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ABSTRACT

We propose fast algorithms for computing Discrete Sine and Discrete Cosine Transforms (DCT and DST) of types
VI and VII. Particular attention is paid to derivation of fast algorithms for computing DST-VII of lengths 4 and 8,
which are currently under consideration for inclusion in ISO/IEC/ITU-T High Efficiency Video Coding (HEVC)
standard.
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1. INTRODUCTION

The Discrete Sine and Cosine Transforms (DST and DCT) have already received considerable attention due
to their use in source coding. The DCT of type-II (DCT-II) is at the core of standards for image and video
compression, such as JPEG, H.26x-series, and MPEG 1-4 standards.1 The DST of type-I was suggested as a basis
for Recursive Block Coding technique.2 The DCT and DST of type IV are used in design of Lapped Orthogonal
Transforms,3 serving as core filterbanks in speech and audio coding algorithms, such as G.722.1, G.718, MPEG-4
AAC, and others.4

The DCT and DST transforms of types I, II, III, and IV, form a group of so-called ”even” sinusoidal trans-
forms.5–7 Such transforms are very well studied, and a number of efficient technique exists for their compu-
tation.1,8–14 Design of integer approximations of such transforms was also a subject of active study in recent
years.8,15,16

Much less known is a group of so-called ”odd” sinusoidal transforms: DST and DCT of types V, VI, VII, and
VIII. Existence of such transforms was discovered by A. Jain in 1979.5 A complete set of such transforms was
defined later by Wang and Hunt.6 However, not much work has followed. Surveys of several such related results
can be found in.7,8 To the best of our knowledge, no fast algorithms were specifically designed for computing of
such transforms.

Our interest in transforms of types VI and VII is based on new applications of DST-VI/VII transforms in
image/video coding. Recently, Han, Saxena, and Rose17 have shown that Karhunen-Loeve Transform (KLT) for
residual signals, such as ones produced by Intra-Prediction process in video coding,18 can be well approximated
by DST-VII. This was further validated in ongoing experimental work on High Efficiency Video Coding (HEVC)
standard,19 resulting in inclusion of DST-VI/VII transforms in the Working Draft of this standard.20,21 The
existence of fast algorithms for computing of such transforms can provide additional argument for using these
transforms in HEVC and future image and video coding standards.

This paper is organized as follows. In Section 2, we offer definitions of DCT and DST transforms of even
and odd types, and survey several known results. In Section 3, we derive mappings between DST of types
VI/VII and the DFT. In Section 4, we show how this mapping to DFT can be used to design algorithms for
computing DST-VI/VII transforms of lengths N = 4, 8. Finally, in Section 5, we analyze complexity of the
proposed algorithms.
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2. DEFINITIONS AND SOME KNOWN FACTS

Hereafter, by letters N or M we will denote transform sizes, by ℜ (.) and ℑ (.) we will denote real and imaginary
parts of complex numbers, and by j =

√
−1 we will denote imaginary unit.

The matrix of an N -point Discrete Fourier Transform (DFT) will be defined as follows

DFT: [FN ]mn =
1√
N

e−j 2πmn
N , m, n = 0, . . . , N − 1.

The matrices of M -point DCT and DST transforms of types II and III will be defined as

DCT-II:
[
CII

M

]
mn

=
√

2
M κm cos

(
m(2n+1)π

2M

)
, m, n = 0, . . . ,M − 1;

DCT-III:
[
CIII

M

]
mn

=
√

2
M κn cos

(
(2m+1)nπ

2M

)
, m, n = 0, . . . ,M − 1;

DST-II:
[
SII
M

]
mn

=
√

2
M κm sin

(
m(2n−1)π

2M

)
, m, n = 1, . . . ,M ;

DST-III:
[
SIII
M

]
mn

=
√

2
M κn sin

(
(2m−1)nπ

2M

)
, m, n = 1, . . . ,M ;

The matrices of DCT and DST transforms of types IV and VII (also known as ”odd” transforms of types II and
III 6,7) will be defined as

DCT-VI:
[
CV I

M

]
mn

= 2√
2M−1

κmλn cos
(

m(2n+1)π
2M−1

)
, m, n = 0, . . . ,M − 1;

DCT-VII:
[
CV II

M

]
mn

= 2√
2M−1

λmκn cos
(

(2m+1)nπ
2M−1

)
, m, n = 0, . . . ,M − 1;

DST-VI:
[
SV I
M−1

]
mn

= 2√
2M−1

sin
(

m(2n−1)π
2M−1

)
, m, n = 1, . . . ,M − 1;

DST-VII:
[
SV II
M−1

]
mn

= 2√
2M−1

sin
(

(2m−1)nπ
2M−1

)
, m, n = 1, . . . ,M − 1;

In above formulae, normalization constants κi and λi are defined as follows

κi =

[
1√
2
, if i=0 or i=M

1, otherwise
, λi =

[
1√
2
, if i=M−1

1, otherwise
.

All these definitions are standard, see, e.g. Britanak, Rao, and Yip.8 We further follow convention of Wang
and Hunt6 that associate DCT-VI/VII transforms of length M with DST-VI/VII transforms of lengths M − 1.
We will explain the nature of this association in the next section.

The following relationships between these transforms are well known:8(
CII

N

)−1
= CIII

N ;
(
SII
N

)−1
= SIII

N ;
(
CV I

N+1

)−1
= CV II

N+1;
(
SV I
N

)−1
= SV II

N . (1)

2.1 Connection Between DCT and DST of Even and Odd Types and the DFT

We now retrieve two known mappings between DCT and DST of even and odd types and the DFT.6

Proposition 1. The following holds:(
CII

M

JMSII
MJM

)
= AIII

2MU2MH−1
2M F2M AII

2M , (2)(
CV I

M

JM−1S
V I
M−1JM−1

)
= AIII

2M−1U2M−1H
−1
2M−1 F2M−1 A

II
2M−1 , (3)

where IN and JN denote N ×N identity and order-reversal matrices, correspondingly,

AII
2M =

1√
2

(
IM JM
JM −IM

)
, AII

2M−1 =
1√
2

 IM−1 JM−1√
2

JM−1 −IM−1

 ,



AIII
2M =

1√
2


√
2

IM−1 −JM−1√
2

JM−1 IM−1

 , AIII
2M−1 =

1√
2

 √
2

IM−1 −JM−1

JM−1 IM−1

 ,

H2M =


1

1−j
2 IM−1

1+j
2 JM−1

1
1+j
2 JM−1

1−j
2 IM−1

 , H2M−1 =


1

1−j
2 IM−1

1+j
2 JM−1

1+j
2 JM−1

1−j
2 IM−1

 ,

and where

U2M =



1
cos π

2M sin π
2M

. . . . .
.

cos (M−1)π
2M sin (M−1)π

2M
1

− sin (M−1)π
2M cos (M−1)π

2M

. .
. . . .

− sin π
2M cos π

2M


,

and

U2M−1 =



1
cos π

2M−1 sin π
2M−1

. . . . .
.

cos (M−1)π
2M−1 sin (M−1)π

2M−1

− sin (M−1)π
2M−1 cos (M−1)π

2M−1

. .
. . . .

− sin π
2M−1 cos π

2M−1


.

Proof. Wang and Hunt6 have already established mappings between DST and DCT of types II and IV and
so-called discrete W transform of type II (cf. [6, Equations 99,100]):

[
W II

N

]
m,n

=

√
2

N
sin

(
π

4
+

m (2n+ 1)π

N

)
, m, n = 0, . . . , N − 1.

By further connecting W II
N to DFT [6, Equations 51,56]:

HNU−1
N W II

N = FN .

we obtain (2) and (3).

By examining the first expression (2), we note, that a pair of M -point type-II DCT/DST transforms becomes
connected to DFT of length 2M . On the other hand, in the second case (3), the pair of type-VI DCT/DST
transforms becomes mapped to DFT of length 2M − 1. Such mapping involves a M -point DCT-VI and an
M − 1-point DST-VI. By inverting of both sides in (2) and (3) we can obtain similar relationships between DFT
and pairs of DCT/DST transforms of types III and VII. This follows from (1).

We also note that, in principle, formulae (2) and (3) already prove existence of fast algorithms for DCT
and DST of all mentioned types. Such algorithms must be exist simply because there exist fast algorithms for
DFT, such as Cooley-Tukey FFT, Prime-Factor FFT, Winograd DFT algorithm, and others.22–26 On the other
hand, such algorithms constructed using mappings (2) and (3) may not be least complex possible. We note, for
example, that besides DFT, computation according to (2) or (3) also involves M − 1 planar rotation operations
(given by matrix U), which adds considerable overhead.



From literature on DCT and DST transforms of types II and III,1,8–11 we know, that there exist several more
efficient mappings of such transforms to DFT.1,9 As we shall show next, there are also simpler mappings between
DFT and DST/DCT transforms of types IV and VII. For simplicity of presentation, we will focus mainly on
DST, but same approach can be easily extended to DCT as well.

3. DIRECT MAPPINGS BETWEEN DST-VI/VII AND DFT

For convenience, we will now use N instead of M − 1 to define the size of DST-VI/VII transforms. Our main
result establishing direct mapping between such transforms and the DFT is given below.

Theorem 3.1. The following holds:

SV II
N =

1

2
Rℑ [F2N+1] QP , (4)

where ℑ [F2N+1] denotes imaginary part of DFT of length 2N + 1, R is an N × (2N + 1) matrix collecting
odd-indexed outputs:

[R]mn =

[
1, if n = 2m+ 1 ,
0, otherwise

m = 0, . . . , N − 1,
n = 0, . . . , 2N,

(5)

Q is an (2N + 1)×N expansion matrix

Q =

 0
−JN
IN

 , (6)

and P is a permutation matrix, defined as follows:

[P ]mn =

 1, if n = 2m,
1, if ⌈N

2 ⌉+ n = 2⌊N
2 ⌋ − 1− 2m,

0, otherwise
m,n = 0, . . . , N − 1. (7)

Proof. Let x = [x0, . . . , xN−1]
T
be real vector representing input signal. By X = SV III

N x we denote output
of DST-VII applied to x:

Xk =
1√

2N + 1

N−1∑
n=0

xn sin
π(2k + 1)(n+ 1)

2N + 1
, k = 0, . . . , N − 1 .

Let us also define an intermediate 2N + 1-point vector y:

y = QP x =


y0 = 0,

yN+1+n = x2n, n = 0, . . . , ⌈N
2 ⌉ − 1,

y
N+1+⌈N2 ⌉+n

= x
2⌊N2 ⌋−1−2n

, n = 0, . . . , ⌊N
2 ⌋ − 1,

y1+n = −y2N−n, n = 0, . . . , N − 1,

(8)

and apply DFT to it

Yk =
1√

2N + 1

2N+1∑
n=0

yne
−j 2πkn

2N+1 ; k = 0, . . . , 2N.

Now, let’s take a look at odd imaginary DFT components (k = 0, . . . , N − 1):

√
2N + 1 ℑ [Y2k+1] = −

2N∑
n=1

yn sin
2π(2k + 1)n

2N + 1

= −
N∑

n=1

[
yn sin

2π(2k + 1)n

2N + 1
+ y2N+1−n sin

2π(2k + 1)(2N + 1− n)

2N + 1

]
, (9)



From mapping (8) we know that yn = −y2N+1−n. Hence (9) turns into

√
2N + 1 ℑ [Y2k+1] =

N∑
n=1

y2N+1−n

[
sin

2π(2k + 1)n

2N + 1
− sin

2π(2k + 1)(2N + 1− n)

2N + 1

]

= 2
N∑

n=1

y2N+1−n sin
π(2k + 1)(2N + 1− 2n)

2N + 1
(10)

= 2
N∑

n=1

y2N+1−n sin
2π(2k + 1)n

2N + 1
,

or by using substitution n′ = N − n in (10):

√
2N + 1 ℑ [Y2k+1] = 2

0∑
n=N−1

yN+1+n sin
π(2k + 1)(2n+ 1)

2N + 1
.

Let’s now assume that N is even. Similar argument holds for odd N . We write

√
2N + 1

2
ℑ [Y2k+1] =

N
2 −1∑
n=0

yN+1+n sin
π(2k + 1)(2n+ 1)

2N + 1
(11)

+

N
2 −1∑
n=0

y 3N
2 +1+n sin

π(2k + 1)(2n+N + 1)

2N + 1
(12)

where, based on (8), the first sum (11) receives quantities yN+1+n = x2n, while the second sum (12) receives
y 3N

2 +1+n = xN−1−2n.

By putting everything together, we obtain

√
2N + 1

2
ℑ [Y2k+1] =

N
2 −1∑
n=0

x2n sin
π(2k + 1)(2n+ 1)

2N + 1
+

N
2 −1∑
n=0

xN−1−2n sin
π(2k + 1)(2n+N + 1)

2N + 1

=

N
2 −1∑
n=0

x2n sin
π(2k + 1)(2n+ 1)

2N + 1
+

N
2 −1∑
n=0

x2n+1 sin
π(2k + 1)((2n+ 1) + 1)

2N + 1

=
√
2N + 1 Xk .

We show the flow-graph of mapping (4) in Figure 1.a. It can be observed that only reordering and negation
operations are needed to compute DST-VII via DFT. We next show two simplified mappings between DST-VII
and DFT, that can be derived from (4).

Corollary 1. The following holds:

SV II
N = Rℑ [F2N+1] Z0 P , (13)

SV II
N = −Rℑ [F2N+1] Z1 P , (14)

where matrices R and P are as defined in (5) and (7) correspondingly, and where Z0 and Z1 are (2N + 1)×N
expansion matrices:

Z0 =

 0
ON

IN

 , (15)



-

y0

yN+1

yN

yN/2+1

y1

yN/2

y2N-1

y2N

...

y2

y3N/2+1

y3N/2

...

x1

x3

-

-

yN+2

...

x0

-

x2

yN-1-

...

xN-1

xN-2

...

..
.

0

-

.....
.

Imaginary part

of

2N+1 – point

DFT

2X0

2X1

2XN-1

...

N-point DST-VII

...

Y2N-1

Y3

Y1

Y0

Y2

Y2N

Y2N-2

y0

yN+1

yN

yN/2+1

y1

yN/2

y2N-1

y2N

...

y2

y3N/2+1

y3N/2

...

x1

x3

yN+2

...

x0

x2 yN-1

...

xN-1

xN-2

...

0

...

Imaginary part

of

2N+1 – point

DFT

-X0

-X1

-XN-1

...

N-point DST-VII
...

Y2N-1

Y3

Y1

Y0

Y2

Y2N

Y2N-2

0

0

0

0

0

0

y0

yN+1

yN

yN/2+1

y1

yN/2

y2N-1

y2N

...

y2

y3N/2+1

y3N/2

...

x1

x3

yN+2

...

x0

x2

yN-1

...

xN-1

xN-2

...

0

...

Imaginary part

of

2N+1 – point

DFT

X0

X1

...

N-point DST-VII

...

Y2N-1

Y3

Y1

Y0

Y2

Y2N

Y2N-2

0

0

0

0

0

0

XN-1

(a) (b) (c)

Figure 1. Flow-graphs of mappings between N -point DST-VII and 2N+1-point DFT, drawn when N is even. Flow-graph
(a) corresponds to mapping (4). Flog-graphs (b) and (c) correspond to simplified mappings (13) and (14) correspondingly.

and

Z1 =

 0
JN
ON

 , (16)

where ON , IN , and JN , denote N ×N zero, identity, and order-reversal matrices correspondingly.

Proof. This follows by observing that the use of mapping yn = −y2N+1−n in (9) makes both sums equivalent,
which introduces a factor of 2 in (10). Turning either lover or upper part of y to zero would leave only one of
those sums, producing same exact result, but without factor of 2.

We show flow-graphs corresponding to mapping (13) and (14) in Figures 1.a and 1.b correspondingly. It
can be observed that DST-VII can be computed by simply producing particularly re-ordered and zero-padded
sequence as input to DFT, and collecting imaginary parts of odd-indexed DFT output values. Moreover, in
practice, one does not even have to compute full DFT to produce DST-VII output. We will discuss design of
such ”pruned” DFT in the next section.

4. FAST ALGORITHMS FOR COMPUTING DST-VI/VII OF LENGTHS N=4,8

Based on previous discussion, it follows that fast factorization of DST-VII transform can be constructed by:

• Selecting mapping between DST-VII and DFT;

• Selecting fast factorization of DFT of length 2N + 1;

• Pruning DFT flow-graph, leaving only paths leading to odd-indexed imaginary output values, and

• Connecting those odd-indexed DFT outputs to corresponding output lines of DST-VII.
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Figure 2. Flow-graph of Winograd’s factorization of DFT of length 9. Paths that are needed for computation of DST-VII
are shown in red.
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Figure 3. Flow-graph of fast factorization of DST-VII of length 4.

This produces the flow-graph for DST-VII. By reversing the direction we obtain flow-graph for DST-VI.

We now show how these steps can be executed for construction of fast transforms of length N=4. We start
with mapping (13), establishing connection between DST-VII of length 4 and 9-point DFT. Then, we pick fast
factorization of DFT of length 9. In this case, we use Winograd’s DFT module of length 9 described in.24,27 We
show flow-graph of this algorithm in Figure 4. We use red color to show paths that are needed for computation
of DST-VII. It can be easily observed that the remaining paths are irrelevant because they either receive zero
input, or lead to real portion of DFT’s output. Final flow-graph for computing DST-VII is show in Figure 4.
Based on Figure 4 we can see that DST-VII of length 4 can be computed by using only 5 multiplications and 11
additions. Same complexity is required for computing DST-VI of length 4.

Same steps can also be repeated for construction of fast transforms of length N=8. In this case, we can
use 17-point Winograd DFT module described in.27,28 We show the final flow-graph of length-8 DST-VII in
Figure 4.

Table 1. Complexity of computing DCT and DST transforms of even and odd types.

N DST-VI/VII DCT-II/III12 matrix-vector product

4 5 muls, 11 adds 4 muls, 9 adds 16 muls, 12 adds

8 21 muls, 77 adds 12 muls, 29 adds 64 muls, 56 adds
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Figure 4. Flow-graph of fast factorization of DST-VII of length 8. Factors C1715 − C1735 correspond to constants
appearing in length N = 17 Winograd DFT factorization described in.28

5. COMPLEXITY ANALYSIS

We summarize complexity results for derived factorizations of DST-VI/VII transforms in Table 1. For compari-
son, we also include complexity numbers for the well-known Loeffler-Ligtenberg-Moschytz (LLM)12 factorization
of DCT-II, as well as the number of operations required for straightforward matrix-vector-product computation
of such transforms.

It can be observed, that our proposed DST-IV/VII factorization of length N = 4 is very close to complexity
of LLM factorization of DCT-II/III. At the same time, our proposed DST-IV/VII factorization of length N = 8
appears to be about twice more complex than LLM factorization of DCT-II/III.12 Still, our proposed DST-
IV/VII factorization of length N = 8 offers significant (about a factor of 3) reduction in multiplicative complexity
compared to direct computation of such transforms.
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