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v. PERFORMANCE 

As explained in Section III.A, the computations for all rows of the 
image can be performed in parallel. Thus, the computations for a 
512 x 512 image, with 512 processors operating in parallel, can be 
completed in 512 clock cycles. The critical path consists of an abso- 
lute difference module followed by a comparator. The Verilog-XL 
simulation results show that it is possible to operate the implemented 
circuit with a 1 1  ns clock. Since new inputs can be provided to the 
system every 11 ns, a 512 x 512 image can be processed in 5.632 ,US. 

At 50 frames per second a new pixel value is input to the system 
every 73.6 ns. Since the minimum clock period is 1 1  ns, this input 
rate can be handled comfortably, and the entire depth recovery algo- 
rithm can be run on-the-fly. Better utilization of the performance of- 
fered by these architectures is possible by interleaving computations 
for multiple camera sources. By interleaving signals from four cam- 
era sources and doubling the number of delay stages and registers, 
the first design for case two can process four independent camera 
sources simultaneously. The sizes of the row buffers would have to 
be quadrupled, and rows from four different reference images would 
be stored in an interleaved fashion. Since high frame rates can easily 
be supported by the proposed architectures, it is possible to use them 
for autonomous vehicle navigation applications. Snapshots can be 
taken frequently and after small camera displacements, leading to re- 
liable range estimates. 
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Fast Computation of Normalized Edit Distances 
Enrique Vidal, AndrCs Marzal, and Pablo Aibar 

Abstract-The Normalized Edit Distance (NED) between two 
strings X and Y is defined as the minimum quotient between the sum of 
weights of the edit operations required to transform X into Y and the 
length of the editing path corresponding to these operations. An algo- 
rithm for computing the NED has recently been introduced by Marzal 
and Vidal that exhibits O(mn2) computing complexity, where m and n 
are the lengths of X and Y. We propose here an algorithm that is ob- 
served to require in practice the same O(mn) computing resources as 
the conventional unnormalized Edit Distance algorithm does. The per- 
formance of this algorithm is illustrated through computational ex- 
periments with synthetic data, as well as with real data consisting of 
OCR chain-coded strings. 

Index Terms-Normalized edit distance, Levenshtein distance, pat- 
tern recognition, string correction, editing, spelling correction, optical 
character recognition, speech recognition, fractional programming, 
fast algorithms. 

I. INTRODUCTION 

The Normalized Edit Distance (NED) between strings X and 
Y, d(X, Y), is defined as the minimum of W(P)/L(P), where P is 
an editing path between X and Y,  W(P)  is the sum of the weights 
of the elementary edit operations in P and L(P) is the number of 
these operations (Length of P) .  As was shown in [SI, d(X, Y) 
cannot be obtained by “post-normalization”; that is, first comput- 
ing the conventional (unnormalized) edit distance between X and 
Y (i.e., minimum of W(P)) and then normalizing this distance by 
the length of the corresponding editing path. In order to correctly 
compute NEDs, an algorithm was introduced in [SI which ob- 
tains d(X, Y) with O(mnz) computing complexity, where m and n 
are the lengths of X and Y and m 2 n. The usefulness of NEDs 
was also illustrated in [SI through hand-written digit recognition 
experiments based on the k-Nearest-Neighbor classification 
technique, in which NED consistently outperformed both the un- 
normalized and postnormalized edit distances. However, these 
unnormalized or “suboptimally normalized” edit distances (and 
many other variations of the same), can be computed in O(mn) 
time. Clearly, in some practical situations such a lesser compu- 
tational complexity can outweigh the benefits of the optimality 
of NED. 

In this paper, an algorithm is introduced which is observed to 
obtain the correct NED with almost the same O(mn) asymptotical 
computational complexity as the conventional (suboptimal or 
unnormalized) techniques do. More specifically, this algorithm 
obtains the NED by repeatedly computing a number of conven- 
tional edit distances. This number is generally very small and is 
observed not to significantly depend on the length of the com- 
pared strings. This algorithm is based on a technique known as 
“Fractional Programming.” 

II. FRAC~IONAL PROGRAMMING 
Fractional Programming (FP) [2], [lll is an optimization 

technique that can be useful in many problems involving ratio 
functions. It can be considered as a particular case of the so- 
called “C-programming” [ l l] which can further deal with more 
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general families of functions. FP seeks to solve the following 
family of problems': 

PROBLEM Q. Find 

string x can be transformed into Y through a certain sequence of edit 
operations, which can be seen as an "editing path" between X and Y 
[5]. Let P be the (finite) set of all editing paths between X and Y. For 
each P= (b,jo), ..., (ik, jk), ..., (i,,,, j,,,) E P, l e t u p )  = m b e  thelength 
of P and let W(P) = Y(X~&-,+,...~& + q&-,+'...^) be the weight of 
P. The computation of the NED between X and Y can then be for- 
mally stated as the following minimization problem [5]: 

q* = min - 44 
Z E Z Y ( 4  

where U ,  v: Z - R v(z) > 0, Vz E Z. 0 
The set of optimal solutions to Q is denoted as z*; i.e., 

z*=(zEzYo= . PROBLEM NED: Find 
v(z) 4*> 

d * = d ( X , Y ) =  minW(P). The parametric method of FP allows us to solve Q if a solution is P E P  YP) 

U 
A Fractional Programming solution to this problem is given by the 

algorithm FPNED, shown in Fig, 2. Given that P i s  finite, Theorem 2 
guarantees that, after a finite number of iterations, FPNED terminates 
with A* = d(X, Y) and with P* being an optimal NED path. 

available for a parametric problem of the type: 
PROBLEM Q(A). Find 

q * (a) = min - av(z))  Z E Z  

where A E R U ,  v: Z w  R v(z) > 0, Vz E Z. 0 
The set of optimal solutions to Q(A) is denoted as z*(A). The fol- 

lowing theorem establishes that, in fact, a A* E R exists such that 
every optimal solution to Q(A*) is also optimal for Q: 

THEOREM 1. 

1) z E z* g z  E T(u(z) /v(z));  
2) the equation q*(A) = 0 has A* = q* as its unique solution. 0 
Dinkelbach's algorithm [2], shown in Fig. 1, searches for such a 

solution of q*(A) = 0 (and a corresponding z* E 2). The correctness 
of this algorithm can be easily established as follows [ 111: 

Algorithm Dinkelbach 
I* := arbitrary-elment(2) 
A' := U(Z*) /V(Z. )  

repeat 
A' := A' 

I' := argmin,,z(u(t) - A'u(2)) 

A' := u(z*)/u(z*) 
until A' = A' 

return (z*,A*) 

end Dinkelbach 

Fig. 1. Dinkelbach's algorithm. 

THEOREM 2. I fZ  isfinite, Dinkelbach's algorithm terminates with il. 
= q* and Z* E 2; otherwise, the sequence of values of the variable 

0 A* that it generates converges superlinearly to q*. 

111. FRACTIONAL PROGRAMMING AND NORMALIZED EDIT 
DISTANCE: INITIALIZATION PROCEDURES 

Let C be an alphabet and let E be the symbol for the empty string. 
Let (a + b)  be an elementary edit operation, where a and b are 
strings of length 0 or 1 and (a + b)  f ( E  + E). Each elementary edit 

Algorithm FPNED 
P := arbitrary-patb(P) 
x' := W(P) /L(P ' )  

repeat 
A' := A' 

P' := argminpep(W(P) - A'L(P)) 
A' := W(P')/L(P*) 

until A' = A' 

return ( P , A * )  

end FPNED 

Fig. 2. Fractional programming algorithm for the computation of Normalized 
Edit Distance. 

The minimization of W(P) - XUP) required by FPNED can be 
carried out with the very same algorithm used for computing the con- 
ventional unnormalized Edit Distance. This can be simply done by 
replacing the given weight function Ha -+ b)  by Ha + b)  - X, so 
that the accumulation over a given path, P, yields W(P) - XUP). On 
the other hand, although the initialization of P* is, in principle, arbi- 
trary, it should be chosen as close to the target solution as possible in 
order to reduce the required number of iterations. An obvious choice 
is a path obtained from the computation of the conventional unnor- 
malized Edit Distance, but a better alternative exists as we will see 
later on in this section. 

EXAMPLE 1. (FPNED computation) Let X = abbb, Y = aaab and y as 
specified in Fig. 3a (see also [51). 

a b b b  
a 
a 
a 
b 

wq3=a; m=4 

a b b b  
a 
a 

b 
U 

HIP) = 8: 40 = 6  

operation (a -+ b) is assumed to be weighted by a nonnegative weight A% H(F'JIZ(P)sl.5 A?= H(P)/L(P k1.33 

function Ha+ b)  E R'O. Let X, Y E Z* be two strings over Z. The (4 (b) (4 
Hg. 3. Example of Normalized Edit Distance computation by Fractional Pro- 
gramming ("ED algorithm). a) weighting function; b) Conventional Edit- 
Distance path used for initializing "ED;  c) Normalized-Edit-Distance path 
obtained after one iteration of FPNED. 

' We consider here minimization problems rather than nwxintization Pmb- 
lems as in [ll]. It can be easily verified that the same theorems, proofs and 
the algorithm of [ 111 also hold in our formulation. 
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INITIALIZATION. With the conventional unnormalized Edit-Distance 
path (Fig. 3b): 

p* = (o,o), (Ll), (2,2), (3,3), (4,4) 
A* - W(p*) - 6 - 3 

4 P ’ )  -7-7 

FJRST ITERATION. P* = argminp., (w(P) - 312 L(P)) is solved with 
the unnormalized Edit-Distance algorithm, yielding (Fig. 3c): 

P* = (O,O), (U), (U), (13), (23). (3,3), (4,4) 
;1*,&-4 

6 -7 
This is already a solution to NED [5] but, since A* = 413 f 312 
= 1: an additional iteration is required to guarantee that this is in 
fact a correct result. 

SECOND AND LAST ITERATION. P* = argminpep (w(P) -413 L(P)) 

P* = (O,O), (Ll), (1,2), (U). (2,3), (3,3), (4.4) 
A * = & - 4 - a *  

is solved, yielding: 

6 -7- 
0 

Although the conventional unnonnalkd Edit Distance constitutes an 
adequate initialization procedure for FPNED computation, better conver- 
gence behavior can be achieved by using a suboptimal NED computing 
technique known as “Locally Normalited Edit D i m “ ”  (LNED). ’Ihis 
heuristic consists of locally minimizing, at each point of the computational 
latrice, the quotient of the current path weight by the current path length. 
It is easy to show by means of counter examples that, in general, this 
technique fails to obtain the true NED. However, this approach has been 
proposed in the field of Automatic Speech Recognition [l], [4] as an 
(empirically better) alternative to the conventional Dynamic Time Warp- 
ing procedure usually adopted for “paring acoustic sequences of 
speech [lo] [8]. As adapted to our NED problem, this suboptimal a p  
proach can be implemented as shown in Fig. 4. 

Algorithm LNED 

var W = may [O..lX~,O..~Y~] of R 
L = array [O..lXl,O..IYI] of N 

i, j, L‘ E N W‘ E R 

w0,o := 0; L&o := 0 

for i := 1 to 1x1 d o  Wi,o := Wi-i,o + r(Xi + E ) ;  Li.0 := 4-1.0 + 1 endfor 

for j := 1 to IYI d o  WO, := Woj-1 + $ E  -A 4); hj :=&+I+ 1 endfor 
for i := 1 to 1x1 do 

for j := 1 to IYI d o  

wi, := wi-1,-1+ r ( x i  + 4); Li,j := Li-lJ-l+ 1 
W’ ._ .- wi-1j +7(X‘ -A c); L‘ := Li- l j  + 1 

W’ ._ .- Wid-1 + r(c + lj); L’ := LCj-l+ 1 
if W’/L’ c Wi.j/& then Wid := W’; Lid := L’ endis 

if W’/L’ c Wi,/Li, then Wi,, := W’; Lu := L’ endif 
endfor 

endfor 

return (WlXl,lUll~lXl,lUl) 
end LNED 

Fig. 4. Locally Normalized Edit Distance algorithm. 

It can be easily seen that the computational complexity of this 
heuristic is essentially the same as that of the conventional u ~ o r m a l -  
ized Edit Distance and, as will be seen later on, the results are often 
closer to the optimal NED, so that it is clearly a better candidate for 
initializing the FPNED algorithm. 

IV. EXPERIMENTS 
In order to test the performance of the FPNED algorithm in prac- 

tice, two computational experiments were carried out. The first ex- 
periment dealt with synthetic-data. It aimed at establishing compari- 
sons between the FPNED computing complexity growth and the cor- 
responding growth of both the conventional unnormalized Edit- 
Distance algorithm (ED) [12] and the Dynamic Programming proce- 
dure that we had previously introduced for computing NEDs 
(DPNED algorithm) [5] .  In the second experiment we adopted the 
same real data set used in the Edit-Distance-based hand-printed digit 
recognition experiments presented in [5 ] ,  and compared the comput- 
ing performance of the proposed FPNED algorithm with that of the 
basic algorithm. 

For the first experiment, strings over an alphabet Z of 16 symbols 
were randomly generated, with lengths running from 2 up to 1,024 in 
powers-of-2 increments. For each length, 10 strings were generated 
and different algorithms were applied for computing both the con- 
ventional Edit Distance and the Normalized Edit Distance between 
all 100 pairs of strings of this length. A single (asymmetrical) yfunc- 
tion was also randomly generated for the whole experiment, with real 
values in the range [0, 13 and with same-symbol substituting weight 
l(a + a) = 0, V a  E 2. The results are presented in Fig. 5 which 
shows the computation performance of all the algorithms with respect 
to that of the basic conventional u~orrnalized Edit Distance algo- 
rithm (ED). For the initialization of the FPNED algorithm, both the 
ED and the LNED algorithms were considered. Computation per- 
formance has been measured in terms of number of “core” (unit-cost) 
computing operations required by the different algorithms, each core 
operation consisting of a local minimization among the three basic 
alternatives (insertion, deletion, substitution) and the corresponding 
arkhmetic operations involved. 

........ 
..... 

D p m  
.... ”ELLIllit=m 

D FpNEpInit=LNED - .... ’ 1 basicED(orLNED) - . ....... .... P loo 

3 1 1  . . . . . . . . . . . . . .  ..., . .  . . . . . . ,  1 
1 10 100 lo00 

string length 

Fig. 5. Mor“ of diffemt algori* for the c~nptation of the Normalized 

(- * )Edit Distance (ED). DPNED is the Dynamic Programming a l p  

initialized with ED and with the Locally Normalized Edit htance (DEL)). 

Edit Distance, with mpect to the cost of Computing the awlventional 

r i h  of [51; and WNED is the Fractional Pmg” . ga!iWihhproposed 
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It is worth noting that the FPNED technique exhibits an average 
computing complexity that grows almost at the same rate as that of 
the basic ED algorithm does. The ratio between the computing time 
of FPNED and that of ED is almost a constant factor (ranging from 2 
to 2.65 for Locally Normalized Edit Distance (LNED) initialization 
and from 2.5 to 3.5 for ED initialization). In contrast, the computing 
performance of the previous Dynamic Programming Normalized Edit 
Distance (DPNED) algorithm [5] grew far faster than both the basic 
ED and both versions of FPNED (O(n3), where n is the string length). 
For the longest strings, the performance of the FPNED algorithm was 
more than two orders of magnitude better than that of the older 
DPNED technique. Also, the memory requirements of the new tech- 
nique are much smaller than those of the previous DPNED: O(n2) 
versus 0(n3)  when the actual editing path is required, or O(n) versus 
O(n2) if only the distance is needed. 

In the second experiment, the data consisted of 500 chain-coded 
strings representing hand-written digits (OCR), with an 
(asymmetrical) weight function obtained from the probabilities of in- 
sertion, deletion and substitution errors for the different chain-codes, 
as supplied by the ECG1 learning algorithm [9] [5]. The computing 
performance in this task, averaged over all 250,000 pairs of strings, is 
presented in Table I for different algorithms. It is worth noting that 
the FPNED algorithm can obtain correct results by just computing 
the basic (LN)ED algorithm 2.03 times on the average. In contrast, 
the previous DPNED procedure is more than one order of magnitude 
less efficient. 

TABLE I 

THE (NORMALIZED) E ~ r r  DISTANCE BETWEEN OCR STRINGS 
RELATIVE PERFORMANCE OF DIFFERENT ALGORITHhfS FOR COMPUTING 

A1 orithm 
ED (or LNED) 

Avera e number of iterations 

FPNED-Init = LNED 
FPNED-Init = ED 2.96 

Although not observed in any of the experiments, it should be 
noted that the worst-case computing cost of the FPNED algorithm 
can, in theory, become much worse than the average figures reported. 
This is due to the iterative nature of the algorithm: Although finite 
convergence is actually guaranteed, it is difficult to find a 
(theoretical) bound for the number of iterations in realistic situations. 

v. CONCLUDING REMARKS 

From the experiments presented in the last section, it is clear that 
correct computation of Normalized Edit Distances is no longer a 
problem in practice. Only one possible difficulty may remain in the 
case that computation needs to be performed on-line with one of the 
strings as, e.g., in certain real-time applications. In this case, optimal 
results can only be obtained with our previous cubic complexity al- 
gorithm [5]  and further research would be required to develop fast 
on-line computation techniques for NEDs. 

The use of correct NEDs, rather than the conventional unnormal- 
ized Edit Distance andor heuristic or suboptimal versions of NED, is 
thought to lead to improvements in practically all fields in which Edit 
Distances are used to compare objects. Some experiments with OCR 
data (hand-written digits) clearly supporting this assertion were pre- 
sented in [5]. But many other applications become apparent. 

A particularly interesting case is the procedure usually adopted in 
Automatic Speech Recognition to assess the performance of continu- 
ous Speech recognizers. In this case, error rates are measured in 
terms of the “relative” minimum number of words (or phonemes) that 

have been substituted, inserted or deleted by the recognizer with re- 
spect to the reference (correct) transcription of the test utterances [6]. 
The word “relative” is used to express a normalization by the number 
of words in the reference transcription. Obviously, this is not the only 
possible normalization criterion and many others can be (and have in 
fact been) adopted. This has been studied in detail in [7], with the 
conclusion that the use of a criterion closely related with NED ex- 
hibits many desirable properties. 

As a conclusion to this paper, we would like to remark that Frac- 
tional Programming (and the more general C-Programming as well) 
[ 111 constitute a very important computational tool that allows us to 
extend known solutions to certain problems to more general and in- 
teresting settings for these problems. Apart from the development 
that we have described here, another example worth mentioning is an 
optimization problem in the context of stochastic (HMM) modeling 
[3] which has recently been solved using an iterative technique that 
can be considered as closely related to FP. By looking at Fractional 
(or C-) Programming from its most general perspective, we think that 
interesting improvements can be easily found to many other problems 
of Pattern Recognition for which good, but not perfect, solutions are 
already available. 
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