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Abstract

Distance covariance and distance correlation have been widely adopted in measuring depen-

dence of a pair of random variables or random vectors. If the computation of distance covariance

and distance correlation is implemented directly accordingly to its definition then its compu-

tational complexity is O(n2) which is a disadvantage compared to other faster methods. In

this paper we show that the computation of distance covariance and distance correlation of real

valued random variables can be implemented by an O(n logn) algorithm and this is comparable

to other computationally efficient algorithms. The new formula we derive for an unbiased esti-

mator for squared distance covariance turns out to be a U-statistic. This fact implies some nice

asymptotic properties that were derived before via more complex methods. We apply the fast

computing algorithm to some synthetic data. Our work will make distance correlation applicable

to a much wider class of applications.

Keywords: distance correlation, fast algorithm, statistical dependence
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1. INTRODUCTION

Since its induction (Székely, Rizzo and Bakirov 2007), distance correlation has had many applica-

tions in, e.g., life science (Kong, Klein, Klein and Wahba 2012) and variable selection (Li, Zhong

and Zhu 2012), and has been analyzed (Székely and Rizzo 2012; Lyons 2013), extended (Székely

and Rizzo 2009; Székely and Rizzo To appear) in various aspects. If distance correlation were

implemented straightforwardly from its definition, its computational complexity can be as high

as a constant times n2 for a sample size n. This fact has been cited for numerous times in the

literature as a disadvantage of adopting the distance correlation. In this paper, we demonstrate

that an O(n log(n)) algorithm for a version of the distance correlation exits.

The main idea behind the proposed algorithm is to use an idea rooted in the the AVL tree structure

(Adelson-Velskii and Landis 1962). The same idea has been utilized to develop fast algorithm for

computing the Kendall’s τ rank correlation coefficient (Knight 1966) (Christensen 2005). We extend

it to make it suitable for our purpose. The derivation of the fast algorithm also involves significant

reformulation from the original version of the distance correlation. Details are presented in this

paper.

In simulations, not only we demonstrate the effectiveness of the fast algorithm, but also we tes-

tify that the advantage of using distance correlation (in comparison with other existing methods)

become more evident when the sample sizes increase. These experiments become feasible due to

the availability of the proposed fast algorithm. In one experiment (See details in Section 5.3), we

increased the sample size by 100 fold from a previously published simulation study.

The rest of this paper is organized as follows. Section 2 reviews the distance covariance/correlation

and its relevant properties. In Section 3, we consider a reformulation of the distance covariance,

such that the new estimator is both unbiased and a U-statistic. In Section 4, an algorithm with the

average complexity of O(n log n) was presented. Extensive simulations are presented in Section 5

to demonstrate the additional capability we obtained due to the proposed fast algorithm. Finally,

some concluding remarks are made in Section 6. Detailed description of the algorithm is relegated

to the Appendix, along with most of the technical proofs.
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2. A REVIEW OF DISTANCE COVARIANCE

Distance covariance and distance correlation was introduced in 2005 by one of the co-authors of this

paper, G. J. Székely, in several lectures to address the deficiency of Pearson’s correlation, namely

that the Pearson’s correlation can be zero for dependent variables. In the following, we start with

a definition of the distance covariance.

Definition 2.1. The population distance covariance between random vectors X and Y with finite

first moments is the nonnegative number V(X,Y ) defined by a weighted L2 norm measuring the

distance between the joint characteristic function (c.f.) φX,Y of X and Y , and the product φXφY

of the marginal c.f.’s of X and Y . If X and Y take values in R
p and R

q, respectively, V2(X,Y ) is

V2(X,Y ) = ‖φX,Y (t, s)− φX(t)φY (s)‖2w

:=

∫

Rp+q

|φX,Y (t, s)− φX(t)φY (s)|2w(t, s)dtds,

where w(t, s) := (|t|1+p
p |s|1+q

q )−1. The integral exists provided that X and Y have finite first

moments.

This immediately shows that distance covariance is zero if and only if the underlying random

variables are independent. The beauty of kernel w(t, s) := (|t|1+p
p |s|1+q

q )−1 is that the corresponding

sample statistic has the following surprisingly simple form. Denote the pairwise distances of the X

observations by aij := ‖Xi−Xj‖ and the pairwise distances of the Y observations by bij := ‖Yi−Yj‖

for i, j = 1, . . . , n and denote the corresponding double centered distance matrices by (Aij)
n
i,j=1,

and (Bij)
n
i,j=1 where

Aij =





aij − 1
n

∑n
ℓ=1 aiℓ − 1

n

∑n
k=1 akj +

1
n2

∑n
k,ℓ=1 akℓ, i 6= j;

0, i = j.
(2.1)

Bij =





bij − 1
n

∑n
ℓ=1 biℓ − 1

n

∑n
k=1 bkj +

1
n2

∑n
k,ℓ=1 bkℓ, i 6= j;

0, i = j.
(2.2)

It is clear that the row sums and column sums of these double centered matrices are 0. The squared

sample distance covariance is the following simple formula

1

n2

n∑

i,j=1

AijBij .
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The corresponding squared sample variance is

V2n(X) :=
1

n2

n∑

i,j=1

A2
ij

and we can define the sample distance correlation as the standardized sample covariance:

R2
n(X,Y ) =





V2
n(X,Y )√

V2
n(X)V2

n(Y )
, V2n(X)V2n(Y ) > 0;

0, V2n(X)V2n(Y ) = 0.

(2.3)

For more details see Székely et al. (2007) and a discussion paper (Székely and Rizzo 2009). It

is clear that Rn(X,Y ) is rigid motion invariant and scale invariant. For recent applications of

distance correlation, see e.g., Li et al. (2012) and Kong et al. (2012).

The population version of distance covariance and distance correlation can be defined without

characteristic functions, see Lyons (2013). This definition is as follows. Let X ∈ R
p and Y ∈ R

q be

random variables with finite expectations. The random distance functions are a(X,X ′) := |X−X ′|p
and b(Y, Y ′) = |Y − Y ′|q. Here the primed random variable X ′ denotes an independent and

identically distributed (i.i.d.) copy of the variable X, and similarly Y, Y ′ are i.i.d.

Introduce the real-valued function

m(x, FX) = E[a(x,X)] = E|x−X| =
∫
|x− x′|dFX(x′),

where FX is the cumulative distribution function (cdf) of X, and

m(X,FX ) =

∫
|X − x′|dFX(x′),

which is a real-valued random variable. For simplicity we write m(x) := m(x, FX ) and m(X) :=

m(X,FX ).

Next we define the counterpart of centered distance matrices. The centered distance function is

a(x, x′) := a(x, x′)−m(x)−m(x′) + E[m(X ′)].

For random variables we have

A(X,X ′) = a(X,X ′)−m(X)−m(X ′) + E[m(X ′)],
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where

E[m(X ′)] = E[m(X,FX )] =

∫ ∫
|x− x′| dFX (x′) dFX (x).

Similarly define the centered distance function b(y, y′) and the random variable B(Y, Y ′). Now for

X,X ′ i.i.d., and Y, Y ′ i.i.d., such that X and Y have finite expectations, the population distance

covariance V(X,Y ) is defined by

V2(X,Y ) := E[A(X,X ′)B(Y, Y ′)]. (2.4)

We have that V2(X,Y ) is always nonnegative, and equates zero if and only if X and Y are inde-

pendent.

It is clear by inspection that without further efforts the implementation of the sample distance

covariance and the corresponding sample distance correlation requires O(n2) steps. In this paper

we show that for real-valued random variables X and Y , we do not need more than O(n log n)

steps.

3. THE UNBIASED VERSION OF THE SQUARED SAMPLE DISTANCE COVARIANCE:

REFORMULATION AND RELATION TO U-STATISTICS

In this section, a reformulation is given in Section 3.1. We then show in Section 3.2 that the newly

formed unbiased estimator is a U-statistic.

3.1 Reformulation

We will work with the unbiased version of the squared sample distance covariance, which is pub-

lished in Székely and Rizzo (To appear). The definition is as follows.

Definition 3.1 (U -centered matrix). Let A = (aij) be a symmetric, real valued n×n matrix with

zero diagonal, n > 2. Define the U -centered matrix Ã as follows: the (i, j)-th entry of Ã is

Ãij =





aij − 1
n−2

∑n
ℓ=1 aiℓ − 1

n−2

∑n
k=1 akj +

1
(n−1)(n−2)

∑n
k,ℓ=1 akℓ, i 6= j;

0, i = j.
(3.1)

Here the “U -centered” is so named because as shown below, the corresponding inner product (which

will be specified in (3.2)) defines an unbiased estimator of the squared distance covariance.
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Proposition 3.2. Let (xi, yi), i = 1, . . . , n denote a sample of observations from the joint distri-

bution (X,Y ) of random vectors X and Y . Let A = (aij) be the Euclidean distance matrix of the

sample x1, . . . , xn from the distribution of X, and B = (bij) be the Euclidean distance matrix of the

sample y1, . . . , yn from the distribution of Y . Then if E(|X|+ |Y |) < 1, for n > 3, the following

(Ã · B̃) :=
1

n(n− 3)

∑

i 6=j

ÃijB̃ij (3.2)

is an unbiased estimator of squared population distance covariance V2(X,Y ).

The proof of the above proposition is in the appendix of Székely and Rizzo (To appear).

Let Ωn denote the inner product defined in (3.2). The following notations will be used. Define the

column and row sums as follows:

ai· =

n∑

ℓ=1

aiℓ, a·j =

n∑

k=1

akj,

bi· =

n∑

ℓ=1

biℓ, b·j =

n∑

k=1

bkj,

a·· =

n∑

k,ℓ=1

akℓ, and b·· =

n∑

k,ℓ=1

bkℓ.

We will need the following lemma.

Lemma 3.3. If Ωn is the inner product defined in (3.2) then we have

Ωn =
1

n(n− 3)

∑

i 6=j

aijbij −
2

n(n− 2)(n − 3)

n∑

i=1

ai·bi· +
a··b··

n(n− 1)(n − 2)(n − 3)
. (3.3)

For the proof see the Appendix. Formula (3.3) will be used to prove that (i) the estimator in (3.2)

is a U-statistic and thus we can apply the relevant limit theorems to study its asymptotic behavior;

(ii) the estimator in (3.2) can be computed in O(n log n) steps.

3.2 Validating the Statistic is a U-Statistic

Suppose x1, . . . , xn is a sample. For positive integer r, let Φr denote all the distinct r-subsets of

{1, 2, . . . , n}. For a set ϕ ⊂ {1, . . . , n}, we define notation xϕ = {xi | i ∈ φ}. Let h : Rr → R

be a symmetric real-valued or complex-valued kernel function of r variables. For each n ≥ r, the
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associated U-statistic of order r, Unr : R
n → R, is equal to the average over ordered samples of size

r of the sample values h(xϕ). In other words,

Unr(x1, . . . , xn) =
1(
n
r

)
∑

ϕ∈Φr

h(xϕ), (3.4)

For U-statistics, we can verify the following lemma.

Lemma 3.4. For 1 ≤ i ≤ n, we denote

U−i
nr (x1, . . . , xn) = Un−1,r(x1, . . . , xi−1, xi+1, . . . , xn), (3.5)

where Un−1,r(x1, . . . , xi−1, xi+1, . . . , xn) is defined in (3.4) after removing the element xi. Then we

must have

(n− r)

(
n

r

)
Unr(x1, . . . , xn) =

n∑

i=1

(
n− 1

r

)
U−i
nr (x1, . . . , xn). (3.6)

Proof of Lemma 3.4. In (3.6), each term h(xϕ) is counted (n − r) times on both sides. Hence the

equality holds.

In fact, using arithmetic deduction, one can prove that the converse of the above is also true. In

other words, the jackknife invariance is a necessary and sufficient condition for being U-statistics.

For a very similar (equivalent) approach see Lenth (1983).

Lemma 3.5. If there exists a positive integer r > 0, such that for any n > r, function Unr(x1, . . . , xn)

satisfies (3.6) and (3.5), then there must be a kernel function h(·) of order r, such that Unr(x1, . . . , xn)

can be written in a form as in (3.4); i.e., Unr(x1, . . . , xn) is a U-statistic.

A proof of the above can be found in the Appendix.

The two lemmas above show that the recursive relation (3.6) is a necessary and sufficient condition

for a U-statistic. For later use, we explicitly restate the result below.

Theorem 3.6. Let Ωn(x1, . . . , xn) be a statistic of a sample x1, . . . , xn. Let Ω−i
n−1(x1, . . . , xn),

i = 1, 2, . . . , n, be a statistic of a reduced sample x1, . . . , xi−1, xi+1, . . . , xn; i.e., Ω
−i
n−1(x1, . . . , xn)

is the statistic after removing the observation xi. The necessary and sufficient condition for
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Ωn(x1, . . . , xn) to be a U-statistic of order r is

n · Ωn(x1, . . . , xn) =
n∑

i=1

Ω−i
n−1(x1, . . . , xn) (3.7)

holds for all n ≥ r.

The above can be extended to a two-sample problem, in which a sample is (x1, y1), (x2, y2), . . . , (xn, yn)

for n ≥ 1. By replacing xi with (xi, yi), all the previous arguments still hold.

Proof of Theorem 3.6. . Combine Lemma 3.4 and Lemma 3.5, and simplify (3.6), we have (3.7).

Let Ωn denote the inner product that is defined in (3.2). Note Ωn is based on the entire sample (i.e.,

(xi, yi), i = 1, 2, . . . , n. For 1 ≤ i ≤ n, let Ω−i
n−1 denote the corresponding statistic after knocking

out pair (xi, yi) from the entire sample.

The following lemma establish counterpart for Ω−k
n−1, where k = 1, 2, . . . , n.

Lemma 3.7. For 1 ≤ k ≤ n, let a−k
i· , b−k

i· , a−k
·· , and b−k

·· denote the corresponding sums after entry

(xk, yk) is removed from the sample. If Ω−k
n−1 is the inner product that is defined in (3.2) after

knocking off the k-th entry (xk, yk), we have

Ω−k
n−1 =

1

(n− 1)(n − 4)

∑

i 6=j,i 6=k,j 6=k

aijbij −
2

(n− 1)(n − 3)(n− 4)

n∑

i=1,i 6=k

a−k
i· b−k

i·

+
a−k
·· b−k

··

(n− 1)(n − 2)(n − 3)(n − 4)
. (3.8)

We will not provide the proof for Lemma 3.7, because it will be identical with the proof of Lemma

3.3.

Theorem 3.8. Estimator Ωn—the inner product that is defined in (3.2)—is a U-statistic. The

kernel function of the corresponding U-statistic is the inner product that was defined in (3.2) with

n = 4.

See a proof in the Appendix.

Now we know that (3.2) is a U-statistic and it is easy to see that (3.2) is in fact a U-statistic with

a degenerate kernel under the null hypothesis of independence of X and Y , thus we can see from
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Corollary 4.4.2 of Koroljuk and Borovskich (1994) that if the second moments of X and Y are finite

then under the null hypothesis, the limit distribution of n(Ã · B̃) has the form
∑∞

i=1 λi(Z
2
i − 1),

where λi ≥ 0, and Zi are i.i.d. standard normal random variables. Under the alternative hypothesis

we have that n|(Ã · B̃)| → ∞, thus we can easily construct a consistent test of independence. For

a technically much more difficult approach, see Székely et al. (2007) where a similar result was

derived for a related V-statistic using deep results on complex-valued Gaussian processes.

4. FAST ALGORITHM

We now argue that when X and Y are univariate, there is an O(n log n) algorithm to implement

(3.3). We start with several intermediate results, which are presented as lemmas below.

Lemma 4.1. Denote

x· =
n∑

i=1

xi.

For 1 ≤ i ≤ n, we also denote

αx
i =

∑

xℓ<xi

1,

βx
i =

∑

xℓ<xi

xℓ.

We have

ai· = x· + (2αx
i − n)xi − 2βx

i . (4.1)

A proof is relegated to the appendix.

Due to symmetry, the following is the counterpart fact for Y . We state it without a proof.

Lemma 4.2. Denote

y· =

n∑

i=1

yi.

For 1 ≤ i ≤ n, we denote

αy
i =

∑

yℓ<yi

1,

βy
i =

∑

yℓ<yi

yℓ.
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We have

bi· = y· + (2αy
i − n)yi − 2βy

i . (4.2)

Using formulas (4.1) and (4.2), the following two equations can be easily established. We state

them without a proof.

Corollary 4.3. We have

a·· = 2
n∑

i=1

αx
i xi − 2

n∑

i=1

βx
i , (4.3)

and

b·· = 2

n∑

i=1

αy
i yi − 2

n∑

i=1

βy
i . (4.4)

The following lemma will be used.

Lemma 4.4. We define a sign function, for ∀1 ≤ i, j ≤ n,

Sij =





+1, if (xi − xj)(yi − yj) > 0,

−1, otherwise.

For any sequence {cj , j = 1, . . . , n}, for 1 ≤ i ≤ n, we define

γi({cj}) =
∑

j:j 6=i

cjSij .

The following is true:

∑

i 6=j

aijbij =

n∑

i=1

[xiyiγi({1}) + γi({xjyj})− xiγi({yj})− yiγi({xj})] . (4.5)

Proof of Lemma 4.4. We have

∑

i 6=j

aijbij =
∑

i 6=j

|xi − xj | · |yi − yj|

=

n∑

i=1

∑

j:j 6=i

(xiyi + xjyj − xiyj − xjyi)Sij

=

n∑

i=1


xiyi

∑

j:j 6=i

Sij +
∑

j:j 6=i

xjyjSij − xi
∑

j:j 6=i

yjSij − yi
∑

j:j 6=i

xjSij


 .

Per the definition of γi({· · · }), one can verify that the above equates to (4.5).
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Lemma 4.5. For any sequence {cj , j = 1, . . . , n}, there is an O(n log n) algorithm to compute for

all γi({cj}) (=
∑

j:j 6=i cjSij), where i = 1, . . . , n.

Again, we relegate the proof to the appendix. The main idea of the proposed algorithm is a

modification as well as an extension of the idea that was used in Knight (1966) and Christensen

(2005), which developed a fast algorithm for computing the Kendall’s τ rank correlation coefficient.

The principle of the AVL tree structure (Adelson-Velskii and Landis 1962) was adopted. Despite

they are in a similar spirit, the algorithmic details are different. We now present the main result

in the following theorem.

Theorem 4.6. The unbiased estimator of the squared population distance covariance (that was

defined in (3.2)) can be computed by an O(n log n) algorithm.

Proof of Theorem 4.6. In Lemma 3.3, the unbiased statistic has been rewritten as in (3.3). For the

first term on the right hand side of (3.3), per Lemmas 4.4 and 4.5, there is an O(n log n) algorithm

to compute it.

For the second term on the right hand side of (3.3), Note that quantities αx
i , β

x
i , α

y
i , and βy

i that

were defined in Lemmas 4.1 and 4.2, respectively, are partial sums, which can be computed for

all i’s with O(n log n) algorithms. The log n factor is inserted, because one may need to sort xi’s

or yi’s in order to compute for αx
i , β

x
i , α

y
i , and βy

i . Then by (4.1) and (4.2), all ai· and bi· can be

computed at order O(n log n). Consequently, the second term on the right hand side of (3.3) can

be computed by using an O(n log n) algorithm.

For the third term on the right hand side of (3.3), using (4.3) and (4.4) in Corollary 4.3, we can

easily see that it can be computed via an O(n log n) algorithm. From all the above, the theorem is

established.

For readers’ convenience, we present a detailed algorithm description in Appendix, where Algorithm

2 realizes the idea that is described in the proof of Lemma 4.5; Algorithm 3 is a subroutine that will

be called in Algorithm 2; and the Algorithm 1 is the algorithm that can compute for the distance

covariance at O(n log n).
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5. NUMERICAL EXPERIMENTS

In Section 5.1, we describe a MATLAB and C based implementation of the newly proposed fast

algorithm. This fast algorithm enables us to run some simulations with sample sizes that were

impossible to experiment with before its appearance. We report some numerical experiments in

Section 5.2. Distance correlation has been found helpful in feature screening. In Section 5.3, we

redo experiments on this regard, increasing the sample size from n = 200 to n = 20, 000. It is

observed that the advantage of using the distance correlation is more evident when the sample size

becomes larger.

5.1 Matlab Implementation

The fast algorithm was implemented in MATLAB, with a key step (of dyadic updating) being

implemented in C. It was then compared against the direct (i.e., slow) implementation. Table 1

presents the average running time for the two different implementations in MATLAB with 1, 000

replications at each sample size. The sample size goes from 32 (= 25) to 2048 (= 211). In all

these cases, the two methods ended with identical solutions; this validates our fast algorithm.

Note a comparison in MATLAB is not desirable for our fast algorithm. The direct method calls

some MATLAB functions, which achieve the speed of a low-level language implementation, while

the implementation of the fast method is not. In theory, the fast algorithm will compare more

favorably if both methods are implemented in a low-level language, such as in C or C++. Fig.

1 provides a visual comparison of the two methods. All the experiments that are reported in this

paper is run on a laptop (Lenovo T520, Intel Core i7-2640M CPU @ 2.80GHz) with allowable 975

MB memory in MATLAB Version 8.2.0.89 (R2013b).

When the sample size is large, e.g., when n = 4096, the direct method will generate an “out-of-

memory” message. Recall the direct method computes for all pairwise distances, hence it requires

O(n2) memory. The fast method only requires O(n) in memory. For illustration purpose, we run

the fast algorithm for sample size n going from 4, 096 (which is 212) to 1, 048, 576 (which is 220).

The running times are reported in Tab. 2 and Fig. 2. When n = 1, 048, 576, the running time

is a little more than three minutes. The trend that is observable from Fig. 2 consists with our

claim that the fast method is an O(n log n) algorithm. It is evident that the running time scales

13



5 6 7 8 9 10 11
10

−4

10
−3

10
−2

10
−1

10
0

log2(sample size)

ru
n

n
in

g
 t

im
e

 

 

Direct

Fast

Figure 1: A comparison of running time between the direct method and the fast method for the

computation of the distance correlations.
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Sample Size Direct method Fast method

32 0.0006 (0.0001) 0.0014 (0.0001)

64 0.0008 (0.0001) 0.0024 (0.0002)

128 0.0019 (0.0004) 0.0053 (0.0006)

256 0.0083 (0.0010) 0.0120 (0.0011)

512 0.0308 (0.0021) 0.0272 (0.0018)

1024 0.1223 (0.0051) 0.0647 (0.0037)

2048 0.4675 (0.0172) 0.1478 (0.0045)

Table 1: Running times (in seconds) for the direct method and the fast method for computing the

distance correlations. The values in the parentheses are sample standard errors. At each sample

size, 1, 000 repetitions were run.

approximately linearly with the sample size (n). We did not run experiments with larger sample

sizes, because their outcomes are predictable by property of the fast method.

5.2 Measuring Effectiveness of Distance Correlation

The distance correlation is zero if and only if the corresponding two random variables are inde-

pendent of each other. The Pearson’s correlation does not have such a property. There have been

intuitive numerical examples to illustrate such an advantage of using the distance correlation. See

the Wikipedia page on “distance correlation.” When the direct implementation of the distance

correlation is adopted, the sample size (which was denoted by n) cannot be large, due to the O(n2)

complexity of the direct method. In Fig. 3, we compare the Pearson’s correlation with the distance

correlation in nine representative cases:

(1) (X,Y ) is a bivariate normal with moderate correlation;

(2) a bivariate normal with a correlation close to 1;

(3) a thickened rippled curve;

(4) a rotation of a uniformly filled rectangle;
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Figure 2: An illustration of running times of the fast method for the computation of the distance

correlations. The dashed line corresponds to an O(n log n) algorithm.
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Sample Size Fast method

4,096 0.3323 (0.0044)

8,192 0.7432 (0.0051)

16,384 1.6752 (0.0137)

32,768 3.7686 (0.0238)

65,536 8.5158 (0.0654)

131,072 19.1241 (0.4688)

262,144 42.2150 (0.3918)

524,288 93.1250 (0.6422)

1,048,576 204.3403 (1.7328)

Table 2: Running times (in seconds) for the fast method for computing the distance correlations,

when the sample sizes are large. The values in the parentheses are sample standard errors. At each

sample size, 100 repetitions were run.

(5) a further rotation of the aforementioned uniformly filled rectangle;

(6) a thickened quadratic curve;

(7) bifurcated quadratic curves;

(8) a thickened circle; and

(9) a bivariate mixed normal with independent coordinates.

When the sample sizes are 40 and 400, respectively, Fig. 3 presents the Pearson’s correlation and

the distance correlation in all cases. In the cases (3) through (8), we seemingly observe the trend

that the Pearson’s correlations are getting close to zero, while the distance correlations are not.

However, the significance of such a pattern is not evident.

With the fast method, we now can run the same experiments with larger sample sizes. In Fig. 4, we

run the comparison with sample size n = 10, 000. This is a sample size for which the corresponding

experiment cannot be done with the direct method. It is clear that the Pearson’s correlation

become nearly zero in the cases of (3) through (8), even though the two random variables are
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(a) Sample size: n = 40

(1) 0.92; 0.91 (2) 0.98; 0.98 (3) 0.08; 0.35

(4) −0.04; 0.00 (5) −0.07; 0.00 (6) −0.38; 0.44

(7) 0.04; 0.21 (8) 0.16; 0.22 (9) 0.10; 0.00

(b) n = 400

(1) 0.80; 0.75 (2) 0.98; 0.97 (3) 0.04; 0.30

(4) 0.10; 0.17 (5) 0.08; 0.18 (6) −0.03; 0.40

(7) 0.10; 0.25 (8) 0.04; 0.19 (9) 0.01; 0.00

Figure 3: Comparison of the Pearson’s correlation and the distance correlation in nine cases. In

each sub-figure, the two coordinates correspond to the random variables (X,Y ). Each dot is a

sample point. In the title, the first value is the Pearson’s correlation, and the second one is the

corresponding distance correlation.
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n = 10, 000

(1) 0.81; 0.76 (2) 0.98; 0.97 (3) 0.01; 0.33

(4) −0.00; 0.14 (5) 0.01; 0.14 (6) 0.01; 0.42

(7) 0.01; 0.25 (8) −0.00; 0.18 (9) −0.01; 0.00

Figure 4: Comparison of the Pearson’s correlation and the distance correlation when the sample

size (n) is large: n = 10, 000. Each dot is a realization of a pair of random variables (X,Y ). In each

case, the first value is the Pearson’s correlation, and the second one is the corresponding distance

correlation. We can clearly observe that in the cases (3) through (8), the Pearson’s correlations are

close to zero, while the distance correlations are not. In cases of (1), (2), and (9), two correlations

are close to each other, as the theory predicts.
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not independent. The corresponding distance correlations are clearly far from zero. For readers’

convenience, we summarize the results in Table 3.

Sample Size (1) (2) (3) (4) (5) (6)

n = 40 0.92; 0.91 0.98; 0.98 0.08; 0.35 -0.04; 0.00 -0.07; 0.00 -0.38; 0.44

n = 400 0.80; 0.75 0.98; 0.97 0.04; 0.30 0.10; 0.17 0.08; 0.18 -0.03; 0.40

n = 10,000 0.81; 0.76 0.98; 0.97 0.01; 0.33 0.00; 0.14 0.01; 0.14 0.01; 0.42

(7) (8) (9)

n = 40 0.04; 0.21 0.16; 0.22 0.10; 0.00

n = 400 0.10; 0.25 0.04; 0.19 0.01; 0.00

n = 10,000 0.01; 0.25 0.00; 0.18 -0.01; 0.00

Table 3: Pearson’s correlations (left) and distance correlations (right) for the nine cases that are

studied in Figures 3 and 4. It is of particular interests to observe that when n = 10, 000, the

distance correlations in cases (3) through (8) are clearly nonzero, while the Pearson’s correlations

in these cases converge to zero.

The fast method allows us to study how the sample distance correlation converge to the population

counterpart as a function of the sample size. Fig. 5 shows the convergence of the sample distance

correlation and Pearson’s correlation. It is worth noting that in cases (3)-(8), the Pearson’s corre-

lation quickly converges to zero, while the sample distance correlation clearly stays away from zero.

This experiments shows that a previous observation in Fig. 4 should occur with large probability.

5.3 Feature Screening

In Li et al. (2012), distance correlation has been proposed to facilitate feature screening in ultrahigh-

dimensional data analysis. The proposed sure independence screening procedure based on the

distance correlation (DC-SIS) has been proven to be effective in their simulation study. Due to the

use of the direct method, they restricted their sample size to n = 200. We redo the simulations as

in Li et al. (2012), however increases the sample size to n = 20, 000, i.e., 100 times of the originally

attempted. It is observed that the use of distance correlation becomes more advantageous when

the sample size increases.
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Figure 5: Convergence of 50% covering interval of both sample Pearson’s correlation (solid line,

with low and upper sample quartiles marked by ‘◦’) and sample distance correlation (dotted lines,

with both quartiles marked by ‘+’). The horizontal axis equates the log2(sample size). The vertical

axis corresponds to the values of correlations. In cases (3) through (8), the two correlations clearly

converge to different constants, when the Pearson’s correlation always seems to converge to zero.
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The screening algorithm, which was initially advocated by Fan and Lv (2008), works as follows.

For each covariate Xk, 1 ≤ k ≤ n, a ‘marginal utility’ function was computed. Such a marginal

utility function can be the Pearson’s correlation, the distance correlation that was discussed in this

paper, or other dependence measure such as the one in Zhu et al. (2011) that was also used in the

simulation studies of Li et al. (2012). The ‘screening’ is based on the magnitude of the values of

these marginal utility function. Sometimes, forward, backward, or a hybrid stepwise approach is

proposed. In this paper, we refrain from further discussion in this potential research direction.

Our simulation setup follows the one in Li et al. (2012, Section 3). Note that an alternative approach

named sure independent ranking and screening (SIRS) (Zhu et al. 2011) was compared against. For

a sample, (x1, y1), . . . , (xn, yn), of two random variable X and Y , the SIRS dependence measure

(i.e., the marginal utility function) is defined as

SIRS(X,Y ) =
1

n(n− 1)(n − 2)

n∑

j=1

[
n∑

i=1

xi1(yi < yj)

]2
, (5.1)

where 1(·) is an indicator function. The formulation in the above definition seemingly hint an O(n2)

algorithm. The following theorem will show that it can be computed via an O(n log n) algorithm.

The proof and the algorithmic details are relegated to the appendix.

Theorem 5.1. For a sample, (x1, y1), . . . , (xn, yn), of a bivariate random vector (X,Y ), the SIRS

measure (Zhu et al. 2011) in (5.1) can be computed via an algorithm whose average complexity is

O(n log n).

For completeness, we state our simulation setup below. we generate x = (X1,X2, . . . ,Xp)
T from

normal distribution with zero mean and covariance matrix Σ = (σij)p×p, and the error term ε

from the standard normal distribution N (0, 1). Two covariance matrices are considered to assess

the performance of the DC-SIS and to compare with existing methods: (1) σij = 0.8|i−j| and (2)

σij = 0.5|i−j|. Note that a covariance matrix with entries σij = ρ|i−j|, 0 < ρ < 1, enjoys a known

Cholesky decomposition: Σ = RTR, where R = (rij) ∈ R
p×p, rij = 0, if j < i, and r1j = ρj−1,

rij = c · ρj−i, for i ≥ 2 and j ≥ i, c2 + ρ2 = 1. In our simulations, we take advantage of this

known decomposition. The dimension p varies from 2000 to 5000. Each experiment was repeated

500 times, and the performance is evaluated through the following three criteria:
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1. S: the minimum model size to include all active predictors. We report the 5%, 25%, 50%, 75%,

and 95% quantiles of S out of 500 replications.

2. Ps: the proportion that an individual active predictor is selected for a given model size d in

the 500 replications.

3. Pa: the proportion that all active predictors are selected for a given model size d in the 500

replications.

The S is used to measure the model complexity of the resulting model of an underlying screening

procedure. The closer to the minimum model size the S is, the better the screening procedure is.

The sure screening property ensures that Ps and Pa are both close to one when the estimated model

size d is sufficiently large. Different from Li et al. (2012), the d is chosen to be d1 = [p/10 log n],

d2 = 2d1, and d3 = 3d3 throughout our simulations to empirically examine the effect of the cutoff,

where [a] denotes the integer part of a.

An innovative stopping rule is introduced in Kong et al. (2012) for DC-SIS. We did not implement

it here, because the new stopping rule requires a multivariate version of the distance correlation,

which is not covered by this paper.

The example is designed to compare the finite sample performance of the DC-SIS with the SIS

(Fan and Lv 2008) and the SIRS (Zhu et al. 2011). In this example, we generate the response from

the following four models:

(1.a): Y = c1β1X1 + c2β2X2 + c3β31(X12 < 0) + c4β4X22 + ε,

(1.b): Y = c1β1X1X2 + c3β21(X12 < 0) + c4β3X22 + ε,

(1.c): Y = c1β1X1X2 + c3β21(X12 < 0)X22 + ε,

(1.d): Y = c1β1X1 + c2β2X2 + c3β31(X12 < 0) + exp(c4|X22|)ε,

where 1(X12 < 0) is an indicator function.

The regression functions E(Y |x) in models (1.a)-(1.d) are all nonlinear in X12. In addition, models

(1.b) and (1.c) contain an interaction term X1X2, and model (1.d) is heteroscedastic. Following
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Fan and Lv (2008), we choose βj = (−1)U (a + |Z|) for j = 1, 2, 3, and 4, where a = 4 log n/
√
n,

U ∼Bernoulli(0.4) and Z ∼ N (0, 1). We set (c1, c2, c3, c4) = (2, 0.5, 3, 2) in this example to be con-

sistent with the experiments in Li et al. (2012): challenging the feature screening procedures under

consideration. For each independence screening procedure, we compute the associated marginal

utility between each predictor Xk and the response Y . That is, we regard x = (X1, . . . ,Xp)
T ∈ R

p

as the predictor vector in this example.

S SIS SIRS DC-SIS

Model 5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

Case 1: p = 2000 and σij = 0.5|i−j|

(1.a) 4 4 6 10 22 4 5 6 10 20 4 5 6 9 20

(1.b) 76 551 1180 1592 1918 237 814 1269 1789 1959 4 6 8 11 14

(1.c) 591 922 1364 1781 1941 342 827 1354 1637 1930 6 6 6 8 11

(1.d) 8 237 726 1310 1827 58 273 919 1444 1878 4 4 6 8 1001

Case 2: p = 2000 and σij = 0.8|i−j|

(1.a) 5 9 14 21 46 5 9 14 22 69 4 9 14 20 36

(1.b) 28 32 35 109 1497 29 33 40 327 1658 4 10 15 20 26

(1.c) 39 222 711 1418 1924 37 109 379 1053 1843 10 11 14 18 23

(1.d) 13 89 547 1152 1823 22 77 338 863 1679 5 8 11 17 355

Case 3: p = 5000 and σij = 0.5|i−j|

(1.a) 4 5 6 9 19 4 5 6 9 20 4 5 6 9 19

(1.b) 59 1107 2751 3920 4737 299 1755 3255 4289 4837 4 6 8 10 14

(1.c) 998 2652 3790 4425 4898 321 1864 3269 4303 4857 6 6 6 8 10

(1.d) 10 221 1346 3055 4585 64 596 1894 3500 4791 4 4 5 7 1024

Case 4: p = 5000 and σij = 0.8|i−j|

(1.a) 5 10 16 23 46 6 11 17 23 48 5 10 16 22 35

(1.b) 28 32 36 314 3907 29 34 49 665 4449 5 9 14 20 27

(1.c) 45 447 1759 3538 4818 41 235 1063 2603 4762 10 11 14 18 23

(1.d) 14 216 1307 3018 4695 23 115 747 2135 4368 5 8 11 16 150

Table 4: The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model size S out of 500

replications.
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SIS SIRS DC-SIS

Ps Pa Ps Pa Ps Pa

Model Size X1 X2 X12 X22 All X1 X2 X12 X22 All X1 X2 X12 X22 All

Case 1: p = 2000 and σij = 0.5|i−j|

(1.a) d1 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 1.00 0.95

d2 1.00 0.96 1.00 1.00 0.96 1.00 0.96 1.00 1.00 0.96 1.00 0.96 1.00 1.00 0.96

d3 1.00 0.96 1.00 1.00 0.96 1.00 0.96 1.00 1.00 0.96 1.00 0.97 1.00 1.00 0.97

(1.b) d1 0.01 0.02 1.00 1.00 0.01 0.00 0.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00

d2 0.05 0.06 1.00 1.00 0.02 0.01 0.03 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00

d3 0.07 0.08 1.00 1.00 0.03 0.02 0.04 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00

(1.c) d1 0.08 0.07 0.00 1.00 0.00 0.00 0.03 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00

d2 0.11 0.07 0.01 1.00 0.00 0.01 0.03 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00

d3 0.14 0.11 0.01 1.00 0.00 0.02 0.04 1.00 1.00 0.01 1.00 1.00 1.00 1.00 1.00

(1.d) d1 0.60 0.40 0.52 0.52 0.11 0.98 0.93 1.00 0.03 0.03 0.98 0.89 1.00 1.00 0.88

d2 0.72 0.42 0.54 0.59 0.12 0.98 0.95 1.00 0.04 0.04 0.98 0.90 1.00 1.00 0.89

d3 0.78 0.44 0.63 0.62 0.14 0.98 0.95 1.00 0.05 0.05 0.98 0.91 1.00 1.00 0.89

Case 2: p = 2000 and σij = 0.8|i−j|

(1.a) d1 0.92 0.85 0.88 1.00 0.74 0.92 0.84 0.88 1.00 0.73 0.92 0.84 0.91 1.00 0.76

d2 0.99 0.97 0.98 1.00 0.95 0.99 0.97 0.98 1.00 0.94 0.99 0.97 1.00 1.00 0.96

d3 0.99 0.97 0.99 1.00 0.95 0.99 0.97 0.99 1.00 0.95 0.99 0.97 1.00 1.00 0.96

(1.b) d1 0.00 0.01 0.97 1.00 0.00 0.00 0.00 0.97 1.00 0.00 0.82 0.84 0.96 1.00 0.77

d2 0.64 0.74 0.99 1.00 0.64 0.52 0.65 0.98 1.00 0.50 1.00 1.00 1.00 1.00 1.00

d3 0.71 0.79 0.99 1.00 0.70 0.62 0.71 0.99 1.00 0.61 1.00 1.00 1.00 1.00 1.00

(1.c) d1 0.01 0.01 0.50 1.00 0.00 0.00 0.00 0.99 1.00 0.00 0.94 0.94 0.93 1.00 0.87

d2 0.11 0.09 0.91 1.00 0.05 0.11 0.13 1.00 1.00 0.07 1.00 1.00 1.00 1.00 1.00

d3 0.15 0.14 0.91 1.00 0.09 0.19 0.25 1.00 1.00 0.16 1.00 1.00 1.00 1.00 1.00

(1.d) d1 0.66 0.60 0.49 0.42 0.09 1.00 0.94 0.97 0.02 0.02 0.94 0.86 0.97 1.00 0.82

d2 0.72 0.64 0.55 0.49 0.16 1.00 0.96 0.97 0.18 0.17 0.99 0.95 0.98 1.00 0.91

d3 0.76 0.68 0.59 0.54 0.20 1.00 0.96 0.98 0.22 0.20 0.99 0.95 0.99 1.00 0.93

Table 5: The proportions of Ps and Pa in our experiment for the first two cases. The user-specified

model sizes are d1 = [p/10 log n], d2 = 2d1, and d3 = 3d1.
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SIS SIRS DC-SIS

Ps Pa Ps Pa Ps Pa

Model Size X1 X2 X12 X22 All X1 X2 X12 X22 All X1 X2 X12 X22 All

Case 3: p = 5000 and σij = 0.5|i−j|

(1.a) d1 1.00 0.96 1.00 1.00 0.96 1.00 0.96 1.00 1.00 0.96 1.00 0.96 1.00 1.00 0.96

d2 1.00 0.96 1.00 1.00 0.96 1.00 0.96 1.00 1.00 0.96 1.00 0.96 1.00 1.00 0.96

d3 1.00 0.97 1.00 1.00 0.96 1.00 0.97 1.00 1.00 0.96 1.00 0.96 1.00 1.00 0.96

(1.b) d1 0.09 0.09 1.00 1.00 0.05 0.04 0.03 1.00 1.00 0.01 1.00 1.00 1.00 1.00 1.00

d2 0.13 0.13 1.00 1.00 0.06 0.05 0.05 1.00 1.00 0.01 1.00 1.00 1.00 1.00 1.00

d3 0.15 0.15 1.00 1.00 0.08 0.07 0.07 1.00 1.00 0.02 1.00 1.00 1.00 1.00 1.00

(1.c) d1 0.09 0.10 0.01 1.00 0.00 0.03 0.03 0.99 1.00 0.01 1.00 1.00 0.99 1.00 0.99

d2 0.12 0.14 0.03 1.00 0.00 0.06 0.05 1.00 1.00 0.02 1.00 1.00 1.00 1.00 1.00

d3 0.14 0.15 0.04 1.00 0.00 0.06 0.07 1.00 1.00 0.02 1.00 1.00 1.00 1.00 1.00

(1.d) d1 0.77 0.47 0.52 0.53 0.14 1.00 0.95 1.00 0.04 0.04 1.00 0.93 1.00 1.00 0.92

d2 0.80 0.54 0.58 0.57 0.19 1.00 0.95 1.00 0.08 0.07 1.00 0.93 1.00 1.00 0.93

d3 0.82 0.57 0.60 0.60 0.21 1.00 0.96 1.00 0.10 0.10 1.00 0.93 1.00 1.00 0.93

Case 4: p = 5000 and σij = 0.8|i−j|

(1.a) d1 0.99 0.98 0.98 1.00 0.95 0.99 0.98 0.98 1.00 0.95 0.99 0.98 1.00 1.00 0.97

d2 0.99 0.98 0.99 1.00 0.96 0.99 0.99 0.99 1.00 0.96 0.99 0.99 1.00 1.00 0.98

d3 0.99 0.99 0.99 1.00 0.97 0.99 0.99 0.99 1.00 0.97 0.99 0.99 1.00 1.00 0.98

(1.b) d1 0.62 0.71 0.98 1.00 0.61 0.52 0.63 0.99 1.00 0.51 1.00 1.00 1.00 1.00 1.00

d2 0.68 0.76 0.99 1.00 0.67 0.60 0.70 0.99 1.00 0.60 1.00 1.00 1.00 1.00 1.00

d3 0.71 0.78 0.99 1.00 0.70 0.62 0.73 0.99 1.00 0.62 1.00 1.00 1.00 1.00 1.00

(1.c) d1 0.11 0.11 0.91 1.00 0.06 0.11 0.13 1.00 1.00 0.08 1.00 1.00 1.00 1.00 1.00

d2 0.16 0.16 0.93 1.00 0.10 0.20 0.24 1.00 1.00 0.16 1.00 1.00 1.00 1.00 1.00

d3 0.20 0.21 0.94 1.00 0.13 0.22 0.30 1.00 1.00 0.19 1.00 1.00 1.00 1.00 1.00

(1.d) d1 0.70 0.61 0.50 0.49 0.14 0.98 0.98 0.99 0.18 0.17 0.97 0.96 1.00 1.00 0.94

d2 0.73 0.65 0.55 0.53 0.18 0.99 0.98 0.99 0.25 0.24 0.98 0.97 1.00 1.00 0.95

d3 0.76 0.67 0.57 0.57 0.21 0.99 0.98 0.99 0.30 0.28 0.98 0.97 1.00 1.00 0.95

Table 6: The proportions of Ps and Pa in our example. This is for the remaining two cases. The

user-specified model sizes are d1 = [p/10 log n], d2 = 2d1, and d3 = 3d1.
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Tables 4, 5, and 6 present the simulation results for S,Ps, and Pa. The performances of the DC-SIS,

SIS, and SIRS are quite similar in model (1.a), indicating that the SIS has a robust performance

if the working linear model does not deviate far from the underlying true model. The DC-SIS

outperforms the SIS and the SIRS significantly in models (1.b)-(1.d). Both the SIS and the SIRS

have little chance to identify the important predictors X1 and X2 in models (1.b) and (1.c), and

X22 in model (1.d).

Comparing Tab.s 4 and 5 with the counterparts in Li et al. (2012), one can clearly see that the ad-

vantage of using the distance correlation becomes more evident, observing smaller sample quantiles

of S for DC-SIS, and larger coverage probabilities in Ps and Pa.

6. CONCLUSION

Distance correlation has been found useful in many applications (Kong et al. 2012; Li et al. 2012).

A direct implementation of the distance correlation led to an O(n2) algorithm with sample size n.

We propose a fast algorithm. Its computational complexity is O(n log n) on average. Armed with

this fast algorithm, we carry out some numerical experiments with sample sizes that have not been

attempted before. We found that in many cases, the advantage of adopting the distance correlation

becomes even more evident. The proposed fast algorithm certainly makes the distance correlation

more applicable in situations where statistical dependence needs to be evaluated.

APPENDIX A. ALGORITHMS

Algorithm 1 is the algorithm that can compute for the distance covariance at O(n log n). Algorithm

2 realizes the idea that is described in the proof of Lemma 4.5. Algorithm 3 is a subroutine that

will be called in Algorithm 2.
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Algorithm: Fast Computing for Distance Covariance (FaDCor)

Inputs: Observations x1, . . . , xn, and y1, . . . , yn.

Outputs: The distance covariance that was defined in (3.3).

1. Sort x1, . . . , xn, and y1, . . . , yn. Let I
x and Iy denote the order indices; i.e., if for

i, 1 ≤ i ≤ n, Ix(i) = k, then xi is the kth smallest observations among x1, . . . , xn.

Similarly if for i, 1 ≤ i ≤ n, Iy(i) = k, then yi is the kth smallest observations among

y1, . . . , yn.

2. Let x(1) < · · · < x(n), and y(1) < · · · < y(n) denote the order statistics.

Denote the partial sums:

sx(i) =

i∑

j=1

x(j), sy(i) =

i∑

j=1

y(j), i = 1, . . . , n.

They can be computed using the following recursive relation: sx(1) = x(1), s
y(1) = y(1),

sx(i+ 1) = sx(i) + x(i+1), sy(i+ 1) = sy(i) + y(i+1), for i = 1, . . . , n− 1.

3. Compute αx
i , α

y
i , β

x
i , and βy

i that are defined in Lemma 4.1 and 4.2, using the following

formula: for i = 1, . . . , n, we have

αx
i = Ix(i)− 1, αy

i = Iy(i)− 1,

βx
i = sx(Ix(i)− 1), βy

i = sy(Iy(i)− 1).

4. Compute x· and y· per their definitions in Lemma 4.1 and 4.2.

5. Using (4.1) and (4.2), compute
∑n

i−1 ai·bi·.

6. Using (4.3) and (4.4), compute a·· and b··.

7. Use Algorithm PartialSum2D to compute for γi({1}), γi({xjyj}), γi({yj}), and γi({xj}).

8. Using (4.5) to compute
∑

i 6=j aijbij .

9. Finally, apply the results of steps 5., 6., and 8. to (3.3).

Algorithm 1: The O(n log n) algorithm to compute for the distance covariances.
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Algorithm: Fast Algorithm for a 2-D Partial Sum Sequence (PartialSum2D)

Inputs: Observations x1, . . . , xn, y1, . . . , yn, and c1, . . . , cn.

Outputs: Quantity γi({cj}) =
∑

j:j 6=i cjSij that is defined in Lemma 4.4.

1. Compute for the order statistics x(1) < · · · < x(n) for x1, . . . , xn. Then rearrange triplets

(xi, yi, cj)’s such that we have x1 < · · · < xn. Each triplet (xi, yi, cj) (1 ≤ i ≤ n) stay

unchanged.

2. Let y(1) < · · · < y(n) denote the order statistics for y1, . . . , yn, and assume that

Iy(i), i = 1, 2, . . . , n, are the order indices; i.e., if Iy(i) = k, then yi is the k-th smallest

among y1, . . . , yn. Without loss of generality, we may assume that yi = Iy(i).

3. Evidently aforementioned function Iy(i) is invertible. Let (Iy)−1(j) denote its inverse.

Define the partial sum sequence: for 1 ≤ i ≤ n,

sy(i) =

i∑

j=1

c(Iy)−1(j).

The following recursive relation enables an O(n) algorithm to compute for all sy(i)’s,

sy(1) = c(Iy)−1(1), sy(i+ 1) = sy(i) + c(Iy)−1(i+1), for i ≥ 1.

4. For 1 ≤ i ≤ n, define

sx(i) =

i∑

j=1

cj .

Again the above partial sums can be computed in O(n) steps.

5. Compute c· =
∑n

j=1 cj .

6. Call Subroutine DyadUpdate to compute for
∑

j:j<i,yj<yi
cj for all i, 1 ≤ i ≤ n.

7. By (A.6), we have that

γi({cj}) = c· − ci − 2sy(i)− 2sx(i) + 4
∑

j:j<i,yj<yi

cj.

Algorithm 2: A subroutine that will be needed in the fast algorithm for the distance covari-

ance. This algorithm realizes the ideas in the proof of Lemma 4.5.
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Subroutine: A Dyadic Updating Scheme (DyadUpdate)

Inputs: Sequence y1, . . . , yn and c1, . . . , cn, where y1, . . . , yn is a permutation of {1, . . . , n}.

Outputs: Quantities γi :=
∑

j:j<i,yj<yi
cj , i = 1, 2, . . . , n.

1. Recall that we have assumed n = 2L. If n is not dyadic, we simply choose the smallest L

such that n < 2L. Recall that for ℓ = 0, 1, . . . , L− 1, k = 1, 2, . . . , 2L−ℓ, we define a close

interval

I(ℓ, k) := [(k − 1) · 2ℓ + 1, . . . , k · 2ℓ].

2. Assign s(ℓ, k) = 0,∀ℓ, k, and γ1 = 0.

3. For i = 2, . . . , n, we do the following.

(a) Fall all (ℓ, k)’s, such that yi−1 ∈ I(ℓ, k). Then for these (ℓ, k)’s, do update

s(ℓ, k)← s(ℓ, k) + ci−1.

(b) Find nonnegative integers ℓ1 > · · · > ℓτ ≥ 0 such that

yi − 1 = 2ℓ1 + · · ·+ 2ℓτ .

Let k1 = 1. For j = 2, . . . , τ , compute

kj = (2ℓ1 + · · · + 2ℓj−1) · 2−ℓj + 1.

(c) Compute γi =
∑τ

j=1 s(ℓj, kj).

Algorithm 3: A subroutine that will be called in Algorithm 2.
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APPENDIX B. PROOFS

Proof of Lemma 3.3. One can verify the following equalities:

∑

i 6=j

aijbi· =

n∑

i=1

ai·bi·,
∑

i 6=j

aijb·j =

n∑

j=1

a·jb·j ,
∑

i 6=j

bijai· =

n∑

i=1

ai·bi·,
∑

i 6=j

bija·j =

n∑

j=1

a·jb·j;(A.1)

∑

i 6=j

ai· = (n− 1)a··,
∑

i 6=j

bi· = (n − 1)b··; (A.2)

ai· = a·i, and bi· = b·i. (A.3)

The following will be used in our simplification too. We have

∑

i 6=j

ai·b·j =

n∑

i=1

ai·
∑

j:j 6=i

b·j

=
n∑

i=1

ai·(b·· − b·i)

= a··b·· −
n∑

i=1

ai·b·i

(A.3)
= a··b·· −

n∑

i=1

ai·bi·; (A.4)

Similarly, we have
∑

i 6=j

bi·a·j = a··b·· −
(

n∑

i=1

ai·bi·

)
. (A.5)

In the following, we simplify the statistic in (3.2). We have

Ωn

(3.2)
=

1

n(n− 3)

∑

i 6=j

Ãi,jB̃i,j

(3.1)
=

1

n(n− 3)

∑

i 6=j

(
aij −

ai·
n− 2

− a·j
n− 2

+
a··

(n− 1)(n − 2)

)

(
bij −

bi·
n− 2

− b·j
n− 2

+
b··

(n− 1)(n− 2)

)

=
1

n(n− 3)

∑

i 6=j

[
aijbij −

aij(bi· + b·j)

n− 2
− bij(ai· + a·j)

n− 2
+

(ai· + a·j)(bi· + b·j)

(n− 2)2

+
aijb·· + bija··
(n− 1)(n − 2)

− (ai· + a·j)b·· + (bi· + b·j)a··
(n− 1)(n − 2)2

+
a··b··

(n − 1)2(n− 2)2

]
.
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Furthermore, we have

Ωn

(A.2)
=

1

n(n− 3)

∑

i 6=j

aijbij

− 1

n(n− 2)(n − 3)

∑

i 6=j

[aij(bi· + b·j) + bij(ai· + a·j)]

+
1

n(n− 2)2(n− 3)

∑

i 6=j

(ai· + a·j)(bi· + b·j)

− a··b··
(n− 1)(n − 2)2(n− 3)

(A.1),(A.3)
=

1

n(n− 3)

∑

i 6=j

aijbij −
4

n(n− 2)(n− 3)

n∑

i=1

ai·bi·

+
1

n(n− 2)2(n− 3)

∑

i 6=j

(ai· + a·j)(bi· + b·j)−
a··b··

(n− 1)(n − 2)2(n− 3)
.

Now bringing in (A.4) and (A.5), we have

Ωn =
1

n(n− 3)

∑

i 6=j

aijbij −
4

n(n− 2)(n − 3)

n∑

i=1

ai·bi· −
a··b··

(n − 1)(n − 2)2(n− 3)

+
1

n(n− 2)2(n− 3)

[
2(n − 1)

n∑

i=1

ai·bi· + 2

(
a··b·· −

n∑

i=1

ai·bi·

)]

=
1

n(n− 3)

∑

i 6=j

aijbij −
2

n(n− 2)(n − 3)

n∑

i=1

ai·bi· +
a··b··

n(n− 1)(n − 2)(n − 3)
,

which is (3.3).

Proof of Lemma 3.5. We use arithmetic induction. Suppose n = r + 1, (3.6) becomes

(r + 1)Ur+1,r(x1, . . . , xr+1) =

r+1∑

i=1

U−i
r+1,r(x1, . . . , xr+1).

By defining h(x1, . . . , xi−1, xi+1, . . . , xr+1) = U−i
r+1,r(x1, . . . , xr+1), we can verify that h(·) is a kernel

function with r variables. Consequently, Ur+1,r(x1, . . . , xr+1) can be written as (3.4).

Now suppose for any n ≥ n′, Unr(x1, . . . , xn) has the form as in (3.4), with the function h(·) that

was defined above. Applying (3.6) with n = n′ + 1, we can show that Un′+1,r(x1, . . . , xn′+1) still

has the form as in (3.4), with the same function h(·) that was defined above. We omit further

details.
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Proof of Theorem 3.8. It is evident to verify that the followings are true: for i 6= k,

a−k
i· = ai· − aik,

b−k
i· = bi· − bik,

a−k
·· = a·· − a·k − ak· = a·· − 2a·k,

b−k
·· = b·· − 2b·k.

We then have

Ω−k
n−1 =

∑
i 6=j,i 6=k,j 6=k aijbij

(n− 1)(n − 4)
−

2
∑n

i=1,i 6=k(ai· − aik)(bi· − bik)

(n− 1)(n − 3)(n − 4)

+
(a·· − 2a·k)(b·· − 2b·k)

(n− 1)(n − 2)(n − 3)(n − 4)
.

For the right hand side of (3.7), we have the following:

n∑

k=1

Ω−k
n−1 =

n∑

k=1

∑
i 6=j,i 6=k,j 6=k aijbij

(n − 1)(n− 4)
−

n∑

k=1

2
∑n

i=1,i 6=k(ai· − aik)(bi· − bik)

(n− 1)(n − 3)(n − 4)

+

n∑

k=1

(a·· − 2a·k)(b·· − 2b·k)

(n− 1)(n − 2)(n − 3)(n − 4)

=
(n− 2)

∑
i 6=j aijbij

(n− 1)(n − 4)
−

2
[
(n− 3)

∑n
i=1 ai·bi· +

∑
i 6=k aikbik

]

(n− 1)(n − 3)(n − 4)

+
(n− 4)a··b·· + 4

∑n
k=1 ak·bk·

(n− 1)(n − 2)(n − 3)(n − 4)

=

∑
i 6=j aijbij

n− 3
− 2

(n− 2)(n − 3)

n∑

i=1

ai·bi· +
a··b··

(n− 1)(n − 2)(n − 3)
.

Compare with (3.3), we can verify that the above equates to n · Ωn, which (per Theorem 3.6)

indicates that Ωn is a U-statistic. The kernel function of the corresponding U-statistic is the inner

product that was defined in (3.2) with n = 4.

Proof of Lemma 4.1. We have

ai· =

n∑

ℓ=1

ai,ℓ =

n∑

ℓ=1

|xi − xℓ|

=
∑

xℓ<xi

(xi − xℓ) +
∑

xℓ>xi

(xℓ − xi)

= xi

(
∑

xℓ<xi

1−
∑

xℓ>xi

1

)
−
∑

xℓ<xi

xℓ +
∑

xℓ>xi

xℓ.
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It is easy to verify that
∑

xℓ>xi

1 = n− 1− αx
i ,

and
∑

xℓ>xi

xℓ = x· − xi − βx
i .

Taking into account the above two equations, we have

ai· = (2αx
i − n+ 1)xi − βx

i + x· − xi − βx
i

= x· + (2αx
i − n)xi − 2βx

i ,

which is (4.1).

Proof of Lemma 4.5. Without loss of generality (WLOG), we assume that x1 < x2 < · · · < xn. We

have

γi({cj}) =
∑

j:j 6=i

cjSij

=
∑

j:j>i,yj>yi

cj +
∑

j:j<i,yj<yi

cj −
∑

j:j>i,yj<yi

cj −
∑

j:j<i,yj>yi

cj .

Note that we can verify the following equations:

∑

j:j<i,yj<yi

cj +
∑

j:j>i,yj<yi

cj =
∑

j:yj<yi

cj ,

∑

j:j<i,yj<yi

cj +
∑

j:j<i,yj>yi

cj =
∑

j:j<i

cj ,

∑

j:j>i,yj>yi

cj +
∑

j:j<i,yj<yi

cj +
∑

j:j>i,yj<yi

cj +
∑

j:j<i,yj>yi

cj =
∑

j:j 6=i

cj = c· − ci,

where c· =
∑n

j=1 cj . We can rewrite γi({cj}) as follows:

γi({cj}) = c· − ci − 2
∑

j:yj<yi

cj − 2
∑

j:j<i

cj + 4
∑

j:j<i,yj<yi

cj . (A.6)

We will argue that the three summations on the right hand side can be implemented by O(n log n)

algorithms. First, term
∑

j:j<i cj is a formula for partial sums. It is known that an O(n) algorithm

exists, by utilizing the relation:
∑

j:j<i+1

cj = ci +
∑

j:j<i

cj .
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Second, after sorting yj’s at an increasing order, sums
∑

j:yj<yi
cj is transferred into a partial

sums sequence. Hence it can be implemented via an O(n) algorithm. If QuickSort (Hoare 1961)

(Knuth 1997, Section 5.2.2: Sorting by Exchanging (pages 113-122)) is adopted, the sorting of yj’s

can be done via an O(n log n) algorithm.

We will argue that sums
∑

j:j<i,yj<yi
cj , i = 1, . . . , n, can be computed in an O(n log n) algorithm.

WLOG, we assume that yi, i = 1, 2, . . . , n, is a permutation of the set {1, 2, . . . , n}. WLOG,

we assume that n is dyadic; i.e., n = 2L, where L ∈ N or L is a nonnegative integer. For

ℓ = 0, 1, . . . , L− 1, k = 1, 2, . . . , 2L−ℓ, we define an close interval

I(ℓ, k) := [(k − 1) · 2ℓ + 1, . . . , k · 2ℓ].

We then define the following function

s(i, ℓ, k) :=
∑

j:j<i,yj∈I(ℓ,k)

cj ,

where i = 1, . . . , n, ℓ = 0, 1, . . . , L− 1, and k = 1, 2, . . . , 2L−ℓ.

We argue that computing the values of s(i, ℓ, k) for all i, ℓ, k, can be done in O(n log n). First of

all, it is evident that for all ℓ, k, we have

s(1, ℓ, k) ≡ 0.

Suppose for all i′ ≤ i, s(i′, ℓ, k)’s have been computed for all ℓ and k. For each 0 ≤ ℓ ≤ L−1 < log2 n,

there is only one k∗, such that yi ∈ I[ℓ, k∗]. By the definition of s(·, ·, ·), we have

s(i+ 1, ℓ, k) =





s(i, ℓ, k) + ci, if k = k∗,

s(i, ℓ, k), otherwise.

The above dynamic programming style updating scheme needs to be run for n times (i.e., for all

1 ≤ i ≤ n), however each stage requires no more than log2 n updates. Overall, the computing for

all s(i, ℓ, k) takes no more than O(n log n).

For a fixed i, 1 ≤ i ≤ n, we now consider how to compute for
∑

j:j<i,yj<yi
cj . If yi = 1, obviously

we have
∑

j:j<i,yj<yi
cj = 0. For yi > 1, there must be a unique sequence of positive integers

ℓ1 > ℓ2 > · · · ℓτ > 0, such that

yi − 1 = 2ℓ1 + 2ℓ2 + · · ·+ 2ℓτ .
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Since yi ≤ n, we must have τ ≤ log2 n. We then define kα, α = 1, . . . , τ as follows

k1 = 1,

k2 = 2ℓ1−ℓ2 + 1,

...

kα = (2ℓ1 + · · ·+ 2ℓα−1)/2ℓα + 1,

...

kτ = (2ℓ1 + · · ·+ 2ℓτ−1)/2ℓτ + 1.

One can then verify the following: for 2 ≤ i ≤ n,

∑

j:j<i,yj<yi

cj =

τ∑

α=1

s(i, ℓα, kα).

Since τ ≤ log2 n, the above takes no more than O(log n) numerical operations. Consequently,

computing
∑

j:j<i,yj<yi
cj for all i, 1 ≤ i ≤ n, can be done in O(n log n). (We realized that the

above approach utilized the AVL tree structure (Adelson-Velskii and Landis 1962).) From all the

above, we established the result.

Proof of Theorem 5.1. We have the following sequence of equations:

n∑

j=1

[
n∑

i=1

xi1(yi < yj)

]2
=

n∑

j=1

[
n∑

i=1

xi1(yi < yj)

]
·
[

n∑

k=1

xk1(yk < yj)

]

=

n∑

j=1

n∑

i=1

n∑

k=1

xi · xk · 1(yi < yj and yk < yj)

=

n∑

i=1

xi



∑

k:yi≤yk

xk

n∑

j=1

1(yk < yj) +
∑

k:yi>yk

xk

n∑

j=1

1(yi < yj)


 .

The last expression implies the following steps to compute for SIRS(X,Y ).

1. For k = 1, . . . , n, compute αk :=
∑n

j=1 1(yk < yj);

2. For i = 1, . . . , n, compute βi :=
∑

k:yk≥yi
xkαk;

3. For i = 1, . . . , n, compute γi :=
∑

k:yk<yi
xk;
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4. Compute

SIRS(X,Y ) =

∑n
i=1 xi(βi + γiαi)

n(n− 1)(n − 2)
.

Since αi’s, βi’s, and γi’s are partial sums, it is easy to verify that each of the above steps can be done

within O(n log n) operations on average, hence the entire algorithm takes O(n log n) operations on

average.
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