
MATHEMATICS OF COMPUTATION
Volume 83, Number 289, September 2014, Pages 2347–2384
S 0025-5718(2014)02785-3
Article electronically published on February 11, 2014

FAST COMPUTATION OF THE MULTIDIMENSIONAL

DISCRETE FOURIER TRANSFORM AND DISCRETE

BACKWARD FOURIER TRANSFORM ON SPARSE GRIDS

YING JIANG AND YUESHENG XU

Abstract. We propose a fast discrete Fourier transform for a given data set
which may be generated from sampling a function of d-variables on a sparse
grid and a fast discrete backward Fourier transform on a hyperbolic cross
index set. Computation of these transforms can be formulated as evaluation
of dimension-reducible sums on sparse grids. We introduce a fast algorithm for
evaluating such sums and prove that the total number of operations needed in
the algorithm is O(n logd n), where n is the number of components along each
coordinate direction of the data set. We then use it to develop fast algorithms
for computing the discrete Fourier transform on the sparse grid and the discrete
backward Fourier transform on the hyperbolic cross index set. We also show
that if the given data set is sampled from a function having regularity of order
s, then its discrete Fourier transform has the optimal approximation order
O(n−s). Numerical examples are presented to demonstrate the approximation
accuracy and computational efficiency of the proposed algorithms.

1. Introduction

A given data set on a sparse grid in Rd with d being a fixed positive integer may
be viewed as a set of functional values sampled from a function of d-variables on the
sparse grid. From the given data set we may reconstruct the function by using the
hyperbolic cross approximation of d-dimensional multiscale piecewise interpolating
polynomials. The discrete Fourier transform of the data set (which we also view as a
vector) considered in this paper is the set of the Fourier coefficients of the resulting
reconstructed function, and its outcome is a data set indexed with a hyperbolic
cross index set. While the discrete backward Fourier transform of a data set on
a hyperbolic cross index set is the set of values of the trigonometric polynomial,
having the given data set as its coefficients, evaluated at the given sparse grid.
The outcome of the discrete backward Fourier transform is the values of the linear

Received by the editor May 9, 2012 and, in revised form, January 6, 2013.
2010 Mathematics Subject Classification. Primary 65T50.
Key words and phrases. Multidimensional Fourier transform, multidimensional backward

Fourier transform.
This work was supported in part by the Guangdong Provincial Government of China through

the “Computational Science Innovative Research Team” program.
The authors were supported in part by the Young Scientist Fund of the National Natural Sci-

ence Foundation of China under grant 11101439 and the Doctor Program Foundation of Ministry
of Education of China under grant 20100171120038.

The second author (corresponding author) was supported in part by the US Air Force Office of
Scientific Research under grant FA9550-09-1-0511, by the US National Science Foundation under
grant DMS-1115523, and by the Natural Science Foundation of China under grants 11071286 and
91130009.

c©2014 American Mathematical Society

2347

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mcom/
http://www.ams.org/jourcgi/jour-getitem?pii=S0025-5718-2014-02785-3


2348 YING JIANG AND YUESHENG XU

combination of the Fourier basis functions, with the coefficients being the given
data set, evaluated at the sparse grid points. We use here the terminology “discrete
backward Fourier transform” instead of “discrete inverse Fourier transform” since
an application of the backward transform does not recover exactly the original data
set which has been transformed by the discrete Fourier transform. It gives only an
approximation of the original data set.

The main purpose of this paper is to develop a fast algorithm for computing
the discrete Fourier transform of a given data set which may be generated from
sampling a function of d-variables on a sparse grid and for computing the dis-
crete backward Fourier transform on a hyperbolic cross index set. We unify the
computation problems of these transforms as an evaluation problem of dimension-
reducible sums on sparse grids in Rd and introduce a fast algorithm for this eval-
uation. We then specialize the general methodology to computing the discrete
Fourier transform on the sparse grid and the discrete backward Fourier transform
on the hyperbolic cross index set. When there is no ambiguity, we shall simply
call the discrete Fourier transform on the sparse grid the discrete Fourier transform
and the discrete backward Fourier transform on the hyperbolic cross index set the
discrete backward Fourier transform. This paper is a continuation of two recent
papers: [15], where a fast discrete algorithm for the sparse Fourier transform of a
function of d-variables was developed, and [17], where a fast algorithm for evaluat-
ing B-spline quasi-interpolants on sparse grids was proposed. The hyperbolic cross
approximation plays an important role in this development. Fast algorithms for
evaluating sums on sparse grids were presented in [1,3,26], where [3] employed the
algorithm in [1] to construct a multigrid algorithm for higher order finite elements
on sparse grids, and [26] extended the algorithm in [1] to more general sparse grids.

The hyperbolic cross approximation is an important tool for efficiently repre-
senting a function of high dimensions. It achieves an optimal approximation order
for a function with bounded mixed derivatives by using the quasi-linear number
of Fourier basis functions [19, 22, 23]. This nice feature leads to a wide use of the
hyperbolic cross approximation in solving partial differential equations and high-
dimensional integral equations (see, for example, [5, 8, 10, 12, 18, 20, 25]). In the
numerical solutions of partial differential equations and integral equations, by us-
ing the hyperbolic cross approximation, there are two critical computational issues.
The first one is computing the Fourier coefficients used in the hyperbolic cross ap-
proximation, and the second is evaluating the trigonometric polynomial obtained
from the hyperbolic cross approximation at given points. These issues were ad-
dressed in the literature [11, 12, 14, 15, 17, 21]. The algorithms proposed in [14] for
computing the discrete Fourier transform of a data set on sparse grids at hyperbolic
cross domain and discrete inverse Fourier transform of a data set on a hyperbolic
cross index set at sparse grids requires O(n logd n) number of operations, where n is
the order of the univariate trigonometric polynomial used in constructing the sparse
multivariate approximation by the tensor product. The function constructed by this
algorithm has the approximation order O((logn + 1)d−1n−(s−1)), where s > 0 is
the order of the Sobolev regularity of the function from which the data on sparse
grids are sampled [12]. The approximation order of the algorithms is not optimal.
In particular, for functions of low regularity such as s < 1, the algorithms have
no approximation order. Most high dimensional data of practical importance have
low order of regularity. Therefore, there is a need to develop efficient algorithms

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FAST COMPUTATION OF MULTIDIMENSIONAL DFT AND DBFT 2349

suitable for a large class of functions including those having low regularity (for ex-
ample, s < 1). Moreover, the employed sparse grids in [14] must be generated from
the zero points of the hierarchical bases defined in [14], which may limit the range
of applicability of algorithms presented in [14].

The algorithm introduced in [15] by the same authors of this paper can be used
to compute the Fourier transform of the data having a low order of regularity. It
has the optimal approximation order O(n−s) for functions whose �-th order mixed

partial derivatives are bounded and � > s and it requests O(n log2d−1 n) number
of operations. While this algorithm enjoys the optimal approximation order, its
computational complexity has an extra logd−1 n factor. This algorithm was applied
to constructing fast algorithms for solving singular boundary integral equations [16]
and first-kind logarithmic-kernel integral equations on open arcs [24].

The main purpose of this paper is to develop a fast algorithm for evaluating a
sum, taken over a source sparse grid, of tensor product functions at points of a
target sparse grid. The proposed algorithm is designed based on the property that
both the source and the target sparse grids are dimension-reducible in the following
sense. A set of d dimensions is called dimension-reducible if it can be represented
as a union of sets, each of which is the tensor product (which we call a cell) of a
one-dimensional set and a (d − 1)-dimensional set that has the same structure as
the original d-dimensional set, with the one dimensional sets being disjoint and the
(d−1)-dimensional sets being a nested sequence. The related one-dimensional set is
called the projection of the cell on one dimension and the (d−1)-dimensional set is
called the projection of the cell on the d−1 dimensions. Therefore, evaluating such
a sum (which we call a dimension-reducible sum), taken over a source sparse grid,
of tensor product functions at points of a target sparse grid reduces to evaluating
sums, taken over cells of the source dimension-reducible set of d dimensions, of the
tensor product functions at points of cells of the target dimension-reducible set of
d dimensions.

A dimension-reducible set shares the same structure as a tensor product set.
Hence, a dimension-reducible sum can be evaluated in the same way as a tensor
product sum (a sum of tensor product of univariate functions over a tensor product
index set). Evaluating a tensor product sum at points on a tensor product set
can be reduced to evaluating the univariate functions by using a formula recursive
in dimensions. Likewise, evaluation of a sum of tensor product functions over a
dimension-reducible source sparse grid at points of a dimension-reducible target
sparse grid can be treated in a way similar to evaluating a tensor product sum.
This is the key point used in this paper to develop a fast algorithm for evaluating
a dimension-reducible sum.

Fast algorithms for computing the discrete Fourier transform and discrete back-
ward Fourier transform are obtained by applying the fast algorithm for evaluating
dimension-reducible sums. Let us elaborate the relations of these algorithms with
those presented in [11,14]. The algorithm for discrete Fourier transform developed
in this paper produces more accurate results than those of [11, 14] for data sets
having a low order of smoothness, while the algorithms in [11, 14] might be more
efficient for data sets having a higher order of smoothness. The discrete inverse
Fourier transform presented in [11, 14] is only applicable to evaluating the values
of the sum at points on a sparse grid that is generated by employing the idea of
[21] from the zero points of the hierarchical bases. The discrete backward Fourier

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2350 YING JIANG AND YUESHENG XU

transform developed in this paper is not restricted to sparse grids of this type. In
particular, when the discrete backward Fourier transform developed in this paper
is applied to sparse grids of this type, its output is algebraically identical to that
produced by the discrete inverse Fourier transform presented in [11, 14].

Evaluating a dimension-reducible sum may also be reformulated as a matrix-
vector multiplication. Fast matrix-vector multiplications in the context of hyper-
bolic cross approximation were considered in [21,26]. The algorithm in [21] requests
that the matrices involved should be block upper (or lower) triangular. This re-
quirement was removed in the algorithm presented in [26]. We were not aware of
this paper (which was published around the same time when the first version of
our paper was submitted) until we received a referee’s report. We would like to
compare our proposed algorithm with that of [26]. The algorithm in [26] was de-
scribed in two dimensions with an indication that it may be extended to general d
dimensions. We feel that the extension can be technically nontrivial. Considering
the connection between evaluation of a sum and matrix-vector multiplication, our
fast algorithm described in this paper for evaluating a dimension-reducible sum is
a d-dimensional version of the algorithm of [26]. In the algorithm we use recur-
sive structures to address challenges brought by higher dimensions and memory
management strategies in the algorithmic implementation to control the increase of
the memory spaces required by the algorithm. In addition to this, there are other
differences between the two algorithms. The idea used in this paper to develop
the algorithm was obtained from the papers [2, 17]. Moreover, our algorithm is for
a more general setting—dimension-reducible sets—which include isotropic sparse
grids, anisotropic sparse grids, full grids and the optimized grids in [13] as special
examples, while the algorithm in [26] is for a specific sparse grid.

We organize this paper in seven sections. In section 2, we define the discrete
Fourier transform on a sparse grid and the discrete backward Fourier transform
on a hyperbolic cross index set, and prove that if the given data set is sampled
from a function having regularity of order s, then its discrete Fourier transform
has approximation order O(n−s). We then reformulate in section 3 the discrete
Fourier transform on a sparse grid as a dimension-reducible sum. In section 4 we
develop a fast algorithm for evaluating a dimension-reducible sum, and show that
it requires only O(n logd n) number of operations and O(n logd−1 n) number of
memory usages. In sections 5 and 6, we specialize the general algorithm developed
in section 4 to compute the discrete Fourier transform on a sparse grid and the
discrete backward Fourier transform on a hyperbolic cross index set. We present
four numerical examples in section 7 which confirm the theoretical estimates with
a comparison to a known algorithm proposed in [11, 12, 14].

2. Discrete Fourier transform on sparse grids

In this section, we define the discrete Fourier transform on a sparse grid and the
discrete backward Fourier transform on a hyperbolic cross index set.

We begin with describing the data set to which the discrete Fourier transform is
applied. Let d ∈ N be a fixed integer. The data set considered in this paper may
be generated from sampling a function of d-variables on a sparse grid. By N we
denote the set of natural numbers and let N0 := {0} ∪ N. For each k ∈ N, we set
Zk := {0, 1, . . . , k−1}, and for each m ∈ N, we let Z0,m := Zm and Zj,m := Z2j−1m,
j ∈ N. For a given object A, we let Ad := A⊗A⊗· · ·⊗A (d-folds), and in general,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FAST COMPUTATION OF MULTIDIMENSIONAL DFT AND DBFT 2351

for each j := [jk : k ∈ Zd] ∈ Nd
0 and given objects Ajk , we define

Aj := Aj0 ⊗ Aj1 ⊗ · · · ⊗ Ajd−1
,

where A ⊗ B denotes the tensor product of the objects A and B. For each j :=
[jk : k ∈ Zd] ∈ Nd

0, r := [rk : k ∈ Zd] ∈ Nd
0 and given objects Ajk,rk , we also define

Aj,r := Aj0,r0 ⊗ Aj1,r1 ⊗ · · · ⊗ Ajd−1,rd−1
.

These objects could be sets, operators, functionals, or functions which will become
clear later in a specific context. For each N ∈ N0, we define a sparse grid by setting

SN,d :=
{
j ∈ Z

d
N+1 : |j| ≤ N

}
, where |j| :=

∑
k∈Zd

jk.

In this paper, we shall consider the discrete Fourier transform of a data set having
the form

fdN := [fj,τ ∈ R : j ∈ SN,d and τ ∈ Z
d
j,m].

Such a data set is sometimes viewed as a vector. The domain of the data set fdN is
illustrated by examples f26 and f36 , respectively, in images (a) and (b) of Figure 1.
The discrete Fourier transform of a data set fdN is the set of the Fourier coefficients of
the function of d-variables which interpolates the data set by using hyperbolic cross
approximation of d one-dimensional multiscale piecewise interpolating polynomials.

1
32

64
96

128

1
32

64
96

128

1

32

64

96

128

1 32 64 96 128
1

32

64

96

128

Figure 1. Domains of f26 (left) and f36 (right)

We now construct the function that interpolates the data set fdN . In this paper,
we assume that the data set fdN is obtained from sampling a function f of d variables
on a sparse grid. Thus, to construct the function that interpolates the data set fdN ,
we first review a piecewise polynomial introduced in [15] that interpolates on a
sparse grid. For this purpose, we recall the one-dimensional multiscale piecewise
polynomial interpolation, introduced in [6]. As in [6], we use the refinable set as a
tool to describe the set of the interpolation points. We choose a nested set sequence
of interpolation points on I := [0, 2π]. Note that the interval I is the invariant set
with respect to the two contractive mappings

Ψ := {ψ0, ψ1}, where ψ0(x) :=
x

2
and ψ1(x) :=

x + 2π

2
, x ∈ I.

A subset V of I is said to be refinable relative to the mappings Ψ if V ⊆ Ψ(V ) :=
ψ0(V ) ∪ ψ1(V ). For m ∈ N, we choose a refinable set

V := {vr : 0 ≤ v0 < v1 < · · · < vm−1 < 2π, r ∈ Zm}

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2352 YING JIANG AND YUESHENG XU

relative to the mappings Ψ, and let V−1 := ∅, V0 := {v0,r := vr : r ∈ Zm}. For each

j ∈ N and pj := [�γ : γ ∈ Zj ] ∈ Z
j
2, we define ψpj

:= ψ�j−1
◦ ψ�j−2

◦ · · · ◦ ψ�0
and

the dyadic expansion

μ(pj) :=
∑
γ∈Zj

�γ2γ .

For pj ∈ Z
j
2 and r′ ∈ Zm, we write r = mμ(pj) + r′ and let vj,r := ψpj

(vr′). We
then define Vj := {vj,r : r ∈ Z2jm}, for j ∈ N0. Note that Vj is refinable relative to
the mappings Ψ.

We now describe the Lagrange polynomials of one-variable to be used in the
construction of the one-dimensional multiscale piecewise polynomial interpolation.
For x ∈ R, we denote by 	x
 the largest integer not greater than x. Associated with
the sets Vj , j ∈ N0, we define the Lagrange polynomials �0,r of degree m − 1 on I
by requiring �0,r(vr′) = δr,r′ for r, r′ ∈ Zm, where δr,r′ = 1 if r = r′, or 0 if r �= r′,
and the piecewise polynomials �j,r by requiring that �j,r(x) = 0, for x ∈ I \ ψpj

(I)
where r and pj satisfy 	r/m
 = μ(pj), and for j ≥ 1 and for each r ∈ Z2jm,
�j,r is the Lagrange polynomial of degree m − 1 on ψpj

(I) with the property that
�j,r(vj,r′) = δr,r′ , for r, r′ ∈ Z2jm. With the above notation, for j ∈ N0 we introduce
the piecewise polynomial interpolation Pjg for a continuous univariate function g
defined on I by

Pjg :=
∑

r∈Z2jm

g(vj,r)�j,r.

Let Q0 := P0 and Qj := Pj − Pj−1 for all j ∈ N. Hence, for each N ∈ N, we
re-express PN as

(2.1) PN =
∑

j∈ZN+1

Qj .

Formula (2.1) allows us to develop the piecewise polynomial that interpolates on
a sparse grid. For f ∈ C(Id), the space of all continuous functions defined on Id,
and N ∈ N, we define

(2.2) SNf :=
∑

j∈SN,d

Qjf.

When fdN is the values of f on the sparse grid, we let SN (fdN ) := SN (f).
We are now ready to describe the discrete Fourier transform of fdN on the hyper-

bolic cross index set. For a fixed m̃ ∈ N, we introduce the index sets

Ij :=
{
l ∈ Z : 	2j−1
m̃ ≤ |l| < 2jm̃

}
, j ∈ N0.

For each N ∈ N, we denote by JN,d the union of Ij for all j ∈ SN,d and call it the
hyperbolic cross index set. It was shown in [22] that the cardinality of JN,d is given
by C(JN,d) = O(2NNd−1). We illustrate the sparsity of JN,d with two examples:
J5,2 and J5,3 with m̃ = 1 in Figure 2. We use L2(Id) for the standard Hilbert space
of the square integrable functions on Id, with the usual inner product 〈·, ·〉 and the

norm ‖·‖ := 〈·, ·〉
1
2 . Let the Fourier basis el, l ∈ Z, be defined by el(x) := 1

(2π)1/2
eilx,

for x ∈ I, where i denotes the imaginary unit. It is well known that the Fourier
basis el, l ∈ Zd, constitutes an orthonormal basis for the space L2(Id). The discrete

Fourier transform f̂dN of fdN on JN,d is defined as the coefficients having indices in

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FAST COMPUTATION OF MULTIDIMENSIONAL DFT AND DBFT 2353

0
32

64
0 32 64

0

32

64

0 20 40 60

0

20

40

60

Figure 2. Sets J5,2 (left) and J5,3 (right)

the index set JN,d of the Fourier expansion of function SN (fdN ). That is,

(2.3) f̂dN :=
[〈
SN (fdN ), el

〉
: l ∈ JN,d

]
.

For a given cdN := [cl : l ∈ JN,d] with cl ∈ R, we define the trigonometric function
by

(2.4) Fcd
N

:=
∑

l∈JN,d

clel.

In particular, if in (2.4) we choose cdN := f̂dN , we obtain that

Ff̂dN
:=

∑
l∈JN,d

f̂dN (l)el.

Clearly, Ff̂dN
is the Fourier expansion of the function SN (fdN ) with the hyperbolic

cross index set JN,d. When the data set fdN is sampled from a given function
f ∈ C(Id), we expect that the corresponding Fourier expansion Ff̂dN

would give a

good approximation to f . We shall address this issue in the next section.
We now turn to defining the discrete backward Fourier transform of a data set

on the hyperbolic cross index set JN,d at a sparse grid. Such a transform is the
set of values of the trigonometric polynomial indexed with set JN,d, having the
given data set as its coefficients, evaluated at a given sparse grid which we describe
next. Given a fixed m ∈ N, we define a sequence of refinable sets by setting

Ṽj :=
{

2πr
2jm : r ∈ Z2jm

}
, for j ∈ N0. Clearly, Ṽj , j ∈ N0, have the properties that

Ṽj ⊂ Ṽj+1 and I =
⋃

j∈N0
Ṽj . We let G̃0 := Ṽ0, and for each j ∈ N, we define

G̃j := Ṽj \ Ṽj−1. The sparse grid is then defined by

S̃N,d :=
⋃

j∈SN,d

G̃j, N ∈ N.

The sparse grid S̃N,d, depending on the integer m, naturally associates with a
piecewise polynomial of order m. In other words, it can be used as interpolation
nodes for the multiscale interpolating piecewise polynomial of order m. The sparse

grid S̃N,d with m = 1 is the one considered in [11, 12, 14], which associates with
the multiscale piecewise constant interpolation. The sparse grids with m = 2 and
m = 3 are shown in (a) and (b) of Figure 3, respectively.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2354 YING JIANG AND YUESHENG XU

/20 3 /2 2
0

/2

3 /2

2

/20 3 /2 2
0

/2

3 /2

2

(a) (b)

Figure 3. Image (a): S̃6,2 with m = 2. Image (b): S̃6,2 with m = 3

For a given data set cdN := [cl : l ∈ JN,d], we define its discrete backward Fourier
transform by setting

(2.5) Fcd
N

(v) :=
∑

l∈JN,d

clel(v), v ∈ S̃N,d.

We call čdN := [Fcd
N

(v) : v ∈ S̃d
N ] the discrete backward Fourier transform of cdN on

S̃N,d.
To close this section, we remark on evaluation of the Fourier expansion on a

hyperbolic cross index set at points in a nonuniform grid. Such an evaluation is
crucial in high-dimensional data analysis. However, direct computing the function
values is costly due to the noncompact support of the Fourier basis functions.
We may first evaluate the Fourier expansion at points in a sparse grid, through
which we can reconstruct a multiscale piecewise polynomial that interpolates the
Fourier expansion. We then evaluate the piecewise polynomial at the points in the
nonuniform grid. Due to the compact support property of the piecewise polynomial
basis functions, evaluating the piecewise polynomial requires a significantly smaller
amount of computational costs than directly computing the Fourier expansion.
For more information on using the hyperbolic cross approximation in nonuniform
Fourier transform, the readers are referred to [9]. The sparse grids considered
here allow us to conveniently construct the interpolating piecewise polynomial of
order m. The proposed methods with an arbitrary integer m provide flexibility in
choosing an appropriate order of the piecewise polynomial that approximates the
Fourier expansion to be evaluated.

3. A dimension-reducible sum for the discrete Fourier transform

Computing the discrete Fourier transform on a sparse grid requires a convenient
formula for the transform. For this purpose, we rewrite the discrete Fourier trans-
form as a dimension-reducible sum so that both its source sparse grid and target
sparse grid are dimension-reducible sets. We can evaluate the original d-dimensional
dimension-reducible sum by computing (d − 1)-dimensional dimension-reducible
sums and one-dimensional sums. This leads us to a fast recursive algorithm for
computing the discrete Fourier transform on a sparse grid.

The development of the dimension-reducible sum for computing the discrete

Fourier transform f̂dN of fdN demands the availability of a convenient formula for

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FAST COMPUTATION OF MULTIDIMENSIONAL DFT AND DBFT 2355

computing the function SN (fdN ). Designing such a formula is the main task of this
section. The dimension-reducible sum for computing the discrete Fourier transform

f̂dN will result from substituting the formula for SN (fdN ) into the definition of the
discrete Fourier transform (2.3). We take two steps to develop the formula for com-
puting SN (fdN ). In the first step, we recall the interpolation operator SN presented
originally in [15]. In the second step, by introducing a mapping which locates the
function value f(vj,r) in f1

N , we derive the formula for computing SN (f1N ). We then
obtain the formula for computing SN (fdN ) by using the tensor product.

We now review the interpolation operator SN . To this end, we first recall a
formula for computing Qjg for j ∈ N for a univariate function g. We need the
following index sets:

Wj := {r ∈ Z2jm : vj,r ∈ Vj \ Vj−1}, for j ∈ N.

Note that Qjg is a interpolation projection of the remainder g − Pj−1g, that is,
Qjg = Pj(g−Pj−1g), and for all r ∈ Z2jm \Wj , we have that (g−Pj−1g)(vj,r) = 0.
Thus, we know that

(3.1) Qjg =
∑
r∈Wj

(g − Pj−1g)(vj,r)�j,r.

To illustrate the projection Qj , we plot in Figure 4 the basis employed in Qj , for
j = 0, 1 and 2, with m = 2 and V0 =

{
2π
3 , 4π

3

}
.

Level 0

Level 1

Level 2

2

2

0

0

0

2

1

1

1

1

1

1

0 /6 /3 /2 2 /3 5 /6 5 /37 /6 5 /33 /2 11 /6 2

100 101

112
110

120 124 127
v23v20

v10 v12

v00

123

v01

v24 v27

Figure 4. The basis employed in Qj , j = 0, 1 and 2

Note that formula (3.1) requires the availability of the values (Pj−1g)(vj,r). We
next derive a formula for computing these values. Since Pj−1g is a piecewise poly-
nomial, developing such a formula requires us to determine which basis functions
�j−1,r̃, r̃ ∈ Wj−1, are not vanished at vj,r. For r ∈ N0, we let ϑ(r) := m

⌊
r

2m

⌋
. It

can be seen that for a fixed j, the index r̃ of the basis functions �j−1,r̃ not vanished
at vj,r must be r̃ = ϑ(r) + q, for q ∈ Zm. Thus, for all j ∈ N and r ∈ Wj we have
that

(3.2) (Pj−1g)(vj,r) =
∑
q∈Zm

g(vj−1,ϑ(r)+q)�j−1,ϑ(r)+q(vj,r).

We illustrate in Figure 5 the basis functions �3,r̃, constructed from the refinable
set V0 =

{
2π
3 , 4π3

}
with m = 2, which do not vanish at the point v4,27. Since

ϑ(27) = 12, the only basis functions that do not vanish at point v4,27 are �3,12 and
�3,13.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2356 YING JIANG AND YUESHENG XU

Figure 5. Illustrate ϑ

We next present the formula for computing Qjg by combining (3.1) and (3.2).
To this end, for q ∈ Zm and κ ∈ Z2m, we let aq,κ := �0,q(v1,κ). By the scaling
and translating property of �j,r, j ∈ N0 and r ∈ Z2jm, we obtain for all j ∈ N and
r ∈ Wj that

(3.3) �j−1,ϑ(r)+q(vj,r) = aq,r mod 2m.

By introducing the functionals

ηj,r(g) := g(vj,r) −
∑
q∈Zm

aq,r mod 2mg(vj−1,ϑ(r)+q)

and substituting them with (3.2) and (3.3) into (3.1), we have that

(3.4) Qjg =
∑
r∈Wj

ηj,r(g)�j,r, for all j ∈ N.

Details of the proof for (3.4) can be found in [15]. By letting W0 := Zm and
η0,r(g) := g(v0,r) for all r ∈ Zm, formula (3.4) is extended to the case for j = 0.

Formula (3.4) leads to the formula for computing the piecewise polynomial in-
terpolation SNf on a sparse grid where f is defined on Id. From the definition of
Qj and (3.4), we see for all j ∈ Nd

0 that

(3.5) Qjf =
∑
r∈Wj

ηj,r(f)�j,r.

Substituting (3.5) into (2.2) leads to the formula

(3.6) SNf =
∑

j∈SN,d

∑
r∈Wj

ηj,r(f)�j,r.

We now turn to developing the formula of SN (fdN ). We first show the formula
for the one-dimensional case with the vector f1N := [fj,τ : j ∈ ZN+1, τ ∈ Zj,m]. We
consider the components fj,τ of this vector as the functional values sampled from
a function f at certain grid points. Note that in this paragraph f is a function of
one variable. We next identify the corresponding grid points. Let j ∈ N be fixed.
For each τ ∈ Zj,m, we let rj,τ ∈ Wj be the number such that there are exactly τ
elements in Wj less than rj,τ , and identify fj,τ with the value of f at the point
vj,rj,τ ; that is, fj,τ = f(vj,rj,τ ). On the other hand, we need to identify f(vj,r)

with a component of the vector f1N . To this end, we define the mapping ζ for each
j ∈ N0 and r ∈ Z2jm by ζ(j, r) := (j′, τ ), where j′ ≤ j and vj,r = vj′,rj′,τ and

find that for each j ∈ ZN+1 and r ∈ Z2jm, f(vj,r) = fζ(j,r). We now re-express

ηj,r(f) as a linear combination of the components of the vector f1N . To do this,
we set for all j ∈ N and τ ∈ Zj,m, bj,τ,q := ζ(j − 1, ϑ(rj,τ ) + q), for q ∈ Zm, and

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FAST COMPUTATION OF MULTIDIMENSIONAL DFT AND DBFT 2357

bj,τ,m := ζ(j, rj,τ ). We can observe that fbj,τ,q = f(vj−1,ϑ(rj,τ )+q), q ∈ Zm. We also
define dj,τ,q := −aq,rj,τ mod 2m. With the notation introduced above, we find that

(3.7) ηj,τ (f) = fbj,τ,m +
∑
q∈Zm

dj,τ,qfbj,τ,q .

To unify the notation, we let b0,τ,0 := (0, τ ) and d0,τ,0 := 1 for each τ ∈ Z0,m, and
bj,τ,m := (j, τ ) and dj,τ,m := 1 for each j ∈ N and τ ∈ Zj,m. We also let X0 := Z1

and Xj := Zm+1 for j ∈ N. For f1N , j ∈ ZN+1 and τ ∈ Zj,m, we define

η̃j,τ (f1N ) :=
∑
q∈Xj

dj,τ,qfbj,τ,q .

From the definition of η̃j,τ and (3.7), it follows for each j ∈ ZN+1 and τ ∈ Zj,m

that ηj,τ (f) = η̃j,τ (f1N ). Thus, the piecewise polynomial SN (f1N ) that interpolates
the data set f1N has the formula

(3.8) SN (f1N ) =
∑

j∈ZN+1

∑
τ∈Zj,m

η̃j,τ (f
1
N )�j,rj,τ .

We are now ready to present the formula for the function SN (fdN ) that inter-
polates the data set fdN for d > 1. For each j := [jk : k ∈ Zd] ∈ Nd

0 and
τ := [τk : k ∈ Zd] ∈ Zj,m, we set rj,τ := [rjk,τk : k ∈ Zd]. For j ∈ Nd

0, τ ∈ Zj,m and
q ∈ Xj, we define

dj,τ ,q :=
∏
k∈Zd

djk,τk,qk .

For any two pairs (j, τ ), (j′, τ ′) ∈ N2
0, we define (j, τ )� (j′, τ ′) := ([j, j′], [τ, τ ′]). For

each j ∈ Nd
0, τ ∈ Zj,m and q ∈ Xj, we let

bj,τ ,q := bj0,τ0,q0 � bj1,τ1,q1 � · · · � bjd−1,τd−1,qd−1
.

For j, j′ ∈ Nd
0, we say j′ ≤ j if j′k ≤ jk for all k ∈ Zd. For each j ∈ Nd

0, we let Hj,d be
the set of all vectors that have the form h := [hj′,τ ∈ R : j′ ∈ Nd

0, j
′ ≤ j, τ ∈ Zj′,m].

For j ∈ Nd
0 and τ ∈ Zj,m, we define the functionals η̃j,τ for h ∈ Hj,d by

η̃j,τ (h) :=
∑
q∈Xj

dj,τ ,qhbj,τ ,q
.

Associated with the given data set fdN , for each j ∈ SN,d we define fj := [fj′,τ : j′ ∈
Nd

0, j′ ≤ j, τ ∈ Zj′,m]. It is clear that fj ∈ Hj,d. We rewrite SN (fdN ) in the following
form

(3.9) SN (fdN ) =
∑

j∈SN,d

∑
τ∈Zj,m

η̃j,τ (fj)�j,rj,τ .

Formula (3.9) allows us to derive a dimension-reducible sum for f̂dN (l) := (f̂dN )l.
Specifically, for each j ∈ N0 and τ ∈ Zj,m, we define the function

Aj,τ (ω) :=
1

(2π)1/2

∫
I

�j,rj,τ (x)eiωxdx, ω ∈ R,

and for each l ∈ JN,d, by using (3.9) we have that

(3.10) f̂dN (l) =
∑

j∈SN,d

∑
τ∈Zj,m

η̃j,τ (fj)Aj,τ (l).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2358 YING JIANG AND YUESHENG XU

For efficient computation, we rewrite formula (3.10) in a dimension-reducible sum.
For each j ∈ N0, we introduce the index set Ej := {r ∈ N0 : 	2j−1
m ≤ r < 2jm}.
For each N ∈ N, we define

FN,d :=
⋃

j∈SN,d

Ej,

and for j ∈ SN,d and r ∈ Ej, we identify τ = [rk − 	2jk−1
m : k ∈ Zd] and let
η̃r(f

d
N ) := η̃j,τ (fj) and Ar := Aj,τ . With the notation introduced above, for each

l ∈ JN,d equation (3.10) is rewritten as

(3.11) f̂dN (l) =
∑

r∈FN,d

η̃r(f
d
N )Ar(l).

We shall show in section 5 that formula (3.11) is a dimension-reducible sum, which
can be recursively computed.

We close this section by discussing the approximation property of Ff̂dN
to f where

the data set fdN is sampled from function f ∈ C(Id). For s ≥ 0 and for φ, ψ ∈ L2(Id),
we define the inner product

(3.12) 〈φ, ψ〉s :=
∑
l∈Zd

〈φ, el〉 〈ψ, el〉
∏
k∈Zd

(1 + l2k)
s.

All functions φ ∈ L2(Id) with the property that ‖φ‖Hs
mix(I

d) := 〈φ, φ〉
1
2
s < ∞ form

a subspace Hs
mix(I

d) of L2(Id). It can be verified that Hs
mix(I

d) is a Krobov space
endowed with the inner product defined by (3.12). We consider the space of all
functions having bounded mixed derivatives up to order m. Suppose that Ω ⊂ Rd.
For f ∈ Cm(Ω) and for α ∈ Nd

0 with |α| ≤ m, we define

f (α)(x) :=

(
∂|α|

∂xα0
0 · · · ∂xαd−1

d−1

f

)
(x), x ∈ Ω.

For an α ∈ Nd
0, let |α|∞ := max{αk : k ∈ Zd}. We introduce the space

Xm(Id) :=
{
f : f (α) ∈ C(Id) and |α|∞ ≤ m

}
with the norm

‖f‖Xm(Id) := max
{
‖f (α)‖∞ : α ∈ N

d
0 and |α|∞ ≤ m

}
.

For f ∈ C(Id), N ∈ N and l ∈ Zd, we let QN (f, l) denote the approximation
of 〈f, el〉 by using the quadrature formula presented in [15] and let QN (f) :=
[QN (f, l) : l ∈ JN,d]. According to Theorem 3.1 in [15], if m ≥ s + ε for an ε > 0,
then there exists a positive constant c such that for all f ∈ Hs

mix(I
d) ∩Xm(Id),

(3.13) ‖f − FQN (f)‖ ≤ c2−sN (‖f‖Hs
mix(I

d) + ‖f‖Xm(Id)).

The following theorem gives an estimate of the difference between f and Ff̂dN
.

Theorem 3.1. Let s ≥ 0 and fdN := [fj,τ : j ∈ SN,d and τ ∈ Zj,m]. If m ≥ s + ε
for ε > 0, then there exist a positive constant c and a positive integer N0 such that
for all f ∈ Hs

mix(I
d) ∩Xm(Id) with f(vj,rj,τ ) = fj,τ , j ∈ SN,d, τ ∈ Zd

j,m, and for
all N ∈ N with N ≥ N0,

(3.14) ‖f − Ff̂dN
‖ ≤ c2−sN (‖f‖Hs

mix(I
d) + ‖f‖Xm(Id)).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FAST COMPUTATION OF MULTIDIMENSIONAL DFT AND DBFT 2359

Proof. From the definitions of SN (fdN ) and SN (f) defined in [15], we have that

(3.15) SN (fdN ) = SN (f).

Since (f̂dN )l =
〈
SN (fdN ), el

〉
, for all l ∈ JN,d, from (3.15) and the definition of

QN (f, l), we observe that (f̂dN )l = QN (f, l). Thus, we have that

(3.16) Ff̂dN
= FQN (f).

Substituting (3.16) into (3.13) yields estimate (3.14). �

4. A fast evaluation scheme for dimension-reducible sums

Computing the discrete Fourier transform based on (3.11) and the discrete back-
ward Fourier transform based on (2.5) can be formulated as the problem of evalu-
ating dimension-reducible sums. We introduce in this section a fast algorithm for
evaluating such sums. We first define the dimension-reducible set. We then rewrite
a d-dimensional dimension-reducible sum as the summation of the tensor prod-
ucts of the (d − 1)-dimensional dimension-reducible sums with a one-dimensional
formula. In this way, evaluating the d-dimensional dimension-reducible sum is re-
duced to computing the (d−1)-dimensional dimension-reducible sums and the one-
dimensional formula. Moreover, due to the nestedness of the dimension-reducible
sets, the values of the (d − 1)-dimensional dimension-reducible sums and the one-
dimensional formula can be reused. This leads to a fast algorithm for evaluating
dimension-reducible sums.

We now define the dimension-reducible set. A mapping Γ from N2
0 to N0 is

called a double monotonic mapping if for all j, j′ ∈ N0 Γ(j, j′) ≥ Γ(j, j′ + 1) and
Γ(j, j′) ≤ Γ(j +1, j′). A set KN,d ⊂ Rd, for some N ∈ N, is said to be a dimension-
reducible set generated from Tj , j ∈ ZN+1 and Γ if there exist a sequence of disjoint
finite sets Tj ⊂ R, j ∈ ZN+1, and a double monotonic mapping Γ : N2

0 → N0 such
that

(4.1) KN,1 =
⋃

j∈ZN+1

Tj , KN,k+1 =
⋃

j∈ZN+1

Tj ⊗KΓ(N,j),k, for all k ∈ Zd \ {0}.

We shall prove in sections 5 and 6 that the sets JN,d, FN,d and S̃N,d are dimension-
reducible with Γ(N, j) = N − j and appropriate sets Tj .

We next present the definition of the dimension-reducible sum that contains
(3.11) and (2.5) as special examples. For given sets L,U ⊂ Zd and a given vector
ξ := [cr : r ∈ L] of real numbers cr, we consider the evaluation of the sum

Eξ :=
∑
r∈L

crϕr, on U,

where ϕr, r ∈ L, are tensor products of given univariate functions ϕr, r ∈ Z. We
call L and U, respectively, the source set and the target set of the sum Eξ. If both L

and U are dimension-reducible sets, we call the sum Eξ a dimension-reducible sum.
More specifically, for fixed d,N ∈ N, given dimension-reducible sets LN,d and UN,d,

a vector ξdN := [ξr : r ∈ LN,d] of real numbers ξr and tensor product functions ϕr,
we wish to compute the values of the dimension-reducible sum

(4.2) Eξd
N

(ν) =
∑

r∈LN,d

ξrϕr(ν), ν ∈ UN,d.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2360 YING JIANG AND YUESHENG XU

This formulation covers many examples of sums of practical importance. The
discrete Fourier transform and inverse Fourier transform on sparse grids defined in
[14] are dimension-reducible sums. The linear combination of B-splines on sparse
grids considered in [17] is also a sum having the form (4.2). We shall show later
that the sums (3.11) and (2.5) fall into the same format. The main purpose of
this section is to design a fast algorithm for computing the values of a dimension-
reducible sum having the form (4.2).

We rewrite the dimension-reducible sum (4.2) according to the dimension-
reducibility of the source set. To this end, we suppose that the set LN,d is generated
from disjoint finite sets Yj ⊂ R, j ∈ ZN+1, and a double monotonic mapping Γ.
By taking advantage of its dimension-reducibility, we re-express the source index
set LN,d as

LN,d =
⋃

j∈ZN+1

{[r, r] ∈ Z
d : r ∈ Yj and r ∈ LΓ(N,j),d−1}.

Thus, for r ∈ LN,d, there exists j ∈ ZN+1 such that r = [r, r′], where r ∈ Yj and
r′ ∈ LΓ(N,j),d−1. Correspondingly, for each j ∈ ZN+1 and r ∈ Yj , the given vector

ξdN has the sub-vector ξdN,j,r := [ξ[r,r′] : r′ ∈ LΓ(N,j),d−1], which together with the
source set LΓ(N,j),d−1 defines a (d− 1)-dimensional sum EξdN,j,r

; that is,

(4.3) EξdN,j,r
:=

∑
r′∈LΓ(N,j),d−1

ξ[r,r′]ϕr′ .

For each j ∈ ZN+1 and r ∈ LΓ(N,j),d−1, we define the one-dimensional sum by

(4.4) ẼξdN ,j,r :=
∑
r∈Yj

ξ[r,r]ϕr.

The above summations allow us to rewrite the d-dimensional dimension-reducible
sum EξdN

as the sum of the following two functions defined for the given vector ξdN
and j ∈ ZN+1 by

(4.5) Vξd
N ,j :=

∑
j′∈Zj+1

∑
r∈Yj′

ϕr ⊗ Eξd
N,j′,r

and

(4.6) ṼξdN ,j :=
∑

j′∈ZN+1\Zj+1

∑
r∈LΓ(N,j′),d−1

ẼξdN ,j′,r ⊗ ϕr, j ∈ ZN , ṼξdN ,N := 0.

This result is presented in the next lemma.

Lemma 4.1. If LN,d is a dimension-reducible set generated from the disjoint finite
sets Yj, j ∈ NN+1 and the double monotonic mapping Γ, then for any fixed j0 ∈
NN+1, we have

EξdN
= VξdN ,j0 + ṼξdN ,j0 .(4.7)

Proof. By the hypothesis of this lemma, from (4.2) we have that

(4.8) EξdN
=

∑
j∈ZN+1

∑
r∈Yj

∑
r′∈LΓ(N,j),d−1

ξ[r,r′]ϕ[r,r′].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FAST COMPUTATION OF MULTIDIMENSIONAL DFT AND DBFT 2361

Noting that ϕ[r,r′] = ϕr ⊗ ϕr′ , by exchanging the order of summations in (4.8) we
have for any fixed j0 ∈ NN+1 that

EξdN
=

∑
j∈Zj0+1

∑
r∈Yj

ϕr ⊗

⎛⎝ ∑
r∈LΓ(N,j),d−1

ξ[r,r]ϕr

⎞⎠
+

∑
j∈ZN+1\Zj0+1

∑
r∈LΓ(N,j),d−1

⎛⎝∑
r∈Yj

ξ[r,r]ϕr

⎞⎠⊗ ϕr.

Substituting (4.3) and (4.4) into the right-hand side of the equation above, and

employing the definition of Vξd
N ,j and ṼξdN ,j , we obtain the desired formula (4.7). �

Lemma 4.1 and the special structure of the functions Vξd
N ,j and Ṽξd

N ,j allow us

to compute the sum EξdN
recursively in dimensions. To design an efficient algo-

rithm for the computation, we also need to make use of the dimension-reducibility
of the target set UN,d which is assumed to be generated from disjoint finite sets
Vj ⊂ R, j ∈ ZN+1, and a double monotonic mapping Γ′. By Lemma 4.1 and
the definition of the dimension-reducible set we see that computing (4.2) may be

reduced to evaluating Vξd
N ,j and Ṽξd

N ,j on Vj ⊗UΓ′(N,j),d−1 for each j ∈ ZN+1. We

next present formulas for such computation. In preparation, we first show that
dimension-reducible sets KN,d are a nested sequence in N ∈ N.

Lemma 4.2. If KN,d ⊂ Rd, for N ∈ N, are dimension-reducible sets, then KN,d ⊂
KN+1,d.

Proof. This result may be proved by induction on d in conjunction with the defi-
nition of the dimension-reducible set. �

It follows from Lemma 4.2 that the sets KΓ(N,j),d−1, j ∈ ZN+1, are nested; that
is,

KΓ(N,N),d−1 ⊂ KΓ(N,N−1),d−1 ⊂ · · · ⊂ KΓ(N,0),d−1.

By employing the nestedness of the set sequence UN,d which is ensured by Lemma
4.2, we next present a formula for evaluating VξdN ,j on Vj ⊗ UΓ′(N,j),d−1. For

notational convenience, for all j ∈ ZN+1, r ∈ Yj and ν ∈ UΓ′(N,j),d−1, we let
EξdN,j,r ,ν := EξdN,j,r

(ν).

Lemma 4.3. If LN,d and UN,d are dimension-reducible sets generated respectively
from disjoint finite sets Yj, j ∈ ZN+1, and a double monotonic mapping Γ, and
Vj, j ∈ ZN+1, and a double monotonic mapping Γ′, then for each fixed j ∈ ZN+1

and for ν := [ν,ν ′] ∈ Vj ⊗ UΓ′(N,j),d−1,

VξdN ,j(ν) =
∑

j′∈Zj+1

∑
r∈Yj′

Eξd
N,j′

, r,ν′ϕr(ν).(4.9)

Proof. Since LN,d is a dimension-reducible set generated from Yj′ , j
′ ∈ ZN+1, we

know for all j′ ∈ ZN+1, r ∈ Yj′ and given ξdN that ξdN,j′,r is well defined and so
is the function Eξd

N,j′,r
. Since UN,d is a dimension-reducible set generated from Vj ,

j ∈ ZN+1, by using Lemma 4.2, we have that

UΓ′(N,j),d−1 ⊂ UΓ′(N,j′),d−1, for all j′, j ∈ ZN+1 with j′ ≤ j.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2362 YING JIANG AND YUESHENG XU

For j ∈ ZN+1 and ν := [ν,ν′] ∈ Vj ⊗ UΓ′(N,j),d−1, because ν′ ∈ UΓ′(N,j),d−1, we
know for all j′ ∈ Zj+1 that ν ′ ∈ UΓ′(N,j′),d−1. This ensures for all j′ ∈ Zj+1 that
Eξd

N,j′
, r,ν′ is well defined. Thus, from the definitions of Eξd

N,j′
, r,ν′ and Vξd

N ,j′ , we

obtain the desired formula (4.9). �

We present in the next lemma a formula for evaluating ṼξdN ,j on Vj⊗UΓ′(N,j),d−1,

for each j ∈ ZN+1. For j ∈ ZN+1, r ∈ LΓ(N,j),d−1 and ν ∈ Uj,1, we let
(4.10)

h̃ξdN ,j,r,ν :=

{
ẼξdN ,j+1,r(ν) + h̃ξd

N ,j+1,r,ν , j ≤ N − 1 and r ∈ LΓ(N,j+1),d−1,

0, j = N or r ∈ LΓ(N,j),d−1 \ LΓ(N,j+1),d−1.

Lemma 4.4. If LN,d and UN,d are dimension-reducible sets generated respectively
from disjoint finite sets Yj, j ∈ ZN+1, and a double monotonic mapping Γ, and
Vj, j ∈ ZN+1, and a double monotonic mapping Γ′, then for each j ∈ ZN+1 and
for all ν := [ν,ν ′] ∈ Vj ⊗ UΓ′(N,j),d−1, we have

ṼξdN ,j(ν) =
∑

r∈LΓ(N,j),d−1

h̃ξd
N ,j,r,νϕr(ν

′).(4.11)

Proof. We prove a somewhat more general result, that is, (4.11) for all ν := [ν,ν ′] ∈
Vj ⊗Rd−1. This is done by a backward induction on j ∈ ZN+1. When j = N , from

the definitions of ṼξdN ,N and h̃ξd
N ,j,r,ν , we know that (4.11) holds. We assume that

(4.11) holds when j = j′ + 1, j′ ∈ ZN and show that (4.11) holds when j = j′.

Let ν := [ν,ν ′] with ν ∈ Vj′ , ν′ ∈ Rd−1. From the definitions of Ṽξd
N ,j′ and

ṼξdN ,j′+1 we obtain that

(4.12) ṼξdN ,j′(ν) =
∑

r∈LΓ(N,j′+1),d−1

ẼξdN ,j′+1,r(ν)ϕr(ν
′) + Ṽξd

N ,j′+1(ν).

It follows from (4.1) and ν ∈ Uj′,1 that ν ∈ Uj′+1,1. This guarantees for all r ∈
LΓ(N,j′+1),d−1 that h̃ξdN ,j′+1,r,ν is well defined. By using the induction hypothesis,

(4.12) and the definition of h̃ξd
N ,j′,r, we have that

ṼξdN ,j′(ν) =
∑

r∈LΓ(N,j′+1),d−1

h̃ξd
N ,j′,j,r,νϕr(ν

′).(4.13)

By using (4.13), LΓ(N,j′+1),d−1 ⊂ LΓ(N,j′),d−1 and h̃ξd
N ,j′,r,ν = 0 when

r ∈ LΓ(N,j′),d−1 \ LΓ(N,j′+1),d−1,

we conclude that (4.11) holds for the case j = j′. By the induction principle, (4.11)
holds for all j ∈ ZN . �

We next describe a fast algorithm for computing the values of the dimension-
reducible sum (4.2) based upon Lemmas 4.1, 4.3 and 4.4.

We first discuss the issue of reusing certain computed intermediate values in

the computation. When evaluating VξdN ,j and Ṽξd
N ,j on Vj ⊗ UΓ′(N,j),d−1, we

should avoid redundant arithmetic operations by reusing certain intermediate re-
sults. Lemma 4.3 shows that for each fixed j ∈ ZN+1, evaluating Vξd

N ,j on Vj ⊗
UΓ′(N,j),d−1 requires the values of Eξd

N,j′,r
on UΓ′(N,j),d−1 for all j′ ∈ Zj+1 and

r ∈ Yj′ . Lemma 4.2 ensures that UΓ′(N,j),d−1 ⊂ UΓ′(N,j′),d−1 for j′ ≤ j. Thus,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FAST COMPUTATION OF MULTIDIMENSIONAL DFT AND DBFT 2363

for a fixed j the values of Eξd
N,j′,r

on UΓ′(N,j′),d−1 for all j′ with j′ ≤ j provide

sufficient information for evaluating VξdN ,j on Vj ⊗ UΓ′(N,j),d−1. These values can

be reused when we evaluate VξdN ,j̃ on Vj̃ ⊗ UΓ′(N,j̃),d−1 for all j̃ with j ≤ j̃. On

the other hand, from formula (4.10) and Lemma 4.4, we see that for each fixed

j ∈ ZN+1, evaluating ṼξdN ,j on Vj ⊗ UΓ′(N,j),d−1 by using formula (4.11) requires

the values of ẼξdN ,j′,r on Vj for all j′ > j and r ∈ LΓ(N,j′),d−1. Because of the

inclusion relations Vj ⊂ Uj,1 ⊂ Uj′,1, for j′ > j, the values of ẼξdN ,j′,r on Uj′,1 for

all j′ > j and r ∈ LΓ(N,j′),d−1 provide sufficient information for evaluating ṼξdN ,j

on Vj ⊗ UΓ′(N,j),d−1. These values can also be reused when we evaluate Ṽξd
N ,j̃ on

Vj̃ ⊗ UΓ′(N,j̃),d−1 for all j̃ with j̃ < j.

We need an algorithm for evaluating (4.2) in the case when d = 1. Such an
algorithm depends on the nature of the functions ϕr, r ∈ Yj . For example, when the
functions ϕr are trigonometric functions, we may employ the fast Fourier transform
in designing the algorithm, and when the functions ϕr are wavelets, we may use
fast wavelet transforms in developing the algorithm. Thus, we shall not specify
the algorithm for evaluating (4.2) in the case with d = 1 until we enter a specific

context. Instead, we assume that there exists an algorithm “FE1d(N, ξ1N )” for
evaluating (4.2) in the case when d = 1, for a given ξ1N := [ξr : j ∈ ZN+1, r ∈ Yj ].

Specific algorithms “FE1d(N, ξ1N )” for the Fourier transform and inverse Fourier
transform will be given in sections 4 and 5, respectively.

It remains to discuss the computation of the values h̃ξd
N ,j,r,ν , for all j ∈ ZN+1,

ν ∈ Uj,1, r ∈ LΓ(N,j),d−1. From (4.4), we can also employ algorithm “FE1d(N, ξ1j )”

to compute [ẼξdN ,j,r(ν) : ν ∈ Uj,1] by setting ξ1j := [ξr : j′ ∈ Zj+1, r ∈ Yj′ ] where

ξr = 0 if r ∈ Yj′ with j′ ∈ Zj and ξr = ξ[r,r], if r ∈ Yj . Then, by employing (4.10),

we obtain the values h̃ξd
N ,j,r,ν .

We now present the algorithm “FEd” for evaluating EξdN
on UN,d. The algorithm

is written in a recursive form. That is, during the execution of the algorithm, we are
allowed to call the algorithm itself with appropriate parameters. For each ν ∈ UN,d

and a given ξdN , we define Eξd
N ,ν := Eξd

N
(ν) and Eξd

N
:= [Eξd

N ,ν : ν ∈ UN,d].

We define the vector Eξd
N,j,r

in a similar manner. For each j ∈ ZN+1 and r ∈
LΓ(N,j),d−1, we let Yξd

N ,j,r := [yr : r ∈ Yj′ , j
′ ∈ Zj+1], where yr := ξ[r,r] for r ∈ Yj ,

and yr := 0 for r ∈ Yj′ with j′ �= j. For each j ∈ ZN+1, ν ∈ UΓ′(N,j),d−1 and a

given ξdN , we also let CξdN ,j,ν := [Eξd
N,j′,r,ν

: j′ ∈ Zj+1, r ∈ Yj′ ]. For each j ∈ ZN+1

and ν ∈ UΓ′(N,j),d−1, we define

Vξd
N ,j,ν := [VξdN ,j(ν

′) : ν′ = [ν,ν] with ν ∈ Vj ].

For each j ∈ ZN+1 and ν ∈ Vj,1, we define

Ṽξd
N ,j,ν := [ṼξdN ,j(ν

′) : ν′ = [ν,ν] with ν ∈ UΓ′(N,j),d−1],

H̃ξd
N ,j,ν := [h̃ξd

N ,j,r,ν : r ∈ LΓ(N,j),d−1].

Algorithm 4.5. FEd(d, N , ξdN ).

Input: d ∈ N, N ∈ N and ξdN := [ξj,r : r ∈ LN,d].
Output: Eξd

N
.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2364 YING JIANG AND YUESHENG XU

Step 1: If d = 1, then compute Eξ1
N

by FE1d(N, ξ1N ). Return Eξ1
N
.

Step 2: If d > 1, then for j ∈ ZN+1, r ∈ Yj, compute Eξd
N,j,r

by using

FEd(d− 1,Γ(N, j), (ξdN )j,r).
Step 3: For j ∈ ZN+1, ν ∈ UΓ′(N,j),d−1, compute Vξd

N ,j,ν by using

FE1d(j,CξdN ,j,ν ).

Step 4: For j ∈ ZN+1, r ∈ LΓ(N,j),d−1, compute [ẼξdN ,j,r(ν) : ν ∈ Uj,1] by

using FE1d(j,Yξd
N ,j,r).

Step 5: Compute [h̃ξdN ,j,r,ν : j ∈ ZN+1, ν ∈ Uj,1, r ∈ LΓ(N,j),d−1] by using

(4.10).

Step 6: For j ∈ ZN+1, ν ∈ Vj, compute Ṽξd
N ,j,ν by using FEd(d−1,Γ(N, j),

H̃ξd
N ,j,ν).

Step 7: Compute Eξd
N

according to (4.7). Return Eξd
N
.

Algorithm 4.5 outputs the values of the dimension-reducible sum (4.2). We now
turn to estimating its computational cost. For given c1 ∈ R with c1 > 0, for each
d ≥ 2 we define a sequence cd by

(4.14) cd :=
2cd−1c1

d
+

3c21
d− 1

+ c1.

Lemma 4.6. If c1 > 0 is fixed, then there exists a positive constant c such that
cd < c, for all d ∈ N.

Proof. It suffices to show that there exists a positive constant c such that cd < c,
for all d ∈ N with d > 2c1 + 2. We prove this by contradiction. Assume to the
contrary that for all M > 0, there exists d ∈ N with d > 2c1 + 2 such that cd > M .
In particular, there exists a d∗ ∈ N with d∗ > 2c1 +2 such that cd∗ > M := 5c21 +c1
and cd∗ > cd∗−1. Otherwise, the sequence {cd : d ∈ N with d > 2c1+2} is bounded.
Noting that cd∗ > cd∗−1, it follows from (4.14) that

(4.15) (cd∗ − c1) ≤
2c1cd∗

d∗
+

3c21
d∗ − 1

.

Since 1
d∗ < 1

d∗−1 , from (4.15) we have that

(4.16) (d∗ − 1 − 2c1)(cd∗ − c1) ≤ 5c21.

By virtue of (4.16) and the inequality d∗−1−2c1 > 1, we obtain that cd∗ < 5c21+c1,
which contradicts the fact that cd∗ > 5c21 + c1. This ensures that the sequence cd,
d ∈ N, is bounded. �

For each N ∈ N0, we denote by N d
N the number of operations used in evaluating

all elements of Eξd
N

by Algorithm 4.5, for a given ξdN . By C(A) we denote the

cardinality of the set A.

Proposition 4.7. If for all N ∈ N0 and j ∈ N0, Γ(N, j) = Γ′(N, j) = N − j,
and there exists a positive constant c̃ such that for some m ∈ N, for all d ∈ N

and N ∈ N0, both C(LN,d) and C(UN,d) are bounded by c̃mdn(logn+1)d−1, and the

number of operations used in Algorithm FE1d(N, ξ1N ) is bounded by c̃mn logn, then
there exists a positive constant c independent of m or d such that for all N ∈ N0,

(4.17) N d
N ≤ cmdn(logn + d)d,

where n := 2N .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FAST COMPUTATION OF MULTIDIMENSIONAL DFT AND DBFT 2365

Proof. Choose c1 = c̃ and for d ≥ 2, define the sequence cd by (4.14). We first
establish that

(4.18) N d
N ≤ cdm

d2N (N + d)d, for all N ∈ N0.

By the definition of cd and Lemma 4.6, we see that the sequence cd is bounded by
a positive constant c, and thus this proposition follows from (4.18).

We prove (4.18) by induction on d. By the hypothesis of this proposition, we
see that (4.18) holds for d = 1. Let d′ ≥ 2 and assume that (4.18) holds for all
d ∈ Zd′ \ {0}. We next show that (4.18) holds for d = d′. For simplicity, we use
N (i) to denote the number of multiplications used in the ith step of Algorithm 4.5,
i = 1, 2, . . . , 8, for d = d′.

Since (4.18) holds for d = d′− 1, from the description of Step 2 in Algorithm 4.5
we have for all N ∈ N0 that

(4.19) N (2) ≤ cd′−1m
d′−1

∑
j∈ZN+1

∑
r∈Yj

2N−j(N − j + d′ − 1)d
′−1.

Note that C(Yj) ≤ c̃m2j and
∑

j∈ZN+1
(N − j + d′ − 1)d

′−1 ≤ (N+d′)d
′

d′ . Combining

these inequalities with (4.19), we observe for all N ∈ N0 that

(4.20) N (2) ≤ cd′−1c̃m
d′

2N (N + d′)d
′

d′
.

Since (4.18) holds for the case d = 1, from the definition of C
ξd′
N ,j,ν we have for all

N ∈ N0 that

(4.21) N (3) ≤ c̃m
∑

j∈ZN+1

∑
ν∈UΓ′(N,j),d′−1

j2j .

Using the inequalities C(UΓ′(N,j),d′−1) ≤ c̃md′−12N−j(N − j + 1)d
′−2 and∑

j∈ZN+1
j(N − j + 1)d

′−2 ≤ (N+1)d
′

d′−1 in (4.21), we obtain for all N ∈ N0 that

(4.22) N (3) ≤ c̃2md′
2N (N + 1)d

′

d′ − 1
.

Note that C
ξd′
N ,j,ν has the same structure with Y

ξd′
N ,j,r. A similar estimate for N (3)

leads to the result for all N ∈ N0,

(4.23) N (4) ≤ c̃2md′
2N (N + 1)d

′

d′ − 1
.

For each j ∈ ZN+1, ν ∈ Uj,1 and r ∈ LΓ(N,j),d′−1, computing h̃
ξd

′
N ,j,r,ν by using

(4.10) requires an operation of addition. Thus, by using C(LN,d) ≤ c̃mdn(log n +
1)d−1 we have for all N ∈ N0 that

(4.24) N (5) ≤ c̃md′−1
∑

j∈ZN+1

∑
ν∈Uj,1

2N−j(N − j + 1)d
′−2.

Since C(Uj,1) ≤ c̃m2j for all j ∈ N0, from (4.24) we have for all N ∈ N0 that

(4.25) N (5) ≤ c̃2md′
2N (N + 2)d

′−1

d′ − 1
.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2366 YING JIANG AND YUESHENG XU

By replacing Yj and N (2), respectively, by Vj and N (6) in the estimate for N (2),
we obtain the estimate

(4.26) N (6) ≤ cd′−1c̃m
d′

2N (N + d′)d
′

d′
.

For each ν ∈ UN,d′ , computing E
ξd′
N ,ν using (4.7) requires an operation of addition.

Thus, from hypothesis C(UN,d) ≤ c̃mdn(logn+ 1)d−1, we have for all N ∈ N0 that

(4.27) N (7) ≤ c̃md′
2N (N + 1)d

′−1.

By summing up (4.20), (4.22), (4.23), (4.25), (4.26) and (4.27), we obtain for all
N ∈ N0 that

(4.28)

N d′

N ≤ md′
2N (N + d′)d

′

(
2cd′−1c̃

d′
+

2c̃2(N + 1)d
′

(d′ − 1)(N + d′)d′

+
c̃2(N + 2)d

′−1

(d′ − 1)(N + d′)d′ +
c̃(N + 1)d

′−1

(N + d′)d′

)
.

Noting that (N+1)d
′−1

(N+d′)d′
< (N+2)d

′−1

(N+d′)d′
< (N+1)d

′

(N+d′)d′
< 1, from (4.28) and the definition

of cd′ , we obtain estimate (4.18) for d = d′. �

In the remaining part of this section, we estimate the memory space used in
Algorithm 4.5. The memory space used in Algorithm 4.5 depends on the selected
program design language and the methods for implementing the algorithm. Thus, to
estimate it, due to the recursive nature of the algorithm we require that the selected
program design language supports recursive programs and pointers of floating-point
values. With these requirements, when a vector is called by the program, we send
only the address of the memory space used to store the vector to the program. It is
well known that program design languages C and C++ meet these requirements.

We also suggest that the following memory management rules be used when
implementing Algorithm 4.5. The principle in designing the memory management
rules is to release idle memory spaces. Specifically, when data stored in some
memory space will not be used in the rest of execution of the algorithm, the memory
space will be released (which means that Algorithm 4.5 will no longer use the
memory space).

Rule 1: When executing Step 2 or 6 of Algorithm 4.5 with d dimensions, we
reuse the memory space which was used in executing “FEd” with d − 1 dimen-
sions. When executing Steps 3 or 4, we reuse the memory space which was used in
executing “FE1d”.

Rule 2: After obtaining the output of Steps 2 and 4, we release the memory
space which was used in these two steps except the memory space for storing the
input and output of Steps 2 and 4.

Rule 3: For each i ∈ {3, 6, 7}, reuse the memory space which was used for
storing the input data of Step 1 to store the output data of this step.

Rule 4: For each i ∈ {3, 5, 6, 7}, after obtaining the output of Step 1, we release
the memory space which was used by Step 1 except the memory space which is
used for storing the output of Step 1.

Following Rule 2, we do not release the memory space which was used for storing
the input data of Steps 2 and 4 in Algorithm 4.5. This is because the input data

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FAST COMPUTATION OF MULTIDIMENSIONAL DFT AND DBFT 2367

of Steps 2 and 4 are the input of Algorithm 4.5 which has to be saved during the
execution of the entire algorithm.

By Md
N we denote the size of the memory space required by Algorithm 4.5 which

includes the size of memory space for storing the input and output data. For fixed
d ∈ N and each i ∈ {2, 3, 4, 5, 6, 7}, let Mi denote the size of the memory space
required, by Algorithm 4.5 with d dimensions, for executing Step 1 and storing
the data which are required by the remaining steps of the algorithm. Then, the
memory space Md

N required by Algorithm 4.5 can be measured by

Md
N = max{Mi : i = 2, 3, 4, 5, 6, 7}.

For a given data set A, we use M̃(A) to denote the size of the memory space used to

store data set A. Let M̃d
N := max{M̃(ξdN ),M̃(EξdN

)} and M̂d
N :=

∑
k∈Zd

M̃k+1
N .

Proposition 4.8. Suppose that Algorithm 4.5 is implemented following Rules 1,
2, 3 and 4. If

(4.29) M1
N ≤ 3M̃1

N , for all N ∈ N0,

and one of the following two conditions is satisfied,

(i) for all j ∈ N0, C(Vj) ≤ C(Yj), and for all j, N ∈ N0, Γ′(N, j) ≤ Γ(N, j),
(ii) for all j∈N0, C(Vj) ≥ C(Yj), and for all j, N ∈N0, Γ′(N, j) ≥ Γ(N, j),

then

(4.30) Md
N ≤ 4M̂d

N , for all d ∈ N, N ∈ N0.

Proof. We assume that (i) is satisfied. In this case, it can be shown that for all
d ∈ N and N ∈ N0, C(UN,d) ≤ C(LN,d). We prove estimate (4.30) by induction
on d. Hypothesis (4.29) ensures that (4.30) holds for d = 1. Let d′ ∈ N. We
assume that (4.30) holds for d = d′ and show that (4.30) holds for d = d′ + 1. For

i ∈ {2, 4, . . . , 7}, let M̃i denote the size of memory space required for executing
Step 1 of Algorithm 4.5 for d = d′ +1. Since (4.30) holds for d = d′, it follows from
the description of Step 2 and Rule 1 that

(4.31) M̃2 ≤
∑

j∈ZN+1

∑
r∈Yj

M̃d′

Γ(N,j) + 4M̂d′

N + M̃d′+1
N .

Because C(Uj,d′) ≤ C(Lj,d′) for all j ∈ N0, it holds that M̃d′

Γ(N,j) = M̃((ξd
′+1

N )j,r)

for all j ∈ ZN+1 and r ∈ Yj . Accordingly, by using

M2 = M̃2 and
∑

j∈ZN+1

∑
r∈Yj

M̃((ξd
′+1

N )j,r) = M̃(ξd
′+1

N ),

from (4.31) we know that

(4.32) M2 ≤ 2M̃d′+1
N + 4M̂d′

N .

By Rule 2, before executing Step 3, Algorithm 4.5 occupies a memory space of

size 2M̃d′+1
N for storing the input and output data of Step 2. On the other hand, by

Rule 3, the memory space used for storing the input of Step 3 is reused for storing
the output of Step 3. Thus, from the description of Step 3 and hypothesis (4.29),
by applying Rules 1 and 3 we have that

(4.33) M̃3 ≤ M̃d′+1
N + 3M̃1

N .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2368 YING JIANG AND YUESHENG XU

Since the output of Step 2 is the input of Step 3 and a memory space of size

M̃d′+1
N is needed for storing the input of Step 2 when executing Step 3, we have

that M3 ≤ M̃3 + M̃d′+1
N . From (4.33) we obtain that M3 ≤ 2M̃d′+1

N + 3M̃1
N .

Note that storing the input data of Step 4 does not require additional memory
space, since the input data of Step 4 is the same as that of Step 2. Thus, by Rule

4 before executing Step 4, we need a memory space of size 2M̃d′+1
N to store the

output data of Step 3 and the input data of Step 2. By applying Rules 1 and 2

we have that M̃4 ≤ 2M̃d′+1
N + 3M̃1

N , and M4 ≤ M̃4 + M̃d′+1
N ≤ 3M̃d′+1

N + 3M̃1
N .

Before executing Step 5, we need a memory space of size 3M̃d′+1
N for storing the

output data of Steps 3, 4 and the input data of Step 2. From (4.10) and the

description of Step 5, we see that M̃5 ≤ 2M̃d′+1
N . Noticing that the output data

of Step 4 is the input of Step 5, we have that M5 ≤ M̃5 + 2M̃d′+1
N . Therefore,

we know that M5 ≤ 4M̃d′+1
N . By Rule 4, before executing Step 6, we need a

memory space of size 3M̃d′+1
N to store the output data of Steps 3, 5 and the input

data of Step 2. By using Rule 3 and a similar discussion for Step 2, we have that

M̃6 ≤ M̃d′+1
N + 4M̂d′

N . Noting that the output data of Step 5 is the input of Step

6, we have that M6 ≤ M̃6 + 2M̃d′+1
N . Then, it holds that M6 ≤ 3M̃d′+1

N + 4M̂d′

N .

Due to Rule 4, before executing Step 7, a memory space of size 3M̃d′+1
N is used

for storing the output data of Steps 3, 6 and the input data of Step 2. From (4.7)

and Rule 3, we see that M̃7 ≤ 2M̃d′+1
N . Note the size of the memory space used

for storing the output data of Steps 3 and 6 is counted in M̃7. Thus, we have that

M7 ≤ M̃7 + M̃d′+1
N . This yields that M7 ≤ 3M̃d′+1

N . By the definition of Md
N ,

from the estimates of Mi, i ∈ {2, 3, 4, 5, 6, 7}, we conclude that (4.30) holds for
d = d′ + 1. By the induction principle, we obtain (4.30) for all d ∈ N and N ∈ N0.

The case (ii) can be similarly handled. �

The next result follows immediately from Proposition 4.8.

Corollary 4.9. If there exists a positive constant c̃ such that for all d, N ∈ N, both
C(LN,d) and C(UN,d) are bounded by c̃mdn(logn + 1)d−1 for some positive integer
m, and the hypotheses of Proposition 4.8 hold, then there exists a positive constant
c such that for all m, d, N ∈ N,

(4.34) Md
N ≤ cn

md(log n + 1)d − 1

log n
,

where n := 2N .

Proof. Note that there exists a positive constant c̄ such that for all d, N ∈ N,

M̃d
N ≤ c̄mdn(log n + 1)d−1.

Thus, from the definition of M̂d
N and Proposition 4.8 we conclude the validity of

this corollary. �

5. Fast discrete Fourier transform on sparse grids

We present in this section a fast algorithm for computing the discrete Fourier
transform of fdN at JN,d by employing Algorithm 4.5.

We first show that formula (3.11) is a dimension-reducible sum. To this end, we

show that f̂dN can be reformulated as a sum in the form of (4.2). We also show that

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FAST COMPUTATION OF MULTIDIMENSIONAL DFT AND DBFT 2369

JN,d is a dimension-reducible set generated from disjoint finite sets Ij , j ∈ ZN+1,
and Γ′(N, j) = N − j, for all j ∈ ZN+1, and FN,d is a dimension-reducible set
generated from Ej , j ∈ ZN+1, and Γ(N, j) = N − j for all j ∈ ZN+1. We then
specify LN,d with FN,d, UN,d with JN,d, Yj with Ej , Vj with Ij , and ϕr with Ar

for r ∈ Z. For fdN , we define ηfdN
:= [η̃r(f

d
N ) : r ∈ FN,d].

Lemma 5.1. It holds that

(5.1) f̂dN (l) = Eη
fd
N

(l), l ∈ JN,d.

Proof. Equation (5.1) follows directly from equation (3.11) and the definition of
Eη

fd
N

. �

We next show that the set JN,d is dimension-reducible.

Lemma 5.2. The set JN,d is a dimension-reducible set generated from disjoint
finite sets Ij, j ∈ ZN+1, and Γ′(N, j) = N − j for all j ∈ ZN+1; that is,
(5.2)

Ij1 ∩ Ij2 = ∅ with j1 �= j2, JN,1 =
⋃

j∈ZN+1

Ij , and JN,d =
⋃

j∈ZN+1

Ij ⊗ JN−j,d−1.

Proof. From the definition of Ij , we know for all j1, j2 ∈ N0 with j1 �= j2 that
Ij1 ∩ Ij2 = ∅. The definition of JN,1 ensures the validity of the second equation in
(5.2). By writing

SN,d = {[j, j] : j ∈ ZN+1, j ∈ SN−j,d−1}
and noting for j ∈ ZN+1, j ∈ SN−j,d−1 that I[j,j] = Ij ⊗ Ij, we obtain the formula

(5.3) JN,d =
⋃

j∈ZN+1

Ij ⊗

⎛⎝ ⋃
j∈SN−j,d−1

Ij

⎞⎠ .

From (5.3) and the definition of JN−j,d−1, we obtain the third equation in (5.2). �

Likewise, we show in the next lemma that the set FN,d is dimension-reducible.

Lemma 5.3. The set FN,d is a dimension-reducible set generated from disjoint
finite sets Ej, j ∈ ZN+1, and Γ(N, j) = N − j for all j ∈ ZN+1; that is,
(5.4)

Ej1 ∩Ej2 = ∅ with j1 �= j2, FN,1 =
⋃

j∈ZN+1

Ej , and FN,d =
⋃

j∈ZN+1

Ej ⊗FN−j,d−1.

Proof. Replacing Ij and JN,d in the proof of Lemma 5.2 by Ej and FN,d, respectively,
we obtain (5.4). �

Combining Lemmas 5.1, 5.2 and 5.3, we obtain the following proposition.

Proposition 5.4. The partial sum (3.11) is a dimension-reducible sum.

We now describe Algorithm “FE1d” in the context of this section. Algorithm
“FE1d” to be employed in evaluating (4.2) is the discrete form of Algorithm 3.5
in [15] with the case d = 1. To make this article self-contained, we review the

algorithm below. We let ξN := [ξr : r ∈ FN,1] and ξ̃N :=
[(

ξ̃N

)
l
: l ∈ JN,1

]
, where

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2370 YING JIANG AND YUESHENG XU(
ξ̃N

)
l

:=
∑

r∈FN,1
ξrAr(l). Algorithm “FE1d” is designed to evaluate ξ̃N for a

given ξN . For q ∈ Zm and l ∈ Z, we let

t0,q(l) :=
1√
2π

∫
I

�0,r0,q (x)e−ilxdx

and

tj,q(l) :=
1

2j−1
√

2π

∫
I

�1,r1,q (x)e−ilx/2j−1

dx, j ≥ 1.

For j ∈ N0, q ∈ Zm, we set ξj,q := [ξrm+q : 	2j−1
 ≤ r < 2j ] and let ξ̂j,q :=[(
ξ̂j,q

)
l
: l ∈ JN,1

]
be the discrete Fourier transform of ξj,q, where

(
ξ̂j,q

)
l
:=

2j−1∑
r=�2j−1�

ξj,rm+qe
−i2π(r−�2j−1�)l/2j−1

.

Proposition 3.3 in [15] shows for each l ∈ JN,1 that

(5.5)
(
ξ̃N

)
l
=

∑
j∈ZN+1

∑
q∈Zm

tj,q(l)
(
ξ̂j,q

)
l
.

Using formula (5.5) to compute
(
ξ̃N

)
l
requires the availability of the values of(

ξ̂j,q

)
l

and tj,q(l) for all j ∈ ZN+1, q ∈ Zm and l ∈ JN,1. We first show how the

values of
(
ξ̂j,q

)
l
are computed. For l ∈ Z2j−1 , we compute

(
ξ̂j,q

)
l
by applying the

fast Fourier transform to ξj,q directly, and for l ∈ JN,1 \Z2j−1 , we obtain the value(
ξ̂j,q

)
l
by employing the periodicity of the discrete Fourier transform. Specifically,

for each j ∈ N0, we define Lj : Z → Z2j−1 for l ∈ Z by

Lj(l) :=

{
l mod 2j−1, if l mod 2j−1 ≥ 0,
2j−1 + l mod 2j−1, if l mod 2j−1 < 0.

By periodicity, we have for all j ∈ ZN+1, q ∈ Zm and l ∈ JN,1 that

(5.6)
(
ξ̂N,q

)
l
=
(
ξ̂j,q

)
Lj(l)

.

Combining equations (5.5) and (5.6) yields the alterative formula

(5.7)
(
ξ̃N

)
l
=

∑
j∈ZN+1

∑
q∈Zm

tj,q(l)
(
ξ̂j,q

)
Lj(l)

, l ∈ JN,1.

For N ∈ N0, we let tN := {tj,q(l) : l ∈ JN,1, j ∈ ZN+1, q ∈ Zm}. Since tN is
determined by N , from (5.5), we see that for a fixed N ∈ N0, the values in tN can

be reused. We describe below Algorithm “FE1d” for computing ξ̃N .

Algorithm 5.5. FE1d(N , ξN )
Input: N ∈ N0 and ξN := [ξr : r ∈ FN,d].

Output: ξ̃N .

Step 1: Compute
[(

ξ̂j,q

)
l
: l ∈ Z2j−1

]
by applying the fast Fourier trans-

form [7] to ξj,q, for all j ∈ ZN+1 and q ∈ Zm.

Step 2: Compute ξ̃N according to formula (5.7).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FAST COMPUTATION OF MULTIDIMENSIONAL DFT AND DBFT 2371

The number M1(N) of operations used in Algorithm 5.5 can be easily estimated
by using Theorem 3.6 in [15]. In fact, there exits a positive constant c such that
for all m ∈ N and N ∈ N0,

(5.8) M1(N) ≤ cm2NN.

We next present a formula for computing tj,q(l). For q ∈ Zm, θ ∈ Zm−1, we
define the index set

Sq,θ :=
{
s ∈ Z

m−θ−1
m : sk < sk+1 for k ∈ Zm−θ−2, sk �= q for k ∈ Zm−θ−1

}
.

For each q ∈ Zm, we define

(5.9) cq,θ :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−1)m−θ−1

∏
s∈Zm,s �=q

(vq − vs)
−1

∑
s∈Sq,θ

∏
k∈Zm−θ−1

vsk , θ ∈ Zm−1,∏
s∈Zm,s �=q

(vq − vs)
−1, θ = m− 1.

For θ ∈ Zm and ω ∈ R, we let t̃θ(ω) :=
∫
I
xθe−iωxdx. According to Lemma 4.8 in

[15], the values of t̃θ(ω) can be computed exactly by the formula

t̃θ(0) =
(2π)θ+1

θ + 1
, t̃θ(ω) = −

∑
ι∈Zθ+1

θ!(2π)θ−ιe−i2πω

(θ − ι)!(iω)ι+1
+

θ!

(iω)θ+1
, for all ω �= 0.

It is proved in [15] for all j ∈ ZN+1, q ∈ Zm and l ∈ JN,1 that

(5.10) tj,q(l) =
e−i2πl�rj′,q/m�/2j

2j
√

2π

∑
θ∈Zm

crj′,q mod m,θ t̃θ(l/2
j),

where j′ = 0 if j = 0, and j′ = 1 if j > 0.

Algorithm 5.6. FFE(N , m, fdN )
Input: d ∈ N, N ∈ N, m ∈ N, fdN := [fr : r ∈ FN,d].

Output: f̂dN .

Step 1: Compute ηfdN
:=

[
η̃r(f

d
N ) : r ∈ FN,d

]
.

Step 2: Compute tN := [tj,q(l) : l ∈ JN,1, j ∈ ZN+1 and q ∈ Zm], accord-
ing to formula (5.10).

Step 3: Compute f̂dN := FEd(d,N,ηfdN
) by calling Algorithm 4.5 which

uses Algorithm 5.5.

For each N ∈ N, we let Zd
N denote the number of operations used in computing

f̂dN by using Algorithm 5.6 for a given fdN . We next estimate Zd
N . As a preparation,

we first estimate the cardinality of JN,d and FN,d.

Lemma 5.7. It holds that for all N ∈ N and d ∈ N,

(5.11) C(JN,d) ≤ m̃dn(logn + 1)d−1

and

(5.12) C(FN,d) ≤ mdn(log n + 1)d−1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2372 YING JIANG AND YUESHENG XU

Proof. We first prove (5.11). It is clear that (5.11) holds for d = 1. We consider
the cases d ∈ N and d ≥ 2. By writing SN,d = {[j, j] : j ∈ SN,d−1, j ∈ ZN−|j|+1}
and noting for j ∈ SN,d−1, j ∈ ZN−|j|+1 that I[j,j] = Ij ⊗ Ij , we obtain the formula

(5.13) JN,d =
⋃

j∈SN,d−1

Ij ⊗

⎛⎝ ⋃
j∈ZN−|j|+1

Ij

⎞⎠ .

Note that
⋃

j∈ZN−|j|+1
Ij = JN−|j|,1. Thus, from (5.13) we have that

(5.14) JN,d =
⋃

j∈SN,d−1

Ij ⊗ JN−|j|,1.

Since C(Ij) ≤ m̃d−12|j| and C(JN−|j|,1) = m̃2N−|j|, equality (5.14) leads to

(5.15) C(JN,d) ≤ m̃d2N
∑

j∈SN,d−1

1.

It is easy to shows that C(SN,d−1) = (N+d−1)!
N !(d−1)! . Thus, inequality (5.15) can be

written as

(5.16) C(JN,d) ≤ m̃d2N
(N + d− 1)!

N !(d− 1)!
.

Since

(N + d− 1)!

N !(d− 1)!(N + 1)d−1
=

1

(d− 1)!

d−2∏
i=1

(1 +
i

N + 1
) ≤ 1

d− 1

d−2∏
i=1

i + 1

i
= 1,

we obtain (5.11) from (5.16).
In the above proof, by replacing m̃ by m, JN,d by FN,d, and Ij by Ej, we obtain

(5.12). �

For each N ∈ N0, we let Zd
N denote the number of operations used in computing

f̂dN by using Algorithm 5.6 for a given fdN . In the next theorem we give an estimate
of Zd

N .

Theorem 5.8. If n := 2N and m = m̃, then there exists a positive constant c such
that for all N ∈ N, we have

(5.17) Zd
N ≤ cmdn(logn + d)d,

where c does not depend on m and d.

Proof. We let Z(i) denote the number of operations used in Step 1 of Algorithm
5.6. In Step 1, for each r ∈ FN,d, the number of operations used in computing
η̃r(f

d
N ) is O(md). By Proposition 2.13 of [15], the number of components in ηfdN

is

O(md2NNd−1). Thus, Z(1) = O(md2NNd−1). From equation (5.10), for each l ∈
JN,1, j ∈ ZN+1 and q ∈ Zm, the number of operations used in Step 2 for computing

tj,q(l) is O(m2). Since there are 2(2N+1 − 1) − N such tj,q(l), Z(2) = O(m22N ).
From Lemma 5.7 and (5.8), we know that the assumptions of Proposition 4.7 are
satisfied. Thus, it follows from Proposition 4.7 that there exists a positive constant
c1 such that for all N ∈ N, we have

Z(3) ≤ c1m
d2N (N + d)d.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FAST COMPUTATION OF MULTIDIMENSIONAL DFT AND DBFT 2373

The total number of operations used in Algorithm 5.6 is equal to the number of
operations used in all steps. Thus, we conclude that there exists a positive constant
c such that for all N ∈ N, Zd

N ≤ cmd2N (N + d)d. Noting that n = 2N , we obtain
estimate (5.17). �

We close this section with a remark on an improvement of Algorithm 5.6. The
computational speed of the algorithm can be increased by employing the refinement
equation of the Lagrange basis functions �j,r, j ∈ N0, and r ∈ Zj,m. Specifically, the
computational complexity for computing {Vd

N,ξdN ,j,l
(l) : l ∈ Jj,1} for all j ∈ ZN+1

and l ∈ JN−j,d−1 can be reduced by making use of the refinement equation. We
explain this below. From Lemma 2.1 in [15], the Lagrange basis functions �j,r,
j ∈ N0, and r ∈ Zj,m satisfy the following refinement equation:

�j,r =
∑

κ∈Z2m

ar mod m,κ�j+1,ϑ(r)+κ.

Thus, from their definition, we know that Aj,r, j ∈ N0, and r ∈ Zj,m satisfy

Aj,r =
∑

κ∈Z2m

ar mod m,κAj+1,ϑ(r)+κ.(5.18)

By using equality (5.18), for all j ∈ ZN+1, l ∈ JN−j,d−1, we rewrite Vd
N,ξd

N ,j,l
as

(5.19) Vd
N,ξd

N ,j,l =
∑

r∈Z2jm

bξd
N ,j,r(l)Aj,r,

where bξd
N ,j,r(l), r ∈ Z2jm, are defined by

(5.20)

bξdN ,j,r(l) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ed−1
N,(ξdN )0,r

(l), j = 0,

Ed−1
N−j,(ξdN )j,r

(l) +
∑
q∈Zm

aq,r mod2mbξdN ,j−1,ϑ(r)+q(l),

j > 0 and r ∈ Zj,m,∑
q∈Zm

aq,r mod 2mbξdN ,j−1,ϑ(r)+q(l), j > 0 and r /∈ Zj,m.

From (5.19), we see that Vd
N,ξdN ,j,l

can be presented as a linear combination of Aj,r,

r ∈ Z2jm, which share the same scale factor j. This leads us to an algorithm for
evaluating Vd

N,ξdN ,j,l
on l ∈ Jj,1 by (5.19), faster than Algorithm 5.5. By using this

technique, we can develop an algorithm for computing the Fourier transform on
sparse grids which uses fewer operations than Algorithm 5.6.

6. Fast discrete backward Fourier transform on sparse grids

In this section, we develop a fast algorithm for computing the discrete backward

Fourier transform of cdN on S̃N,d by using Algorithm 4.5.
We show that formula (2.5) is a dimension-reducible sum. To this end, we prove

that Fcd
N

is a sum in the form of (4.2) and that S̃N,d is a dimension-reducible set

generated from disjoint finite sets G̃j , j ∈ ZN+1, and Γ′(N, j) = N − j for all

j ∈ ZN+1. We specify in this section LN,d with JN,d, UN,d with S̃N,d, Yj with Ij ,

Vj with G̃j , and ϕr with er for r ∈ Z.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2374 YING JIANG AND YUESHENG XU

Lemma 6.1. There holds the relation

(6.1) Fcd
N

= Ecd
N
.

Proof. Equation (6.1) follows directly from equation (2.5) and (4.2). �

We now prove that the set S̃N,d is dimension-reducible.

Lemma 6.2. The set S̃N,d is a dimension-reducible set generated from disjoint

finite sets G̃j, j ∈ ZN+1, and Γ(N, j) = N − j for all j ∈ ZN+1; that is,
(6.2)

G̃j1∩G̃j2 = ∅ with j1 �= j2, S̃N,1 =
⋃

j∈ZN+1

G̃j , and S̃N,d =
⋃

j∈ZN+1

G̃j⊗S̃N−j,d−1.

Proof. By replacing Ij and JN,d in the proof of Lemma 5.2 by G̃j and S̃N,d, respec-
tively, we obtain equation (6.2). �

Combining Lemmas 5.2, 6.1, and 6.2, we obtain the following proposition.

Proposition 6.3. The sum (2.5) is a dimension-reducible sum.

Proposition 6.3 ensures that Algorithm 4.5 can be used to compute the discrete

backward Fourier transform of cdN on S̃N,d. The use of Algorithm 4.5 requires the

availability of Algorithm “FE1d” for computing Fc1
N

(v) given c1N , for v ∈ S̃N,1.

From the definition of S̃N,1, we know that S̃N,1 = ṼN . Thus, for given c1N := [cl :
j ∈ JN,1], we compute

(6.3) Fc1
N

(v) =
∑

l∈JN,1

cle
ilv, v ∈ ṼN .

Recalling ṼN = { 2πr
2Nm : r ∈ Z2Nm}, from (6.3) we obtain that

(6.4) Fc1
N

(vN,r) =
∑

l∈JN,1

cle
i2πlr

2jm , r ∈ Z2Nm.

For x ∈ R, we denote by �x� the smallest integer not less than x. We let Ñ be

the smallest integer such that 2
˜Nm ≥ 2Nm̃ and Ñ ≥ N , where m̃ appears in the

definition of Ij . This is Ñ = N + �max
{
0, log( m̃m )

}
�. We define c̃l := cl for all

l ∈ JN,1, with l ≥ 0, c̃l := c
l−2˜Nm

for all l − 2
˜Nm ∈ JN,1 with l − 2Ñm < 0 and

c̃l := 0 otherwise, and let c̃N := [c̃l : l ∈ Z
2˜Nm

]. By ˇ̃cN we denote the discrete
backward Fourier transform of c̃N . That is,

(6.5)
(
ˇ̃cN

)
r

:=
∑

l∈Z
2

˜Nm

c̃le
i2πlr/(2

˜Nm), r ∈ Z
2˜Nm

,

which can be computed by the fast Fourier transform. Substituting (6.5) into (6.3)
yields that

(6.6) Fc1
N

(
2πr

2Nm

)
=
(
ˇ̃cN

)
2˜N−Nr

, for r ∈ Z2Nm.

For c1N , we let č1N := [Fc1
N

(v) : v ∈ S̄N,1].

Algorithm 6.4. FE1d(N , cN )
Input: N ∈ N0 and c1N := [cl : l ∈ JN,1].
Output: č1N .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FAST COMPUTATION OF MULTIDIMENSIONAL DFT AND DBFT 2375

Step 1: Select Ñ = N + max
{
0, log( m̃m)

}
.

Step 2: Compute the inverse Fourier transform ˇ̃cN of c̃N by using the fast
Fourier transform.
Step 3: Compute č1N by using formula (6.6).

Combining Algorithms 4.5 and 6.4 we have the following fast algorithm for com-

puting the discrete backward Fourier transform of cdN on S̃N,d.

Algorithm 6.5. IFFE(N , cdN )
Input: N ∈ N, cdN := [cl : l ∈ JN,d].
Output: čdN .

Step 1: Compute čdN := FEd(d,N, cdN ) by recalling Algorithm 4.5, which
uses Algorithm 6.4.

We next estimate the number N d
N of operations used in Algorithm 6.5 for com-

puting the discrete backward Fourier transform of cdN on S̃N,d.

Theorem 6.6. If n := 2N and m = m̃, then there exists a positive constant c such
that for all N ∈ N, we have

(6.7) N d
N ≤ cmdn(logn + d)d,

where c does not depend on m and d.

Proof. To prove (6.7), it suffices to verify the hypotheses of Theorem 4.7. Noting
that m = m̃, from Lemma 5.7 we know that C(JN,d) ≤ mdn(logn + 1)d−1. By

replacing JN,d and Ij by S̃N,d and G̃j, respectively, in the proof of Lemma 5.7, we

can see that C(S̃N,d) ≤ mdn(log n + 1)d−1. It remains to prove that the number of

operations used in Algorithm 6.4 is O(m2NN). From the definition of Ñ we know

that there exists a positive constant c0 such that for all N ∈ N0, 2
˜N ≤ c02

N . Hence,
the number of operations used in computing the fast inverse Fourier transform
of c̃N is O(m2NN). Noting that for each r ∈ Z2Nm, the number of operations
used in computing Fc1

N

(
2πr
2Nm

)
by (6.6) is O(1), we conclude that the number of

operations used in Algorithm 6.4 is O(m2NN). That is, the hypotheses of Theorem
4.7 hold. �

7. Numerical examples

We present in this section numerical examples to demonstrate the performance of
the fast algorithms developed in the last two sections. We compare approximation
accuracy and (or) computational efficiency of the proposed algorithms with those
of the known algorithms for Fourier transform on sparse grids (Algorithm HFFT)
and the inverse Fourier transform on sparse grids (Algorithm IHFFT), which were
originally introduced in [14] and implemented in [11, 12]. All computer programs
for the numerical examples presented in this section are run on a workstation with
a 4 core Intel CPU (each of which has 2.8GHz) and 4GB memory.

The first three numerical examples test Algorithm 5.6 for computing the discrete
Fourier transform of data sets on a sparse grid at a hyperbolic cross domain. The
algorithm used in these computations is the one improved by the idea outlined at
the end of section 5. The data sets in these examples are sampled from functions
in spaces H0.5−ε

mix (Id), where ε is an arbitrarily small positive number. Therefore,
according to our theory, the theoretical approximation order for the functions is

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2376 YING JIANG AND YUESHENG XU

0.5− ε. In Examples 1, 2 and 3, we choose s = 0.49 when we compute the Sobolev
norm. We compute the relative error by the formula

Err := ‖f − F d
N,f̂dN

‖/‖f‖Hs
mix(I

d)

and the approximation order by the formula

AO := log2 ‖f − F d
N,f̂dN

‖/‖f − F d
N+1,f̂dN+1

‖.

In the presented numerical results, we use “Time” for the computing time spent
in calculating the Fourier transform, use “Memory” for the memory used, and use
“Num” for the number of the elements in the output set of an algorithm. Here, Time
is the average of the times spent in three different runs for the same experiment.
We define

TC :=
Time

n logd n
, where n := 2N ,

from which we can observe the constants c in (5.17) and (6.7).

Figure 6. Example 1: (a) Err via Time, (b) Err via Num, (c) AO
via Num, (d) TC via Num, (e) Memory via Num, (f) Err via
Memory.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FAST COMPUTATION OF MULTIDIMENSIONAL DFT AND DBFT 2377

For the results of Algorithm 5.6 in Example 1, we select N = 6, 7, . . . , 14 for
the case d = 2, N = 3, 4, . . . , 11 for the case d = 4, N = 3, 4, . . . , 9 for the case
d = 6, and N = 3, 4, . . . , 8 for the case d = 8. For the results of Algorithm HFFT
in Example 1, we select N = 6, 7, . . . , 15 for the case d = 2, N = 3, 4, . . . , 13 for
the case d = 4, N = 3, 4, . . . , 11 for the case d = 6, and N = 3, 4, . . . , 10 for
the case d = 8. In Examples 2 and 3 for both Algorithms 5.6 and HFFT, we
select N = 6, 7, . . . , 14 for the case d = 2, N = 3, 4, . . . , 11 for the case d = 4,
N = 3, 4, . . . , 9 for the case d = 6, and N = 3, 4, . . . , 8 for the case d = 8. In
computing Err and AO in these examples, we replace f in the formulas for these
quantities by F d

N,f̂dN
with N = 16 for d = 2 and d = 4, N = 14 for d = 6 and 8.

In all figures shown in this section, we use solid blue lines (resp. broken red lines)
with ∗, �, � and © to represent the values obtained by using Algorithm 5.6 (resp.
Algorithm HFFT) for the cases d = 2, 4, 6, 8, respectively. For Example 1, we use
tables to present the numerical results and figures to demonstrate them. To save
space, for Examples 2–4, we omit the tables, presenting only figures to demonstrate
the numerical results.

Example 1. We compute the discrete Fourier transform of the data fdN at JN,d for
d = 2, 4, 6, 8 with m̃ = 1 by using Algorithm 5.6 and compare the numerical results
obtained from this algorithm with those from the classical algorithm HFFT. The
data set fdN is obtained from sampling the functions

fd(x) :=

√
dπ2 −

∑
k∈Zd

(xk − π)2, x ∈ Id.

Functions fd are periodic and have no partial derivatives at the vertexes of Id. The
sampling points vj,r, for j ∈ SN,d and r ∈ Zd

j,2, are generated by the refinable sets

Vj with V0 := { 2π
3 , 4π3 }.

We show in Tables 1-4 the numerical results for Err, Time, Num, AO, Memory
and TC for the functions fd, d = 2, 4, 6, 8, obtained from Algorithm 5.6 and Algo-
rithm HFFT. Tables 1, 2, 3, and 4 list the values for functions f2, f4, f4 and f8,
respectively. These numerical results are shown in Figure 6.

Table 1. Example 1: Numerical results for function f2 of Algo-
rithm 5.5 with a comparison to Algorithm HFFT.

Alg 5.6 HFFT
N Num Err Time AO Memory TC Err Time AO Memory TC

(Sec.) (Sec.)
6 112 7.21e − 3 1e − 3 1.5e − 2 4.3e − 7 8.82e − 2 1e − 3 1.2e − 2 4.3e − 7
7 256 4.19e − 3 3e − 3 0.78 4.8e − 2 4.8e − 7 5.55e − 2 2e − 3 0.67 2.3e − 2 3.2e − 7
8 576 2.47e − 3 7e − 3 0.76 1.9e − 2 4.3e − 7 3.44e − 2 4e − 3 0.69 3.1e − 2 2.4e − 7
9 1280 1.47e − 3 1.5e − 2 0.75 7.4e − 2 3.6e − 7 2.11e − 2 6e − 3 0.71 7.0e − 2 1.5e − 7

10 2816 8.69e − 4 3.1e − 2 0.75 2.6e − 1 3.1e − 7 1.27e − 2 8e − 3 0.72 1.2e − 1 7.8e − 8
11 6144 5.12e − 4 7.8e − 2 0.76 7.9e − 1 3.2e − 7 7.68e − 3 1e − 2 0.73 2.2e − 1 4.1e − 8
12 13312 2.98e − 4 1.4e − 1 0.78 2.7e − 0 2.4e − 7 4.61e − 3 1.3e − 2 0.74 2.8e − 1 2.2e − 8
13 28672 1.69e − 4 2.9e − 1 0.82 5.2e − 0 2.2e − 7 2.76e − 3 1.6e − 2 0.74 4.4e − 1 1.2e − 8
14 61440 9.10e − 5 6.1e − 1 0.89 2.0e + 1 1.9e − 7 1.65e − 3 3.1e − 2 0.74 1.2e − 0 9.6e − 9
15 131072 9.82e − 4 6.2e − 2 0.75 2.2e − 0 8.4e − 9

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2378 YING JIANG AND YUESHENG XU

Table 2. Example 1: Numerical results for function f4 of Algo-
rithm 5.5 with a comparison to Algorithm HFFT.

Alg 5.6 HFFT
N Num Err Time AO Memory TC Err Time AO Memory TC

(Sec.) (Sec.)
3 19 3.41e − 2 1.5e − 2 9.1e − 4 2.3e − 5 5.06e − 1 1e − 3 1.7e − 3 1.5e − 6
4 63 1.31e − 2 3.1e − 2 1.38 2.3e − 3 7.6e − 6 3.99e − 1 2e − 3 0.34 3.9e − 3 4.9e − 7
5 192 5.51e − 3 6.2e − 2 1.25 7.8e − 3 3.1e − 6 3.09e − 1 4e − 3 0.37 1.6e − 2 2.1e − 7
6 552 2.54e − 3 1.7e − 1 1.12 2.4e − 2 2.1e − 6 2.35e − 1 5e − 3 0.39 3.2e − 2 6.1e − 8
7 1520 1.28e − 3 4.4e − 1 0.98 6.9e − 2 1.4e − 6 1.75e − 1 7e − 3 0.43 4.3e − 2 2.3e − 8
8 4048 6.98e − 4 1.1e − 0 0.88 2.3e − 1 1.1e − 6 1.27e − 1 1.6e − 2 0.46 1.4e − 1 1.5e − 8
9 10496 3.97e − 4 2.8e − 0 0.81 6.4e − 1 8.4e − 7 9.05e − 2 3.1e − 2 0.49 3.1e − 1 9.2e − 9

10 26624 2.28e − 4 6.8e − 0 0.81 4.3e − 0 6.6e − 7 6.38e − 2 4.7e − 2 0.51 3.4e − 1 4.6e − 9
11 66304 1.26e − 4 1.6e + 1 0.86 1.3e + 1 5.4e − 7 4.46e − 2 9.4e − 2 0.52 8.4e − 1 3.1e − 9
12 162560 3.09e − 2 2.1e − 1 0.53 1.9e − 0 2.2e − 9
13 393216 2.14e − 2 4.5e − 1 0.53 4.1e − 0 1.9e − 9

Table 3. Example 1: Numerical results for function f6 of Algo-
rithm 5.6 with a comparison to Algorithm HFFT.

Alg 5.6 HFFT
N Num Err Time AO Memory TC Err Time AO Memory TC

(Sec.) (Sec.)
3 34 2.77e − 2 1.1e − 1 2.5e − 3 1.9e − 5 7.81e − 1 2e − 3 8.6e − 4 3.4e − 7
4 138 1.01e − 2 4.7e − 1 1.47 7.8e − 3 7.1e − 6 7.38e − 1 4e − 3 0.08 2.7e − 3 6.1e − 8
5 501 3.84e − 3 1.6e − 0 1.39 1.2e − 2 3.2e − 6 6.61e − 1 8e − 3 0.16 9.3e − 3 1.6e − 8
6 1683 1.56e − 3 5.3e − 0 1.29 7.4e − 2 1.8e − 6 5.64e − 1 1.7e − 2 0.23 3.3e − 2 5.7e − 9
7 5336 6.72e − 4 1.7e + 1 1.21 1.8e − 0 1.1e − 6 4.65e − 1 3.1e − 2 0.28 1.1e − 1 2.7e − 9
8 16172 3.04e − 4 4.9e + 1 1.14 2.3e + 1 7.3e − 7 3.74e − 1 7.8e − 2 0.31 2.8e − 1 1.2e − 9
9 47264 1.39e − 4 1.4e + 2 1.13 7.8e + 1 5.1e − 7 2.94e − 1 1.7e − 1 0.35 1.8e − 0 6.3e − 10

10 2.27e − 1 3.9e − 1 0.37 3.3e − 0 3.8e − 10
11 1.73e − 1 9.5e − 1 0.39 6.5e − 0 2.6e − 10

Table 4. Example 1: Numerical results for function f8 of Algo-
rithm 5.6 with a comparison to Algorithm HFFT.

Alg 5.6 HFFT
N Num Err Time AO Memory TC Err Time AO Memory TC

(Sec.) (Sec.)
3 53 2.45e − 2 1.4e − 0 3.9e − 3 2.6e − 5 1.18e − 0 2e − 3 1.3e − 3 3.8e − 8
4 253 8.57e − 3 7.1e − 0 1.52 1.4e − 2 6.7e − 6 1.29e − 0 5e − 3 0 5.5e − 3 4.8e − 8
5 1059 3.13e − 3 3.0e + 1 1.45 4.3e − 2 2.4e − 6 1.28e − 0 1.6e − 2 0 2.2e − 2 1.3e − 9
6 4043 1.18e − 3 1.2e + 2 1.41 1.8e + 1 1.1e − 6 1.22e − 0 4.7e − 2 0.07 8.4e − 2 4.4e − 10
7 14407 4.47e − 4 4.2e + 2 1.39 1.3e + 2 5.6e − 7 1.11e − 0 1.1e − 1 0.14 3.0e − 1 1.5e − 10
8 48639 1.56e − 4 1.4e + 3 1.39 3.8e + 2 3.3e − 7 9.68e − 1 3.4e − 1 0.19 1.0e − 0 8.0e − 10
9 8.23e − 1 9.0e − 1 0.23 9.1e − 0 4.1e − 11

10 6.83e − 1 2.4e − 0 0.27 1.9e + 1 2.6e − 11

Example 2. We compare in this example Algorithm 5.6 and Algorithm HFFT
when we use the same sparse grids and the same hyperbolic cross index sets in
both of these algorithms. Specifically, we select the sparse grid to consist of the
points vj,r, j ∈ SN,d and r ∈ Zd

j,2, which are generated by the refinable sets Vj with

the initial set V0 := {0, π}, and select the hyperbolic cross index set as JN,d with
m̃ = 2. We compute the discrete Fourier transform of the data set fdN obtained
by sampling the same functions fd, d = 2, 4, 6, 8, as in Example 1. The numerical
results are shown in Figure 7.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FAST COMPUTATION OF MULTIDIMENSIONAL DFT AND DBFT 2379

Figure 7. Example 2: (a) Err via Time, (b) Err via Num, (c) AO
via Num, (d) TC via Num, (e) Memory via Num, (f) Err via
Memory.

Example 3. We compute the discrete Fourier transform of the data set gd
N at JN,d

for d = 2, 4, 6, 8, with m̃ = 1 by using Algorithm 5.6. This data set is obtained
from sampling the functions

gd(x) := cos

⎛⎝
d

√ ∏
k∈Zd

xk

⎞⎠ , x ∈ Id.

Functions gd are nonperiodic continuous functions. The sampling points vj,r, for
j ∈ SN,d and r ∈ Zd

j,2, are generated from the refinable sets Vj with the initial set

V0 := { 2π
3 , 4π

3 }. We compare the results obtained from Algorithm 5.6 with those
from Algorithm HFFT. The numerical results are shown in Figure 8.

From Figures 6, 7 and 8, we see that for a data set sampled from a function
with a low regularity, Algorithm 5.6 performs better than Algorithm HFFT. In
particular, from Figures 6, 7 and 8, we observe that when we use the same amount
of computing time or the same number of the Fourier basis functions, Algorithm
5.6 achieves an accuracy of an order higher than that of Algorithm HFFT.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2380 YING JIANG AND YUESHENG XU

Figure 8. Example 3: (a) Err via Time, (b) Err via Num, (c) AO
via Num, (d) TC via Num, (e) Memory via Num, (f) Err via
Memory.

In the next example we demonstrate the computational efficiency of Algorithm
6.5 for computing the discrete backward Fourier transform.

Example 4. We compute the discrete backward Fourier transform of the data set
cdN , for d = 2, 4, 6, 8, by using Algorithm 6.5. The data sets are obtained from
sampling the Fourier coefficients of functions fd considered in Example 1 at points
l ∈ JN,d with m̃ = 1. We consider the discrete backward Fourier transform on the

grid set S̃N,d that consists of the sampling points vj,r, for j ∈ SN,d and r ∈ Zd
j,2,

generated from the refinable sets Ṽj :=
{

2πr
2j3 : r ∈ Z2j3

}
which has m = 3.

The numerical results are shown in Figure 9. In (a) of Figure 9, we plot the
values of Time for the cases d = 2, 4, 6, 8, where the vertical coordinate represents
the value of Time. In (b) of Figure 9, we plot the values of TC for the cases
d = 2, 4, 6, 8, where the vertical coordinate represents the value of TC. In (c) of
Figure 9, we plot the values of Memory for the cases d = 2, 4, 6, 8, where the vertical

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FAST COMPUTATION OF MULTIDIMENSIONAL DFT AND DBFT 2381

coordinate represents the values of Memory. The horizontal coordinates in all of
the images of Figure 9 represent the value of Num.

In (a), (b), (c), (d) of Figure 10, we plot the cardinality of the sparse grids FN,d

with m = 1, 2, 3, 4, respectively, which are used in Algorithm 5.6, for d = 2, 4, 6, 8.
The set FN,d with m = 1 corresponds to the data points used in Algorithm HFFT.

Figure 9. Example 4: (a) Time via Num, (b) TC via Num, (c)
Memory via Num.

Finally, several comments on the comparison of Algorithm 6.5 to Algorithm
IHFFT are in place. Algorithm 6.5 can be used to compute the discrete back-

ward Fourier transform on sparse grids generated from the refinable sets Ṽj :={
2πr
2jm : r ∈ Z2jm

}
for any fixed m ∈ N. While Algorithm IHFFT in the form de-

scribed in [11, 12, 14] can only deal with the case m = 1, although the algorithm
may be modified to fit the cases m = 2k for a positive integer k. In the special
cases m = 2k for a nonnegative integer k in which both algorithms are applicable,
Algorithm 6.5 coincides with Algorithm IHFFT (in the case m = 1) and with its
modified version (in the cases m = 2k). When m is not a power of 2, it is shown

in [21] that there exists a hierarchical basis whose zero set is the refinable set Ṽj .
Therefore, Algorithm IHFFT may be extended to the case when m is not a power of
2. To do this, we need to represent the Fourier expansion in the hierarchical basis.
A fast algorithm that transforms between the Fourier basis and the hierarchical
basis is needed. It may be nontrivial to construct such a fast algorithm. On the
other hand, Algorithm 6.5 is applicable and convenient for implementation for the
case when m is not a power of 2.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2382 YING JIANG AND YUESHENG XU

Figure 10. The cardinality of FN,d: image (a) the case m = 1,
image (b) the case m = 2, image (c) the case m = 3, image (d) the
case m = 4

Acknowledgment

The authors of this paper are grateful to the referee who brought [26] to their
attention.

References

[1] Robert Balder and Christoph Zenger, The solution of multidimensional real Helmholtz
equations on sparse grids, SIAM J. Sci. Comput. 17 (1996), no. 3, 631–646, DOI
10.1137/S1064827593247035. MR1384255 (97h:65132)

[2] Kai Bittner, Fast algorithms for periodic spline wavelets on sparse grids, SIAM J. Sci. Com-
put. 20 (1999), no. 4, 1192–1213 (electronic), DOI 10.1137/S1064827596309098. MR1675469
(2000b:65018)

[3] Hans-Joachim Bungartz, A multigrid algorithm for higher order finite elements on sparse
grids, Electron. Trans. Numer. Anal. 6 (1997), no. Dec., 63–77 (electronic). Special issue on
multilevel methods (Copper Mountain, CO, 1997). MR1615156 (99a:65174)

[4] Hans-Joachim Bungartz and Michael Griebel, Sparse grids, Acta Numer. 13 (2004), 147–269,
DOI 10.1017/S0962492904000182. MR2249147 (2007e:65102)

[5] Haotao Cai and Yuesheng Xu, A fast Fourier-Galerkin method for solving singular
boundary integral equations, SIAM J. Numer. Anal. 46 (2008), no. 4, 1965–1984, DOI
10.1137/070703478. MR2399403 (2009c:65356)

[6] Zhongying Chen, Charles A. Micchelli, and Yuesheng Xu, A construction of interpolating
wavelets on invariant sets, Math. Comp. 68 (1999), no. 228, 1569–1587, DOI 10.1090/S0025-
5718-99-01110-2. MR1651746 (99m:65017)

[7] James W. Cooley and John W. Tukey, An algorithm for the machine calculation of complex
Fourier series, Math. Comp. 19 (1965), 297–301. MR0178586 (31 #2843)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1384255
http://www.ams.org/mathscinet-getitem?mr=1384255
http://www.ams.org/mathscinet-getitem?mr=1675469
http://www.ams.org/mathscinet-getitem?mr=1675469
http://www.ams.org/mathscinet-getitem?mr=1615156
http://www.ams.org/mathscinet-getitem?mr=1615156
http://www.ams.org/mathscinet-getitem?mr=2249147
http://www.ams.org/mathscinet-getitem?mr=2249147
http://www.ams.org/mathscinet-getitem?mr=2399403
http://www.ams.org/mathscinet-getitem?mr=2399403
http://www.ams.org/mathscinet-getitem?mr=1651746
http://www.ams.org/mathscinet-getitem?mr=1651746
http://www.ams.org/mathscinet-getitem?mr=0178586
http://www.ams.org/mathscinet-getitem?mr=0178586


FAST COMPUTATION OF MULTIDIMENSIONAL DFT AND DBFT 2383

[8] R. A. Devor, P. P. Petrushev, and V. N. Temlyakov, Multidimensional approximations by
trigonometric polynomials with harmonics of a hyperbolic cross (Russian, with Russian sum-
mary), Mat. Zametki 56 (1994), no. 3, 36–63, 158; English transl., Math. Notes 56 (1994),
no. 3-4, 900–918 (1995). MR1309839 (96b:42001)

[9] Michael Döhler, Stefan Kunis, and Daniel Potts, Nonequispaced hyperbolic cross fast Fourier
transform, SIAM J. Numer. Anal. 47 (2010), no. 6, 4415–4428, DOI 10.1137/090754947.
MR2585193 (2011a:65466)

[10] Karin Frank, Stefan Heinrich, and Sergei Pereverzev, Information complexity of multivariate
Fredholm integral equations in Sobolev classes, J. Complexity 12 (1996), no. 1, 17–34, DOI
10.1006/jcom.1996.0004. MR1386591 (97h:65167)

[11] V. Gradinaru, Fourier transform on sparse grids: code design and the time dependent
Schrödinger equation, Computing 80 (2007), no. 1, 1–22, DOI 10.1007/s00607-007-0225-3.
MR2308834 (2008k:65212)

[12] V. Gradinaru, Strang splitting for the time-dependent Schrödinger equation on sparse grids,
SIAM J. Numer. Anal. 46 (2007/08), no. 1, 103–123, DOI 10.1137/050629823. MR2377257
(2009c:65249)

[13] M. Griebel and S. Knapek, Optimized general sparse grid approximation spaces for operator
equations, Math. Comp. 78 (2009), no. 268, 2223–2257, DOI 10.1090/S0025-5718-09-02248-0.
MR2521287 (2010f:65255)

[14] Klaus Hallatschek, Fouriertransformation auf dünnen Gittern mit hierarchischen Basen
(German, with English and German summaries), Numer. Math. 63 (1992), no. 1, 83–97,
DOI 10.1007/BF01385849. MR1182513 (93f:65014)

[15] Ying Jiang and Yuesheng Xu, Fast discrete algorithms for sparse Fourier expansions of high
dimensional functions, J. Complexity 26 (2010), no. 1, 51–81, DOI 10.1016/j.jco.2009.10.001.
MR2574572 (2011a:65467)

[16] Ying Jiang and Yuesheng Xu, Fast Fourier-Galerkin methods for solving singular boundary
integral equations: numerical integration and precondition, J. Comput. Appl. Math. 234
(2010), no. 9, 2792–2807, DOI 10.1016/j.cam.2010.01.022. MR2652126 (2011f:65309)

[17] Ying Jiang and Yuesheng Xu, B-spline quasi-interpolation on sparse grids, J. Complexity 27
(2011), no. 5, 466–488, DOI 10.1016/j.jco.2011.03.003. MR2805532 (2012i:65014)

[18] S. Knapek,Hyperbolic cross approximation of integral operators with smooth kernel, Technical
Report 665, SFB 256, Univ. Bonn, 2000.

[19] N. S. Nikol′skaja, Approximation of differentiable functions of several variables by Fourier

sums in the Lp metric (Russian), Sibirsk. Mat. Ž. 15 (1974), 395–412, 461. MR0336221
(49 #997)

[20] S. V. Pereverzev, Hyperbolic cross and complexity of an approximate solution of Fredholm
integral equations of the second kind with differentiable kernels (Russian), Sibirsk. Mat. Zh.
32 (1991), no. 1, 107–115, 221, DOI 10.1007/BF00970164; English transl., Siberian Math. J.
32 (1991), no. 1, 85–92. MR1112086 (92g:45014)

[21] Jie Shen and Haijun Yu, Efficient spectral sparse grid methods and applications to high-
dimensional elliptic problems, SIAM J. Sci. Comput. 32 (2010), no. 6, 3228–3250, DOI
10.1137/100787842. MR2746619 (2012a:65354)

[22] V. Temlyakov, Approximation of functions with bounded mixed derivative, Trudy Mat. Inst.
Steklov., 178 (1986), 1-112. MR0847439 (87j:42006)

[23] V. N. Temlyakov, Approximation of periodic functions, Computational Mathematics and
Analysis Series, Nova Science Publishers Inc., Commack, NY, 1993. MR1373654 (96j:41001)

[24] Bo Wang, Rui Wang, and Yuesheng Xu, Fast Fourier-Galerkin methods for first-kind
logarithmic-kernel integral equations on open arcs, Sci. China Math. 53 (2010), no. 1, 1–
22, DOI 10.1007/s11425-010-0014-x. MR2594743 (2011d:65424)

[25] Yuesheng Xu and Aihui Zhou, Fast Boolean approximation methods for solving integral
equations in high dimensions, J. Integral Equations Appl. 16 (2004), no. 1, 83–110, DOI
10.1216/jiea/1181075260. MR2093500 (2005e:65219)

[26] Andreas Zeiser, Fast matrix-vector multiplication in the sparse-grid Galerkin method, J.
Sci. Comput. 47 (2011), no. 3, 328–346, DOI 10.1007/s10915-010-9438-2. MR2793587
(2012j:65435)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1309839
http://www.ams.org/mathscinet-getitem?mr=1309839
http://www.ams.org/mathscinet-getitem?mr=2585193
http://www.ams.org/mathscinet-getitem?mr=2585193
http://www.ams.org/mathscinet-getitem?mr=1386591
http://www.ams.org/mathscinet-getitem?mr=1386591
http://www.ams.org/mathscinet-getitem?mr=2308834
http://www.ams.org/mathscinet-getitem?mr=2308834
http://www.ams.org/mathscinet-getitem?mr=2377257
http://www.ams.org/mathscinet-getitem?mr=2377257
http://www.ams.org/mathscinet-getitem?mr=2521287
http://www.ams.org/mathscinet-getitem?mr=2521287
http://www.ams.org/mathscinet-getitem?mr=1182513
http://www.ams.org/mathscinet-getitem?mr=1182513
http://www.ams.org/mathscinet-getitem?mr=2574572
http://www.ams.org/mathscinet-getitem?mr=2574572
http://www.ams.org/mathscinet-getitem?mr=2652126
http://www.ams.org/mathscinet-getitem?mr=2652126
http://www.ams.org/mathscinet-getitem?mr=2805532
http://www.ams.org/mathscinet-getitem?mr=2805532
http://www.ams.org/mathscinet-getitem?mr=0336221
http://www.ams.org/mathscinet-getitem?mr=0336221
http://www.ams.org/mathscinet-getitem?mr=1112086
http://www.ams.org/mathscinet-getitem?mr=1112086
http://www.ams.org/mathscinet-getitem?mr=2746619
http://www.ams.org/mathscinet-getitem?mr=2746619
http://www.ams.org/mathscinet-getitem?mr=0847439
http://www.ams.org/mathscinet-getitem?mr=0847439
http://www.ams.org/mathscinet-getitem?mr=1373654
http://www.ams.org/mathscinet-getitem?mr=1373654
http://www.ams.org/mathscinet-getitem?mr=2594743
http://www.ams.org/mathscinet-getitem?mr=2594743
http://www.ams.org/mathscinet-getitem?mr=2093500
http://www.ams.org/mathscinet-getitem?mr=2093500
http://www.ams.org/mathscinet-getitem?mr=2793587
http://www.ams.org/mathscinet-getitem?mr=2793587


2384 YING JIANG AND YUESHENG XU

Guangdong Province Key Lab of Computational Science, School of Mathematics and

Computational Science, Sun Yat-sen University, Guangzhou 510275, P. R. China

E-mail address: yjiang80@gmail.com

Guangdong Province Key Lab of Computational Science, School of Mathematics and

Computational Science, Sun Yat-sen University, Guangzhou 510275, P. R. China

Current address: Department of Mathematics, Syracuse University, Syracuse, New York 13244
E-mail address: yxu06@syr.edu

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


	1. Introduction
	2. Discrete Fourier transform on sparse grids
	3. A dimension-reducible sum for the discrete Fourier transform
	4. A fast evaluation scheme for dimension-reducible sums
	5. Fast discrete Fourier transform on sparse grids
	6. Fast discrete backward Fourier transform on sparse grids
	7. Numerical examples
	Acknowledgment
	References

