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ABSTRACT 

 
We present a method for computing dense stereo correspondences 
in calibrated monocular video by iteratively and stochastically 
sampling match quality values in the disparity search space. Most 
existing methods exhaustively compute local correspondence 
quality before searching for a globally optimal solution. Instead, 
we iteratively refine a correspondence estimate by perturbing it 
with random noise and formulating an influence at each sample 
based on the perturbation and its effect on correspondence match 
quality. Local influence is aggregated to recover consistent trends 
in match quality caused by the piecewise-continuous structure of 
the scene. Correspondence estimates for a given frame pair are 
seeded with the estimates from the previous frame pair, allowing 
convergence to occur across multiple frame pairs. 
 

Index Terms—Stereo vision, computational geometry, 
stochastic approximation, recursive estimation, simulated 
annealing 

 
 

1. INTRODUCTION 
 
Computational stereo techniques estimate the 3D structure of a 
scene by analyzing two or more 2D images captured from different 
viewpoints. Sparse stereo systems estimate depth to the scene at a 
small number of specific points. Dense stereo systems instead 
generate depth estimates at all pixels in a region of the imagery. 
The core problem in dense computational stereo is computing the 
correspondence between all the pixels in the two (or more) images 
being analyzed [5]. Finding efficient and robust solutions to this 
problem remains an active research field. 

This paper presents new techniques for computing dense stereo 
correspondence. In contrast with most methods, we explore the 
search space stochastically and non-exhaustively. We present a 
formulation of the influence that search space samples should exert 
on their local neighbors and methods for aggregating those 
influences such that the stochastic search converges towards the 
true solution. We also describe a new approach for seeding our 
stochastic search with previous search results, to reduce 
convergence time and improve accuracy. 

The work presented here is part of a larger system that is 
directed towards real-time dense reconstruction of urban scenes 

 
Figure 1: Example imagery (left) and elevation estimates (right). 

 
containing both static objects and moving vehicles. By modeling 
both static and moving objects and operating in real time, the final 
system will significantly improve the situational awareness of its 
users and will enable more independent autonomous unmanned 
vehicle operation. The scene is imaged by a single calibrated 
visible-light camera mounted on a low-flying unmanned aerial 
vehicle or other surveillance platform. Figure 1 shows a frame of 
characteristic input imagery alongside a set of elevation estimates. 
Our approach assumes full knowledge of camera position and 
orientation, but without control over either. 

Relevant surveys of this area can be found in [3] and [8]. The 
most relevant approaches are cooperative techniques, which 
provided both very early and very recent advances in the 
field [7][10], and approaches based on simulated annealing  [4] 
and microcanonical annealing [1][2]. With the exception of 
annealing-based approaches, the vast majority of approaches 
exhaustively compute match quality at all possible 
correspondences within the confines of the epipolar constraint, 
before attempting to find a globally consistent solution. 

 
2. APPROACH 

 
Our approach is driven by two opinions. First, we believe that 
dense stereo correspondence solutions can be computed faster by 
stochastically sampling the match quality instead of computing it 
for every possible pixel pairing. Second, we believe that the 
piecewise continuity constraint and continuity of matching 
likelihood constraint [6] can be used to skip exploration of portions 
of the disparity search space. 



For each iteration of our cooperative approach, we introduce 
random noise into each pixel’s disparity estimate, compute the 
match quality at the perturbed location, and compute the influence 
that the new sample should exert on the local solution region 
towards or away from the perturbed disparity estimate. Influences 
are then aggregated under the argument that perturbations towards 
the correct solution will generate more consistent and larger 
influences than superfluous improvements in match quality. 

We first pair frames from the video stream in order to maintain 
a constant ratio of stereo baseline to minimum depth to scene, 
following [9]. We then rectify the images to align the principal 
camera axes. (This is not a full projective rectification into a 
standard stereo geometry.) The dense correspondence approach 
computes disparity magnitude at each pixel, which is assumed to 
be along the known epipolar direction. Following correspondence 
matching, we triangulate to estimate range to the scene at each 
pixel, and then convert the dense point clouds into abstract surface 
models for the final output of the static modeling system. Static 
modeling byproducts are used to detect and track any moving 
vehicles in the scene, which are then identified and modeled by 
different means. 

 
2.1.  Stochastic search of disparity space 

 
In our target application, we know the direction of each pixel’s 
epipolar line because our camera positions and orientations are 
known. As a result, we can pre-compute unit vectors along the 
epipolar directions and represent the estimated correspondences by 
a scalar-valued disparity magnitude field D(r,c). Infinite depth 
results in zero disparity as a result of our rectification scheme. 

We bound our search by conservative assumptions on the 
minimum and maximum elevation of elements in the scene. Given 
our typical viewing angles, this gives tighter bounds on disparity at 
each pixel than bounds on depth. As a result, however, each pixel 
has different disparity bounds. We normalize D(r,c) over the 
allowed bounds at each pixel, yielding a normalized disparity on 
the range [0.0,1.0]. This normalized disparity is also equal to a 
“percent elevation” over the assumed minimum and maximum 
elevation range. 

Most approaches would compute the pixel-wise match quality 
q(r,c,D(r,c)) for every row, column, and every allowable disparity 
magnitude D(r,c) before optimizing to find a global solution. This 
requires O(RCL) computations for an R by C image with L 
possible disparity values. Instead, we iteratively refine an estimate 
Di(r,c) by randomly perturbing it with an additive noise 

][ maxmax ,),( δδ−∈∆ crid , computing the match quality of the 
perturbed disparities, and computing an influence I*

i(r,c) to be 
exerted by each new sample . The sign and 
magnitude of the influence are based on the sign and magnitude of 
the random perturbation, as well as its resulting effect on the match 
quality at that pixel. These pixel-wise influences are then 
aggregated over a local region A and applied to D
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i(r,c) to move it 
towards the correct solution. 

We thus avoid exhaustively computing q(r,c,D(r,c)) by instead 
stochastically sampling it and using local aggregation to extract 
consistent trends in match quality caused by the piecewise-
continuous structure of the scene. Consistent trends are captured 
and inconsistent noise is rejected by our aggregated influence 
Ii(r,c). As described in Section 2.4, the approach also lets us refine 

 

Table 1: Iterative stochastic correspondence search 

1. For each new frame, precompute epipolar directions and 
disparity bounds, and initialize the disparity magnitude 
estimate D0(r,c) (Section 2.4). 

2. For each stage, perform N iterations with noise magnitude 
maxδ  and aggregation neighborhood size A (Section 2.3): 
a. Compute match quality qi(r,c,Di(r,c)). 
b. Generate independent uniformly distributed random 

perturbations ][ ] [ ),(1),,(,),( crDcrDcrdi maxmax ii∆ −−∩−∈ δδ  at 
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c. Compute perturbed match quality ~,,(~ crDcr iiq . 
d. Compute pixel-wise influence (Section 2.2): 
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e. Aggregate influence over a local region (Section 2.2): 
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g. Smooth depth estimates  by averaging over 

aggregation neighborhood size A. 
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our disparity estimate over multiple frame pairs in a manner 
similar to recursive estimation approaches. 

Our approach is explained by the pseudocode given in Table 1.  
It is centered around the concept of an influence, Ii(r,c), which we 
define in Section 2.2 below. For now, we ask the reader to 
postulate that we can define influence such that (when aggregated 
in a local neighborhood) influence tends towards zero when the 
correct (optimal) solution is reached, and when the current 
estimate Di(r,c) is suboptimal the influence tends to have sign and 
magnitude such that adding influence to Di(r,c) will move it closer 
to the true solution.  
 
2.2. Influence formulation and aggregation 

 
Consider Figure 2, which shows a region of random disparity 

perturbations, resulting changes in match quality, resulting pixel-
wise influences, and finally aggregated influences. The pre-
perturbation disparity estimates Di(r,c) are typically smooth, with 
smoothly-varying match qualities qi. Randomly perturbing the 
disparity estimates introduces “noise” into iq~ . The job of the pixel-

wise influence is to extract structure from iiqi qq −=∆ ~ . At a first 

level, pixel-wise influence should be positive for perturbations that 
increase both disparity and match quality, and negative for 
perturbations that decrease both disparity and match quality. When 
the perturbation decreases match quality, pixel-wise influence 
should either be zero or directed away from the perturbation. 
Randomness ensures that some perturbations will increase 
disparity and some will decrease disparity, and likewise we expect 
that some match quality values will increase and some will 
decrease. By selectively giving influence to only those that 
improve the solution and aggregating over a local neighborhood, 
we can iteratively refine our estimates towards a better solution. 



  

  

Figure 2: Influence formulation and aggregation. (Clockwise from 
top left) Disparity perturbations, match quality perturbations, 

pixel-wise influences, and aggregated influences. 
 

We define influence in the following way:  
( ) 2/* 21 wwI Di +∆=  (1) 

)0),1(~max( 111 −−= CqCw i , with  101 ≈C (2) 

qicrqiw ∆∆=
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The definition of I* in (1) attempts to combine the two general 
approaches we have explored to date. The max operation in (2) 
ensures that only high perturbed quality values are given influence. 
The normalization in (3) ensures that w2 is bound from above by 
1.0 and will achieve that maximum for at least one pixel in each 
iteration. 

Aggregated influence should be aligned with perturbations that 
move the disparity estimate towards the correct solution and be 
nearly zero for perturbations away from the correct solution. 
Influence magnitudes should also be balanced such that they do 
not shrink too quickly as match qualities near 1.0, but large 
influences do not “overshoot” the optimal solution and cause 
undesirable oscillations or instabilities in the estimates.  

A set of desirable characteristics can also be defined for 
aggregation. Generally, aggregation is used to remove noise from 
pixel-wise influences while preserving consistent trends. Our 
typical aggregation mechanism has been simply to average pixel-
wise influences over a local region of size A x A. We have also 
explored non-isotropic filters that prevent smearing near occlusion 
boundaries, with promising initial results but at a significant 
runtime cost. Averaging and non-isotropic smoothing impose 
smoothness or piecewise-smoothness constraints (respectively) on 
the solutions. 

 
2.3. Search schedule 

 
The iterations in the stochastic search are performed according 

to a schedule analogous to an annealing schedule in simulated 
annealing, or a training schedule in a self-organizing feature map. 
These schedules, which define values for the parameters maxδ , A, 

and N for each stage, are modified and tuned often to explore 
alternatives for improved performance. 

Independent of fine-tuning, these search schedules have some 
global characteristics that are motivated by the need for them to be 
as robust as possible, and to recover details in the scene. Different 
input imagery resolutions may require different parameters 
(specifically values for the aggregation neighborhood size, A). As 
a result, A is specified as a fraction of the row and column 
resolution of the input, typically in the range of 1/30 to 1/120 for 
NTSC imagery. Maximum perturbation magnitude, maxδ , is given 
as a percentage of the full disparity search range (defined by 
assumptions on minimum and maximum scene elevation), which 
will have different absolute sizes at each pixel. Typical values for 

maxδ  range from 50% to 10%. 
Search schedules have few stages, with larger perturbations and 

aggregation neighborhoods in early stages and smaller values in 
the later stages. This is common for searches which seek to both 
minimize convergence time and retain detail in the solution. We 
use a unique schedule for the first frame pair that emphasizes 
larger perturbations and aggregations. Searches in subsequent 
frame pairs are seeded with an estimated solution (Section 2.4). 
We perform a fixed number of iterations in each stage, which gives 
better control over the tradeoff between accuracy and runtime. 

 
2.4. Seeding the computation 

 
Since we are generating dense depth estimates for each frame and 
we know the camera’s motion from one frame to the next, we can 
initialize our search with the results from the previous frame pair, 
instead of estimating the solution from scratch. Searches are 
seeded by projecting the previous estimates to where they would 
appear in the new frame of reference. In order to properly treat 
occlusions introduced by the camera motion, this process must 
include Z-buffering of the depth estimates. 

This seeding introduces aspects of recursive estimation, 
although our approach is not explicitly formulated in those terms. 
As a result of carrying over past estimates to new frame pairs, we 
do not need to compute a perfect solution as soon as a new scene 
element is visible – we can instead converge to the solution over 
time. This lets us reduce the iterations for each frame pair and use 
search schedules with smaller perturbations and aggregation 
neighborhoods, to retain detail in the solution. 

 
3. RESULTS 

 
Figure 3 shows an example image frame from a stereo pair, and the 
resulting reconstructed point cloud. The point cloud is shown 
colored according to the original imagery but viewed from a 
slightly different angle than either of the two original images. The 
approach is recovering the gross structure of the scene well, 
although work remains to capture small details. 

Performance is measured on an NTSC dataset provided by the 
Air Force Research Laboratory. Extrinsic camera parameter 
information is available in Global Positioning System (GPS) 
coordinates and Euler angles. Positions are known for a sparse set 
of building corners, fiducials, and stationary vehicles in the scene. 
Finding characteristic test imagery with dense ground truth is an 
ongoing challenge. 

Figure 4 shows sparse reconstruction accuracy vs. stereo 
baseline ratio (the ratio of stereo baseline to minimum depth [9]).  



 

 

Figure 3: Example input imagery (left) and reconstructed dense 
point cloud (right), viewed from a slightly different angle. 

 
A family of curves is given. Because our camera parameter 
knowledge is imperfect, a scene element may appear at a pixel 
other than the expected projection of its ground truth location. To 
compensate, we measure distance to the closest reconstructed point 
within a small radius in pixels. We believe that a radius of 5 pixels 
(the middle curve) is reasonable. Given this, we estimate our 
reconstruction accuracy against sparse ground truth to be 
approximately ±2m, at stereo baseline ratios of 0.04 and 0.17-0.20. 
Our evaluation sequences have depths of 150-225m, so this 
corresponds to slightly over 1% error. We have also tested our 
approach on half-resolution imagery with no reduction in 
accuracy, and on 10fps video with minimal reduction in accuracy. 
As a result, we believe that adequate end-system performance 
could be achievable on less-than-NTSC video resolutions and 
rates. 
 

4. DISCUSSION 
 

This paper presents a new approach for computing dense stereo 
correspondences by iteratively and stochastically sampling match 
quality values in the disparity search space, as well as a 
formulation of the influence each new match quality sample exerts 
on its local region of the solution. We believe that dense 
correspondence solutions can be computed faster if pixel-wise 
match quality is sampled instead of exhaustively computed and the 
trends in match quality values caused by the piecewise continuity 
constraint and continuity of matching likelihood constraint are 
used to guide a stochastic search of disparities. 

Annealing approaches evaluate perturbed estimates against an 
explicit objective function that accounts for both local and global 
characteristics. In contrast, our approach evaluates the effects of 
perturbations at each pixel independently and decides whether to 
accept or reject the perturbations based entirely on single-pixel 
effects. We then rely on aggregation over local neighborhoods to 
extract consistent trends in the effects of those perturbations, reject 
spurious results, and move the solution towards the global 
optimum. 
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Figure 4: Average reconstruction accuracy measured against 
sparse ground truth, vs. stereo baseline ratio. A family of curves is 

given to account for imperfect camera parameter knowledge. 
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