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Fast, Conservative Algorithm for Solving the Transonic

Full-Potential Equation

NASA/'TM.. --- 208091
Terry L. Hoist"

NASA Ames Research Center, Moffett Field, Calif.

A fast, fully implicit approximate factorization algorithm designed to solve the conservative, transonic, full-
potential equation in either two or three dimensions is described. The algorithm uses an upwind bias of the
density coefficient for stability in supersonic regions. This provides an effective upwind difference of the
streamwise terms for any orientation of the velocity vector (i.e., rotated differencing), thereby greatly enhancing
the reliability of the present algorithm. A numerical transformation is used to establish an arbitrary body-fitted,
finite-dlfference mesh. Computed results for both airfoils and simplified wings demonstrate substantial im-

provement in convergence speed for the new algorithm relative to standard successive-line over-relaxation
algorithms.

Introduction

N implicit approximate factorization algorithm (AF2)
for solving the low-frequency (unsteady) transonic small-

disturbance equation in two and three dimensions was

presented in Ref. I. This algorithm has been subsequently

applied to the solution of the transonic small-disturbance

potential equation' and the conservative full-potential
equation _'_ for steady flows in two space dimensions. For

both steady formulations, significant improvement in con-

vergence speed has been obtained relative to the standard

transonic relaxation procedure, successive-line over-

relaxation (SLOR). In the present study, the AF2 algorithm is

applied to the conservative full-potential equation for steady
three-dimensional transonic flowfields.

Several general guidelines for the construction of implicit

approximate factorization (AF) schemes can be formulated by
considering the two-level iteration procedure

NC" +o_L_" =0 (1)

where C" is the correction (_,.1 __, ), L¢_" is the residual,

which is a measure of how well the finite-difference equation

is satisfied by the nth level velocity-potential solution (_"),

and _ is a relaxation parameter. The iteration scheme given by

Eq. (1) can be considered as an iteration in pseudotime, where

the n superscript indicates the time step level of the solution;

i.e., ( )"+J - ( )" --At( )t. The operator N determines the
type of iterative procedure, and therefore determines the rate

at which the solution procedure converges. In the AF ap-

proach, N is chosen as a product of several factors, usually
J , . .

two factors for two-dimensional algorithms and three factors

for three-dimensional algorithms. These factors are chosen so

that their product is an approximation to L, only simple

matrix operations are required, and the overall scheme is
stable.

Stability in the present full-potential formulation for

supersonic regions of flow has been achieved by the addition
of an artificial viscosity term similar to that introduced in

Ref. 6. However, in the present formulation, addition of the

artificial viscosity term is achieved by using an upwind bias of
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the density coefficient. This strategy is significant because it

simplifies the technique for including an artificial viscosity
term into the residual operator. Other studies 79 have used

similar steady-state differencing procedures in a wide variety

of problems to further substantiate this differencing
procedure as being both reliable and flexible.

Governing Equatlons

The three-dimensional full-potential equation written in
strong conservation-law form is given by

(P_x)x + (oOy)y + (pO_)_ =0 (2a)

1 - 7 - 1 ]1/_- 1o= (2b)

The density (p) and velocity components (6_,6y, and #z) are

nondimensionalized by the stagnation density (Ps) and the
critical sound speed (a.), respectively; x,y, and z are Cartesian

coordinates in the streamwise, spanwise, and vertical
directions, respectively, and 7 is the ratio of specific heats.
The two-dimensional conservation-law form of the full-

potential equation is simply obtained by dropping all y-

derivative terms from Eq. (2).

Equation (2) expresses mass conservation for flows that are

steady, isentropic, and irrotational. The corresponding shock-

jump conditions are valid approximations to the Rankine-

Hugoniot relations for many transonic flow applications. A

comparison of isentropic and Rankine-Hugoniot shock polars
is given in Ref. 10.

Equation (2) is transformed from the physical domain

(Cartesian coordinates) to the computational domain by using

a general independent variable transformation. This trans-
formation, indicated by (see Fig. l )

_=_(x,y,z) _=Tl(x,y,z) _=_(x,y,z) (3)

maintains the strong conservation-law form of Eq. (2). n The

full-potential equation written in the computational domain

(_-7/-_" coordinate system) is given by

(4a)

p= [1 7-1 l:/._-t+ (4b)



1432 T.L. HOLST AIAA JOURNAL

where

V= A4ck_ + A2ck_ +A6_ _

W=AsO_ +A6_b _ +A3(_ i-

A 2 =_ +_ +_ (5a)

and

J=_,,,7,_ + L,h _;x+ L,_,,_y-L,_,_,_-L,_,,_,-_x,7=_, (5b)

U, V, and W are contravariant velocity components along the

//,_, and _"directions, respectively, A;-A6 are metric quan-
tities, and J is the Jacobian of the transformation. To
evaluate the expressions of Eq. (5), the following metric
identities are necessary:

_x =J(y_zr-yrz_ ) _lx =J(yrz_ -y_zr)

_y =J(xrz_ -x_zr) _1:,=J(x_z r -xrz _ )

_= =J(x_y_ -xry_ ) _z =J(xry_ -x_y_)

_x = J (y_ z_ - y_z_ )

_ = J (x_ z_ - x_z_ )

_ =J(x_y_ -x_y_ )

(6)

A_ = _._.+//y% + _z

The two-dimensional form of the full-potential equation

written in the computational domain (//-_" coordinates) is

obtained by dropping all y and _ terms in Eqs. (4-6); i.e., all y

and _ derivatives as well as all derivatives of y and _ are set

equal to zero. An exception to this is that y_ and _y must be
set equal to one.

Several significant advantages are offered by this very
general form. The main advantage is that boundaries

associated with the physical domain are transformed to

boundaries of the computational domain. This aspect is

illustrated in Fig. 1 where the physical and computational

domains for a typical transformation are shown. The com-

putational coordinates /_,_, and _" are in the wraparound,

spanwise, and radial-like directions, respectively. The inner

wing boundary transforms to g'= g'mu, and the outer physical

boundary transforms to _'=_'min. Note that no restrictions
have been placed on the shape of the outer boundary. Ar-

bitrarily shaped outer boundaries, including wind-tunnel

walls, may be used. The symmetry-plane boundary trans-
forms to _=_/mi,, and the wing-tip boundary transforms to

= _m_. The last two sides of the computational domain are

formed from the upper and lower cuts along the vortex sheet.
In the present study, the generality of Eqs. (4) and (5) is

reduced somewhat by one simplification, namely, all

= constant surfaces must coincide with y = constant planes.

This can be expressed mathematically by

yr=O y_ =0 (7)

The metric quantities of Eqs. (5) and (6) reduce to the

following:

A,

A 3=_'_ +_'_ +_'_ A,_----_yv/_

(8a)

J= (_x_z -_z_ )*ly = 1/ (x_z? -xCz_ )y_ (8b)

and

a)

8

TIP SIDEWALL BOUNDARY

z

[_-----_ x ROOT SIDEWALL BOUNDARY

LOWER VORTEX OUTER BOUNDARY (_"= _'min )

SHEET([ =,_max' _

TIP SIDEWALL
BOUNDARY

UPPER VORTEX
SHEET

(_ = _ min )

WING SURFACE (_" = _'max )
ROOT SIDEWALL

BOUNDARY (_ = _ rain I

ig. 1 Schematic of general (x,y,z)-(_,_,_) Iransformation: a)
_ysical domain; b) computational domain.

_ =Jy_z¢, _ = -Jy_z_

_y =J(xrz _ -x, zr), _y =J(xnz_ -x_zn )

I_z = -Jx¢y., _ =Sxty.

_ = 0 _y = 1/y_ _z = 0 (9)

Use of Eq. (7) permits the simplified treatment of wing

geometries and does not affect the generality of the three-

dimensional spatial-differencing scheme or the fully implicit

AF2 iteration scheme.

Grid Generation

The grid-generation scheme used in the present _hree-

dimensional formulation is a simple extension of the two-

dimensional scheme presented in Ref. 4. The finite-difference

mesh for each spanwise plane (7 = constant plane) is generated

using the standard two-dimensional algorithm. This requires

solution of the following two Laplace equations in each

spanwise plane:

_ +_ =0 _',., +_'= =0 rio)

These equations are transformed to (and solved in) the

computational domain; that is, _ and J"are the independent
variables, and x and z are the dependent variables. A fast
approximate factorization relaxation algorithm is used to

solve the resulting transformed equations. _ This establishes
values for x and z in each spanwise plane. Coordinate values
in the spanwise direction (y values) are established by a simple

stretching formula (usually Ay = const).
Next, the effects of wing sweep are built into the three-

dimensional mesh by applying a simple translation to all x
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values. This is accomplished by

x I,,ep t = x l .... ept + U- 1 ) Aytan_j (11)

where kj is the sweep angle at the jth mesh node in the span
direction. Given the values of x, y, and z at all mesh points,

the values of the quantities xt, x,, etc., are easily computed

using standard fourth-order-accurate finite-difference for-
mulas. (It has been found that using fourth-order-accurate

formulas, instead of second-order-accurate formulas, im-

proves the accuracy of the resulting solutions.) Then, with

Eqs. (8) and (9), the quantities _x,_y ..... AI,A_ ..... and J are

computed.

Full-Potential Equation Algorithm

Spatial Differencing
A second-order-accurate finite-difference approximation to

Eq. (4a) is given by

_ (P-y)i+v,j.,+_n (?)id+_.k+_'_. (_-W-)/./.k+v =0 (12)

where the i, j, and k subscripts indicate position in the/L "q,

and _"finite-difference mesh. The operators

_'_(), _'_(), and _'r( ) (13)

are first-order accurate backward-difference operators in the

/L )7, and _"directions, respectively. The density calculation is

performed in a straightforward manner by using Eq. (4b).
Values of density are computed and stored at half-points in

the finite-difference mesh; i.e., i+ ½,j,k, in a manner similar

to that suggested by Ref. 12. Values of _, O_, and _

required for computing the density at i+ ½,j,k are given by

¢_i+ _j.k =dPi+ lJ.k --Oij.k

¢_,i+ _j.k = ¼ (4_i+ Ia + i., - ckj+ l,j - z,k + Oij+ I.* - Co,j_ 1., )

¢k¢i+v,j,, = ¼ (cb,+ jj,, + l -Oi + la.,- I + _ij.k + l --Oid,*- I )

(14)

The contravariant velocity components, U,+,j.,. V_j+v,.k,

and Wij.,+, _ , used both in Eq. (12) as well as in the density
calculation, are computed by standard second-order accurate

finite-difference formulas, an example of which is given by

Ui+_j,k =Ah+ ,_j., (¢i+_j,* -¢ij.*) + I/4A,ti+_j.k (_Oi+lj+l.k

--¢_i+lj-l,k 4"_Pij+l,k --dPij-l,k ) "t" ¼A_i+_j. * (¢_i+lj.k+l
I

-Oi+ tO.*-I +eOij., + l -Oij.,-s ) (15)

Calculation of the density at half-points in the finite-

difference mesh produces better shock-wave resolution, first
verified in two dimensions by South. _3 This is because the

computational module in the streamwise _ direction extends

over fewer grid points. Special formulas replace Eqs. (14) and

(15) at boundaries and will be discussed in a subsequent
section.

Equation (12) is a suitable finite-difference scheme for
subsonic flow regions. However, for supersonic regions, a

properly chosen artificial viscosity term which usually

provides an upwind bias to the differencing scheme, must be
introduced to maintain stable convergence. _ With the present
formulation, stable supersonic regions can be maintained by

adding an artificial viscosity term of the form

-A_ (vp_ IUI ) _\_A /vp. IVI\ / IWI--7 ) -Ar_p;--f- )¢ (16)-7-

where v is an artificial viscosity coefficient to be defined

subsequently. The complete finite-difference approximation

to Eq. (4a), including the addition of an upwind-differenced

artificial viscosity term, is given by

pU . ,_,k (_-)_,j,k + '_

-- _,1 [ (_--'_ )id+ _,k (Pid+ PLk --Pid+s+ _,k ) ]

(17)

The p_, p,. and pc derivatives of Eq. (16) have been evaluated
with a backward (forward) difference when Ui+ _j.k, Vij+ '/,.k,

and W_j._+ _ are positve (negative), respectively. The r, s, and
t indices control the difference direction on the density

derivatives and are defined by

r= ±1 when Ui+,/,j.k _0

s=±l when V,.a+_,,_0

t= ±1 when Wi_,g+_ _.0 (18)

This maintains an upwind influence in the differencing

scheme for supersonic regions anywhere in the finite-

difference mesh for any orientation of the velocity vector.

Thus, use of the differencing scheme given by Eqs. (17) and

(18) closely approximates the effects of a rotated differencing
scheme. _ This aspect greatly contributes to the stability and

reliability of the present algorithm for many difficult test

cases.
The scheme given by Eqs. (17) and (18) is centrally dif-

ferenced, hence, second-order accurate in subsonic regions. In

supersonic regions, the differencing is a combination of the
second-order accurate central differencing used in subsonic

regions and the first-order accurate upwind differencing

resulting from the addition of artificial viscosity. As the flow
becomes increasingly supersonic, the scheme is increasingly

retarded in the upwind direction.

As shown in Refs. 3 and 4, Eq. (17) can be written in a

simplified form given by

where

_i+ _d.k =[(l-.)pl_+,_j._ "Fl_i+(6d, k[Pi+r+_j.k] (19b)

Pid+_.k =[(I--v)P]M+_.k q-Vij+_,ktOid+s+_4,k] (19c)

bij,,+,_ =[(l-v)P]ij.,+v, + )'ij, k+,_ [Pi.j,*+,+'/, ] (19d)

The addition of the artificial viscosity given by Eq. (16) is thus

equivalent to retarding the density in the original centrally
differenced scheme [Eq. (12)]. Artificial viscosity is not added

explicitly as in Ref. 6. The present approach is significant

because it simplifies the technique for including an artificial

viscosity term into the residual operator.
The artificial viscosity coefficient, _,, strongly affects the

stability of the present scheme and is computed as follows:

= (max[(M_ij.,-l)C,O] for Ui+,_j.,>O
vi+'_'i'* [max[(M_i+tj,-l)C,O] for U,+_,,.j, <O (20)
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The parameter C is a user-specified constant and is usually set
between 1.0 and 2.0. Use of larger values of C increases the
amount of artificial viscosity and, therefore, the amount of

upwinding in the difference scheme. An additional constraint

is u_ l which improves the stability and in some cases, im-

proves the convergence rate. Expressions of _,at i,j+ ½,k and

i,j,k + ½ are required and are written similarly to vi+ .../,k.

AF2 Iteration Scheme

The AF2 fully implicit approximate factorization scheme _.4

is extended in the present study to the three-dimensional full-

potential equation. This new scheme can be expressed by
choosing the Noperator of Eq. (l) as follows:

F(.(xNCTj,k=_,.-z

-cLE_'IA, ] (c_+ _t)CTj., (21a)

where

A,=(_Aj " (_A 2 " (_A s "=
(21b)

The _, ,5, and b coefficients are defined by Eqs. (19b-d), t_ is a

free parameter defined subsequently, and the operator E_ "j is
a shift operator given by

E_ j ( )_j.k = ( )id.k÷, (22)

Note that one form of the two-dimensional AF2 iteration

scheme is obtained from Eq. (21a) by simply setting the r/

difference equal to zero.4
Inclusion of the retarded density coefficients, _, ,6, and b, in

the N operator is not necessary for stability. This situation

was first discussed in Ref. 7 for an implicit ADl-type iteration

scheme. Recent testing of the present AF2 iteration scheme in
two dimensions, with the retarded density coefficients in the

N operator replaced by just the density, yielded stable results

with essentially no reduction in the convergence rate. Ad-
ditional tests with the density coefficients in the N operator

completely removed (i.e., replaced by one), also yielded stable
results but slowed convergence by a factor of 2 to 3.

Therefore, for the present formulation, existence of at least

the density in the N operator, but not necessarily the up-

winded or retarded density coefficients, is very important for

achieving fast convergence but not always necessary for

stability.

Implementation of the AF2 scheme is achieved by writing it

in a three-step form given by

. Step 1:

(23)

Step 2:

Of

(24)

Step 3:

(or + _'r) C_,k = f_'_j,k (25)

Here, w is a relaxation factor equal to 1.8 for all cases

presented; g_ is an intermediate result stored at each grid

point in a given k plane, i.e., g requires only a two-
dimensional array of storage; and f_j., is an intermediate

result stored at each point in the finite-difference mesh. In

step l, the g array is obtained by solving a tridiagonal matrix

equation for each _ = constant line in the kth plane. In step 2,
thefarray is obtained from g by solving a tridiagonal matrix

equation for each 7/=constant line, again for just the kth

plane. Next, step 1 is used to obtain the g array for the k + 1

plane, and then step 2 is used to obtain thefarray for the k + 1

plane, etc. This process continues until all values off in the
three-dimensional mesh are established. Then, by using step

3, the correction array is obtained from thefarray by solving

a simple bidiagonal matrix equation for each _'= constant line
in the entire finite-difference mesh. The nature of this AF2

factorization places a sweep-direction restriction on the step
1-2 combination and on step 3. The step 1-2 combination must

be swept in the direction of the decreasing k subscript; that is,

from the wing boundary toward the outer boundary (see Fig.

l). The step 3 sweep must proceed in just the opposite

direction; that is, from the outer boundary toward the wing.

There are no sweep-direction limitations placed on any of the

three sweeps due to flow direction.

Initiation of step 1 at the wing boundary (k=NK) requires
knowledge of fat NK+ 1, which is generally unobtainable. A

simple solution is to set fat NK+ 1 equal to zero. Because the

present iteration scheme is written in the correction form, f

must approach zero as the solution converges. This boundary
condition is therefore consistent with the steady-state

solution. Other approaches using extrapolations of old known

values off(e.g.,._N_ I and._N_kl), could perhaps pro-
vide faster convergence, but have not yet been investigated. A

similar boundary condition is required for g at _ = T/mi_ (j = l)

and 7/=T/m_,(j=NJ) and is implemented by imposing

(g_)i,I = (g_)i.N.l =0.

Temporal Damping

For the AF2 factorization, the N operator must be written

so that either the/_-, _/-, or _'-difference approximation to the

full-potential equation is split between two factors. This

construction generates either a ¢_-, ent-, or 0_-type term,
and if it is properly upwind differenced, t4 provides time-

dependent dissipation to the convergence process. When a

particular coordinate direction is split (e.g., the/_ direction),

the resulting Oa difference direction is fixed by the con-

struction of the AF2 algorithm; that is, the tb_ term is either
backward or forward differenced over the entire mesh. Due to

the wraparound _ coordinate, a backward- (forward-) dif-

ferenced Ca is upwind (downwind) differenced below the
wing and downwind (upwind) differenced above. Therefore,

a problem with eu arises either above or below the wing.
Following the two-dimensional algorithm development, * the

_'-difference approximation is split between two factors. This

allows control over the other more important coordinate

directions (_ and r/) because the 0_ and _, terms are added to
the iteration scheme explicitly and are not part of the fac-

torization construction. The ¢,_ and Ca terms are included by

adding

:1:5, I V/./,k I K and • ct#_ _ (26)

inside the brackets of the first and second sweeps, Eqs. (23)

and (24), respectively. The parameter _ is determined as
follows:

/gI=/gI,M>1 if r_M_+_,i._,>I
upper surface

Mi__d,l >1 lower surface

I"Mi+ _,/._ < 1 upper surface0 if
I.M;_hZk <1 lower surface

(27)

where _,M>_ is a user-specified constant which can be ad-

justed as needed. The parameter 5, is a user-specified con-
stant fixed over the entire mesh. For all cases presented in the

present study, _, = 0. The double arrow notation on the _- and
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_-difference operators indicates that the difference is always
upwind. For the _ direction, a backward difference is used
when the _ contravariant velocity component (Vi./.,) is
positive, and a forward difference is used when V is negative.
The sign is chosen in each case so that the addition of _,, and
_, increases the magnitude of the first- and second-sweep
diagonal coefficients, respectively.

Of course, with this N operator construction, the ¢_rr-type
term is properly differenced in only the aft half of the mesh.

In the two-dimensional algorithm presented in Ref. 4, the _¢,-
type term was properly differenced in the forward half of the
mesh. Both versions seem to yield equivalent results.
However, most experimentation has been conducted on the
Ref. 4 version. Although adverse effects for cases with
supersonic flow at the trailing edge may be anticipated with
this form, none has been experienced. In fact, cases with
freestream Mach numbers near unity have been computed (see
the two-dimensional results section) in which the trailing edge
is entirely imbedded in supersonic flow with no adverse ef-
fects.

The quantity u appearing in Eq. (21a) can be considered as
At-_. This direct analogy to time provides one strategy for
obtaining fast convergence, namely, advance time as fast as
possible with large time steps (i.e., small values of c0. As
pointed out in Refs. 2 and 3, this is effective for attacking the
low-frequency errors but not the high-frequency errors. The
best overall approach is to use an _ sequence containing
several values of a. The small values are particularly effective
for reducing the low-frequency errors, and the large values are
particularly effective for reducing the high-frequency errors.
The ¢_sequence given in Ref. 3 has been used for both two-
and three-dimensional cases presented herein. The endpoints
generally used in two dimensions are _£ = 0.07 and _H = 1.5,
and for three dimensions aL -- 0.4 and c_H = 4.0.

Boundary Conditions

The wing surface boundary condition is that of flow
tangency (i.e., no flow through the wing surface), and
requires the/" contravariant velocity component at the wing
surface be zero (W=0). This boundary condition is im-
plemented by applying

ij, NK + ½ i,j, NK - ½

(28)

where k=NK is the wing surface. In other expressions, where
_r is required at the wing surface [Eqs. (14) and (15)], the
W= 0 boundary condition is used again to obtain

As A6
Cr Pwi.,= -_jj ¢_ -_-_ _. (29)

Thus, a value of #r at the wing surface can be obtained
without using a one-sided difference on _.

In the present study, a special wing geometry has been
chosen to evaluate the new three-dimensional AF2 algorithm,
namely, flow past an arbitrary wing mounted between parallel
walls. The purpose of this model problem is to simulate the
flow past a wing in a wind tunnel. The parallel sidewalls are
treated with the same tangency boundary condition used for
the wing surface (i.e., V=0).

Computed Results

The implicit algorithm presented in the previous section has
been coded into a transonic airfoil analysis computer code
(TAIR) and a transonic wing analysis computer code
(TWING). (For details of the TAIR code, see Ref. 4.) Each of
these codes is evaluated in this section by presenting a range of
computed examples. The two-dimensional results computed
from TAIR were all computed in the default mode. This
simply means that only three inputs are allowed to be changed

from case to case: freestream Mach number, angle of attack,
and airfoil coordinates. Other parameters including all
relaxation factors, acceleration parameters, and temporal
damping coefficients are either held fixed or are adjusted
automatically by internal computer code logic. This feature
greatly simplifies operation of TAIR and, at the same time,
improves the reliability, especially for inexperienced users. In
the default mode, the timelike dissipation coefficient _ and
the artificial viscosity coefficient C are chosen very con-
servatively (fl_ =5, C=2). Then as the solution progresses,
both the number of supersonic points (NSP) and the cir-
culation I" are monitored. If NSP and I' grow very rapidly
indicating a difficult case, _ and C are increased. Con-
versely, if NSP and I" grow slowly, Bt and C are decreased.
This philosophy generally produces converged results for
most airfoil solutions ranging from subcritical cases to dif-
ficult strong shock cases; however, it reduces the convergence
speed below optimum by about 10-50%, depending on the
particular case.

Two-dimensional comparisons with the GRUMFOIL
computer code is are considered next. GRUMFOIL is similar
to TAIR in that both codes solve the conservative full-
potential equation, but different in that TAIR uses the AF2
iteration scheme and GRUMFO1L uses a hybrid direct-
solver/SLOR iteration scheme. 6 This hybrid iteration scheme
is composed of one direct-solver iteration, which is very ef-
fective for reducing low-frequency errors, but is unstable for
supersonic regions, followed by several (10 is the default)
SLOR iterations. The purpose of the SLOR iterations is to
smooth high-frequency errors generated by the direct-solver
step in regions of supersonic flow. (It should be pointed out
that stable operation from the direct-solver iteration scheme,
without benefit of the SLOR scheme, can be obtained for
solutions in which the supersonic region is small, providing
the level of artificial viscosity is increased above the standard
amount. This aspect has not been investigated in the present
study.) The boundary-layer option, which is available in
GRUMFOIL, has not been used in any of the results
presented herein• All GRUMFOIL results are computed on a
148 x 32 mesh, while the TAIR results are computed on a
149 x 32 mesh.

The first two-dimensional case considered here is for the
NACA 0012 airfoil at M_. =0.75 and a= 1 deg. The present
surface pressure coefficient distribution for this calculation is
compared in Fig. 2 with the GRUMFOIL computer code
result. The agreement is excellent everywhere except at the
shock wave where the disagreement in position is about one
mesh-cell width. This error causes a 2V2% error in lift
coefficient.

Convergence history curves for this calculation are
presented in Fig. 3. As discussed in Ref. 3, use of the residual
operator for comparing different iteration scheme con-
vergence histories can produce quite misleading results. This
is because the residual operator is heavily biased toward the
high-frequency end of the error spectrum, and therefore, does
not produce a fair comparison for algorithms which treat low-
frequency errors differently. A much more suitable means of
comparing convergence histories is to use error. The rms error
in the airfoil surface pressure is used in the present study and
is defined by

e,"m,= (c;_- c., )2 c.,J
i=l i=l

(30)

where C _ is the surface pressure coefficient at the ith grid
point anr_l the nth iteration, C. is the surface pressure
coefficient at the ith grid point taken from the converged
solution, and NI is the total number of surface grid points.

The three curves shown in Fig. 3 correspond to the
following iteration schemes: 1) AF2, 2) hybrid, and 3) SLOR.
Each convergence-history curve is construcled by plotting
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Fig. 3 Two-dimensional convergence histories (NACA 0012 airfoil,
M= =0.75, a = ! deg).

l

Er,,s vs CPU time (Ames CDC 7600 computer). The SLOR

scheme is simply the hybrid scheme without benefit of the

direct-solver step, and has been approximately optimized by a

trial-and-error adjustment of the relaxation parameters. The

hybrid cases have been computed with default values for all

relaxation parameters. Setup times, that is, the CPU time

required for grid generation, initialization, and coarse- and

medium-mesh calculations, are included in each convergence-

history curve. The AF2 curve includes 6 s for grid generation

and initialization. The hybrid and SLOR curves both use

coarse-medium-fine mesh sequences. Converged results from
the coarse mesh are interpolated onto the medium mesh, and

then from the medium mesh onto the fine mesh, thus

providing a good initial guess for the fine-mesh calculation.
The setup times for these cases are 9 s for the hybrid scheme

and 43 s for the SLOR scheme. For this calculation, AF2 is

3.5 times faster than the hybrid scheme and 7 times faster than

SLOR.

Fig. 4
deg).
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Mach number contours (NACA 0012 airfoil, M= = 0.95, a = 4

Solutions with M® Approaching Unity

As the freestream Mach number approaches one, in-

teresting airfoil shock wave patterns develop. For instance,
the shock wave pattern about an NACA 0012 airfoil at
M= =0.95 and c_=4 deg is shown by the Mach number
contours in Fig. 4. A so-called "fishtail" shock system is
formed. Relatively weak supersonic-to-supersonic oblique
shocks emanate from the trailing edge and merge with a
normal shock downstream of the airfoil. The oblique shock
emanating from the trailing edge upper surface has been
strengthened by the addition of circulation, while the oblique
shock emanating from the trailing edge lower surface has been
weakened and is almost nonexistent. The normal shock above

the airfoil is much stronger than the normal shock below the

airfoil. The triangular region between the oblique and normal
shocks has a nearly constant Mach number which is ap-
proximately 1.1. This shock wave pattern is characteristic of
solutions with freestream Mach numbers near unity and has

been observed experimentally as well as computationally. It is

generally considered to be the correct qualitative solution. For
instance, a fishtail shock solution for a 10% circular arc
airfoil at M® = 0.98 and 0 deg angle of attack was presented in
Ref. 7. This calculation was a solution to the conservative

full-potential equation using a Cartesian mesh and small-
disturbance boundary conditions. Because the flow in this

solution is essentially aligned with the finite-difference mesh,
"rotated differencing" is not necessary. 3 However, with the
present wraparound coordinate system, rotated differencing
is essential for maintaining stability of difficult cases such as
the present fishtail shock solution. 5

As pointed out in Ref. 14, nonconservative full-potential
equation solutions with freestream Mach numbers ap-
proaching unity are characterized by strong oblique shock
waves at the trailing edge followed by subsonic flow. The
fishtail shock structure for these cases is not predicted.
Conservative vs nonconservative differencing was the subject
of discussion in Ref. 16 where similar differences for the

transonic small-disturbance potential equation were reported.
It is generally understood that these differences are the result
of effective mass creation at shock waves for the non-

conservative differencing schemes. Therefore, to obtain the
proper mass balance and the correspondingly correct solution
conservative differencing is required.

Convergence history curves for the last calculation, in-
cluding Erm=, IRIm_ [defined by Eq. (19a)], NSP, and C L

convergence histories, are presented in Fig. 5. Convergence is
achieved in this case in approximately 20 s of CPU time (116
iterations), as indicated by constant values of both NSP and
C L. At this point, IRImax has dropped only slightly, while
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Fig. 6 Two- and three-dimensional pressure coefficien! comparison
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E,,m has dropped by over 2Vz orders of magnitude. This

discrepancy is partially due to the fact that the airfoil surface

' solution, which is effectively monitored by E,ms, converges
before the downstream fishtail shock wave pattern, Another

cause is that during the initial phase of convergence in which

the residual does not drop, the position of the shock sonic line

is rapidly being adjusted. This excites high-frequency errors,

and therefore keeps the residual artificially high even though

E,,s is being reduced. Establishment of convergence for such
a small reduction in the maximum residual is a characteristic

behavior of many strong shock calculations using the present

algorithm. Use of a three order-of-magnitude reduction in

IRIm_ as a convergence criterion for the present case would

require Er., _ to be reduced by five orders of magnitude, which

represents a factor of two more iterations than necessary.
This is the first time in transonic flow computations that

calculations such as the last one have been computed using the

conservative full-potential equation with an exact airfoil

mapping. Without the newly developed rotated difference

scheme, these calculations would have been unstable. The

i_

WING "_ WING

ROOT TIP

y/c

x/c

SHOCK SONIC

LINE

Fig. '7 Shock wave sonic line position relative lo the wing planform

(NACA 0015 wing, Moo = 0.86, ,_ = 30 deg, .'R = 1.9, a = 0 deg).

rapid convergence of this difficult case demonstrates the

reliability and efficiency of the present transonic flow solution

procedure.

Three.Dimensional Solutions

Results from the transonic wing analysis code (TWING) are

presented in this section. All calculations have been computed

with the density coefficients upwinded in only the _ and 7/

directions. For the cases presented herein, this was sufficient;

but for cases with stronger shocks at the trailing edge, density

upwinding along the _"direction would probably be required.

All results have been computed with _ ranging from 0.1 to
0.5. The larger values of/_ were required for the larger aspect
ratio cases.

To evaluate the three-dimensional code, several infinite-

aspect-ratio results have been compared with two-

dimensional results using the concept of simple sweep theory.

For three-dimensional infinite-aspect-ratio calculations, the

solution in the wing-normal plane is the same as a two-

dimensional solution with appropriate scaling; that is,

M**,,,z> = cosk. M=,j D, Cp,_D = cos _ X. Cp,:D, and
T(X);D = T(x)jD/cosA, where T(x) is the airfoil thickness
distribution. Subcriticai results using this concept have been

compared and are in excellent agreement. A supercritical
comparison is shown in Fig. 6. The three-dimensional
calculation was computed with an aspect ratio (.4_) of 9.5 and
thus simulates an infinite-aspect-ratio condition at center
span. Other conditions for this calculation were NACA 0015
wing, M® =0.86, X=25 deg, and a=0 deg. The two results

are in close agreement but are not identical. The reason for

the slight disagreement is numerical and is due to the in-

creased level of artificial viscosity arising from larger values
of the local Mach number in the three-dimensional case. If the

artificial viscosity parameter (v) in the two-dimensional case

is increased by adding sin e kM_.3 o to the M 2 term of Eq. (20),
the two numerical solutions become identical.

Figures 7 and 8 display the results of a wing calculation

with the following characteristics: NACA 0015 wing,/R = 1.9,
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Fig. 8 Three-dimensional pressure coefficient distribution (NACA
0015 wing, M_ = 0.86, _,= 30 deg, A_ = 1.9, a = 0 deg).
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Fig. 9 Center span pressure coefficient evolution with iteration
number (NACA 0015 wing, .,R= 1.9, a=0 deg, M_. =0.86, ),=30
deg).

M® =0.86, X=30 deg, and _=0 deg. The shock wave sonic-
line position is plotted to scale on the wing planforrn in Fig. 7.

,As expected, the shock wave approaches both sidewalls in a
nearly perpendicular fashion. Between the sidewalls near
center span, the shock is swept and is approximately parallel
to the wing leading and trailing edges. The shock-strength
gradient along the span is quite large as indicated by the
surface Cp distributions shown in Fig. 8. The maximum local
Mach numbers in the root, center span, and tip planes are
1.26, 1.33, and 1.78, respectively. A large part of this

spanwise shock-strength gradient is caused by the tip
sidewall/wing interaction, which is essentially the opposite of
a three-dimensional relief effect. The existence of the tip
sidewall constrains the streamlines to remain in the tip plane.

The wing sweep induces a spanwise component of velocity
which in effect squeezes the streamlines toward the tip plane.
This increases the Mach number and therefore the shock

strength in the tip plane region.

Figure 9 displays the center span Cp distribution evolution
with iteration number (n) for the case just presented. The
n=0 solution corresponds to the initial condition, and the

n = 146 solution corresponds to the solidly converged solution

in which the maximum residual has been reduced by three
orders of magnitude. In just 20 iterations, a good ap-

proximation is established in which the shock position is off

by only 7°70. By 60 iterations the difference in shock positions
is less than 1070.

All TWING calculations presented herein have been
computed using a mesh with 46,000 points (115 x20x20).

This places 58 points from leading to trailing edge on both the
upper and lower surfaces for each spanwise plane. Each

iteration requires about 4.2 s of CPU time on the Ames CDC
7600 computer. For the case of Fig. 8, this equates to a total

run time of about 5 min to achieve plottable accuracy. For
subcritical cases, the run time is much less, amounting to just
over a minute to achieve plottable accuracy.

Conclusions

A fast, implicit algorithm for solving the conservative full-
potential equation in both two and three dimensions is
presented. Stability in supersonic regions is maintained by
using an upwind evaluation of the density coefficient along all
coordinate directions. This provides an effective upwind
difference of the streamwise terms for any orientation of the

velocity vector (i.e., rotated differencing), and thereby greatly
enhances the reliability of the present algorithm. Use of the

newly developed rotated differencing scheme has been in-
strumental in computing a number of difficult two-
dimensional test cases including several cases with "fishtail"

shock-wave patterns. This represents the first time such
calculations have been computed using the conservative full-
potential equation with an exact airfoil mapping.

The present fully implicit AF2 algorithm has been com-
pared with both the standard transonic-solution procedure,
successive-line over-relaxation (SLOR) and a hybrid (direct-

solver/SLOR) scheme. The surface Cp distributions produced
by these schemes are in good agreement. Based on CPU time,

the rms error in the surface pressures is reduced from five to
seven times faster by the AF2 algorithm relative to SLOR.
The hybrid scheme displays a very wide range of convergence
speeds, being very fast for subcritical cases but much slower
for strong shock cases. The AF2 scheme displays a much more
uniform convergence rate over a very wide range of cases. It is
essentially comparable to the hybrid scheme for subcritical
cases but as much as 3.5 times faster for cases with strong
supersonic regions.

Three-dimensional results from the newly developed
transonic-wing-analysis code (TWING) are presented. In-
finite-aspect-ratio results are in good agreement with standard
two-dimensional results. Other calculations for swept wings
mounted between parallel walls are presented in which a
strong shock wave extends across the entire wing span in-
dicating a high degree of reliability. Convergence histories

indicate that the substantial improvement in convergence rate
experienced in two-dimensional cases carries over to the newly
implemented three-dimensional version of the fully implicit
AF2 iteration scheme.
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