
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 17, NO. 9, SEPTEMBER 1995 899

v. PERFORMANCE

As explained in Section III.A, the computations for all rows of the
image can be performed in parallel. Thus, the computations for a
512 x 512 image, with 512 processors operating in parallel, can be
completed in 512 clock cycles. The critical path consists of an abso-
lute difference module followed by a comparator. The Verilog-XL
simulation results show that it is possible to operate the implemented
circuit with a 1 1 ns clock. Since new inputs can be provided to the
system every 11 ns, a 512 x 512 image can be processed in 5.632 ,US.

At 50 frames per second a new pixel value is input to the system
every 73.6 ns. Since the minimum clock period is 1 1 ns, this input
rate can be handled comfortably, and the entire depth recovery algo-
rithm can be run on-the-fly. Better utilization of the performance of-
fered by these architectures is possible by interleaving computations
for multiple camera sources. By interleaving signals from four cam-
era sources and doubling the number of delay stages and registers,
the first design for case two can process four independent camera
sources simultaneously. The sizes of the row buffers would have to
be quadrupled, and rows from four different reference images would
be stored in an interleaved fashion. Since high frame rates can easily
be supported by the proposed architectures, it is possible to use them
for autonomous vehicle navigation applications. Snapshots can be
taken frequently and after small camera displacements, leading to re-
liable range estimates.

ACKNOWLEDGMENTS
This work was supported in part by the National Science Founda-

tion under Grant MIP-9010358, and was conducted while R. Sastry
was at the University of South Florida, Tampa.

The authors wish to acknowledge the useful suggestions and
comments made by anonymous referees, which have helped in im-
proving the manuscript.

REFERENCES

[l] K.L. Boyer and A.C. Kak, “Structural stereopsis in 3D vision,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 10, no. 2,
pp. 144-166,1988.

[2] S.T. Bamard and W. Thompson, “Disparity analysis of images,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 2, no. 4, 1980.

[3] G. Sandini and M. Tistarelli, “Active tracking strategy for monocular
depth inference over multiple frames,” IEEE Trans. Pattern Analysis
andMachine Intelligence, vol. 12, no. 1. pp. 13-27,1990.

[4] K.D. Skifstad, High-speed range estimation based on intensiiy gradient
analysis, New York Springer-Verlag ,1991.

[SI K. Skifstad and R. Jain, “Range estimation from intensity gradient
analysis,” Machine Vision and Applications, vol. 2, pp. 81-102, 1989.

[61 A. Mukhedee, N. Ranganathan, J.W. Flieder and T. Achatya,
“MARVLE: A VLSI chip for data compression using tree-based codes,”
IEEE Trans. VLSI Systems, vol. 1, no. 2, pp. 203-214,1993.
S.Y. Kung, VU1 Array Processors, Englewood Cliffs, N.J.: Prentice
Hall, 1988.

[7]

Fast Computation of Normalized Edit Distances
Enrique Vidal, AndrCs Marzal, and Pablo Aibar

Abstract-The Normalized Edit Distance (NED) between two
strings X and Y is defined as the minimum quotient between the sum of
weights of the edit operations required to transform X into Y and the
length of the editing path corresponding to these operations. An algo-
rithm for computing the NED has recently been introduced by Marzal
and Vidal that exhibits O(mn2) computing complexity, where m and n
are the lengths of X and Y. We propose here an algorithm that is ob-
served to require in practice the same O(mn) computing resources as
the conventional unnormalized Edit Distance algorithm does. The per-
formance of this algorithm is illustrated through computational ex-
periments with synthetic data, as well as with real data consisting of
OCR chain-coded strings.

Index Terms-Normalized edit distance, Levenshtein distance, pat-
tern recognition, string correction, editing, spelling correction, optical
character recognition, speech recognition, fractional programming,
fast algorithms.

I. INTRODUCTION

The Normalized Edit Distance (NED) between strings X and
Y, d(X, Y), is defined as the minimum of W(P)/L(P), where P is
an editing path between X and Y, W(P) is the sum of the weights
of the elementary edit operations in P and L(P) is the number of
these operations (Length of P) . As was shown in [SI, d(X, Y)
cannot be obtained by “post-normalization”; that is, first comput-
ing the conventional (unnormalized) edit distance between X and
Y (i.e., minimum of W(P)) and then normalizing this distance by
the length of the corresponding editing path. In order to correctly
compute NEDs, an algorithm was introduced in [SI which ob-
tains d(X, Y) with O(mnz) computing complexity, where m and n
are the lengths of X and Y and m 2 n. The usefulness of NEDs
was also illustrated in [SI through hand-written digit recognition
experiments based on the k-Nearest-Neighbor classification
technique, in which NED consistently outperformed both the un-
normalized and postnormalized edit distances. However, these
unnormalized or “suboptimally normalized” edit distances (and
many other variations of the same), can be computed in O(mn)
time. Clearly, in some practical situations such a lesser compu-
tational complexity can outweigh the benefits of the optimality
of NED.

In this paper, an algorithm is introduced which is observed to
obtain the correct NED with almost the same O(mn) asymptotical
computational complexity as the conventional (suboptimal or
unnormalized) techniques do. More specifically, this algorithm
obtains the NED by repeatedly computing a number of conven-
tional edit distances. This number is generally very small and is
observed not to significantly depend on the length of the com-
pared strings. This algorithm is based on a technique known as
“Fractional Programming.”

II. FRAC~IONAL PROGRAMMING
Fractional Programming (FP) [2], [lll is an optimization

technique that can be useful in many problems involving ratio
functions. It can be considered as a particular case of the so-
called “C-programming” [l l] which can further deal with more

Manuscript received Oct. 5,1993; revised Oct. 5,1994.
E. Vidal and P. Aibar with Departamento de Sistem Infdm y

A. Marzal is with Unidad Redepattamental de Informitica, UNwsitat JaumeL
IEEECS Log Number F95066.

G~mputacih, Unimidad Polit6mica de Valencia

0162-8828/95$04.00 8 1995 IEEE

Authorized licensed use limited to: National Taiwan University. Downloaded on December 5, 2009 at 13:51 from IEEE Xplore. Restrictions apply.

900 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 17, NO. 9, SEPTEMBER 1995

general families of functions. FP seeks to solve the following
family of problems':

PROBLEM Q. Find

string x can be transformed into Y through a certain sequence of edit
operations, which can be seen as an "editing path" between X and Y
[5]. Let P be the (finite) set of all editing paths between X and Y. For
each P= (b,jo), ..., (ik, jk), ..., (i,,,, j,,,) E P, l e t u p) = m b e thelength
of P and let W(P) = Y(X~&-,+,...~& + q&-,+'...^) be the weight of
P. The computation of the NED between X and Y can then be for-
mally stated as the following minimization problem [5]:

q* = min - 44
Z E Z Y (4

where U , v: Z - R v(z) > 0, Vz E Z. 0
The set of optimal solutions to Q is denoted as z*; i.e.,

z*=(zEzYo= . PROBLEM NED: Find
v(z) 4*>

d * = d (X , Y) = minW(P). The parametric method of FP allows us to solve Q if a solution is P E P YP)

U
A Fractional Programming solution to this problem is given by the

algorithm FPNED, shown in Fig, 2. Given that P i s finite, Theorem 2
guarantees that, after a finite number of iterations, FPNED terminates
with A* = d(X, Y) and with P* being an optimal NED path.

available for a parametric problem of the type:
PROBLEM Q(A). Find

q * (a) = min - av(z)) Z E Z

where A E R U , v: Z w R v(z) > 0, Vz E Z. 0
The set of optimal solutions to Q(A) is denoted as z*(A). The fol-

lowing theorem establishes that, in fact, a A* E R exists such that
every optimal solution to Q(A*) is also optimal for Q:

THEOREM 1.

1) z E z* g z E T(u(z) /v(z));
2) the equation q*(A) = 0 has A* = q* as its unique solution. 0
Dinkelbach's algorithm [2], shown in Fig. 1, searches for such a

solution of q*(A) = 0 (and a corresponding z* E 2). The correctness
of this algorithm can be easily established as follows [111:

Algorithm Dinkelbach
I* := arbitrary-elment(2)
A' := U(Z*) /V(Z.)

repeat
A' := A'

I' := argmin,,z(u(t) - A'u(2))

A' := u(z*)/u(z*)
until A' = A'

return (z*,A*)

end Dinkelbach

Fig. 1. Dinkelbach's algorithm.

THEOREM 2. I fZ isfinite, Dinkelbach's algorithm terminates with il.
= q* and Z* E 2; otherwise, the sequence of values of the variable

0 A* that it generates converges superlinearly to q*.

111. FRACTIONAL PROGRAMMING AND NORMALIZED EDIT
DISTANCE: INITIALIZATION PROCEDURES

Let C be an alphabet and let E be the symbol for the empty string.
Let (a + b) be an elementary edit operation, where a and b are
strings of length 0 or 1 and (a + b) f (E + E). Each elementary edit

Algorithm FPNED
P := arbitrary-patb(P)
x' := W(P) /L(P ')

repeat
A' := A'

P' := argminpep(W(P) - A'L(P))
A' := W(P')/L(P*)

until A' = A'

return (P , A *)

end FPNED

Fig. 2. Fractional programming algorithm for the computation of Normalized
Edit Distance.

The minimization of W(P) - XUP) required by FPNED can be
carried out with the very same algorithm used for computing the con-
ventional unnormalized Edit Distance. This can be simply done by
replacing the given weight function Ha -+ b) by Ha + b) - X, so
that the accumulation over a given path, P, yields W(P) - XUP). On
the other hand, although the initialization of P* is, in principle, arbi-
trary, it should be chosen as close to the target solution as possible in
order to reduce the required number of iterations. An obvious choice
is a path obtained from the computation of the conventional unnor-
malized Edit Distance, but a better alternative exists as we will see
later on in this section.

EXAMPLE 1. (FPNED computation) Let X = abbb, Y = aaab and y as
specified in Fig. 3a (see also [51).

a b b b
a
a
a
b

wq3=a; m=4

a b b b
a
a

b
U

HIP) = 8: 40 = 6

operation (a -+ b) is assumed to be weighted by a nonnegative weight A% H(F'JIZ(P)sl.5 A?= H(P)/L(P k1.33

function Ha+ b) E R'O. Let X, Y E Z* be two strings over Z. The (4 (b) (4
Hg. 3. Example of Normalized Edit Distance computation by Fractional Pro-
gramming ("ED algorithm). a) weighting function; b) Conventional Edit-
Distance path used for initializing "ED; c) Normalized-Edit-Distance path
obtained after one iteration of FPNED.

' We consider here minimization problems rather than nwxintization Pmb-
lems as in [ll]. It can be easily verified that the same theorems, proofs and
the algorithm of [111 also hold in our formulation.

Authorized licensed use limited to: National Taiwan University. Downloaded on December 5, 2009 at 13:51 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 17, NO. 9, SEPTEMBER 1995 901

INITIALIZATION. With the conventional unnormalized Edit-Distance
path (Fig. 3b):

p* = (o,o), (Ll), (2,2), (3,3), (4,4)
A* - W(p*) - 6 - 3

4 P ’) -7-7

FJRST ITERATION. P* = argminp., (w(P) - 312 L(P)) is solved with
the unnormalized Edit-Distance algorithm, yielding (Fig. 3c):

P* = (O,O), (U), (U), (13), (23). (3,3), (4,4)
;1*,&-4

6 -7
This is already a solution to NED [5] but, since A* = 413 f 312
= 1: an additional iteration is required to guarantee that this is in
fact a correct result.

SECOND AND LAST ITERATION. P* = argminpep (w(P) -413 L(P))

P* = (O,O), (Ll), (1,2), (U). (2,3), (3,3), (4.4)
A * = & - 4 - a *

is solved, yielding:

6 -7-
0

Although the conventional unnonnalkd Edit Distance constitutes an
adequate initialization procedure for FPNED computation, better conver-
gence behavior can be achieved by using a suboptimal NED computing
technique known as “Locally Normalited Edit D i m “ ” (LNED). ’Ihis
heuristic consists of locally minimizing, at each point of the computational
latrice, the quotient of the current path weight by the current path length.
It is easy to show by means of counter examples that, in general, this
technique fails to obtain the true NED. However, this approach has been
proposed in the field of Automatic Speech Recognition [l], [4] as an
(empirically better) alternative to the conventional Dynamic Time Warp-
ing procedure usually adopted for “paring acoustic sequences of
speech [lo] [8]. As adapted to our NED problem, this suboptimal a p
proach can be implemented as shown in Fig. 4.

Algorithm LNED

var W = may [O..lX~,O..~Y~] of R
L = array [O..lXl,O..IYI] of N

i, j, L‘ E N W‘ E R

w0,o := 0; L&o := 0

for i := 1 to 1x1 d o Wi,o := Wi-i,o + r(Xi + E) ; Li.0 := 4-1.0 + 1 endfor

for j := 1 to IYI d o WO, := Woj-1 + $ E -A 4); hj :=&+I+ 1 endfor
for i := 1 to 1x1 do

for j := 1 to IYI d o

wi, := wi-1,-1+ r (x i + 4); Li,j := Li-lJ-l+ 1
W’ ._ .- wi-1j +7(X‘ -A c); L‘ := Li- l j + 1

W’ ._ .- Wid-1 + r(c + lj); L’ := LCj-l+ 1
if W’/L’ c Wi.j/& then Wid := W’; Lid := L’ endis

if W’/L’ c Wi,/Li, then Wi,, := W’; Lu := L’ endif
endfor

endfor

return (WlXl,lUll~lXl,lUl)
end LNED

Fig. 4. Locally Normalized Edit Distance algorithm.

It can be easily seen that the computational complexity of this
heuristic is essentially the same as that of the conventional u ~ o r m a l -
ized Edit Distance and, as will be seen later on, the results are often
closer to the optimal NED, so that it is clearly a better candidate for
initializing the FPNED algorithm.

IV. EXPERIMENTS
In order to test the performance of the FPNED algorithm in prac-

tice, two computational experiments were carried out. The first ex-
periment dealt with synthetic-data. It aimed at establishing compari-
sons between the FPNED computing complexity growth and the cor-
responding growth of both the conventional unnormalized Edit-
Distance algorithm (ED) [12] and the Dynamic Programming proce-
dure that we had previously introduced for computing NEDs
(DPNED algorithm) [5] . In the second experiment we adopted the
same real data set used in the Edit-Distance-based hand-printed digit
recognition experiments presented in [5] , and compared the comput-
ing performance of the proposed FPNED algorithm with that of the
basic algorithm.

For the first experiment, strings over an alphabet Z of 16 symbols
were randomly generated, with lengths running from 2 up to 1,024 in
powers-of-2 increments. For each length, 10 strings were generated
and different algorithms were applied for computing both the con-
ventional Edit Distance and the Normalized Edit Distance between
all 100 pairs of strings of this length. A single (asymmetrical) yfunc-
tion was also randomly generated for the whole experiment, with real
values in the range [0, 13 and with same-symbol substituting weight
l(a + a) = 0, V a E 2. The results are presented in Fig. 5 which
shows the computation performance of all the algorithms with respect
to that of the basic conventional u~orrnalized Edit Distance algo-
rithm (ED). For the initialization of the FPNED algorithm, both the
ED and the LNED algorithms were considered. Computation per-
formance has been measured in terms of number of “core” (unit-cost)
computing operations required by the different algorithms, each core
operation consisting of a local minimization among the three basic
alternatives (insertion, deletion, substitution) and the corresponding
arkhmetic operations involved.

........
.....

D p m
.... ”ELLIllit=m

D FpNEpInit=LNED - ’ 1 basicED(orLNED) - P loo

3 1 1 , , 1
1 10 100 lo00

string length

Fig. 5. Mor“ of diffemt algori* for the c~nptation of the Normalized

(- *)Edit Distance (ED). DPNED is the Dynamic Programming a l p

initialized with ED and with the Locally Normalized Edit htance (DEL)).

Edit Distance, with mpect to the cost of Computing the awlventional

r i h of [51; and WNED is the Fractional Pmg” . ga!iWihhproposed

Authorized licensed use limited to: National Taiwan University. Downloaded on December 5, 2009 at 13:51 from IEEE Xplore. Restrictions apply.

902 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 17, NO. 9, SEPTEMBER 1995;

It is worth noting that the FPNED technique exhibits an average
computing complexity that grows almost at the same rate as that of
the basic ED algorithm does. The ratio between the computing time
of FPNED and that of ED is almost a constant factor (ranging from 2
to 2.65 for Locally Normalized Edit Distance (LNED) initialization
and from 2.5 to 3.5 for ED initialization). In contrast, the computing
performance of the previous Dynamic Programming Normalized Edit
Distance (DPNED) algorithm [5] grew far faster than both the basic
ED and both versions of FPNED (O(n3), where n is the string length).
For the longest strings, the performance of the FPNED algorithm was
more than two orders of magnitude better than that of the older
DPNED technique. Also, the memory requirements of the new tech-
nique are much smaller than those of the previous DPNED: O(n2)
versus 0(n3) when the actual editing path is required, or O(n) versus
O(n2) if only the distance is needed.

In the second experiment, the data consisted of 500 chain-coded
strings representing hand-written digits (OCR), with an
(asymmetrical) weight function obtained from the probabilities of in-
sertion, deletion and substitution errors for the different chain-codes,
as supplied by the ECG1 learning algorithm [9] [5]. The computing
performance in this task, averaged over all 250,000 pairs of strings, is
presented in Table I for different algorithms. It is worth noting that
the FPNED algorithm can obtain correct results by just computing
the basic (LN)ED algorithm 2.03 times on the average. In contrast,
the previous DPNED procedure is more than one order of magnitude
less efficient.

TABLE I

THE (NORMALIZED) E ~ r r DISTANCE BETWEEN OCR STRINGS
RELATIVE PERFORMANCE OF DIFFERENT ALGORITHhfS FOR COMPUTING

A1 orithm
ED (or LNED)

Avera e number of iterations

FPNED-Init = LNED
FPNED-Init = ED 2.96

Although not observed in any of the experiments, it should be
noted that the worst-case computing cost of the FPNED algorithm
can, in theory, become much worse than the average figures reported.
This is due to the iterative nature of the algorithm: Although finite
convergence is actually guaranteed, it is difficult to find a
(theoretical) bound for the number of iterations in realistic situations.

v. CONCLUDING REMARKS

From the experiments presented in the last section, it is clear that
correct computation of Normalized Edit Distances is no longer a
problem in practice. Only one possible difficulty may remain in the
case that computation needs to be performed on-line with one of the
strings as, e.g., in certain real-time applications. In this case, optimal
results can only be obtained with our previous cubic complexity al-
gorithm [5] and further research would be required to develop fast
on-line computation techniques for NEDs.

The use of correct NEDs, rather than the conventional unnormal-
ized Edit Distance andor heuristic or suboptimal versions of NED, is
thought to lead to improvements in practically all fields in which Edit
Distances are used to compare objects. Some experiments with OCR
data (hand-written digits) clearly supporting this assertion were pre-
sented in [5]. But many other applications become apparent.

A particularly interesting case is the procedure usually adopted in
Automatic Speech Recognition to assess the performance of continu-
ous Speech recognizers. In this case, error rates are measured in
terms of the “relative” minimum number of words (or phonemes) that

have been substituted, inserted or deleted by the recognizer with re-
spect to the reference (correct) transcription of the test utterances [6].
The word “relative” is used to express a normalization by the number
of words in the reference transcription. Obviously, this is not the only
possible normalization criterion and many others can be (and have in
fact been) adopted. This has been studied in detail in [7], with the
conclusion that the use of a criterion closely related with NED ex-
hibits many desirable properties.

As a conclusion to this paper, we would like to remark that Frac-
tional Programming (and the more general C-Programming as well)
[111 constitute a very important computational tool that allows us to
extend known solutions to certain problems to more general and in-
teresting settings for these problems. Apart from the development
that we have described here, another example worth mentioning is an
optimization problem in the context of stochastic (HMM) modeling
[3] which has recently been solved using an iterative technique that
can be considered as closely related to FP. By looking at Fractional
(or C-) Programming from its most general perspective, we think that
interesting improvements can be easily found to many other problems
of Pattern Recognition for which good, but not perfect, solutions are
already available.

ACKNOWLEDGMENTS

This work was partially supported by the Spanish CICYT under
Grant No. TIC 1026/92-C02. Andrbs Marzal’s work was carried out
while he was with Departamento de Sistemas Informiiticos y Compu-
tacih, Universidad Politbcnica de Valencia.

REFERENCES

[l] J. Di Martino, ‘’Dynamic time warping algorithms for isolated and con-
nected word recognition,” New Systems and Architectures for Auto-
matic Speech Recognition and Synthesis, DeMori and Suen, eds.,
Springer Verlag, 1985.
W. Dinkelbach, “On nonlinear fractional programming,” Management
Science, vol. 18, no. 7, pp. 492-498, Mar. 1967.
P.S. Gopalakrishnou, D. Kanevsky, A. N a a s , and D. Nahamoo, “An
inequality for rational functions with applications to some statistical
problems,” IEEE Trans. Information Theory, vol. 37, no. 1, pp. 107-
113, 1991.
Y. Kitazume, E. Ohira, and T. Endo, ‘ U 1 implementation of a pattern
matching algorithm for speech recognition,” IEEE Proc. on Acoustics,
Speech and Signal Processing, vol. 33, no. 1, pp. 1-5, 1985.
A. Manal and E. Vidal, “Computation of normalized edit distance and
applications,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 15, no. 9, 1993.
D.S. Pallett, ‘Test procedures for the March 1987 DARPA benchmark
tests,” Proc. DARPA Speech Recognition Workshop, pp. 75-78.1987.
E Ptat, P. Aibar, A. M d , and E. Vidal, “El problema de la evalua-
ci6n de un sistema de reconmimiento automatic0 del habla mediante un
thio0 valor numkrico,” Tech. Report DSIC-IVlSi94 (in Spanish), Depar-
tamento de Sistemas Infonntiticos y ComputacMn, Universidad Poli-
tkcnica de Valencia, 1994.

[8] L Rabiner and S.E. Levinson, “Isolated and COMeCted word recogni-
tion--Theory and applications,” IEEE Trans. Comm., vol. 29, pp. 621-
659,1981.
H. Rulot and E. Vidal, “Modeling (sub)string-length-based constraints
through a grammatical inference method,” Pattern Recognition: Theory
and Applications, Devijuer and Kittler, eds., Springer Verlag, pp. 451-
459,1987.

[lo] H. Sakm and S. Chiba, ‘‘Dynamic programming algorithm optimization
for spoken words recognition,” IEEE Trans. Acoustics, Speech, and
Signal Processing, vol. 26, pp. 43-49, 1978.

[2]

[3]

[4]

[5]

[6]

[7]

[9]

[ll] M. Sniedovich, Dynamic Programming, Marcel Dekker, 1992.
[12] R.A. Wagner and M.J. Rscher, ‘The string-to-string correction prob-

lem,”J. ACM, vol. 21, no. 1 , pp. 168-173, 1974.

Authorized licensed use limited to: National Taiwan University. Downloaded on December 5, 2009 at 13:51 from IEEE Xplore. Restrictions apply.

