row are recovered by using
the same sampling mask and images in the second row are
magni�ed images of the marked regions in the �rst row. Two
imaging cases (axial brain image and spine MR image) are
comparedwith each other at a 20% sampling ratio. Figure 8(a)
especially is reconstructed from full �-space data.�e �-space
data from each coil are reconstructed separately, and the �nal
image is generated by the sum-of-square method [30].

Note that the PSNRs of reconstructed axial brain images
using radial samplingmask by FISTA-DWT, FISTA-CDT, and
FISTA-CDDDT are 33.99 dB, 37.58 dB, and 38.87 dB, respec-
tively. �e magni�ed images are shown in Figures 8(e)–8(h).
From these �gures, we can see that the brain structure in the
local area becomes more and more distinct. �e signi�cant
artifacts existing in Figure 8(b) may be caused by imperfect
�lter bank in the traditional wavelet. �e synthesis and
analysis �lter banks adopted by our FISTA-CDDDT aremore

Table 1: Numerical results for an axial brain MR image by di�erent
reconstructed methods using radial sampling mask with ' = 0.01.
Sampling ratio Algorithms SNR (dB) Rel.Err (%) SSIM

15%

FISTA-DWT 14.51 4.99 0.7461

FISTA-CDT 17.26 3.76 0.8393

FISTA-CDDDT 20.26 3.19 0.9328

18%

FISTA-DWT 17.68 3.28 0.8409

FISTA-CDT 21.15 2.41 0.9246

FISTA-CDDDT 22.74 2.17 0.9558

20%

FISTA-DWT 19.84 2.61 0.8703

FISTA-CDT 22.53 1.88 0.9427

FISTA-CDDDT 23.82 1.76 0.9610

25%

FISTA-DWT 20.94 1.76 0.9067

FISTA-CDT 24.37 1.30 0.9544

FISTA-CDDDT 25.17 1.25 0.9651

28%

FISTA-DWT 22.35 1.36 0.9242

FISTA-CDT 25.42 1.00 0.9600

FISTA-CDDDT 26.01 0.99 0.9675

appropriate to obtain the curve details, especially in curve
processing.�e spine experiments (see Figure 9) demonstrate
very similar results to the axial brain. Once again, this proves
that the proposed method is more accurate and e�ective.

Table 1 gives the SNR, Rel.Err, and SSIM index for the
reconstruction on an axial brain MR image at di�erent
radial sampling ratios with ' = 0.01. �ese results further
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Figure 6: �e comparison results among three di�erent MR reconstruction algorithms using Gaussian random mask (a and b) and radial
mask (c and d) at a 20% sampling ratio using Shepp-Logan phantom image. (a) and (c) PSNR versus iterations; (b) and (d) Rel.Err versus
iterations.

demonstrate that the proposed FISTA-CDDDT is superior to
the other two methods, because it exhibits the highest SNR,
best SSIM index, and lowest Rel.Err.

Figures 10 and 11 show the PSNR of the reconstructed
images by FISTA-DWT, FISTA-CDT, and FISTA-CDDDT.
In most cases, the proposed method has better performance
than the other two approaches. However, when the Gaussian
random sampling ratio is lower than 15%, the PSNR of our
method is slightly higher than the other two. �is is because
when the sampling ratio is very low, the useful information
about the main feature of the image is missing. �e di�erent
evaluation criteria presented in Table 2 indicate that our
method and FISTA-CDT are more e�ective than FISTA-
DWT for performing reconstruction on a spine image at
di�erent sampling ratios. As the tissue structure of the cer-
vical spine is too complicated, there is no obvious di�erence
between the proposed algorithm and FISTA-CDT.

4. Discussion

Considering the superiority of CDDDT-DWT in preserving
edges and maintaining higher directional selectivity, the
proposed reconstruction approach combines the CDDDT-
DWT with FISTA to produce better recovery results with a
faster convergence rate. Although the ISTA and TwIST can
be integrated with CDDDT-DWT as well, both of them were
designed for simple regularization problems. Besides, they
have some drawbacks that cannot be ignored. ISTA based on
the operator-splitting strategy is a promising method, which
has been successfully used in signal recovery. However, it
belongs to the �rst-order algorithm that converges quite slow.
As a variant of ISTA, TwIST is also an iterative thresholding
algorithm, which is not guaranteed to converge globally. In
contrast, FISTA has a faster convergence rate and better
reconstruction accuracy, as proved in [23].
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Figure 7: Comparisons among di�erent approaches at di�erent sampling ratios. (a) Gaussian random sampling and (b) radial sampling using
a Shepp-Logan phantom image.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Reconstructed images using 20% radial sampling. (a) An axial brain image, (b) FISTA-DWT, (c) FISTA-CDT, (d) FISTA-CDDDT,
and (e)–(h) magni�ed images of the regions marked by white rectangles in (a)–(d), respectively.
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Figure 9: Reconstructed images using 20% Gaussian random sampling. (a) A spine image, (b) FISTA-DWT, (c) FISTA-CDT, (d) FISTA-
CDDDT, and (e)–(h) magni�ed images of the regions marked by white rectangles in (a)–(d), respectively.
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Figure 10: �e comparison of PSNR versus sampling ratio among three di�erent MR reconstruction algorithms using (a) Gaussian random
mask and (b) radial mask on an axial brain image.
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Figure 11: �e comparison of PSNR versus sampling ratio among three di�erent MR reconstruction algorithms using (a) Gaussian random
mask and (b) radial mask on a spine image.

Table 2: Numerical results for a spine MR image using di�erent
reconstructedmethods employingGaussian random samplingmask
with ' = 0.01.
Sampling ratio Algorithms SNR (dB) Rel.Err (%) SSIM

15%

FISTA-DWT 13.19 11.77 0.7555

FISTA-CDT 14.35 11.55 0.7955

FISTA-CDDDT 17.32 8.34 0.8694

18%

FISTA-DWT 16.08 7.48 0.8349

FISTA-CDT 17.68 7.26 0.8656

FISTA-CDDDT 19.51 3.57 0.9170

20%

FISTA-DWT 18.28 3.07 0.8937

FISTA-CDT 20.48 2.43 0.9301

FISTA-CDDDT 20.78 2.40 0.9435

25%

FISTA-DWT 19.49 2.30 0.9196

FISTA-CDT 21.78 1.88 0.9520

FISTA-CDDDT 21.80 1.81 0.9599

28%

FISTA-DWT 19.05 2.21 0.9262

FISTA-CDT 22.22 1.90 0.9551

FISTA-CDDDT 22.27 1.76 0.9262

It is worth noting that Zhu et al. [15] designed an
improved compressed sensingMRI algorithm (iCS), a variant
of nonlinear conjugate gradient descent approach, to mini-
mize the traditional CS model in which the image should be
sparse in both the total variation and the speci�c CDDDT-
DWT transform at the same time.�e absolute value in iCS is

approximated by a smooth function. In addition, the search-
ing step size of backtracking line-search in iCS was set as 5,
which may be too large, leading to an inexact solution and
more computational time. Unlike iCS associated with com-
posite regularization, the simple optimization model with F1-
norm regularization is studied in this work. Furthermore,
FISTA-CDDDT �rst uses proximal forward-back optimiza-
tion to approximate the linearized function�(
), then applies
shrinkage thresholding function to solve the minimization
problem due to the separable characteristics of F1-norm, and
�nally adopts the speci�c linear combination of 

 and 

−1
to smartly select the search points. Besides, the threshold
relaxation technique can further reduce the computational
cost. Consequently, our method can gain a more accurate

solutionwith a dramatically improved complexity of�(1/�2).
5. Conclusion

In this paper, we develop a new image reconstructionmethod
for CS-MRI based on complex double-density dual-tree
wavelet transform. �e �lter bank structure of the CDDDT-
DWT is explored. �is novel approach has been applied
to Shepp-Logan phantom and axial brain and spine image
reconstruction and compared with two popular methods,
namely, FISTA-DWT and FISTA-CDT. �e reconstructed
results demonstrate that our scheme improves the PSNR and
SNR as well as SSIM index and reduces the reconstructed
artifacts signi�cantly. In both simulation and experiments
on in vivo data, we use the FISTA as the reconstruction
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algorithm. However, it can only solve the unconstrained
minimization problems. An algorithm that can solve both
unconstrained and constrained convex optimization prob-
lems will be studied in the future work.
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