
Fast Computation of Sparse Datacubes

Kenneth A. ROSS*
Columbia University

karQcs.columbia.edu

Abstract

Datacube queries compute aggregates over

database relations at a variety of granularities,

and they constitute an important class of decision
support queries. Real-world data is frequently

sparse, and hence efficiently computing datacubes

over large sparse relations is important. We show

that current techniques for computing datacubes
over sparse relations do not scale well with the

number of CUBE BY attributes, especially when the
relation is much larger than main memory.

We propose a novel algorithm for the fast com-

putation of datacubes over sparse relations, and

demonstrate the efficiency of our algorithm using

synthetic, benchmark and real-world data sets.
When the relation fits in memory, our technique

performs multiple in-memory sorts, and does not

incur any I/O beyond the input of the relation

and the output of the datacube itself. When

the relation does not fit in memory, a divide-

and-conquer strategy divides the problem of com-

puting the datacube into several simpler compu-

tations of sub-datacubes. Often, all but one of

the sub-datacubes can be computed in memory
and our in-memory solution applies. In that case,

the total I/O overhead is linear in the number of

CUBE BY attributes. We demonstrate with an im-

plementation that the CPU cost of our algorithm

is dominated by the I/O cost for sparse relations.

‘The research of Kenneth A. Ross was supported by a grant
from the AT&T Foundation, by a David and Lucile Packard
Foundation Fellowship in Science and Engineering, by a Sloan
Foundation Fellowship, by an NSF Young Investigator Award,
and by NSF CISE award CDA-9625374.

Permission to copy without fee 011 or port of this material is
gmnted provided that the copies ore not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its dote appear, and notice is
given that copying is by permission of the Very Large Data Bose
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 23rd VLDB Conference

Athens, Greece, 1997

Divesh Srivastava
AT&T Labs-Research

divesh@research.att.com

1 Introduction

Datacube queries compute aggregates over relations at a

variety of granularities, and they constitute an important

class of decision support queries. The databases may rep-
resent business data (such as point-of-sales transactions),

medical data (such as patient treatments and outcomes),

or scientific data (such as large sets of experimental mea-

surements). An example datacube query is “Broken down

by supplier, part and month, find the total sales in 1996,

including all subtotals across each dimension.”

The attributes constituting the dimensions along which
the aggregates are computed are called CUBE BY attributes.

In the query above, for example, the CUBE BY attributes are

supplier, part and month.

A relation is sparse with respect to a set of attributes
if its cardinality is a small fraction of the size of the cross-
product of the attribute domains. We are particularly in-

terested in relations that are sparse with respect to the

CUBE BY attributes for a given datacube query; when the
attributes are understood from the context we will simply

refer to the relation as sparse.

Sparseness exists for two distinct reasons: large domain

sizes of some CUBE BY attributes and a large number of

CUBE BY attributes in the datacube query. Real-world
data in application domains is often very large and sparse.

Hence, efficiently computing datacubes over large sparse
relations is important. The contributions of this paper are

described below.

We show that current techniques for computing dat-
acubes are not very efficient for sparse relations, especially

when the database relation is much larger than main mem-

ory (Section 2).

We propose a novel algorithm, Partitioned-Cube, for

the fast computation of datacubes over large sparse rela-

tions (Section 3). Partitioned-Cube uses a divide-and-

conquer strategy that divides the problem of computing

the datacube over a relation with T tuples and k CUBE BY

attributes into n + 1 sub-datacubes, for a large number

n. The first n of these sub-datacubes each has approx-
imately T/n tuples and k CUBE BY attributes. The final

sub-datacube has no more than T tuples and has k - 1
CUBE BY attributes.

We formulate an algorithm, Memory-Cube, for the effi-
cient computation of datacubes over relations that fit in
memory (Section 4). Memory-Cube performs multiple in-

116

Figure 1: Datacube Query Q

memory sorts, and does not incur any I/O beyond the in-
put of the relation and the output of the datacube itself.

Memory-Cube performs as few sorts as possible, and it takes
advantage of common prefixes between multiple sort orders

to optimize the CPU cost.

We then analyze the I/O cost of

Algorithm Partitioned-Cube (Section 5). Often each of
the first n sub-datacubes of Algorithm Partitioned-Cube

can be computed in memory using Memory-Cube. In that
case, the total I/O cost of our algorithm is linear in the

number of CUBE BY attributes, unlike previous techniques
for computing datacubes.

We demonstrate the efficiency of our algorithms using

synthetic, benchmark and real-world data sets, and show
with an implementation that the CPU cost of our algorithm

is dominated by the I/O cost for sparse relations, often by

an order of magnitude (Section 6).

To our knowledge, ours is the first work specifically ad-
dressing datacube computations for the important class of

sparse database relations.

2 Motivation: Existing Techniques

We present the ideas that underlie various existing tech-

niques for computing datacubes using the datacube query

Q in Figure 1, expressed in the generalized SQL syntax

of Gray et al. [GBLPSG]. Here A and the Bi’s are at-

tributes of the relation R, and G is an aggregate function.

In this paper, we consider only distributive aggregate func-

tions [GBLP96].

The computation of Q involves the computation of

aggregates over the relation R at 2k different granular-

ities, where each granularity is one of the 2” possible

subsets of the CUBE BY attributes Br, . . . , Bk; attributes
that are not present in such a subset are replaced by

a special value “ALL” in the datacube result. Each of

these 2’ granularities is referred to as a cuboid follow-
ing [DANR96, AAD+96], and we use the notation Q(&)

to denote the cuboid at granularity &. The computation

of the various cuboids are not independent of each other,

but are closely related in that some of them can be com-

puted using others.

These relationships are captured in terms of the search
lattice for the datacube (HRU96J. Each granularity & C

@I , . . . , Bk) is a node in the search lattice, and there is an

edge from node & to B” if ?ij is a subset of and has one

fewer element than &; $ is said to be a parent of gj in the
search lattice. If there is a path from 5; to B’j in the search

lattice, & is said to be of a finer granularity than gj, and

Bj is said to be of a coarser granularity than gi. Paths in

the search lattice precisely determine which of the cuboids

can be computed from which others. In particular, cuboid

Q(gj) can be computed using cuboid Q(&) if and only if

Zj is of coarser granularity than &.

The various existing techniques for computing dat-

acubes, outlined below, attempt to make use of the rela-

tionships between the cuboids to compute the datacube Q

more efficiently than the naive approach of independently

computing each of the 2k cuboids.

2.1 PIPESORT

The PLPESORT algorithm proposed by Sarawagi et

al. [SAG96, AAD+ tries to optimize the overall cost

of the computation of datacube Q using cost estimates of

various ways to compute each cuboid Q(gj) to determine

which cuboid will be used to actually compute the tuples

of Q(gj).

First, PIPESORT annotates each edge (&,gj) of the

search lattice of datacube Q with two costs: S(&, gj) is

the cost of computing Q&) from an unsorted Q(&), and

A(&,Sj) is the cost of computing Q(gj) from a sorted

Q(&>.
Second, PIPESORT proceeds level-by-level in the

search lattice, starting from the root, ordering the at-

tributes at each node and prnning edges to convert the

search lattice into a tree. If the attribute order of node

gj is a prefix of the order of its parent node & in the

tree, then Q(gj) can be computed from Q(&) without sort-
ing, and the edge (&,gj) in the tree is marked A and has

cost A(&,Zj). Otherwise, Q(&) has to be sorted to com-

pute Q&j,, and edge (&,Zj) is marked S and has cost

S(&, Zj). The marking is constrained by the requirement

that at most one edge out of any node gi can be marked

A. PIPESORT guarantees this using a local optimization

technique based on weighted bipartite matching, that also

minimizes the sum of edge costs at each level of the search
lattice.

Third, PIPESORT adds a node corresponding to the

relation R to the tree, and adds an edge marked S from
R to the root of the tree. PIPESORT then converts the

resulting tree into a set of paths such that every edge in
the tree is present in one and only one path, and all the

edges in each path except the first edge are marked A.

At evaluation time, the various paths are evaluated in

turn. During the evaluation of a path with root & (or R),

the tuples of Q(&) (or R) are sorted in the order indicated

by the attribute ordering of the child $ of the root in the

path. Once the tuples are sorted, the pipelined evaluation

of the path requires only a single tuple to be maintained

per non-root node in the path, which is very space efficient.

The main limitation of PIPESORT is that it does not

scale well with respect to the number of CUBE BY attributes

in the datacube query. PIPESORT performs one sort op-
eration for the pipelined evaluation of each path. When

the number of CUBE BY attributes in Q is k, a lower bound

on the number of such sorts performed by PIPESORT is
given by (Tkk/z,), which is exponential in Ic (see Section 4.1).

When the underlying relation is sparse and much larger

than available memory, then many of the cuboids that

PIPESORT sorts are also larger than the available memory

(see Section 5.1). Sorting these cuboids requires external

117

sorts, resulting in PIPESORT performing a considerable

amount of I/O. The following example illustrates this prob-

lem with PIPESORT.

Example 2.1 Consider a synthetic relation RI with 8 at-
tributes, 7 of which are used as CUBE BY attributes and

the eighth attribute is aggregated, to compute a datacube

Qr over the relation RI. Suppose that the value of each

CUBE BY attribute is uniformly distributed in the range 1

to 100, and the relation RI has 2 x 10s tuples. Since the 7

CUBE BY attributes together can range over a possible 1014

tuples, RI is a sparse relation. The datacube Qi in this
case has a little over 9 x 10’ tuples, which makes it about
45 times bigger than the underlying relation RI.

Assume that we have a 96MB main memory capable of
holding 2.4 x 10’ values (this would correspond to 4-byte

integer values). PIPESORT would perform at least (i) =

35 sorts over various intermediate datacube results, each of

which is about the same size as the underlying relation RI

and hence are much larger than main memory. Counting

three passes per external sort, PIPESORT requires at least

I/O equivalent to 3 * 35 = 105 passes through the relation.

PIPESORT thus has an I/O overhead of more than 200%

over the cost of writing out the datacube result, on this

example.

On this example, as we show later, the I/O overhead of

our technique, Partitioned-Cube, is about the equivalent

of 11.5 passes through the relation. It thus incurs an I/O
overhead of only about 25%! (We shall address the CPU
cost separately.) 0

2.2 OVERLAP

The OVERLAP algorithm proposed by Deshpande et

al. [DANR96, AAD+96] tries to minimize the number

of disk accesses by overlapping the computation of the

cuboids, by making use of partially matching sort orders

to reduce the number of sorting steps performed.

First, OVERLAP computes the finest granularity

cuboid Q({B~, . . . , Bk}) from R, and sorts the tuples of this

cuboid in some order, say (Bi, . . . ,Bk). The attributes at

each node of the search lattice are then ordered to be sub-

sequences of this sort order.

Second, OVERLAP prunes edges in the search lattice,

converting it into a tree, as follows. Among the various

parents of node gj in the search lattice, the parent of & in

the tree is a node & that shares the longest prefix in the

attribute ordering with gj.

Third, nodes in the tree are labeled with estimates of

the memory required to compute the corresponding cuboid

from its parent, assuming that the tuples of the parent

cuboid are sorted in the order indicated by the attribute

ordering of the parent node. For example, if the attribute

ordering of gj is a prefix of the attribute ordering of &, the
estimate associated with Gj is 1 tuple, since the sort orders

match.

Fourth, a set of cuboids is chosen that can be computed
concurrently within the available memory constraints. For

some cuboids, the estimated memory can be allocated -
such cuboids are said to be in the “Partition” state. For

other cuboids, only a single page of memory can be al-

located - these cuboids are said to be in the “SortRun”
state.

OVERLAP does the allocation using a heuristic of
traversing the search tree in a breadth-first order, giving
priority to cuboids with smaller partition sizes, and cuboids

with longer attribute lists. Cuboids that are not chosen are
considered in subsequent passes using the above steps to

allocate memory and mark cuboids.

At evaluation time, each set of cuboids that can be com-

puted concurrently is evaluated in turn. Tuples of cuboids
marked to be in the “Partition” state are immediately

available for pipelining purposes. Tuples of cuboids marked
to be in the “SortRun” state are simply written to disk; the

various runs are subsequently merged, further aggregating

as necessary, and the result tuples are pipelined for further
computation.

Since the amount of I/O performed by OVERLAP de-

pends on the partition sizes and the number of sorted runs

that have to be written to disk, the analysis of the I/O

cost of OVERLAP is quite complicated. We provide an

approximate lower bound below.

When the underlying relation is sparse, many of the

cuboids are no smaller than the relation (see Section 5.1).

If the relation is large and does not fit in memory, then nei-

ther do these cuboids. There are O(L) nodes in the search

tree of OVERLAP for which the partition sizes are the

sizes of the corresponding cuboids. Further, the processing

of each such node takes I/O which is the equivalent of five

passes through the relation (one pass for writing out the

tuples while processing the parent node, three passes for
the external sort, and one pass for reading in the tuples of

the node to process its children); this does not include the

I/O cost of writing out the datacube result.

Even when the cuboids are in the “Partition” state, and

each partition fits in memory, the memory may not be large

enough to accommodate more than one such partition at

a time. (Example 2.1 is such an example.) Since each

of these O(lc) nodes has O(k) such descendants (with the

length of the maximum common prefix being l), there are

at least O(k2) nodes in the search tree that involve addi-

tional I/O. This demonstrates that the I/O cost of OVER-

LAP is at least quadratic in k for sparse data sets, even

assuming that partitioning R always gives memory-sized

partitions!

Example 2.2 Consider the datacube in Example 2.1. Us-

ing our approximate lower bound calculations, the I/O cost

of OVERLAP is at least the equivalent of 21 passes through

the relation.

Assume that the sort order on the CUBE BY at-

tributes, chosen by OVERLAP, is (Br,. . . ,B7). The

I/O cost includes the equivalent of 5 passes through

the database relation for each of the three cuboids
Q({B~, . . ,B7}), . . , Q({B~, . . . ,Br}) that are the same size
as the underlying relation, the equivalent of 2.5 passes

through the relation for the cuboid Q((B4,. . . , B7)) that is

half the size of the relation, and the equivalent of 2 passes
for each of the two nodes that share a prefix of length one
with ({Br , . . , Br}) and have to be in the SortRun state;

118

Algorithm Partitioned-Cube@, {Bi, . . ,Bm}, A, G)

INPUTS: A set of tuples R, possibly stored ,in horizontal fragments; CUBE BY attributes {Bi, . . . ,Bm};

attribute A to be aggregated; aggregate function G(.).

OUTPUTS: The datacube result for R over {Bi, . . . , Bm} in two horizontal fragments F and D on disk. F

contains the finest granularity datacube tuples (i.e., grouping by all of {Bi, . . . , Bm}), and D
contains the remaining tuples. (F and D may themselves be further horizontally partitioned.)

METHOD: if (R fits in memory) then return Memory-Cube(R, {Bi, . . . , Bm}, A, G);

else { choose an attribute Bj among {Bi, . . . , B,};
scan R and partition on Bj into sets of tuples Ri, . . . , Rn;

/* n 5 card(Bj) and n 5 number of buffers in memory */

for i = 1 . . . n
let (F;,Di) = Partitioned-Cube&, {Bi,. . . ,B,,,},A, G);

let F = the union of the Fi’s;
let (F’,D’) = Partitioned-Cube(F, {Bi, . . . , Bj-1 ,Bj+i, . . . , B,,,}, A, G);
let D = the union of F’, D’ and the D;‘s;

return (F,D); }

Figure 2: Algorithm Part it ioned-Cube

one pass for writing the sorted runs and one pass for read-

ing them in for subsequent processing. This analysis gives
OVERLAP an I/O overhead of at least 45% over the size

of the datacube result! 0

2.3 Array-Based Algorithms

The array-based algorithm proposed by Gray et al.

[GBLPW] is essentially a main memory algorithm, where

all the tuples of the datacube are kept in memory as a

k-dimensional array, where k is the number of CUBE BY at-

tributes. The data structures needed by Gray et al’s
algorithm will often not fit into memory for sparse rela-

tions, even when R does. In this case, the algorithm does

QOt apply.

The array-based algorithm proposed by Zhao et
al. [ZDN97] overcomes some of the limitations of Gray et

al.‘s algorithm. The data is partitioned and processed in

an order that requires only fragments of the array to be

present in memory at any one time. Data compression is
also used to speed up the I/O. The algorithm of [ZDN97]

performs particularly well because the array representa-

tion allows direct access to the needed cells. In the present
paper we consider real-world data sets where the data is

orders of magnitude more sparse than the synthetic data

sets considered in [ZDNS’I]. For extremely sparse data, the

array representation of [ZDN97] cannot fit into memory,

and so a more costly data structure would be necessary.

3 Algorithm Part it ioned-Cube

Our solution for the fast computation of the datacube is

based on two fundamental ideas that have been successfully

used for performing complex operations (such as sorting
and joins) over very large relations: (a) partition the large

relations into fragments that fit in memory, and (b) per-
form the complex operation over each memory-sized frag-

ment independently.

Our solution for computing a datacube query is a

recursive one, described in Figure 2. To compute

& (of Figure l), the algorithm is initially invoked as

Partitioned-Cube(R, {Br, . . . ,Bk}, A, C).
Algorithm Partitioned-Cube assumes the existence of

a subroutine Memory-Cube that computes the datacube of

a relation that fits in memory. We shall present Algo-

rithm Memory-Cube in Section 4. Observe that Algorithm

Memory-Cube must not need significant additional space be-

yond its input since the test for applicability of Algorithm

Memory-Cube is simply whether the input relation fits in

memory.

The structure of Algorithm Partitioned-Cube follows

the recursive structure of datacubes themselves. A dat-

acube is obtained by fixing each possible value of a CUBE BY

attribute Bj in turn and computing the tuples in the cor-

responding sub-datacube, followed by computing the dat-

scube tuples with the value ALL for Bj. Rather than re-

reading the input relation R for the ALL datacube we read

the finest granularity cuboid F, which may be significantly

smaller than R if there are many tuples in each group, and

is never larger than R. These observations form the ba-
sis of an inductive proof of the correctness of Algorithm
Partitioned-Cube.

An interesting feature of this algorithm is that the dat-
acube of R is broken up into n + 1 smaller sub-datacube

computations, n of which are likely to be much smaller

than the original datacube, if the domain of the partition-

ing attribute Bj is sufficiently large. If there are T tuples in

R, then we would expect roughly T/n tuples in each of the
n partitions (in the absence of significant skew). Thus, it is

relatively likely that, even for a relation significantly bigger

than main memory, each of these n sub-datacubes can be

computed in memory using Algorithm Memory-Cube. The

n + l’st sub-datacube has one fewer CUBE BY attribute and

no more than T tuples. Thus, the I/O cost will typically be
proportional to the number of CUBE BY attributes k, and

not exponential in k as PIPESORT or quadratic in k as

OVERLAP.

Example 3.1 Figure 3 depicts the nodes in the search
lattice of a datacube query with four CUBE BY attributes

119

R (Partitioned by A)

Figure 3: An Illustrative Example

{A,B, C, D}, and illustrates the order in which Algorithm

Partitioned-Cube computes the various cuboids of the

datacube, when the result of each partition fits into mem-

ory. The dashed arrows indicate that in-memory sorting

(of the source node) takes place; the solid arrows indicate

the computation of aggregates along paths with a common

prefix.

Assume that the order in which the attributes are cho-

sen for partitioning purposes is (A, B, C, D). First, the un-

derlying relation is partitioned by attribute A. Since each
partition fits into memory, the partitions are fetched into
memory one-at-at-time. When a partition is in memory,

some tuples can be computed for each of the cuboids that

have A as an attribute. When all the partitions have been

processed, all tuples have been computed for these cuboids;

in particular, all the tuples of cuboid Q({A, B, C, D}) have

been computed.

Next, the finest granularity cuboid Q({A, B, C, D}) is par-

titioned by attribute B. (Attribute A can be projected out

during this phase.) The partitions are processed as be-
fore, and when all these partitions have been processed,

all tuples have been computed for the cuboids that have
attribute B (but not attribute A).

Finally, the cuboid Q({B,C,D}) is determined to fit in

memory. Hence, all the other cuboids can be computed

without any further partitioning. 0

Algorithm Partitioned-Cube is adaptive to skew in the

sense that partitions that fit in memory will be handled
by Algorithm Memory-Cube, while larger partitions will

be repartitioned. Repartitioning all partitions until the

largest fits in memory is not performed.

Algorithm Partitioned-Cube does not specify exactly

how to partition, or how many partitions to create. Given
a partitioning attribute Bj, the number n of partitions is

bounded above by both the cardinality of the domain of Bj ,

and the number of buffers that can be allocated in memory.
If n is less than the cardinality of the domain, then hash-

partitioning or range-partitioning could be used.

An optimization of Algorithm Partitioned-Cube would

be to unfold multiple recursive calls if it is estimated in

advance that several levels of partitioning will be necessary.
If there is enough main memory to hold buffers for all of the
partitions, a multi-dimensional partition can be obtained

in one I/O scan.

4 Algorithm Memory-Cube

Consider the case when the entire relation B fits in mem-

ory. We describe an efficient Algorithm Memory-Cube for
computing the entire datacube. This technique is a criti-

cal building block in computing the cube using Algorithm

Partitioned-Cube when the relation is much larger than
memory. A crucial feature of this algorithm is that it com-
putes the complete datacube without caching any of the

datacube results for later reuse. Thus only a small amount
of additional storage beyond the input relation is required.

Essentially, Memory-Cube computes the various cuboids

of the datacube using the idea of pipelined paths of

PIPESORT, where each path requires the relation to be
sorted in a particular attribute ordering. The PIPESORT

heuristic, however, does not guarantee that the number of

paths used (and hence the number of sorts performed) is

minimal. Hence, we first present an algorithm that de-

termines an optimal set of paths (and hence the optimal

number of sorts) that are needed to compute each cuboid
in the datacube. We then show that the set of sorts that

need to be performed are not independent of each other,

but can share a considerable amount of computation. The

combination of these two ideas provides a CPU efficient

solution to the problem of computing the entire datacube
when the relation fits in memory. Further, Memory-Cube

does not incur any I/O beyond the input of the relation

and the output of the datacube itself.

4.1 Paths in the Search Lattice

Recall that paths in the search lattice determine which of

the 2” cuboids can be computed from which others, and

the evaluation of each path (as in PIPESORT) requires a
sorting of the relation at the root node of the path. To

minimize the number of (expensive) sort operations per-

formed, it is hence desirable to minimize the total number

of paths in the search lattice that are generated to cover

all the nodes. However, the heuristic approach adopted

in PIPESORT does not guarantee the optimality of this

number of paths.

There must exist at least (lkTz,) paths, since the search

lattice has that many nodes with [k/2] attributes, and no

path in the search lattice can pass through two nodes with

the same number of attributes. We now demonstrate that

(,&) is also an upper-bound on the number of paths re-

quired to cover all the nodes in the search lattice, and we

present a constructive procedure that achieves this bound.
Our construction is a recursive procedure, described in Fig-

ure 4 as Algorithm Paths. The desired set of paths for the

datacube query is given by Paths({Bi, . . . ,Bk}).

Example 4.1 Let the datacube query have CUBE BY at-
tributes {A,B,C,D}. G(0) is given by E. We show G(1)
through G(4). (Separate paths are shown on separate

lines.)

120

Algorithm Paths({Bi, . . . , Bj})

INPUTS: CUBE BY attributes {Bi, . . . , Bj}.

OUTPUTS: A set G(j) of (TjjZ,) paths in the search lattice that cover all the nodes.

METHOD: if (j = 0) then return a single node with an empty attribute list, c;

else { let G(j - 1) = Paths({Bi,. . . ,Bj-I});
let Gl(j - 1) and G,(j - 1) denote two replicas of G(j - 1);

prefix the attribute list of each node of Gl(j - 1) with Bj;

for each path Ni --t . . . + Np in G,(j - 1) {

remove node Np and the edge into Np (if any) from G,(j - 1);

add node Nr, to GI(J’ - 1);
add an edge from node Bj . Np to node Np in Gl(j - 1); }

return the union of the resulting Gl(j - 1) and G,(j - 1); }

Figure 4: Computing Paths for In-Memory Datacube Computation

G(1) = D + E
G(2) = C.D+C--Ne

D
G(3) = B.C.D+B.C+B+e

B.D+D
C.D+C

G(4) = A.B.C.D--tA.B.C--,A.B~A--,~
A.B.DhA.D+D
A.C.D+A.C+C
B.C.D-+B.C+B
B.D
C.D

The attributes of the paths in G(4) are finally reordered

to obey the prefix property. G(4) has 6 paths, which is the

desired number, i.e., (l); these paths completely cover the

search lattice.
Evaluating the datacube with 4 CUBE BY attributes,

when the entire relation fits in memory, hence requires 6

in-memory sorts of the relation. These 6 sorting orders are

obtained from the roots of the 6 paths in the prefix-sorted
versionofG(4), as follows: A.B.C.D,D.A.B,C.A.D,B.C.D,
B.D and C.D. Once the relation is sorted in the order deter-

mined by the root of a path, all the cuboids corresponding

to the nodes in the path can be computed in a single pass

over the relation. 0

It is easy to see that the algorithm generates paths that

cover all the nodes of the search lattice. The proof that

the algorithm generates precisely (,&,) paths is based on

the symmetry of the algorithm. Details will appear in the
full version of the paper.

4.2 Sharing Sort Work

When computing the datacube from an in-memory rela-

tion, the relation in memory has to be sorted multiple

times. The order in which this sequence of sorts is per-

formed does not affect the correctness of the algorithm but
could affect its performance.

Consider Example 4.1. The relation needs to be sorted
6 times, in the following (named) orders: Si = A . B . C . D,
S2=~.~.~,S3=c.~.~,S4=~.c.~,ss=B.Dandss=
C D. If the sequence in which the sorts are performed is

S3, Ss , S3, S3 , S4, Si , then some computation that has been

performed in one sort can be utilized in the following sort.
For example, Ss has sorted the relation in the attribute

ordering C . D. To sort according to S3 now, the entire

relation does not have to be resorted; only each block of

tuples that share a C value needs to be independently sorted

in the A.D order. Once this is done, the result will be sorted

in the desired S3 order. In Section 6 we demonstrate

experimentally that this sharing of sort order information

has a significant positive impact on the running time.

4.3 Computing the Cube by Traversing Paths

Algorithm Memory-Cube, described in Figure 5, computes

the datacube as follows: It takes a prefix-ordered path, and

sorts the in-memory relation according to the attribute or-

dering of the initial node of the path. Like PIPESORT,

it then makes a single scan through the data, accumulat-

ing along the way aggregates at all granularities on the

path. Aggregates from finer granularities are combined
with those at coarser granularities when the corresponding

grouping attributes change. Datacube results are output
immediately.

The sort orders used by Memory-Cube are generated as

described in Section 4.1, and processed in lexicographic

order so that some of the sorting work can be shared as

described in Section 4.2. There are (rk’f2,) sorting steps

since there are that many paths.

5 Analysis of Our Solution

We analyze our solution for computing the datacube when
all partitions of the data fit in memory.

5.1 Estimating the Size of a Datacube

We now present analytical formulas estimating the number

of tuples in each cuboid of, and in the result of, a datacube.
Details will be presented in the full version of this paper.

Let T be the number of tuples in the relation R, and

assume that the value of each CUBE BY attribute of a

tuple in B is randomly and independently drawn from
the domain of that attribute. Let the cardinalities of

the domains of Q’s k CUBE BY attributes, Bi,. . . ,Bk, be

121

Algorithm Memory-Cube&l, {Bi, . ,B,,,}, A, G)
INPUTS: A set of tuples B, that fits in memory; CUBE BY attributes {Br , . , B,,,}; attribute A to be aggregated;

aggregate function G(.).
OUTPUTS: The datacube result for B over {Br , , Bm} in two horizontal fragments F and D on disk. F contains

the finest granularity datacube tuples (i.e., grouping by all of {Br, . . ,Bm}), and D contains the

remaining tuples.

METHOD: sort R and combine all tuples that share all values of {Br , . . , B,};

/* Assume that tuples are sorted according to first sort order */

for each sort order {
initialize accumulators for computing aggregates at each granularity;

combine first tuple into finest granularity accumulator;

for each subsequent tuple t {

compare t with previous tuple, to find the position j of the first sort order attribute

at which they differ;

if (j is greater than the number of common attributes between this sort order and the

next) then {

re-sort the segment from the previous tuple t’ at which this condition was satisfied

up to the tuple prior to t according to the next sort order; }

if (grouping attributes oft differ from those in finest granularity accumulator) then {

output and then combine each accumulator into coarser granularity accumulator,
until the grouping attributes of accumulator match with those oft;

/* the number of combinings depends on the sort order length and on j */ 1

combine current tuple with the finest granularity accumulator; } }

Figure 5: Algorithm Memory-Cube

given by card(l), . . , card(k), respectively. Then the num-

ber of tuples in the cuboid Q({Bj,, . ,Bj,}) is given by

cuboidsize({jl , . , ji}, T), where:

cuboidsize({jl,. . , ji},T) = shoot(T,ticard(jl))

l=l

shoot(a,s) = s * (1- (1- f)Q)

The total number of tuples in the datacube Q is given by

cabesite(k, T), and is obtained by adding up the tuples in

all the cuboids of Q. When the domains of ea>h of the

CUBE BY attributes have the same cardinality, say card,

cubesize(k, T) simplifies to:

cubesize(k,T) = 2 ((1‘) * shoot(T, card’)

i=O

Figure 6 shows the estimated ratio of the size of the

datacube to the size of the input relation as a function of k,

for various values of the (uniform) domain cardinality. The

input relation has cardinality 106. Note the logarithmic

vertical scale.

5.2 The I/O Cost of Partitioned-Cube

Using our formulas for the cuboid size estimates, one can
construct a cost-formula for Algorithm Partitioned-Cube.

For cuboids that fit into memory, we count a single pass.

For cuboids that don’t fit in memory, we count a read

and write pass for partitioning, followed by a read pass
to compute the sub-datacubes in each partition, assuming

the partitions fit into memory. Under this assumption, it

Figure 6: Cube to Input size ratio as a function of k.

turns out that the total I/O cost is O(k 1 R I). The details

will appear in the full version of the paper.

Example 5.1 Consider Example 2.1 once more. Algo-

rithm Partitioned-Cube requires the processing of three
cuboids (of dimensions 7, 6, and 5) whose inputs have size

comparable to the original relation, one cuboid (of dimen-

sion 4) with input size comparable to half that of the orig-
inal relation, and one cuboid (of dimension 3) of negligible

input size. The total I/O overhead is thus roughly the

equivalent of 11.5 passes through the relation. This is an
overhead of only about 25% over the cost of writing the

datacube result! 0

In contrast to Partitioned-Cube, the I/O cost of

PIPESORT is exponential in k and the I/O cost of OVER-

LAP is quadratic in k, for sparse data sets, even under

122

the assumption that partitioning It always gives memory-

sized fragments. Ours is the only solution for computing
the datacube that we are aware of, whose I/O cost in this

scenario is linear in k, which makes our solution scalable!

5.3 The CPU Cost

The number of in-memory sorts needed is exponential in k.

This exponential factor is unavoidable, because the width

of the search lattice of the datacube is exponential in k.
It remains to be seen whether or not the exponential CPU
time dominates the I/O time in practice. We answer this

question quantitatively in Section 6. As long as the total
CPU time required to compute the datacube is less than

the total I/O time needed to write the output result, we

can use standard double-buffering techniques to decouple
the CPU and I/O in order to run at the I/O bandwidth.

In the full version of the paper we argue that the CPU cost

of our algorithms is likely to be less than the CPU costs of

PIPESORT and OVERLAP.

6 Experimental Evaluation

We have implemented Algorithm Memory-Cube from Fig-

ure 5 in C++, and it computes the datacube of a partition

that fits in memory. The data is read in, or is syntheti-

cally generated internally. Data is assumed to consist of

4-byte integer values on all grouping and aggregated at-

tributes, and it is assumed that no extraneous attributes

are present. The “combine” operation is a procedure that
can be written to perform arbitrary incremental aggregate

operators. In this section, we report results for a SUB opera-

tion over one attribute, and in one example a MAX operation
over one attribute.

We ran the datacube algorithm on an UltraSparc single-

processor model 170 with 96MB of RAM. The algorithm

was run late at night when no other processes were active.

We measured both the CPU time and the elapsed time.

In all experiments reported, the CPU time and elapsed

time were within one percent; in our results we use the

CPU time. The time was measured from the point after

the input relation was read or generated until the end of

the datacube computation. We suppressed the I/O for the

datacube output so that we could get an accurate measure

of the CPU cost of computing the datacube. We observed
that there was almost no page faulting activity during the

running of the datacube code -thus there was no overhead

due to thrashing.

We did not try to measure I/O cost since we did not use

a raw file system, and would have been likely to encounter

substantial file-system overheads. Since the datacube out-

put and relation input can be performed sequentially in a

buffered fashion, we believe that an accurate approxima-
tion of the I/O time that would be expected in a com-

mercial database system can be obtained by dividing the

number of bytes to be read/written by the sustained se-
quential transfer rate of the disk drive being used. In the

graphs below we assume a disk transfer rate of 1.5 MB/set,

as in [SAG96, AAD+96].

Sorting was performed in-place (on pointers to tuples)

using quicksort [Hoa62].
We ran several experiments with the following aims in

mind: (a) To demonstrate that the algorithm is practical,
and performs reasonably fast. (b) To assess the relative
contributions of CPU time and I/O time for various data

sets. (c) To measure properties of the algorithm, such as
the benefit of sharing sort-orders compared with full resort-
ing. (d) To verify that the algorithm scales appropriately.

Example 6.1 In this example we consider data sets of size
104, 105, and lo6 tuples, with attribute values distributed

uniformly within a common range. The range cardinalities
were varied from 16 to 4096, and the number of CUBE BY at-

tributes was varied from 1 to 9. With 9 CUBE BY attributes

(and one aggregated attribute) the size of the largest rela-

tion considered was lo6 * 10 * 4 bytes, i.e., 40MB.

Performance graphs are given in Figure 7. Graphs (a),
(b) and (c) show the CPU time as a function of the number

of tuples, for various numbers of CUBE BY attributes. (Note

the logarithmic scale on both axes.) Graph (a) corresponds

to a domain cardinality of 16, graph (b) to 64, and graph

(c) to 1024. First, observe that in Figure 7(c) the graphs for

3, 5, 7 and 9 CUBE BY attributes are roughly evenly spaced

for any fixed number of tuples. This is consistent with a

performance that is exponential in the number of CUBE BY

attributes. The slope of the graphs indicate a CPU time

that is roughly proportional to t’.’ on this range, where t is

the number of tuples. This is consistent with a complexity

of o(t log t).

There are two separate “regimes” in Graphs (a) to (c).
For example, in Figure 7(a) the curves for 1 and 3 CUBE BY

attributes are significantly below the curves for higher

numbers of CUBE BY attributes. This separation corre-

sponds to the separation between dense and sparse dat-

acube computations.

Graphs (d), (e) and (f) show performance statistics

for lo6 tuples as a function of the number of CUBE BY

attributes, for various values of the domain cardinality.

Graph (d) presents the measured CPU time, graph (e)
presents the estimated total I/O time (for both input and

output), and graph (f) presents the proportion of CPU

time to total time. Graph (d) again shows the transition

from dense data to sparse data, with the transition point

depending on the attribute cardinality. Note how the data

is sparse with as few as 2 CUBE BY attributes when the

domain cardinality is 4096. Graph (d) confirms that the
CPU complexity is exponential in the number of CUBE BY

attributes.

Graph (e) shows that the total I/O time is also exponen-

tial in the number of CUBE BY attributes. For small domain

cardinalities with small numbers of CUBE BY attributes the

input relation is responsible for most of the I/O; for other

regions the cube result itself is responsible for most of the
I/O. Graph (e) also shows that beyond a certain domain
cardinality size, the total amount of I/O does not change
very much since the data is close to the limit of sparseness.

Graph (f) shows that the CPU time is the most sig-
nificant cost component for small numbers of CUBE BY at:

tributes, or small domain cardinalities. However, for larger

123

(a) Cardinality=lB

P
E

1.1 1
0.9

t
= 0.6
2
0 0.7

j 0.6

z 0.5

F 2 0.4

0 0.3

11 . ’ J
1 2 nk,be,4d c&by akkwtes 7 6 9

(d) CPU time

4 5 6 7 6 9
number d cti.bv attnbutm

(g) lo6 tuples

loo00 loom0
number d tup1es

(b) Cardinality=64

'1 2 7 6 9
nk.m4d c&by &ibulaP

(e) I/O-time

(h) TPC-D

Figure 7: Performance graphs.

numbers of CUBE BY attributes the CPU time is a small

fraction of the total time. The numbers in this graph de-

pend on both the CPU speed and the estimated disk band-

width. Since we expect CPU speed to increase faster than
disk speed in the next generations of computer hardware,

we anticipate that the balance between CPU cost and I/O

cost would lean further in favor of the CPU cost in future.

Graph (g) demonstrates the benefits of sharing the sort-

ing work for lo6 tuples. The algorithm was run twice,
once normally and the second time with sharing turned

off. The ratio of CPU times is reported as a function of
the number of CUBE BY attributes, for various values of the

domain cardinality. For fewer than 4 CUBE BY attributes

there are few sort-orders, and so there is little benefit to

be expected from sharing sorting work. This graph shows

that the running time can be reduced significantly (down
to 40 percent or less of the original time) by sharing the

sorting work. The benefit increases with the number of

CUBE BY attributes as the number of common attributes

between consecutive sort orders increases. 0

Example 6.2 In this example we consider data based on

the TPC-D benchmark [Tra95]. The benchmark considers

IWOOl
numba d t”pk~

(c) Cardinality=1024

12 3 4 5 6 7 8 9
number d cube-by attributes

(f) CPU/total

CPU time -
Estimated 110 time ----- _,.._.. .‘.

r___/-~-

,,/

/._/--~.“’

~

.-’

,,../

/ 1
loocm le+06

number Of tupies

(i) Cloud Data

data proportional to a scale factor sf. We vary sf from

0.0001 to 0.1 which corresponds to a LINEITEM table of

size 600 to 600,000 tuples. The base data consists of nine

CUBE BY attributes and one attribute to be aggregated; the

largest example is thus 600,000 * 10 * 4 bytes,’ i.e., 24MB,
which fits in memory. The respective cardinalities of these

attributes are: sf * 1500000, sf * 200000, sf * 10000, 5110,

5110, 5110, 7, 2, and 2. See [Tra95] for a description of the

schema for the LINEITEM table; for example, the value
5110 corresponds to the number of days in a 14-year period.

Data is chosen uniformly from each range independently.

Figure 7(h) presents the measured CPU time and es-
timated I/O time for computing the datacube with 9

CUBE BY attributes. The CPU time is dominated by

the I/O time for a memory-sized TPC-D data set. A

larger data set would be partitioned and each memory-

1 We did not use the data types specified by TPC-D. Instead
we used integers. This is actually a very reasonable choice since
making many passes over large data types is inefficient. Bet-
ter would be to give unique integer identifiers to the values of
each type, perform the datacube over the identifiers, and then

reconstitute the values at the end.

124

sized fragment would have CPU characteristics similar to

Figure 7(h); thus the overall CPU time would be domi-

nated by the overall I/O time. 0

Example 6.3 In this example we use some real-world

data on cloud coverage [HWLSI]. The data used corre-
sponds to measurements of the amount of cloud coverage

throughout the globe over a period of one month, Septem-

ber 1985. (Data for ten years is available.) There are
two data sets: one containing 117,635 tuples contains mea-

surements made over the ocean, and another containing

1,015,368 tuples contains measurements made over land.

There are approximately twenty separate fields. We have
chosen the following nine for CUBE BY attributes, with car-

dinahties listed in parentheses: day (30), hour (24), sky-
brightness (2), latitude (180), longitude (360), station-id (5

for the ocean data, 7037 for the land data), present-weather

code (lOl), weather change code (9), and solar-altitude

(180). The attribute being aggregated is a measure (be-
tween 0 and 8) of total cloud cover. All other attributes

were projected out of the data sets. Thus the larger input

relation occupied 1,015,368 * 10 * 4 bytes, i.e., 40.6MB.

The datacube query computed the maximum cloud cover

reported at each level of granularity. Figure 7(i) presents

the measured CPU time and estimated I/O time for com-

puting the datacube. This graph again shows that the CPU
time is dominated by the I/O time for a sparse real-world

data set. For a similar data set that did not fit in memory
(for example, ten years’ worth of cloud data), we would ap-

ply Algorithm Partitioned-Cube and each memory-sized

fragment would have CPU characteristics similar to Fig-

ure 7(i); thus the overall CPU time would be dominated
by the overall I/O time. 0

Example 0.4 We calculate the expected CPU cost for

Algorithm Partitioned-Cube on a data set that is much

larger than memory. Consider Example 2.1. Algorithm

Partitioned-Cube spawns a total of 401 sub-datacubes:

100 with 6, 5, and 4 CUBE BY attributes, and 101 with 3

CUBE BY attributes. The CPU time (in seconds) for a single

datacube of this sort over the expected sizes of the parti-
tions is given below:

CUBE BY attributes 1 6 5 4 3

CPU time 1 508 317 189 37

The total CPU time for Example 2.1 would thus have an

upper bound of roughly 1.05 x lo5 seconds, corresponding

to 24.6 times the I/O cost of one pass through the base

relation. While this is a relatively large number, it is still

less than the I/O time for the cube output (45 passes)

and the CPU work could be performed in parallel with the

writing of the datacube result (see Section 5.3). 0

7 Conclusion

We proposed a novel divide-and-conquer algorithm,
Partitioned-Cube, for the fast computation of datacubes

over large sparse relations. We demonstrated the efficiency

of our algorithm using synthetic, benchmark and real-world

data sets. Our work is distinguished by an explicit quan-

tification of both the I/O cost and the CPU cost, with the

CPU cost measured using our implementation.

When the relation fits in memory, our technique per-
forms multiple in-memory sorts, and does not incur any
I/O beyond the input of the relation and the output of the
datacube itself. Our technique minimizes the number of

sort orders that need to be computed. Further, we identify
and quantify the advantages of sharing sort orders in the

datacube computation.
Our solution is the first solution where the total I/O

overhead is linear in the number of CUBE BY attributes

when the partitions fit in memory; previous techniques

were either exponential or had a quadratic approximate

lower bound.

References

[AAD+96] S. Agarwal, R. Agrawal, P. M. Deshpande,
A. Gupta, J. F. Naughton, R. Ramakrishnan, and

S. Sarawagi. On the computation of multidimensional

aggregates. In Proceedings of the International Confer-

ence on Very Large Databases, pages 506-521, 1996.

[DANRSG] P. M. Deshpande, S. Agarwal, J. F. Naughton,

and R. Ramakrishnan. Computation of multidimen-

sional aggregates. Technical Report 1314, University of

Wisconsin, Madison, 1996.

[GBLP96] J. Gray, A. Bosworth, A. Layman, and H. Pi-
rahesh. Datacube : A relational aggregation operator

generalizing group-by, cross-tab, and sub-totals. In Pro-

ceedings of the IEEE International Conference on Data

Engineering, pages 152-159, 1996.

[Hoa62] C. A. R. Hoare. Quicksort. Computer Journal,

5(1):10-15, 1962.

[HRU96] V. Harinarayan, A. Rajaraman, and J. D. UB

man. Implementing data e&es ef%entIy. In Proceed-

ings of the ACM SIGMOD Conference on Management

of Data, pages 205-216, 1996.

[HWL94] C. J. Hahn, S. G. Warren, and J. London.

Edited synoptic cloud reports from ships and land
stations over the globe, 1982-1991. Available from

http://cdiac.esd.ornl.gov/cdiac/ndps/ndpO26b.html,

1994.

[SAG961 S. Sarawagi, R. Agrawal, and A. Gupta. On com-

puting the data cube. Technical Report RJ10026, IBM

Almaden Research Center, San Jose, CA, 1996.

[Tra95] Transaction Processing Performance Council

(TPC), 777 N. First Street, Suite 600, San Jose, CA
95112, USA. TPC Benchmark D (Decision Support),

May 1995.

[ZDN97] Y. Zhao, P. M. Deshpande, and J. F. Naughton.

An array-based algorithm for simultaneous multidimen-
sional aggregates. In Proceedings of the ACM SIGMOD

Conference on Management of Data, pages 159170,

1997.

125

