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Abstract

Background: Graph-based analysis of fMRI data has recently emerged as a promising approach to study brain
networks. Based on the assessment of synchronous fMRI activity at separate brain sites, functional connectivity graphs
are constructed and analyzed using graph-theoretical concepts. Most previous studies investigated region-level
graphs, which are computationally inexpensive, but bring along the problem of choosing sensible regions and involve
blurring of more detailed information. In contrast, voxel-level graphs provide the finest granularity attainable from the
data, enabling analyses at superior spatial resolution. They are, however, associated with considerable computational
demands, which can render high-resolution analyses infeasible. In response, many existing studies investigating
functional connectivity at the voxel-level reduced the computational burden by sacrificing spatial resolution.

Methods: Here, a novel, time-efficient method for graph construction is presented that retains the original spatial
resolution. Performance gains are instead achieved through data reduction in the temporal domain based on
dichotomization of voxel time series combined with tetrachoric correlation estimation and efficient implementation.

Results: By comparison with graph construction based on Pearson’s r, the technique used by the majority of
previous studies, we find that the novel approach produces highly similar results an order of magnitude faster.

Conclusions: Its demonstrated performance makes the proposed approach a sensible and efficient alternative to
customary practice. An open source software package containing the created programs is freely available for
download.
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Background
The functioning of the human brain relies on the interplay

and integration of numerous individual units in a com-

plex network. Insights into its topology are thus essential

to promote our understanding of the brain in general,

as well as its maladaptive states associated with dysfunc-

tion and disease. An increasingly popular approach to

the analysis of functional brain networks is based on the

framework of graph theory [1-4]. A graph is a mathemat-

ical structure designed for modelling pairwise relation-

ships, known as edges, between an assortment of objects,

referred to as nodes. In applications to fMRI, the node
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set is defined as a collection of brain sites, and edges are

established by measuring internodal functional connec-

tivity [5] based on the regions’ associated time series. The

obtained functional connectivity graph, serving as a sim-

ple model of the brain’s functional organization in a com-

plex network, is subsequently examined drawing on a rich

collection of graph-theoretical metrics that target various

aspects of its topology [6]. Several studies indicate, for

instance, that the brain’s functional network conforms to

a small-world architecture [1,2,7,8]. Beyond that, the use-

fulness of graph-based functional connectivity analyses

has been demonstrated in applications to brain develop-

ment and aging [9-11], gender differences [12], intellectual

performance [13], and neurological disorders, such as

Alzheimer’s disease [14,15] or schizophrenia [16,17].

In most previous studies, functional connectivity

graphs have been constructed at the level of regions

[1,7,10,14,18], meaning that graphical nodes are defined
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based on a parcellation of the brain into regions of

interest (ROI), each consisting of several voxels. Due

to the limited number of nodes, such analyses are

computationally inexpensive and their results are compar-

atively easy to visualize and interpret. However, region-

level nodes involve mixing fMRI time series from the

incorporated voxels, thus obliterating more detailed spa-

tial information [4,19]. ROI-based analyses are therefore

highly dependent on the quality of the parcellation: If ROI

boundaries and actual functional boundaries are inconsis-

tent, the results can be erroneous [20]. Voxel-level analy-

ses, in contrast, are not subject to these limitations, since

the parcellation inherent to the original data is used for

node definition [8,11,13,15,21-23]. Consequently, voxel-

level graphs provide a finer model of the brain’s functional

network organization, since the original spatial resolution

of the fMRI data is preserved [4,24].

Because of the large number of nodes, the construction

and analysis of voxel-level graphs can involve consider-

able computational efforts. In response, the computa-

tional burden has often been reduced by sacrificing spatial

resolution (using relatively large voxels to begin with or

reslicing the data to a lower resolution) thus reducing the

number of nodes in the graph [15,25-27]. While reduction

of spatial resolution is undesirable in general (given that

the main advantage of fMRI as compared to other meth-

ods such as EEG/MEG is its superior spatial resolution),

it can even render a study infeasible, e.g., when investigat-

ing very small brain structures or different regions that lie

in close proximity to each other. Efficient algorithms and

implementations are therefore required in order to take

full advantage of the data’s original spatial resolution [24].

Here, we propose a novel approach aiming to increase

the computational efficiency of voxel-level graph con-

struction by combining time series dichotomization,

tetrachoric correlation estimation, and efficient imple-

mentation, while retaining the full spatial resolution of the

data. Comparison with conventional graph construction

(as carried out in previous studies) shows that the new

approach not only produces highly similar results, but also

executes an order of magnitude faster.

Methods
This section consists of three parts. We begin with a short

introduction to voxel-level functional connectivity graphs

and explain their construction from fMRI data. In par-

ticular, it is established how time series dichotomization

can be combined with tetrachoric correlation estimation

to efficiently measure functional connectivity. The sec-

ond part describes analyses comparing Pearson’s r and the

tetrachoric correlation coefficient rt (1) as correlation esti-

mators in the controllable environment of synthetic data,

(2) as measures of functional connectivity in the context of

graph construction from fMRI data, and (3) with respect

to the similarity of graphs resulting from (2). The last part

provides implementation details regarding the programs

created for this study and assesses their computational

performance.

Voxel-level graph construction

Formally, an undirected binary graph is defined as an

ordered pair GB = (N ,E), comprised of a set of nodes N

and a set of pairwise internodal connections, or edges,

E. Individual edges are unordered pairs {i, j}, where i, j ∈

N . GB can be represented by a binary adjacency matrix

B
|N |×|N | = (bi,j), where bi,j ∈ {0, 1}, i, j ∈ N , and bi,j = 1

indicates that {i, j} ∈ E, i.e., that a connection between the

two nodes i and j exists. In order to represent not only the

presence or absence of connections but also their strength,

a graph can be extended by assigning a weight to each

edge.

In applications to fMRI data, graph-based analyses rely

on the derivation of a graphical representation of the

brain’s functional network, which is then examined in

terms of graph theory (Figure 1). Voxel-level functional

connectivity graphs are constructed based on individual

voxels as nodes, that is, the set of nodes N is a collec-

tion of voxels. In the literature, N is often defined as all

in-brain voxels, or all gray matter (GM) voxels. Functional

connectivity is estimated between all pairs of nodes based

on their corresponding time series using a measure of

association.

To construct a binary graph, edges are established by

thresholding the functional connectivity estimates: Two

nodes are connected by an edge if their functional con-

nectivity exceeds a given threshold. Alternatively, one can

take the pairwise functional connectivity matrix as a basis

for a weighted graph, thus conserving the strength of indi-

vidual functional connections between nodes [28]. For

simplicity, and in a manner consistent with the majority

of previous work on voxel-level functional connectiv-

ity graphs, we presently focus on binary graphs for our

analysis.

Measuring functional connectivity

In most previous studies investigating voxel-level func-

tional connectivity graphs, internodal functional con-

nectivity is measured using Pearson’s sample correlation

coefficient r [2,8,13,15,21-27,29-31]. When using Pear-

son correlation as a measure of functional connectivity, it

seems sensible to assume bivariate normality with respect

to the distribution of pairwise observations arising from

each pair of voxel time series. This is because Pearson

correlation may be a poor measure of association if the

data are not normally distributed [32]. Encouragingly, in

a recent study employing region-level graphs, data for the

most part appeared to meet the assumption of bivariate

normality [33].
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Figure 1 Construction and analysis of voxel-level functional connectivity graphs. Starting with the preprocessed fMRI data, all gray matter
voxels are defined as graphical nodes (1). Using their associated time series, pairwise internodal functional connectivity is measured in terms of
linear correlation. Typically, this is done using Pearson’s r. Alternatively, one can derive binary time series via median-based dichotomization and
employ tetrachoric correlation estimation (rt ). In both cases, the result is a correlation matrix (2) representing the pairwise functional connectivity
between nodes. A binary undirected graph, represented by a binary adjacency matrix (3), is obtained via thresholding. Based on the adjacency
matrix, graph-theoretical metrics, such as the node degree k, are computed (4).

Assuming bivariate normality between pairs of voxels,

an alternative correlation estimator, the tetrachoric corre-

lation coefficient rt [34], can be used instead of r. Given

two dichotomous variables xd and yd, rt estimates the

correlation of the latent continuous-valued variables xc
and yc associated with xd and yd, under the assump-

tion that xc and yc follow a bivariate normal distribution.

Thus, if we dichotomize, i.e., binarize, the voxel time series

data, rt can be used to estimate the pairwise correlation

of the original continuous-valued time series from the

dichotomized ones.

Consider two voxels, v and w, and their corresponding

time series, sv and sw. Using the medians of sv and sw, i.e.,

s̃v and s̃w, as dichotomization thresholds, we obtain the

binary time series dv and dw. Formally, dv,k = 1 if the sig-

nal intensity value sv,k amounts at least to s̃v and dv,k =

0 otherwise, where k ∈ {1, . . . ,T} and T is the num-

ber of acquired fMRI volumes [35]. See Section S.1 for

details.

By virtue of s̃v and s̃w, the pairs (sv,k , sw,k) are divided

into four partitions corresponding to four quadrants in

the x-y-plane of a Cartesian coordinate system (Figure 2A,

bottom). Thus, by counting the number of points falling

into each quadrant, a pair of voxels gives rise to a 2 × 2

contingency table, the (relative) frequencies of which can

be expressed in terms of dv and dw. For example, n11, the

frequency of points in time where sv,k and sw,k amount

at least to s̃v and s̃w, respectively, is given by n11 =
∑T

k=1 dv,k · dw,k . In other words, n11 is the number of

points where both dv and dw are equal to 1, yielding the

associated relative frequency p11 through p11 = n11
T .

The probabilitymasses corresponding to the table’s rela-

tive frequencies are equal to the respective partial volumes

belonging to the four quadrants in the x-y-plane under

the curve representing the bivariate normal distribution

(Figure 2A). The correlation coefficient rt , for which these

partial volumes resemble the relative frequencies in a

given table, is an estimate of the population correlation ρ

belonging to the underlying distribution. Since a 2 ×

2 contingency table is uniquely defined by the marginal

probabilities and one joint probability, rt can be found

by solving, e.g., p11 =
∫ ∞
�−1(p•0)

∫ ∞
�−1(p0•)

f (zx, zy)dzxdzy,

where � is the standard normal distribution function,

�−1 is its inverse, and f is the probability density func-

tion of the bivariate normal distribution. While this

would typically be solved using numerical techniques,

an analytical solution, rt = − cos(2πp11), exists for the

case under consideration (Figure 2B). See Section S.2 for

details.

Given a pair of voxels, we can determine p11 from

the dichotomized time series and use the relationship

rt = − cos(2πp11) in order to obtain rt . As a consequence,

rt can be used instead of r to estimate pairwise functional

connectivity in the process of graph construction from

fMRI data (Figure 1).

Simulations

Building upon the theoretical considerations presented

above, we analyzed the characteristics of rt in the control-

lable environment of synthetic data. More specifically, we

assessed its usefulness relative to r in estimating the cor-

relation parameter ρ of bivariate normal populations of

known properties.

Data

Bivariate normal populations were generated, such that

each of them exhibited a predefined population correla-

tion ρ, where ρ ∈ {−0.99,−0.98, . . . , 0, . . . , 0.98, 0.99}.

Then, 10000 bivariate samples of size T (one sample rep-

resents a pair of time series of length T) were randomly
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Figure 2 Dichotomization and tetrachoric correlation estimation. Consider a sample ((x1 , y1), (x2 , y2), . . . , (xT , yT )) of size T where (x, y) is
distributed according to bivariate normality. Further, let x = x1 , x2 , . . . , xT and y = y1 , y2 , . . . , yT denote the samples from x and y, respectively. Using
x̃ and ỹ, as thresholds, x and y can be dichotomized resulting in the binary samples xd and yd . A: As an example, the density of a bivariate normal
distribution (ρ = 0.7) is shown (top, 3D curve) along with a sample (bottom, points in the x-y-plane) drawn from that distribution. By virtue of the
two lines x = x̃ and y = ỹ, the x-y-plane is divided into four quadrants, such that the counts of sample points per quadrant form a 2× 2 contingency
table. The (relative) frequencies in the contingency table can also be expressed in terms of xd and yd (e.g., n11 is the number of indices where both
xd and yd are equal to 1, and p11 = n11T

−1). The probability masses corresponding to the table’s relative frequencies are equal to the respective
partial volumes belonging to the four quadrants in the x-y-plane under the bivariate normal’s curve. The tetrachoric correlation coefficient rt , for
which these partial volumes resemble the relative frequencies in a given table, is an estimate of the population correlation parameter ρ belonging
to the underlying distribution. B: Relationship between p11 and rt . Given xd and yd , rt can be found using rt = − cos(2πp11). For details see text.

drawn from each of the populations. For each sample, r

and rt were calculated. Prior to calculating the latter, the

data were dichotomized as described above. The entire

procedure was conducted separately for two different

sample sizes, T = 100 and T = 300, resulting in two data

sets, where the choice of these numbers was guided by the

parameters of the real fMRI data we analyzed.

Correlation estimation

For each data set and estimator ρ̂ ∈ {r, rt}, joint his-

tograms (ρ̂, ρ) with associated marginal histograms were

calculated. For the joint histograms a linearly spaced 199×

199 grid was used, such that bin centers in both dimen-

sions corresponded to correlations exhibited by the gener-

ated bivariate populations. For each estimator, means and

standard deviations, as well as mean signed differences

MSD(ρ̂, ρ) were calculated per ρ-bin. Mean signed dif-

ferences are defined as MSD(ρ̂, ρ) = n−1
∑n

i (ρ̂i − ρ),

where n is the number of samples per ρ-bin, i.e., n =

10000, and ρ̂i is the correlation estimate for sample i.

Since ρ is not known in the case of real data, additional

joint histograms (rt , r) were calculated in order to facilitate

comparability with respect to real data applications. As

both estimators exhibit errors with respect to ρ, Deming

regressiona was used in order to fit a linear relationship to

the (rt , r) data.

Application to fMRI data

Comparative graph-based analyses of resting-state fMRI

data were carried out based on r vs. rt as measures of

functional connectivity.

Data

MRI data were obtained from the “1000 Functional

Connectomes Project” repository [36,37]: We used the

“Cambridge” and “Pittsburgh” data sets, contributed by

R.L. Buckner and G. Siegle, respectively. These data sets

contain resting-state fMRI data from 198 subjects (75

males/123 females, ages: 18–30 years; imaging parame-

ters: TR = 3s, voxel size = 3 × 3 × 3 mm3, number of

slices = 47; number of volumes = 119) and 17 subjects

(10 males/7 females, ages: 25–54; imaging parameters: TR

= 1.5s, voxel size = 3.125 × 3.125 × 3.2 mm3, number of

slices = 29; number of volumes = 275), respectively. Both

data sets also include anatomical scans for each subject.

Preprocessing

Using SPM8 [38] functional data were motion-corrected

by alignment to the mean functional image, then anatom-

ical scans were coregistered to the mean functional image

and segmented. In order to account for low frequency

intensity drifts and high frequency noise, frequencies

below 0.01Hz and above 0.1Hz were removed from the

voxels time series by band-pass filtering, as is custom-

ary for resting-state data [39]. In order to minimize the

impact of preprocessing on the data’s correlation struc-

ture, we refrained from spatial smoothing and spatial

normalization [8,27].

Correlation estimation

Based on r and rt as a measure of functional connec-

tivity, two voxel-level graphs were constructed for each

subject from the two data sets. Nodes were defined



Loewe et al. BMC Neuroscience 2014, 15:78 Page 5 of 13

http://www.biomedcentral.com/1471-2202/15/78

as supra-threshold voxels in the subject-specific GM

probability maps obtained from the segmentation (thresh-

old θGM = 0.2). To measure internodal functional con-

nectivity, two correlation matrices, Cr and Crt , were

calculated based on all pairwise correlations between

nodes. Cr was obtained by calculating Pearson correla-

tions based on the voxels’ associated continuous-valued

time series from the preprocessed fMRI data, and Crt was

obtained analogously, except that tetrachoric correla-

tions were calculated instead of Pearson correlations, and

binary voxel time series were used instead of continuous-

valued ones. Again, binary voxel time series were derived

from the continuous-valued ones through median-based

dichotomization. In order to compare Cr and Crt , their

entries were used to calculate joint histograms (rt , r) in the

same fashion as for the synthetic data.

Functional connectivity graphs

Subject-specific binary functional connectivity graphs, Br

and Brt , were derived from Cr and Crt , respectively, via

density-based thresholding: The density κ of a binary

undirected graph B is the proportion of potential edges

that actually exist, i.e., κ = 2·|E|
|N |·(|N |−1) . In order to facilitate

comparability across graphs, an individual correlation

threshold θ was determined for each correlation matrix,

such that the resulting binary graphs exhibited the same

density κ . Given C, where C ∈ {Cr ,Crt }, and θ , the entries

of B are given by bi,j = 1, if ci,j > θ , and bi,j = 0 otherwise,

where 1 ≤ i, j ≤ |N |.

Node degreemaps

In graph-based fMRI functional connectivity analyses,

one of the most popular graph-theoretical metrics is

the node degree, or degree centrality, a measure aiming

to characterize the importance of individual nodes in a

binary graph. Given a binary graph B, the degree ki of a

node i is defined as the number of nodes that are con-

nected to i via an edge, or, more formally, ki =
∑|N |

j bi,j,

where i, j ∈ N and i �= j [40]. The node degree has recently

been employed in several neuroimaging studies aiming to

identify potential hub regions in the human brain [27,31].

Here, node degrees k were calculated for all subject-

specific functional connectivity graphs Br and Brt .

Degrees were standardized in order to afford compara-

ble scaling across subjects [15]. The spatial distribution

of degrees was analyzed by constructing k-maps in indi-

vidual brain space for each subject. In order to gener-

ate group average k-maps for each data set (Cambridge

and Pittsburgh), the subject-specific k-maps were spatially

normalized to ICBMb -template space based on transfor-

mation parameters estimated with respect to the mean

functional image using SPM8 [41-43]. Since the normal-

ized k-maps have different overlaps due to anatomical

differences and differing GM masks, a varying number

of subjects "supports" each standard space voxel. Thus,

group-level k-maps were derived by voxel-wise averag-

ing of the k-values from the supporting subjects. For

enhanced reliability, k-values of voxels supported by less

than 20% of all subjects were discarded.

Implementations

The most time-consuming step when constructing a

graph from fMRI data consists in the computation of a

functional connectivity matrix, which here corresponds

to the computation of a correlation matrix based on r or

rt . In the following, the programs created for calculating

the voxel-level pairwise correlation matrices Cr and Crt

will be referred to by pcc and tetracc, respectively. For

both programs we opted to store only the upper triangu-

lar part of C, in order to save memory. In doing so, no

information is lost, sinceC is symmetric. Because efficient

implementation plays an important role when aiming to

accelerate large-scale analyses, implementation was con-

ducted using the C programming language, providing

Matlab integration via its C interface MEX. A Matlab

toolbox and C sources are available for download [44].

Calculation of Cr
Pearson’s sample correlation coefficient r is calculated for

a pair of voxels v and w using

r(sv, sw) =

∑T
k=1(sv,k − s̄v)(sw,k − s̄w)

√

∑T
k=1(sv,k − s̄v)2 ·

√

∑T
k=1(sw,k − s̄w)2

.

To avoid redundant operations, subexpressions depend-

ing on one voxel only are precalculated for all voxels before

computing Cr .

In order to take advantage of the processor’s cache

without the need for explicit knowledge about its size,

we adopted a so-called cache-oblivious algorithm [45,46]

to compute the correlation matrix, rather than explicit

blocking (with a predetermined block size that optimally

fits the cache). The core idea is to recursively divide the

problem so that the computations are carried out on

smaller and smaller blocks of data. Given that the mini-

mum block size is small enough, there is a division step

fromwhich on all computations use only data that fits into

the processor cache (regardless of its size), thus making

optimal use of the cache by localizing the computations.

The division scheme we implemented is illustrated in

Additional file 1: Figure S1, which shows the first three

steps of dividing the upper triangle of the correlation

matrix.

In addition, we exploited SSE2 (Streaming SIMD Exten-

sions version 2, where SIMD stands for Single Instruction

Multiple Data) and AVX (Advanced Vector eXtensions)

instructions (on processors that support themc), which

allow for parallelization on a single core by carrying out
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the same operation on multiple data elements in paral-

lel (also known as vectorized computations). Using SSE2

(AVX), the computation of the numerator of the corre-

lation coefficient can be parallelized by computing four

(eight) sums in parallel (if the float data type is used;

for double, two and four sums, respectively, can be

computed in parallel). The procedure is illustrated in

Additional file 1: Figure S2 for SSE2 using float or AVX

using double (four sums in parallel).

Calculation of Crt
For each pair of voxels, rt is computed in three steps. First,

the bitwise AND operator is applied to the voxels’ associ-

ated binary time series. Second, the set bits in the result

are counted to obtain n11. Third, rt is retrieved from a

lookup table of the function rt = − cos(2πn11T
−1). The

table is indexed by n11 and contains the corresponding

rt values for those values that n11 can attain. Depend-

ing on T being even or odd, these are 0, 1, 2, . . . , T2 or

1, 2, 3, . . . , T+1
2 , respectively.

Storing the binary time series in integers of, e.g., 32 bit,

32 points in time can be processed in parallel, so that the

above three steps need to be executed only ⌈T/32⌉ times

per pair. Hence, it seems conceivable that the computa-

tional cost in terms of CPU time could be lower for the

calculation of Crt than for the calculation of Cr .

Following the procedure outlined above, two pro-

grams, tetracc/32 and tetracc/128 were cre-

ated. tetracc/32 uses 32 bit integers for storing

binary time series and a 16 bit lookup table for

bit-counting. tetracc/128 uses __mm128i variables

(holding 128 bit each) for time series storage. Using

the intrinsics _mm_and_si128 and _mm_popcnt_u64

for bitwise AND and bit-counting, respectively, it is

expected to improve over tetracc/32, since more

data can be processed in parallel and no extra mem-

ory access (lookup table) is needed. While tetracc/32

is platform-independent, tetracc/128 is only applica-

ble on fairly modern CPUs, because _mm_and_si128

and _mm_popcnt_u64 depend on the availability of

SSE2 and POPCNT instructions, respectivelyd.

Parallel versions

For additional performance gains, parallel versions of pcc

and tetracc have been implemented using multiple

threads. This aspect is, however, beyond the focus of

this article, since the resulting benefits relative to single-

threaded programs are expected to be fairly independent

of the choice of r versus rt as a measure of internodal

functional connectivity.

Performance tests

In order to assess the performance of the programs

described above, we compared them to three other

programs: Matlab’s built-in function corrcoef, corr

from Matlab’s Statistics Toolbox, and IPN_fastCorr,

a function from the Matlab toolbox ipnvoxelgraph by

X.N. Zuo. Experiments were conducted from within Mat-

lab (R2011b) on a desktop computer with an Intel(R)

Core(TM) i7-3960X CPU (3.30GHz) and 64GB main

memory running Linux (Kernel 3.4). The C/MEX routines

that are part of our programs were compiled using the

GNU C compiler gcc (version 4.7.1, optimization level 3).

In order to prevent programs frommaking use of multiple

cores, Matlab was restricted to one CPU core.

Input data sets (SV×T ) were generated using pseudo-

random numbers of type float. While the length of time

series T was fixed at T = 200, the number of voxels V was

varied between 10000 and 170000 in steps of 10000. The

maximum number of voxels, 170000, follows from the fact

that storing the resulting matrix (upper triangular part)

requires 53.83 GB (V (V−1)
2 floats, 4 bytes per float).

Since the machine used has 64GB of main memory, this

seemed a sensible choice in order to leave some memory

for other applications and subsequent processing of the

matrix. Because corrcoef, corr, and IPN_fastCorr

return the complete symmetric matrix, they were only

tested using input data sets with up to 120000 voxels cor-

responding to 53.64 GB of memory required to hold the

matrix (V 2 floats).

Results

Correlation estimation

Overall, the correlation estimation from dichotomized

data using rt yielded results strongly resembling those

obtained through estimation from continuous data

using r. For synthetic data, as expected, r and rt exhibited

linear relationships to ρ and also to each other (Figure 3A).

Standard deviations (with respect to means per ρ-bin)

were greater for rt than for r, but were reasonably small

for both. Peaking at ρ = 0 with 0.101 and 0.058 (r), and

0.158 and 0.09 (rt), for T = 100 and T = 300, respec-

tively, they exhibited a gradual decrease towards the range

limits of ρ. Naturally, deviations from ρ were larger for

T = 100 than for T = 300, because for T = 100 each

calculated correlation is based on fewer values than for

T = 300. Close inspection of the mean signed differences

MSD(rt , ρ) and MSD(r, ρ) revealed a small systematic

bias of both r and rt as estimators of ρ (Additional file 1:

Figure S3). The expected value of r, E(r), can be approx-

imated by E(r) = ρ − ρ(
1−ρ2

2n ) [47,48]. E(r) − ρ closely

matched the empirical results from the simulation repre-

sented by MSD(r, ρ), while MSD(rt , ρ) follows a curve of

similar shape but larger amplitude. The Pearson correla-

tion between r and ρ, rt and ρ, and rt and r, amounted to

0.992 (0.997), 0.978 (0.992), 0.986 (0.995), respectively, for

T=100 (T=300).
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Figure 3 Comparison of correlation estimates r and rt . Each composite plot consists of a joint histogram and the corresponding marginal
histograms. Joint probabilities were mapped to grayscale intensities. A: Results for synthetic data. Top row: T = 100. Bottom row: T = 300. Left and
mid column: r vs. ρ and rt vs. ρ , respectively; mean (solid) and mean ± STD (dashed) per ρ-bin shown in red. Right column: rt vs. r; Deming
regression line (dashed) shown in orange. B: Results for fMRI data (rt vs. r). Top row: Cambridge data set. Bottom row: Pittsburgh data set. Left and
mid column: Based on correlation matrices Cr and Crt from two individual subjects. Right column: Based on all subject-specific correlation matrices
Cr and Crt . Deming regression line (dashed) shown in orange.
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For fMRI data, rt and r followed a linear relationship in

both data sets, although there was a slight counterclock-

wise rotation about the origin as reflected in a slope> 1 as

opposed to 1 for a perfect relation rt = r (Figure 3B). This

suggests only limited deviation from the assumption of

pairwise bivariate normality, and, moreover, indicates that

rt-based graphs closely resemble r-based graphs. Further-

more, the results for the Cambridge data set (T = 119)

showed a greater variance than those for the Pittsburgh

data set (T = 275). Since this feature was also observed

in the results for the synthetic data sets, we presume that

this was caused by the smaller sample size for the calcu-

lation of each sample correlation. The overall correlation

between r and rt amounted to 0.82 (Cambridge) and 0.85

(Pittsburgh).

Note that the vertical gaps in bin occupation in those

histograms involving rt are due to the fact that rt can

attain a distinct set of values only, as explained earlier.

The number of attainable values, and hence the (potential)

performance of rt as an estimator, increases with T .

Node degree

Group average node degree maps from r- and rt-based

binary graphs Br and Brt (derived from Cr and Crt ,

respectively, using a density threshold of κ = 0.01)

are presented in Figure 4. Other thresholds (κ ∈

{0.05, 0.1}) led to similar results and are hence not shown.

In accordance with the strong correlation between r

and rt reported in the previous section, both approaches

yielded highly similar spatially distributed node degree

maps (Figure 4A). In line with this, kr and krt were very

strongly correlated (r(kr , krt ) = 0.95 for Cambridge and

r(kr , krt ) = 0.97 for Pittsburgh; Figure 4B), although

degrees tended to be slightly higher for rt-based than for

r-based graphs. Prominent clusters of high-degree nodes

were found within circumscribed regions of the occipi-

tal (cuneus, precuneus, fusiform and lingual gyri), parietal

(intraparietal sulcus, superior parietal lobe, temporopari-

etal junction), temporal (superior temporal gyrus, tempo-

ral pole, amygdala) and frontal lobes (medial orbitofrontal

and rostral ventromedial prefrontal cortex) with a sim-

ilar distribution pattern as reported in previous work

employing r-based node degree mapping [15,27,31].

Performance tests

The most time-consuming step when constructing a

graph from fMRI data consists in the computation of a

functional connectivity matrix. We compared the perfor-

mance of our programs on this task to three other pro-

grams: Matlab’s built-in function corrcoef, corr from

Matlab’s Statistics Toolbox, and IPN_fastCorr, a func-

tion from the Matlab toolbox ipnvoxelgraph by X.N. Zuo.

Table 1 shows memory requirements, execution times,

and speedups relative to corrcoefwhich was selected as

reference since it is available to any Matlab user out of the

box and we therefore assume that it has a higher preva-

lence than corr or IPN_fastCorr. Figure 5 illustrates

the performance in terms of data troughput measured in

correlation coefficients per second. This measure does not

depend on the performance of a reference program and

offers more immediate access to the key results. In this

sense, it is complementary to Table 1.

In line with expectations, execution times increased

quadratically with the number of nodes for all pro-

grams (Table 1). While pcc’s basic variant (pcc/naive)

was considerably slower than corrcoef (speedup

0.31×), its SSE2- and AVX-based variants achieved

speedups around 1.34× and 2.08×, respectively. The

performance of corr (speedup 1.35×) was comparable

to that of pcc/SSE2, while IPN_fastCorr (speedup

1.63×) ranked between pcc/SSE2 and pcc/AVX. The

tetracc variants (32 and 128) were considerably faster

than all programs computing r with speedups (relative to

corrcoef) around 5.7× and 13.5×, respectively.

As an aside, we note that IPN_fastCorr as well as

pcc and tetracc scaled better with the number of cores

than corrcoef and corr. For example, using 6 cores

and a data set of 50000 nodes (T = 200), the speedups

were 1.16× (corr), 2.46× (IPN_fastCorr), 2.32×

(pcc/SSE2), 3.42× (pcc/AVX), 9.44× (tetracc/32),

and 20.22× (tetracc/128), compared to corrcoef’s

execution time of 18.5 seconds. Using the same data

set but only 1 core the respective speedups were

1.35×, 1.63×, 1.33×, 2.08×, 5.7×, and 13.5× as com-

pared to corrcoef’s execution time of 55.9 seconds

(Table 1). Thus, the speedup gained by using 6 cores

instead of 1 amounts to 4.56× (IPN_fastCorr), 5.29×

(pcc/SSE2), 4.98× (pcc/AVX), 4.98× (tetracc/32),

and 4.49× (tetracc/128), while corr and corrcoef

gain only 2.6× and 3×, respectively.

Note that pcc and tetracc require only half the

amount of memory (column 8) that corrcoef, corr,

and IPN_fastCorr require (column 2), because they

store only half of the symmetric matrix for memory effi-

ciency (Table 1). In addition, corrcoef, corr, and

IPN_fastCorr failed with an out-of-memory error for

input data sets with 90000 or more nodes. We assume

that these programs internally use more memory than

we expected, since the resulting matrix of correlation

coefficients would require less than half of the available

memory (900002 ·4Byte = 30.17GB). Hence, the speedups

of the remaining programs compared to corrcoef could

not be computed for T ≥ 90000.

Discussion
Graph-based functional connectivity analysis at the level

of individual voxels allows for spatially fine-grained char-

acterization of functional networks in the human brain.
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Figure 4 Comparison of node degrees k from r- (kr) and rt -based (krt ) binary graphs. Subject-specific graphs were derived from the
correlation matrices Cr and Crt using a density threshold of κ = 0.01 corresponding to correlation thresholds of r = 0.48± 0.06 and rt = 0.53± 0.04
(Cambridge) and r = 0.46 ± 0.08 and rt = 0.49 ± 0.07 (Pittsburgh), respectively. Individual degree maps were spatially transformed to MNI space to
derive group average maps. Note that the degrees were standardized for each subject before averaging, resulting in ranges that one would not
commonly expect for degrees. For details see text. A Group average degrees on top of axial slices of the MNI brain (shown in neurological
convention). Top row: kr . Bottom row: krt . B Joint distribution of kr and krt . The composite plots consist of a joint histogram and the corresponding
marginal histograms. Joint probabilities were mapped to grayscale intensities.

However, with high-resolution data sets, such analy-

ses can become infeasible due to the computational

demands involved. Most previous studies investigating

voxel-level functional connectivity graphs relied on Pear-

son’s r for estimating internodal functional connectiv-

ity [2,8,13,15,21-27,29-31]. As demonstrated here, the

tetrachoric correlation coefficient rt constitutes a time-

efficient alternative to r as a measure of functional con-

nectivity.

In order to reduce the computational costs associated

with the analysis of voxel-level graphs, previous studies

reduced the data’s spatial resolution [15,26,27], spatially

restricted the graphical edges incorporated into the anal-

ysis [21], or utilized parallel computing [31]. In contrast,

efficiency benefits from rt-based graph construction are

achieved without sacrificing spatial resolution, disregard-

ing graphical edges, or exploiting parallel computing. An

open source software package containing the created pro-

grams is freely available for download [44]. Note that

parallel versions of r- and rt-based graph construction

have been implemented in addition to the sequential ones,

thus providing additional efficiency gains that depend on

the number of available processors. While this aspect is

not the main focus of this article, as the resulting benefits

(relative to sequential implementations) can be expected

to be fairly independent of the choice of r versus rt as

a measure of internodal functional connectivity, the par-

allel implementations are still included in the software

package [44].

Even though the dichotomization procedure (a prereq-

uisite to the computation of rt) entails discarding infor-

mation in the time domain, important characteristics of

the original data appear to be preserved. In applications

to artificially generated as well as real fMRI data the new

technique proved capable of closely reproducing results

obtained in conventional ways. More specifically, the use-

fulness of the rt-based approach was assessed by compar-

ison with r in estimating the correlation parameter ρ of

bivariate normal populations of known properties. In this

setting, both the bias and standard deviation were greater

for rt than for r, but still reasonably small. Thus, rt-based

correlation estimation yielded results closely resembling



L
o
e
w
e
e
t
a
l.
B
M
C
N
e
u
ro
s
c
ie
n
c
e
2
0
1
4
,1
5
:7
8

P
a
g
e
1
0
o
f
1
3

h
ttp

://w
w
w
.b
io
m
e
d
ce
n
tra

l.co
m
/1
4
7
1
-2
2
0
2
/1
5
/7
8

Table 1 Performance comparison for computation of correlationmatrices

|N|/103 corrcoef corr IPN_fastCorr pcc/naive pcc/SSE2 pcc/AVX tetracc/32 tetracc/128

m [GB] t [s] t [s] s [×] t [s] s [×] m [GB] t [s] s [×] t [s] s [×] t [s] s [×] t [s] s [×] t [s] s [×]

10 0.4 2.3 1.8 1.29 1.5 1.55 0.2 7.2 0.32 1.7 1.39 1.1 2.16 0.4 5.65 0.2 12.58

20 1.5 9.1 6.8 1.34 5.6 1.63 0.7 28.8 0.32 6.7 1.35 4.3 2.11 1.6 5.71 0.7 13.17

30 3.4 20.2 14.9 1.35 12.4 1.63 1.7 64.9 0.31 15.1 1.34 9.7 2.09 3.5 5.70 1.5 13.33

40 6.0 36.1 26.8 1.35 22.0 1.64 3.0 115.4 0.31 26.9 1.34 17.3 2.09 6.3 5.76 2.7 13.55

50 9.3 55.9 41.5 1.35 34.3 1.63 4.7 180.3 0.31 42.2 1.32 27.0 2.07 9.8 5.72 4.1 13.53

60 13.4 80.3 59.5 1.35 49.3 1.63 6.7 259.4 0.31 60.5 1.33 38.7 2.07 14.0 5.73 5.9 13.57

70 18.3 109.5 80.9 1.35 67.0 1.63 9.1 352.9 0.31 82.4 1.33 52.6 2.08 19.1 5.75 8.0 13.65

80 23.8 180.1 143.4 1.26 87.5 2.06 11.9 461.4 0.39 107.7 1.67 69.1 2.61 24.9 7.24 10.4 17.24

90 30.2 15.1 584.3 137.1 87.9 31.4 13.2

100 37.3 18.6 721.0 168.7 107.8 38.7 16.3

110 45.1 22.5 872.1 203.1 130.3 46.8 19.6

120 53.6 26.8 1037.6 242.0 154.9 55.6 23.4

130 63.0 31.5 1217.5 284.3 181.6 65.2 27.4

140 73.0 36.5 1411.7 329.4 210.2 75.6 31.7

150 83.8 41.9 1620.2 377.9 241.3 86.7 36.4

160 95.4 47.7 1845.5 430.7 276.4 98.6 41.4

170 107.7 53.8 2085.0 487.8 313.2 111.3 46.7

Results are averages from 10 runs on a desktop computer with an Intel(R) Core(TM) i7-3960X CPU (3.3GHz) and 64GB main memory. All programs were restricted to one CPU core. Length of time series T was fixed at T = 200.
|N|: number of nodes. The programs corrcoef (Matlab built-in), corr (Matlab Statistics Toolbox), IPN_fastCorr (X.N. Zuo), and pcc (three variants) computed Cr , while tetracc (two variants) computed Crt .m [GB]:

memory requirements for result in GB; t [s]: elapsed time in seconds; s [×]: speedup relative to corrcoef.
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Figure 5 Performance comparison for computation of correlation matrices. Results are averages from 10 runs on a desktop computer with an
Intel(R) Core(TM) i7-3960X CPU (3.3GHz) and 64GB main memory. All programs were restricted to one CPU core. Length of time series T was fixed at
T = 200. |N|: number of nodes. The programs corrcoef (Matlab built-in), corr (Matlab Statistics Toolbox), IPN_fastCorr (X.N. Zuo), and pcc
(three variants) computed Cr , while tetracc (two variants) computed Crt . The performance of each program is given as the number of correlation
coefficients computed per second.

those obtained when using r. Beyond that, r- and rt-based

graph construction and node degree computation were

carried out for real fMRI data. A strong linear relationship

was found between r- and rt-based correlations indicat-

ing that rt-based graphs closely resemble r-based graphs,

since the graphs are derived from the correlationmatrices.

In line with this, the spatial distribution of node degrees

was highly similar for r- and rt-based graphs and also in

good correspondence with previous work [15,27,31].

As data mining approaches are currently gaining

momentum in the neuroimaging community [36,37,49,50],

the amount of publicly available experimental data is

steadily growing. Consequently, development and imple-

mentation of efficient exploratory methods, such as the

one presented here, are necessary in order to take full

advantage of this wealth of data, especially with respect

to connectivity analyses [51]. Fast construction and sub-

sequent analysis of graphs may thus open new avenues

for applications, including those within a clinical set-

ting, where the voxel-level approach may be of particular

importance. It is worth noting in this context that voxel-

level graph construction can operate at the original data

resolution, thus avoiding the reduction of the analysis’

spatial sensitivity [4,24]. For example, disease-related pat-

terns, once identified, may serve as connectivity-based

biomarkers that could aid, guide, or facilitate diagnostics

and may increase prediction accuracy with respect to

disease occurrence, recurrence, severity, or treatment

outcome. Here, again, efficient methods are essential to

facilitate assessment of individual patients within a nar-

row time frame [52]. If combined with efficient tools

for subsequent analysis, the presented methods for fast

graph construction may also be useful for online evalua-

tion of functional connectivity in the context of real-time

fMRI. This would allow for connectivity-based adapta-

tion of experimental stimulation and interaction with

the subject, for example, in task-based fMRI studies, or

neurofeedback-based training. Taken together, we believe

that there is a multitude of applications (be them exper-

imental or clinical) that could benefit from the methods

presented here, highlighting the growing importance of

efficient tools for graph-based analysis of voxel-level con-

nectivity.

Limitations

As illustrated by the results, the accuracy of a correla-

tion estimate naturally increases with the number of data

points, i.e., the number of scans. Along the same lines,

it has recently been shown that the reliability of func-

tional homogeneity increases with scan duration [53]. For

both correlation estimators, it is therefore recommended

to avoid a low number of scans (caused, for example, by a

short scan duration, or a long TR, or both). Since the devi-

ation from the population correlation ρ is generally higher

for rt than for r, a low number of scans will affect rt more

severely than r.
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The main focus of this work lies with the compari-

son of r and rt as functional connectivity estimators. To

reduce the impact of preprocessing on the data’s cor-

relation structure prior to this comparison, we limited

the preprocessing of the fMRI data to a minimum. The

effect of additional preprocessing steps, or a different pre-

processing pipeline altogether, on the robustness of the

proposed methods should be subject of future research.

Unpublished results from our group indicate, however,

that the comparability of r and rt remains essentially

consistent.

Conclusions
Voxel-level graphs allow for spatially fine-grained anal-

yses of functional connectivity networks. In order to

reduce the considerable computational demands involved,

many previous studies reduced the spatial resolution of

the data. Here, a new method for graph construction—

exploiting time series dichotomization and tetrachoric

correlation estimation—was devised, efficiently imple-

mented, and compared to the conventional approach

based on continuous-valued data and Pearson’s r. In appli-

cations to artificially generated as well as real fMRI data

the new technique proved capable of producing highly

similar results. Through efficient bit-based implementa-

tion adapted to the dichotomized data the novel method

runs an order of magnitude faster while the original spa-

tial resolution of the data is retained. Hence, its demon-

strated performance, not only in producing consistent

results, but in obtaining them substantially faster, makes

the new approach a sensible and economical alternative

to customary practice. An open source software pack-

age containing the created programs is freely available for

download [44].

Endnotes
aDeming regression is a linear regression method that

accounts for errors in both variables.
bInternational Consortium for Brain Mapping.
cSSE2 was introduced by Intel with the Pentium 4. It is

also supported by AMD CPUs starting with the

Athlon 64. AVX is supported starting with the Sandy

Bridge (Intel) and Bulldozer (AMD) microarchitectures.
dPOPCNT became available starting with the

Nehalem (Intel) and Barcelona (AMD)

microarchitectures.
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