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Abstract

Betweenness centrality is an essential index for analysis of complex networks. However, the calculation of betweenness
centrality is quite time-consuming and the fastest known algorithm uses O(N(MzN log N)) time and O(NzM) space for
weighted networks, where N and M are the number of nodes and edges in the network, respectively. By inserting virtual
nodes into the weighted edges and transforming the shortest path problem into a breadth-first search (BFS) problem, we
propose an algorithm that can compute the betweenness centrality in O(�ww �DDN2) time for integer-weighted networks, where
�ww is the average weight of edges and �DD is the average degree in the network. Considerable time can be saved with the
proposed algorithm when �wwv log N=�DDz1, indicating that it is suitable for lightly weighted large sparse networks. A similar
concept of virtual node transformation can be used to calculate other shortest path based indices such as closeness
centrality, graph centrality, stress centrality, and so on. Numerical simulations on various randomly generated networks
reveal that it is feasible to use the proposed algorithm in large network analysis.
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Introduction

Networks, especially complex networks, have been extensively

studied during the last decade [1–3]. Owing to the ability to gather

and analyze large scale data using computers and communication

networks, it is quite common to see studies on networks with

millions of vertices (nodes) nowadays. The shift of studies from

simple small graphs to large complex networks have increasingly

contributed new findings of critical phenomena and development

of theories in many fields, such as the scale-free distribution of

network degrees [4,5], burstness of human behaviors [6], vulner-

ability of internet networks [7,8], and so on [1–3,9].

However, the computation of several network properties,

such as the shortest paths, betweenness centrality and closeness

centrality, are hindered by the large computation complexity

[3,10]. As a result, many large-scale networks are regarded as

unweighted when the above measures are reported [2,3]. Large

efforts have been made to improve the efficiency of algorithms for

calculating those network properties [10,11]. Take the between-

ness centrality, for example [12,13]: for a weighted network G with

N nodes and M edges, the naive algorithm requires O(N3) time

and O(N2) storage, regardless of the algorithms implemented to

find the shortest paths. A much faster algorithm proposed by

Brandes [14], on the other hand, can calculate the betweenness

centrality in O(N(MzN log N)) time and O(NzM) space when

the shortest paths are calculated by Dijkstra’s algorithm imple-

mented with a Fibonacci heap. Parallel algorithms are also pro-

posed to improve the efficiency for the calculation of betweenness

centrality [10,11,15–21]: for example, Bader and Madduri [10]

proposed a betweenness centrality algorithm on a high-end shared

memory symmetric multiprocessor and multithreaded architec-

tures, with which is ‘‘possible’’ to achieve the computation in

O(N(MzN log N)=p) time with access conflicts, where p is the

number of processors used. However, the parallel algorithms

requires much more complex programming and are highly de-

pendent on the hardwares: for example, in Bader and Madduri’s

study [10], they used an IBM p5 570 on 16 processors and utilized

20GB RAM. These equipments are obviously not adaptable for

general network researchers.

To circumvent the difficulties in calculating betweenness

centrality with large time complexity, we propose a new algorithm

for integer-weighted networks in this paper. By replacing the

weighted edges with connected virtual nodes, the new algorithm

computes the betweenness centrality in O(�ww �DDN2) time and

O(Nz(2�ww{1)M) space, with �ww and �DD being the average edge

weight and average degree of the network, respectively.

Methods

The Brandes’ Algorithm
Given a network G~(V ,E), with Vj j~N the number of nodes

and Ej j~M the number of edges, for the purpose of this study, we

consider strongly connected networks [22] with no self loops

(acyclic). Let W~fwij ,1ƒi,jƒNg be the weight matrix of G,

where wijw0 is the weight on edge eij . In real practice, W can be

distances between airports, information flows between computers,

traffic loads between cities, etc.

Let sst denote the number of shortest paths from node s to t,
and sst(v) be the number of shortest paths from s to t that pass

through v[V , then the betweenness centrality of node v is defined
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as [13,14]:

CB(v)~
X

s=v=t

sst(v)

sst

ð1Þ

From the definition we can see that betweenness centrality is the

sum of the fraction of shortest paths over all pairs of nodes passing

through the node, high betweenness centrality indicates that a

node can reach others (or be reached by others) with relatively

short paths, or the node lies on considerable fraction of shortest

paths connecting others. In many fields, the betweenness centrality

can be regarded as a measure of the extent to which the node has

control over information flowing between others, and it is thus a

core index for evaluating the importance of nodes in the network

[13,23]. For example, in the study of networks vulnerability to

attacks, the removal of nodes with the highest betweenness

centrality is shown to be one of the most harmful strategies that

can break down the networks [8].

A straightforward way of calculating the betweenness centrality

then use the following steps:

Step 1 Compute the length and number of shortest paths

between all pairs of nodes;

Step 2 For each node v, calculate dst(v)~sst(v)=sst (pair

dependency) for each pair and sum them up.

Obviously, the complexity of the naive algorithm is dominated

by the second step which requires O(N3) time summation and

O(N2) storage of pair dependencies. To introduce Brandes’

algorithm, we first define the set of predecessors of node t on

the shortest paths from s:

Ps(t)~fu[V : fu,tg[E,dG(s,t)~dG(s,u)zdG(u,t)g ð2Þ

where dG(s,t) is the distance of the shortest path from s to t. Then

the number of shortest paths from s to t can be calculated as:

sst~
X

u[Ps(t)

ssu ð3Þ

To eliminate the need for explicit summation of all pair dependencies,

Brandes [14] defines the dependency of node v as:

ds.(v)~
X

t[V

dst(v) ð4Þ

ds.(v) has the recursive property that

ds.(v)~
X

w:v[Ps(w)

ssv

ssw

(1zds.(w)) ð5Þ

Note that ds.(v) is merely a partial sum of Eq. (1), then the

betweenness centrality can be expressed by:

CB(v)~
X

s=v[V

ds.(v) ð6Þ

The summation of pair dependencies is then reduced to accumulation

of dependencies defined by Eq. (5). Specifically, given the shortest

paths from s[V in G, the array storing ds.(v) for all nodes can be

recursively calculated according to Eq. (5), by traversing the nodes

in non-increasing order of their distances from s. An illustrative

algorithm is shown in Algorithm 1. We can see that the calculation

for Step 2 is now in O(M) time and O(NzM) space, then the

calculation complexity of betweenness centrality is determined by

the shortest path algorithms used in Step 1. Using Dijkstra’s

algorithm implemented with Fibonacci heap [24], which requires

O(MzN log N) time for the single source shortest path problem

[25], the betweenness centrality can be computed by Brandes’

algorithm in O(NMzN2 log N) time and O(NzM) space on

weighted networks [14].

Computing Betweenness Centrality with Virtual Nodes
Brandes’ algorithm has greatly reduced the computation burden

for betweenness centrality, however, the time complexity is still too

high for networks with millions of nodes since the shortest path

algorithm would cost a lot of computation time anyway. In this

section, we propose a new algorithm that can reduce the time

complexity in Step 1, such that the betweenness centrality can be

calculated within reasonable time under certain conditions.

Replacement of Weighted Edges. Our new algorithm

originates from the idea that an integer-weighted network can

be broken down into a simple unweighted network with virtual

nodes, such that the calculation of shortest paths in Step 1 can be

solved as a breadth-first search (BFS) problem.

Algorithm 1: Brandes’ algorithm [14].

1 CB½v�/0,v[V ;
2 for s[V do

3 [P,s,S] = single source shortest path algorithm()

/*P½v�~set of predecessors for shortest paths from s to

v[V ;*/

/*s½v�~array storing the number of shortest paths from

s passing through v; */

/*S~stack storing the distances of nodes from s in non-

increasing order; */

/*accumulate dependency from the most distant nodes */

4 d½v�/0,v[V ;
5 while S not empty do

6 pop w/S;
7 for v[P½w� do d½v�/d½v�z s½v�

s½w� (1zd½w�);

8 if w=s then CB½w�/CB½w�zd½w�;
9 end

10 end

Figure 1 illustrates the representation of an undirected weighted

network by an undirected unweighted network with three

additional virtual nodes. We can see that edge eAC and eBC are

replaced by 3 and 2 unit edge segments with two and one virtual

nodes inserted, respectively. The number of virtual nodes to be

inserted on a weighted edge eij , is then wij{1.

Let G.~(V.,E.) be the unweighted representation of

G~(V ,E,W ) with virtual nodes, where V.~V|V 0 with V ’
the set of virtual nodes, then the number of virtual nodes in G., is

V.j j~ Wj j{ Ej j~(�ww{1)M, where �ww is the average edge weight.

Virtual Node Based Algorithm for Betweenness Centrality. Obviously,

the insertion of virtual nodes does not change the distances

between pairs of nodes in V and consequently the number of

shortest paths between nodes is the same as in G. The calculation

of shortest paths on G. can then be solved by the BFS algorithm,

instead of the traditional Dijkstra’s algorithm.

However, before applying the BFS on G. to calculate the

betweenness centrality for nodes in G, there is at least one problem

to be solved: to use the existing theories on summation of pair

dependency in Algorithm 1, the predecessors of nodes in V recorded

during the shortest path calculation in G., should be kept as the

same as if they were calculated by any shortest path algorithm in

G. This can be achieved as follows: suppose the BFS finds a

shortest path from s to v: s? � � � v?u’1?u’2?t, where u’1, u’2 are

two virtual nodes inserted on edge evt, then the predecessor of u’1,

Compute Betweenness Centrality with Virtual Nodes
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which is v, can be passed through u’2 to the next non-virtual node t:

P½u’1�~v; P½u’2�~P½u’1�; P½t�~P½u’2�:

An implementation of the above process is presented in Algorithm

2, the steps for accumulation of dependency are identical as the

Brandes’ algorithm and thereby are omitted.

Algorithm 2: Virtual node algorithm for betweenness
centrality

1 CB½v�/0,v[V ;
2 for s[V do

3 S/empty stack;

4 P½w�/empty list, w[V.;

5 s½t�/0, t[V.; s½s�/1;

6 d½t�/1, t[V.; d½s�/0;

7 Q/empty queue;

8 enqueue s?Q;

9 while Q not empty do

10 dequeue v/Q;

11 push v?S;

12 foreach neighbor w of v do

13 if d½w�v0 then /*visit w the first time*/

14 enqueue w?Q;

15 d½w�/d½v�z1;

16 end

17 if d½w�~d½v�z1 then

18 s½w�/s½w�zs½v�;
19 if v[V then

20 append v?P½w�;
21 else /*if v is a virtual node, retrieve the latest

non-virtual node as predecessor*/

22 append P½v�?P½w�;
23 end

24 end

25 end

26 end

27 accumulate dependency()/*as shown in Algorithm 1

28 end

Note that in Algorithm 2, we don’t need to calculate

shortest paths between virtual nodes. The BFS then requires

O( Vj j E.j j)~O(N �wwM) time. For the sake of clarity, let �DD be the

average degree of nodes in G such that N �DD~M, then we have

N �wwM~�ww �DDN2. The computation of betweenness centrality with

virtual nodes (the VN algorithm), is dominated by the BFS and has

a time complexity of O(�ww �DDN2), and needs O( V.j jz E.j j)~
O((Nz(�ww{1)M)z�wwM)~O(Nz(2�ww{1)M) space.

Compared with Brandes’ algorithm, we can see that the VN

algorithm will perform better when �ww �DDN2
vN2( �DDz log N), that

is, �wwv log N=�DDz1. We henceforth denote �ww�~ log N=�DDz1 as

the critical threshold for the average edge weight on a network; if

�wwv�ww�, the VN algorithm will be able to calculate the betweenness

centrality faster than Brandes’ algorithm. Figure 2 shows the

distribution of �ww� over the domain of combinations of different

network sizes and average degrees. We can see that the advantage

of the VN algorithm becomes evident when the network is large

and sparse, for example, when the network size is 1 million (&220),

and the average degree is 5, the VN algorithm would be faster for

those with �wwƒ5; for the same average degree, �ww� increases to 7

when the network size reaches 1 billion (&230). For an average

degree of 10, �ww� lies beyond 3 for networks larger than 1 million.

Note that many large-scale networks are reported to have rather

small average degrees; for example, the mobile communication

network reported in [26], contains 4.6 million nodes and an

average of 3.04 edges. The Internet network [27], math co-

authorship network [28], and power grid [29] reported in [1], are

found to have average degrees of 3.5–4.1, 3.9 and 2.7, respectively.

Networks with low integer weights are also reported in the

literature; for example, the neural network of the Caenorhabditis

elegans worm [29], the communication network of the online

community [30], and the political support network of the US

Senate [31], have average edge weights of 3.74, 2.95 and 3.74,

respectively.

Results and Discussion

Numerical Experiments
To evaluate the algorithms, we generate scale-free networks

[32] with different network sizes and edge weights, and the

execution time of VN algorithm and Brandes’ algorithm are then

tested on these networks. Algorithms are coded in C and run on a

PC with an Intel Core 2 Quad CPU (2.66 GHz, 6 Mb) and 6 Gb

of RAM, all the following reported running times are the average

of 100 simulations.

It is intuitive that when seldom edges in the network are

weighted, the VN algorithm will calculate the betweenness cen-

trality approximately as fast as the BFS, which is much faster than

the Brandes’ algorithm. For example, when the network size is

100,000 and we set the average degree as 2 and take 1000 edges to

be weighted with random numbers generated from 1 to 10, the

execution time for Brandes’ algorithm is 8460 seconds, while the

VN algorithm needs only 3830 seconds, which is around 1.3 hours

faster than the Brandes’ algorithm. Since when N becomes large,

we have �ww?1, more time can be expected to be saved in larger

networks with fixed number of weighted edges. We calculated the

VN and Brandes’ algorithm on networks with 1% of edges being

weighted as 2, and the execution times are presented in Figure 3(a).

We can see that the difference in execution time become larger

when the network size increases. When the network size is 50,000,

the VN algorithm is 3 and 1.5 times faster than the Brandes’

algorithm, for average network degrees of 2 and 10, respectively.

Figure 1. Illustration of representing the weighted network (a) by an unweighted network with virtual nodes (b).
doi:10.1371/journal.pone.0022557.g001
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The above results reveal that the VN algorithm is much faster

on large sparse networks with limited number of weights.

However, we should note that the VN algorithm is quite sensitive

to the average degree and weight sum of the network, for any

network with Nƒ2
�DD, the VN algorithm will not outperform

Brandes’ algorithm as long as �www2. To illustrate the sensitivity of

the VN algorithm, we run algorithms on networks with �DD~2 and

�ww~2, and the difference in running times between the two

algorithms decreases quickly as expected (Figure 3(b)).

Discussion
By replacing the weighted edges with connected virtual nodes,

we propose the VN algorithm to calculate the betweenness cen-

trality in weighted networks with the BFS rather than shortest path

Figure 2. Critical threshold for average weights ( �w�w�) on networks with specified network size (N) and average degree ( �DD).
doi:10.1371/journal.pone.0022557.g002

Figure 3. Running time of the VN algorithm and Brandes’ algorithm. (a) Networks with average degree �DD~2 and �DD~10, 1% of the network
edges are weighted with �ww~2; (b) Networks with average degree �DD~2, all edges are weighted with �ww~2.
doi:10.1371/journal.pone.0022557.g003
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algorithms. The VN algorithm uses O(�ww �DDN2) time and O(Nz
(2�ww{1)M) space. Theoretically, the VN algorithm outperforms

the Brandes’ algorithm when �wwv log N=�DDz1, indicating that

when the average edge weight is low, considerable time can be

saved on large sparse networks. The simulation study confirms

that when �wwv�ww�, more time can be saved when the network

grows large.

We should note that the VN algorithm is quite sensitive to the

density and weight of the networks, it can hardly outperform the

Brandes’ algorithm when the network is dense and weighted with

large values. What’s more, the theoretical threshold value �ww�,
could be even lower in practice since the VN algorithm requires

more space. Despite these limitations, given the evidences that

large-scale networks in real life are mostly sparse, and the BFS is

much easier to implement than the Fibonacci heap based shortest

path algorithms, the VN algorithm is expected to be able to save

analysis time in many scenarios. Moreover, the VN algorithm can

easily be generalized to calculate other shortest path based net-

work properties, such as closeness centrality [33], graph centrality

[34], stress centrality [35], and so on. We henceforth recommend

that network researchers to use the VN algorithm when the

studied network is large, sparse, and lightly weighted, but continue

to use the Brandes’ algorithm otherwise.

Supporting Information
Both the Brandes’ algorithm and the VN algorithm are written

in C and are available upon request from the author.
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