
Department of Computer Science University of North Carolina at Chapel Hill November 2004

Fast Computation of Database
Operations using Graphics Processors

Highlights
We have developed novel algorithms for fast computation
of several common database operations using graphics
processing units (GPUs). Specifi cally, we consider essential
computational operations for database and data mining
applications such as:

Conjunctive selections
Aggregations
Semi-linear queries
Selectivity Analysis

The Challenge
We present new algorithms for performing fast
computation of several common database opera-
tions on commodity graphics processors. Specifi -
cally, we consider operations such as conjunctive
selections, aggregations, and semi-linear queries,
which are essential computational components of
typical database, data warehousing, and data mining
applications. Moreover, these operations are widely
used as fundamental primitives to build complex
database queries and to support on-line analytic
processing (OLAP) and data mining procedures.
The effi ciency of these operations has a signifi cant
impact on the performance of a database system.

While graphics processing units (GPUs) have been
designed for fast display of geometric primitives, we
utilize the inherent pipelining and parallelism, single
instruction and multiple data (SIMD) capabilities,
and vector processing functionality of GPUs, for
evaluating boolean predicate combinations and
semi-linear queries on attributes and executing da-
tabase operations effi ciently.

Our algorithms take into account some of the
limitations of the programming model of current
GPUs and perform no data rearrangements. We
present novel algorithms for performing multiattrib-
ute comparisons, semi-linear queries, range queries,
computing the kth largest number, and other aggre-
gates. The attributes in the database are represented
using fl oating point textures on current GPUs. The
database queries are performed on these attributes
by copying the data values from the textures into
the depth buffer using fragment programs. The
queries are then evaluated by using the depth test
functionality of GPUs, and the results are stored
in the stencil buffer.

These algorithms have been applied to large data-
bases composed of up to a million records. The
performance of these algorithms depends on the
instruction sets available for fragment programs,
the number of fragment processors, and the un-
derlying clock rate of the GPU. We also perform
a preliminary comparison between GPU-based al-
gorithms running on a NVIDIA GeForceFX 5900
Ultra graphics processor and optimized CPU-based
algorithms running on dual 2.8 GHz Intel Xeon
processors.

High Performance Gain: For semi-linear and selection que-
ries, our GPU-based algorithms are 20 – 90 times faster than
CPU-based implementations.

Medium Performance Gain: The algorithms for aggregates
obtain modest gain of 6 – 9 times speedup over CPU-based
implementations.

Low Performance Gain: Accumulator algorithm is slower than
CPU-based implementation due to the lack of integer arithme-
tic on GPUs.

http://gamma.cs.unc.edu/DB

Team Members
Naga Govindaraju, research assisant professor
Ming C. Lin, professor
Dinesh Manocha, professor
Wei Wang, assistant professor
Brandon Lloyd, graduate student

Research Sponsors
U.S. Army Research Offi ce
Defense Advanced Research Projects Agency
Intel Corporation
National Science Foundation
Offi ce of Naval Research

Selected Publications
Naga K. Govindaraju, Brandon Lloyd, Wei Wang,
Ming Lin, and Dinesh Manocha, Fast Compu-
tation of Database Operations using Graphics
Processors, Proc. of SIGMOD, 2004.

Naga K. Govindaraju, Brandon Lloyd, Wei Wang,
Ming Lin, and Dinesh Manocha, Fast Compu-
tation of Database Operations using Graphics
Processors, Proc. of ACM Workshop on General
Purpose Computing on Graphics Processors
2004, p. C-9

Key Words
Query optimization, graphics processor

For More Information
http://gamma.cs.unc.edu/DB

Our results can be summarized as follows:

• High Performance Gain: Our results (shown
in Fig. 1 and 2) indicate that the semi-linear and
selection queries map very well to GPUs and we
are able to obtain signifi cant performance improve-
ment over CPU-based implementations.

• Medium Performance Gain: The algorithms
for aggregates obtain a modest gain of 2 - 4 times
speedup over CPU-based implementations.

• Low Performance Gain: In some cases, we did
not observe any gain over a CPU-based imple-
mentation. Our GPU based ACCUMULATOR
algorithm is slower than the CPU-based implemen-
tation. The slow performance is due to the lack of
integer arithmetic instructions on current GPUs
and slower clock as compared to CPUs.

Several new features are desirable for improving the
functionality and performance of our algorithms.

• Precision: Current GPUs have depth buffers with
a maximum of 24 bits. This limited precision can
be an issue. With the increasing use of GPUs in
performing scientifi c computing, graphics hardware
developers may add support for higher precision
depth buffers.

• Integer Arithmetic Instructions: Current GPUs
do not offer integer arithmetic instructions in the
pixel processing engines. In addition to database
operations, several image and video compression
algorithms also require the use of integer arithmetic
operations. Given that the fragment programs were
just introduced in the last few years, the instruc-
tion sets for these programs are presently being
enhanced.

• Depth Compare Masking: Current GPUs sup-
port a Boolean depth mask that enables or disables
writes to a depth buffer. It is very useful to have
a comparison mask specifi ed for the depth func-
tion, to that specifi ed in the stencil function. Such
a mask would make it easier to test if a number has
i-th bit set.

• No Random Writes: The GPUs do not support
random access writes, which makes it harder to
develop algorithms on GPUs because they cannot
use data rearrangement on GPUs.

Overall, our results indicate that the GPU can be
used as an effective co-processor for many database
operations.

