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Abstract 
A new algorithm for computing contact forces between solid 

objects with friction is presented. The algorithm allows a mix 

of contact points with static and dynamic friction. In contrast to 

previous approaches, the problem of computing contact forces is not 

transformed into an optimization problem. Because of this, the need 

for sophisticated optimization software packages is eliminated. For 

both systems with and without friction, the algorithm has proven 

to be considerably faster, simpler, and more reliable than previous 

approaches to the problem. In particular, implementation of the 

algorithm by nonspecialists in numerical programming is quite fea- 

sible. 

1. Introduction 
In recent work, we have established the viability of using analyt- 

ical methods to simulate rigid body motion with contact[I,2,3]. In 

situations involving only bilateral constraints (commonly referred 

to as "equality constraints"), analytical methods require solving 

systems of simultaneous linear equations. Bilateral constraints typ- 

ically arise in representing idealized geometric connections such 

as universal joints, point-to-surface constraints etc. For systems 

with contact, unilateral (or "inequality") constraints are required 

to prevent adjoining bodies from interpenetrating. In turn, the 

simultaenous linear equations arising from a system of only bilateral 

constraints must be augmented to reflect the unilateral constraints; 

the result is in general an inequality-constrained nonlinear mini- 

mization problem. 

However, analytical techniques for systems with contact have 

yet to really catch on in the graphics/simulation community. We 

believe that this is because of the perceived practical and theoretical 

complexities of using analytical techniques in systems with contact. 

This paper has two goals, one of which is to address these concerns: 

in particular, we present analytical methods for systems with contact 

that can be practically implemented by those of us (such as the 

author) who are not specialists in numerical analysis or optimiza- 

tion. These methods are simpler, reliable, and faster than previous 

methods used for either systems with friction, or systems without 

friction. 

Our other goal is to extend and improve previous algorithms for 

computing contact forces with friction[3]. We present a simple, fast 

algorithm for computing contact forces with friction. The restriction 

of our algorithm to the frictionless case is equivalent to an algorithm 

described in Cottle and Dantzig[4] (but attributed to Dantzig) for 
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solving linear complementarity problems. It is not our intention 

to reinvent the wheel; however, it is necessary to first understand 

Dantzig's algorithm and why it works for our frictionless sytems 

before going on to consider the more general solution algorithm 
we propose to deal with friction. We give a physical motivation 

for Dantzig's algorithm and discuss its properties and implemen- 

tation in section 4. For frictionless systems, our implementation 

of Dantzig's algorithm compares very favorably with the use of 

large-scale, sophisticated numerical optimization packages cited by 

previous systems[11,7,8,6]. In particular, for a system with n unilat- 

eral constraints, our implementation tends to require approximately 

three times the work required to solve a square linear system of 

size n using Gaussian elimination. Most importantly, Dantzig's 

algorithm, and our extensions to it for systems with friction, are 

sufficiently simple that nonspecialists in numerical programming 

can  implement them on their own; this is most assuredly not true 

of the previously cited large-scale optimization packages. 

Interactive systems with bilateral constraints are common, and 

there is no reason that moderately complicated interactive simu- 

lation with collision and contact cannot be achieved as well. We 

strongly believe that using our algorithms, interactive simulations 

with contact and friction are practical. We support this claim by 

demonstrating the first known system for interactive simulations 

involving contact and a correct model of Coulomb friction. 

2. Background and Motivation 
LiStstedt[ 10] represents the first attempt to compute friction forces 

in an analytical setting, by using quadratic programming to compute 

friction forces based on a simplification of the Coulomb friction 

model. Baraff[3] also proposed analytical methods for dealing with 

friction forces and presents algorithms that deal with dynamic fric- 

tion (also known as sliding friction) and static friction (also known 

as dry friction). The results for dynamic friction were the more 

comprehensive of the two, and the paper readily acknowledges that 

the method lJresented for computing contact forces with static fric- 

tion (a Gauss-Seidel-like iterative procedure) was not very reliable. 

The method also required an approximation for three-dimensional 

systems (but not for planar systems) that resulted in anisotropic 

friction. Finally, the results presented did not fully exploit earlier 

discoveries concerning systems with only dynamic friction, and no 

static friction. 

In this paper, we present a method for computing contact forces 

with both dynamic and static friction that is considerably more 

robust than previous methods. Our method requires no approxima- 

tions for three-dimensional systems, and is much simpler and faster 

than previous methods. We were extremely surprised to find that 

our implementation of the method, applied to frictionless systems, 

was a large improvement compared with the use of large-scale opti- 

mization software packages, both in terms of speed and, especially, 
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simplicity. 1 Previous simulation systems for frictionless contact 

that we know of have used either heuristic solution methods based 

on linear programming[11], quadratic programming algorithms[7], 

or constrained linear least-squares algorithms[6]. In all cases the 

numerical software required is sufficiently complicated that either 

public-domain or commercially available software packages are 

required. The problems with this are: 

• Serious implementations of linear programming codes are 

much less common than serious implementations for solving 

linear systems. Serious implementations for quadratic pro- 

gramming are even rarer. 

• A fair amount of mathematical and coding sophistication is 

required to interface the numerical software package with the 

simulation software. In some cases, the effort required for an 

efficient interface was prohibitively high[ 12]. 

• The packages obtained contained a large number of adjustable 

parameters such as numerical tolerances, iteration limits, etc. 

It is not uncommon for certain contact-force computations to 

fail with one set of parameters, while succeeding with another, 

or for a problem to be solvable using one software package, 

but unsolvable using a different package. In our past work in 

offline motion simulation, reliability has been a vexing, but 

tolerable issue: if a given simulation fails to run, one can 

either alter the initial conditions slightly, hoping to avoid the 

specific configuration which caused the difficulty, or modify 

the software itself prior to rerunning the simulation. This 

approach is clearly not practical in an interactive setting. 

• Along the same lines, it is difficult to isolate numerical prob- 

lems during simulation, because of the complexity of the soft- 

ware packages. Unless great effort is put into understanding 

the internals of the code, the user is faced with a "black box." 

This is desirable for black-box code that is bullet-proof, but a 

serious impediment when the code is not. 

Given these hurdles, it is not surprising that analytical methods 

for systems with contact have not caught on yet. Our recent work 

has taught us that the difficulties encountered are, in a sense, self- 

created. In computing contact forces via numerical optimization, we 

translate a very specific problem (contact-force computation) into a 

much more general problem (numerical optimization). The trans- 

lation loses some of the specific structure of the original problem, 

making the solution task more difficult. The approach we take in 

this paper is to avoid (as much as possible) abstracting our specific 

problem into a more general problem. The result is an algorithm 

that solves a narrower range of problems than general purpose 

optimization software, but is faster, more reliable, and considerably 

easier to implement. 

3. Contact Model 
In this section we will define the structure of the simplest problem 

we deal with: a system of frictionless bodies contacting at n distinct 

points. For each contact point p~ between two bodies, let the scalar 

ai denote the relative acceleration between the bodies normal to the 

contact surface at pi. (We will not consider the question of impact 

in this paper; thus, we assume that the relative normal velocity of 

bodies at each contact is zero.) We adopt the convention that a 

positive acceleration ai indicates that the two bodies are breaking 

contact at Pi. Correspondingly, ai < 0 indicates that the bodies 

are accelerating so as to interpenetrate. An acceleration of ai = 0 
indicates that the bodies have zero normal acceleration at pi and 

1Actually, not being numerical specialists, any working numerical software 
we were capable of creating would have to be simpler. We automatically 
assumed however that such software would be slower than the more com- 
prehensive packages written by experts in the field. 

remain in contact (although the relative tangential acceleration may 

be nonzero). To prevent interpenetration we require ai > 0 for each 

contact point. 

For frictionless systems, the force acting between two bodies at 

a contact point is normal to the contact surface. We denote the 

magnitude of the normal force between the bodies at pi by the scalar 

fi. A positive fi indicates a repulsive force between the bodies at 

Pi, while a negative fi  indicates an attractive force. Since contact 

forces must be repulsive, a necessary condition on fi is fi > O. Also, 

since frictionless contact forces are conservative, we must add the 

condition fiai = 0 for each contact point. This condition requires 

that at least one of f i  and a~ be zero for each contact: either ai = 0 
and contact remains, or ai > 0 ,  contact is broken, and fi is zero. 

We will denote the n-vector collection of ai 's as a; the ith element 

of a is ai. The vector f is the collection of the f / s .  (In general, 

boldface type denotes matrices and vectors; the ith element of a 

vector b is the scalar bi, written in regular type. The symbol 0 

denotes on appropriately sized vector or matrix of zeros.) The 

vectors a and f are linearly related; we can write 

a - - - - A f + b  (1) 

where A C R nx" is symmetric and positive semidefinite (PSD), 

and b C R" is a vector in the column space of A (that is, b = Ax 

for some vector x). The matrix A reflects the masses and contact 

geometries of the bodies, while b reflects the external and inertial 

forces in the system. At any instant of time, A and b are known 

quantities w h i l e f  is the unknown we are interested in solving for. 

The problem of determining contact forces is therefore the prob- 

lem of computing a vector f satisfying the conditions 

ai > O, f i > 0 and f iai = 0 (2) 

for each contact point. We will call equation (2) the normal force 
conditions. Using equation (1), we can phrase the problem of 

determining a suitable f in several forms. First, since fi and ai are 

constrained to be nonnegative, the requirement that f~ai = 0 for 

each i is equivalent to requiring that 

n 

fiai = f r a  = 0 (3) 

i=1  

since no cancellation can occur. Using equation (1), we can say that 

f must satisfy the conditions 

A f + b _ > 0 ,  f > 0  and f r ( A f + b ) : O .  (4) 

Equation (4) defines what is known as a linear complementarity 

problem (LCP). Thus one solution method for computing contact 

forces is to formulate and solve the LCP of equation (4). We 

can also compute contact forces by considering the conditions of 

equation (2) as a quadratic pi'ogram (QP): we can equivalently say 

that a vector f satisfying equation (4) is a solution to the quadratic 

program 

min f r (A f  +b)  subjectto { A f + b _ > 0 }  
s f > 0 • (5) 

Phrasing the computation o f f  as a QP is a natural choice. (The 

problem of solving QP's has received more attention than the prob- 

lem of solving LCP's. Both problems are NP-hard in general but 

can be practically solved when A is PSD.) Having transformed the 

problem of computing contact forces into a QP, we have a variety of 

techniques available for solving the QP. Unfortunately, by moving 
T to an optimization problem--minimizef  ( A f + b ) - - w e  necessarily 

lose sight of the original condition f~a~ ---- 0 for each contact point. 

Because of this, we are solving a more general, and thus harder, 

24 



COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1994 

problem than we really need to. In developing an algorithm, we 

prefer to regard the relationship between f and a in terms of the 

n separate conditions f i a i  = 0 in equation (2) rather than the 
single constraint f r a  = 0 in equation (4) or the minimization of 

f r a  in equation (5). In the next section, we describe a physically- 

motivated method for solving equation (2), along with a practical 

implementation. Following this, we consider friction in section 5. 

4. Frictionless Systems 

In this section we present a restriction of our algorithm for com- 

puting contact forces with friction to the frictionless case. We also 

sketch a proof of correctness. We extend the algorithm in section 5 

to handle static friction, and dynamic friction in section 6. A de- 

scription of Dantzig's algorithm for solving LCP's, and an excellent 

treatment of LCP's in general can be found in Cottle et al.[5]. 

4.1 Algorithm Outline 

Dantzig's algorithm for solving LCP's is related to pivoting 

methods used to solve linear and quadratic programs. The major 

difference is that all linear and most quadratic programming algo- 

rithms begin by first finding a solution that satisfies the constraints 

of the problem (for us, A f  + b _> 0 and f > 0) and then trying to 

minimize the objective function (for us, f r A f  + f r b ) .  

In contrast, Dantzig's algorithm, as applied to the problem of 

computing contact forces, works as follows. Initially, all contact 

points but the first are ignored, and fi is set to zero for all i. The 

algorithm begins by computing a value for f l  that satisfies the nor- 

mal force conditions---equation (2) - - for  i = 1, without worrying 

about those conditions holding for any other i. Next, the algorithm 

computes a value for f2 that satisfies the normal force conditions for 

i = 2 while maintaining the conditions for i = 1. This may require 

modification of f t .  The algorithm continues in this fashion: at any 

point, the conditions at contact points 1 < i < k - 1 are satisfied 

for some k and fi  = 0 for i > k, and the algorithm determines fk, 

possibly altering some of the f i ' s  for i < k, so that the conditions 

now hold for all i < k. When the conditions hold for all n contact 

points, the algorithm terminates. 

To make this concrete, imagine that we have so far computed 

values f l  through f , - i  so that the normal force conditions hold 

everywhere except possibly at the nth contact point. Suppose that 

with f~ still set to zero we have a,  > 0. If so, we immediately 

have a so lu t ionf  that satisfies the normal conditions at all n contact 

points. 

Suppose however that for f ,  -- 0 we have a,  < 0. Our physical 

intuition tells us that since we currently have f ,  ---- 0, the problem 

is that the nth contact force is not doing its fair share. We must 

increase f ,  until we reach the point that a ,  is zero, and we must 

do so without violating the normal force conditions at any of the 
first n - 1 contact points. Since increasing f ,  may change some 

of the ai's, we will generally need to modify the other f i  variables 

as we increase f , .  Our goal is to seek a strength for f ,  that is just  

sufficient to cause an to be zero. (We emphasize that this is not a 

process which takes place over some time interval to to tl during a 

simulation; rather, we are considering the proper value t h a t f  should 

assume at a specific instant in time.) 

The adjustments we need to make to f~ through f , - I  as we 

increase f ,  are simple to calculate. Since the order in which contacts 

are numbered is arbitrary, let us imagine that for the current values 

of the f i ' s  we have al = a2 . . . .  = ak = 0 for some value 

0 < k < n - 1, and for all k + 1 < i < n - 1, we have ai > O. 

Remember that a~ < 0. To simplify bookkeeping, we will employ 

two disjoint index sets C and NC. At this point in the algorithm, 

let C = {1,2 , . . . ,k} ;  thus, ai = 0 for all i E C. Similarly, let 

NC = {k + 1,k + 2, ...,n - 1}; since ai > 0 for all i C NC, 

and we have assumed that fiai = 0 for i < n - 1, it must be that 

f i  = 0 for all i E NC. Throughout the algorithm, we will attempt to 

maintain ai = 0 whenever i C C. Similarly, we will try to maintain 

fi  = 0 whenever i C NC. When i C C, we say that the ith contact 

point is "clamped," and when i C NC we say the ith contact point 

is "unclamped." (If i is in neither, the ith contact point is currently 

being ignored.) 

For a unit increase of fn (that is, if we increase fn to f ,  + 1) we 

must adjust each f i  by some amount z2xfi. Let A f ,  = 1, and let us 

set A f i  = 0 for all i C NC, since we wish to maintain f i  = 0 for 

i E NC. We wish to choose the remaining A l i ' s  for i E C such that 

Aai = 0 for i E C. The collection A a  of the Aai ' s  is defined by 

A a - - A ( f + A f ) + b - ( A f + b ) = A A f  (6) 

where A f  denotes the collection of the Ali ' s .  

Intuitively, we picture the force fi  at a clamped contact point 

undergoing some variation in order to maintain ai -- 0, while the 

force at an unclamped contact remains zero. Modifications of this 

sort will maintain the invariant that fiai = 0 for all 1 < i < n - 1. 

Since C currently has k elements, computing the unspecified A f / s  

requires solving k linear equations in k unknowns. (In general, C 

will vary in size during the course of the algorithm. At any point 

in the algorithm when we are establishing the conditions at the rth 

contact, C will contain r - 1 or fewer elements.) 

However, we also need to maintain the conditions f i  > 0 and 

ai > O. Thus, as we increase f , ,  we may find that for some i C C, 

fi has decreased to zero. At this point, it may be necessary to 

unclamp this contact by removing i from C and adding it to NC, 

so that we do not cause f i  to decrease any further. Conversely, we 

may find that for some i 6 NC, ai has decreased to a value of zero. 

In this case, we will wish to clamp the contact by moving i from 

NC into C, preventing ai from decreasing any further and becoming 

negative. The process of moving the various indices between C and 

NC is exactly the numerical process known as pivoting. Given that 

we start with suitable values for f l  through f , - l ,  computing f ,  is 

straightforward. We set A f ,  = 1 and ~xf i  = 0 for i E NC, and 

solve for the Af i ' s  for i E C so that z~xai = 0 for all i E C. Next, 

we choose the smallest scalar s > 0 such that increasing f by sz~f 

causes either a ,  to reach zero, or some index i to move between C 

and NC. If a,  has reached zero, we are done; otherwise, we change 

the index sets C and NC, and loop back to continue increasing f , .  

We now describe the process of computing A f  along with the 
step size s. After this, we present the complete algorithm and discuss 

its properties. 

4.2 The Pivot Step 

The relation between the vectors a a n d f  is given by a = A. f+  b. 

Let us continue with our example in which C = { 1,2, . . . ,  k} and 

NC = {k + 1, k + 2, ..., n - 1 }. We need to compute A f  and then 

determine how large a multiple of A f  we can add to f .  Currently, 

we have an < 0. Let us partition A and A f  by writing 

A =  A~2 A22 v2 and A f =  0 (7) 

1 

where All and A22 are square symmetric matrices, vi E R k, 

v2 C R ("- l ) -k ,  a is a scalar, and x E R k is what we will need 

to compute. The linear system A a  = A A f  has the form (x) 
A a  = A A f  = A 0 = A~2x + v2 . (8) 

1 vtrx + c~ 

Since the first k components of A a  need to be zero, we require 

A11x + Vl = 0; equivalently, we must solve 

AllX = --Vl. 
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After solving equation (9), we compute A a  ---- A A f ,  and are 

ready to find the maximum step size parameter s we can scale A f  

by. For each i C C, if Af i  < 0, then the force at the ith contact point 

is decreasing. The maximum step s we can take without forcing fi  

negative is 

f i  (1 O) 
S < --Af i"  

Similarly, for each i E NC, if zXai < 0 then the acceleration ai is 

decreasing; the maximum step is limited by 

s <  a_._j__ (11) 
-- --Aai" 

Since we do not wish a.  to exceed zero, if A a .  > 0, the maximum 

step is limited by 

s < -a_~. (12) 
- -  A a n  ' 

Once we determine s, we increase f by s A f ,  which causes a to 

increase by A ( s A f )  = sAa.  If this causes a change in the index sets 

C and NC, we make the required change and continue to increase 

f . .  Otherwise, a. has achieved zero. 

4.3 A Pseudo-code Implementation 

The entire algorithm is described below in pseudo-code. The 

main loop of the algorithm is simply: 

function compute-forces 

f = 0  
a = b  

C = N C =  0 

while 3d such that ad < 0 

drive-to-zero(d) 

The function drive-to-zero increases fd until ad is zero. The 

direction of change for the force, A f ,  is computed by fdirection. 
The function maxstep determines the maximum step size s, and the 

constraint j responsible for limiting s. I f j  is in C or NC, j is moved 

from one to the other; otherwise,j  = d, meaning ae has been driven 

to zero, and drive-to-zero returns: 

function drive-to-zero(d) 

Ll: 

A f = fdirection ( d) 

A a  = A A f  

(s, j)  = maxstep(f, a, A f ,  Aa ,  d) 

f = f + s A f  
a = a + sAa 

i f j  E C 

C - - - - C - { j }  

NC = NCU { j }  

goto L1 

else i f j  C NC 

NC ---- NC - { j  } 

C = C U { j }  

goto Li 
else j must be d, implying aa : 0 

C = C U { j }  

return 

The function fdirection computes A f .  We write Acc to denote 

the submatrix of A obtained by deleting the j th  row and column of 

A for all j ~ C. Similarly, Acd denotes the dth column of A with 

e lement j  deleted for a l l j  9~ C. The vector x represents the change 

in contact force magnitudes at the clamped contacts. The transfer 

of x into A f  is the reverse of the process by which elements are 

removed from the dth column of A to form Acd. (That is, for all 

i C C, we assign to Af i  the element of x corresponding to the ith 

contact.) 

funetion fdirection( d) 

A f  = 0 set all A f i  to zero 

A f d :  1 
let Air : Acc 

let Vl = Acd 
solve A n x  : -V l  

transfer x into A f  

return A f  

Last, the function maxstep returns a pair (s,j) with s the maxi- 

mum step size that can be taken in the direction A f  a n d j  the index 

of the contact point limiting the step size s: 

function maxstep(f, a, A f ,  Aa ,  d) 

s = o o  

j = - I  

i f  A a d  > 0 

j : d  

S = --ad/Aad 
f o r /  C C 

if A f i  < 0 

s' = - f i / A f i  
i fs '  < s 

S : S  t 

j = i  

for i C NC 

if  ~ a i  < 0 

S t = --ai /Aai  

i f  s' < s 
S : S  t 

j = i  

return ( s , j)  

It is clear that if the algorithm terminates, the so lu t ionf  will yield 

ai > 0 for all i. Since each fl  is initially zero and is prevented from 

decreasing below zero by maxstep, at termination fi  > 0 for all i. 

Last, at termination, f iai  = 0 for all i since either i E C and al = O, 

or/¢~ C and f i = O. 
The only step of the algorithm requiring substantial coding is 

fdirection, which requires forming and solving a square linear sys- 

tem. Remarkably, even if A is singular (and A is often extremely 

rank-deficient in our simulations), the submatrices All encountered 

in the frictionless case are never singular. This is a consequence of 

b being in the column space of A. 

4.4 Termination of  the Algorithm 

We will quickly sketch why the algorithm we have described 

must always terminate, with details supplied in appendix A. Exam- 

ining the algorithm, the two critical steps are solving AllX = -V l  

and computing the step size s. First off, could the algorithm fail 

because it could not compute x? Since A is symmetric PSD, if A 

is nonsingular then All is nonsingular and x exists. Even if A is 

singular, the submatrices AlL considered by the algorithm are never 

singular, as long as b lies in the column space of A. x As a result, 

the system AllX : -Vl  can always be solved. This is however a 

theoretical result. In actual practice, when A is singular it is possible 

2A complete proof of this is somewhat involved. The central idea is that if 

thejth contact point has not yet been considered and represents a "redundant 

constraint" (that is, adding j into C makes Air singular) then aj will not be 
negative, so there will be no need to call drive-to-zero on j. Similarly, if 

j G NC and moving j to C would make All singular, it will not be the case 

that aj tries to decrease below zero, requiringj to be placed in C. Essentially, 

the nonzero fi's will do the work of keeping aj from becoming negative, 

without fj having to become positive, allowing j to remain outside of C. 
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that roundoff errors in the algorithm may cause an index j  to enter 

C so that the resulting matrix A11 is singular. This is a very rare 

occurrence, but even so, it does not present a practical problem. 

Appendix A establishes that the vector Vl is always in the column 

space of the submatrix All arising from any index set C. Thus, even 

if At1 is singular, the equation All x = - v l  is well-conditioned, and 

is easily solved by standard factorization methods)  In essence, we 

assert that "All is never singular, and even if it is, AHx = - v l  is 

still easily solved." 

Since it is always possible to solve A~lX = - v l  and obtain 

A f ,  the real question of termination must depend on each call to 

drive-to-zero being able to force ad to zero. To avoid being bogged 

down in details, let us assume that A is nonsingular, with specific 

proofs deferred to appendix A; additionally, appendix A discusses 

the necessary extensions to cover the case when A is singular. 

Although the singular versus the nonsingular cases require slightly 

different proofs, we emphasize that the algorithm itself remains 

unchanged; that is, the algorithm we have just described works for 

both positive definite and positive semidefinite A. 

The most important question to consider is whether increasing f 

by an amount s A f  actually increases ad. Given a change s A f  in f ,  

from equation (8) the increase in ad is 

s(vlrx -F c~) : sAad. (13) 

Theorem 2 shows that if A is positive definite, VlrX + c~ is always 

positive. Thus, ad will increase as long as s is always positive. Since 

Vl r + ~ = Aad > 0, this shows that maxstep never returns with 

s---- ~ and j---- - 1 .  

Can the algorithm take steps of size zero? In order for maxstep 

to return s = 0, it would have to the case that either fi = 0 and 

A f i  < 0 for some i C C or ai : 0 and z~xai < 0 for some 

i E NC. Theorems 4 and 5 shows that this cannot happen. Thus, s 

is always positive. Therefore, the only way for ad to not reach zero 

is if drive-to-zero takes an infinite number of steps s A f  that result 

in in ad converging to some limit less than or equal to zero. This 

possibility is also ruled out, since theorem 3 in appendix A shows 

that the set C of clamped contact points is never repeated during a 

given call to drive-to-zero. Thus, drive-to-zero can iterate only a 

finite number of times before ad reaches zero. 

4.5 Implementation Details 
The algorithm just described is very simple to implement and 

requires relatively little code. The most complicated part involves 

forming and solving the linear system Al lx  = -Vl .  This involves 

some straightforward bookkeeping of the indices in C and NC to 

correctly form A11 and then distribute the components of x into A f .  

It is important to note that each call to fdirection will involve an 

index set C that differs from the previous index set C by only a 

single element. This means that each linear system Attx -- - v t  

will differ from the previous system only by a single row and 

column. Although each such system can be solved independently 

(for example, using Cholesky decomposition), for large problems it 

is more efficient to use an incremental approach. 

In keeping with our assertion that nonspecialists can easily im- 

plement the algorithm we describe, we note that our initial imple- 

mentation simply used Gaussian elimination, which we found to 

be completely satisfactory. (Anticipating the developments of the 

next section when Atx is nonsymmetrical, we did not bother to 

use a Cholesky factorization, although this would have performed 

significantly faster.) 

Gill et al. [9] describe a package called LUSOL that incrementally 

factors a sparse matrix A into the form A = LU where L is lower 

3Since An is both symmetric and PSD, All will still have a Cholesky 

factofization All = LL T, although L is singular. Since L can be simply 
and reliably computed, this is one possible way of solving for x. 

triangular and U is upper triangle. Given such a factorization, if A 

has dimension n and a new row and column are added to A, or a row 

and column are eliminated from A, a factorization of the new matrix 

can be recomputed quickly. Unfortunately, the coding effort for 

LUSOL is large. One of the authors of the LUSOL package was kind 

enough to provide us with a modified version of the software[13] 

that treats A as a dense matrix and computes a factorization LA = U 

(where L is no longer triangular). In the dense case, an updated fac- 

torization is obtained in O(n 2) time when A is altered. The modified 

version contains a reasonably small amount of code. For a serious 

implementation we highly recommend the use of an incremental 

factorization routine. 

In addition, it is trivial to make the algorithm handle standard 

bilateral constraints. For a bilateral constraint, we introduce a pair 

fi and ai, and we constrain ai to always be zero while letting fi be 

either positive or negative. Given k such constraints, we initially 

solve a square linear system of size k to compute compute initial 

values for all the bilateral fi's so that all the corresponding a~'s are 

zero. Each such i is placed into C at the beginning of the algorithm. 

In maxstep, we ignore each index i that is a bilateral constraint, since 

we do not care if that fg becomes negative. As a result, the bilateral 

i's always stay in C and the bilateral ai's are always zero. Exactly 

the same modification can be made in the algorithm presented in the 

next section. 

5. Static Friction 
The algorithm of the previous section can be considered a con- 

structive proof that there exists a solution f satisfying the normal 

force conditions for any frictionless system. The algorithm pre- 

sented in this section grew out of an attempt to prove the conjecture 

that all systems with static friction, but no dynamic friction, also 

possess solutions. (The conjecture is false for systems with dynamic 

friction.) The conjecture currently remains unproven. We cannot 

prove that the algorithm we present for computing static friction 

forces will always terminate; if we could, that in itself would con- 

stitute a proof of the conjecture. On the other hand, we have not yet 

seen the algorithm fail, so that the algorithm is at least practical (for 

the range of simulations we have attempted so far). 

Let us consider the situation when there is friction at a contact 

point, The friction force at a point acts tangential to the contact 

surface. We will denote the magnitude of the friction force at the 

ith contact by fFi, and the magnitude of the relative acceleration in 

the tangent plane as aFi. We will also denote the magnitude of the 

normal force as fNi, rather than fi,  and the magnitude of the normal 

acceleration as aNi rather than ai. To specify the tangential acceler- 

ation and friction force completely in a three-dimensional system, 

we would also need to specify the direction of the acceleration and 

friction force in the tangent plane. For simplicity, we will begin by 

dealing with two-dimensional systems. At each contact point, let ti 

be a unit vector tangent to the contact surface; ti is unique except for 

a choice of sign. In a two dimensional system, we will treat fFi and 

aFi as signed quantities. A friction force magnitude of fF  i denotes 

a friction force of fFiti, and an acceleration magnitude ar~ denotes 

an acceleration of aFiti. Thus, if aFi and fF  i have the same sign, 

then the friction force and tangential acceleration point in the same 

direction. 

Static friction occurs when the relative tangential velocity at a 

contact point is zero; otherwise, the friction is called dynamic fric- 

tion. In this section, we will consider only static friction. Any con- 

figuration of objects that is initially at rest will have static friction, 

but no dynamic friction. Additionally, a "first-order" (or quasistatic) 

simulation world where force and velocity are related by f = mv 

also has static friction but never any dynamic friction 
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5.1 Static Friction Conditions 

At a contact point with static friction, the magnitude VFg of the 

relative tangential velocity is zero. If  the effect of all the forces in 

the system produces ari = 0, meaning that the condition vFi = 0 is 

being maintained, then fei need satisfy only 

-- #fNi <_ fFi _< #fNi  (14) 

where the scalar # denotes the coefficient of friction at the contact 

point. (We will not bother to index # over the contact points, 

although this is easily done.) If  the tangential acceleration is not 

zero, then the conditions on ffei are more demanding: [fFi[ must be 

equal to #fNi and f t i  must have sign opposite that of ari. 
Following the pattem of section 4, we write that fNi, aN~, fFi and 

aFi must satisfy the normal force conditions 

fNi ~ O, aNi >_ 0 and fNiaNi ---- 0, (15) 

as well as 

IlEal ~ ~fNi, aFifei _< 0 and avi(#fNi -- IlEal) = 0. (16) 

The condition aF~(#fNi -- IfF, I) = 0 forces fFi to have magnitude 

# f Ni if aFi is nonzero. The condition aFif  F i _< 0 forces aFi and f Fi tO 

have opposite sign, which means that the friction force opposes the 

tangential acceleration. We will call the conditions of equation (16) 

the static friction conditions; unless specifically noted, a contact 

point said to satisfy the static friction conditions implies satisfaction 

of the normal force conditions as well. 

The approach taken by previous attempts[10,3] at modeling static 

friction has been to form an optimization problem. If  we define the 

quantity scalar z by 

z = E ( l a r i [ ( # f N i  - ISFA) + fNiaNi) ( 1 7 )  

i 

then the problem becomes 

m i n z  subjectto { fN i - ->O}  and { aeifFi-<O } 
f~',,fei aNi > 0 ISF, I _< l , tfNi " 

Computing contact forces in this manner does not appear to be 

practical. 

5.2 Algorithm Outline 

We believe it is better to deal with the problem as we did in 

the frictionless case: as a number of separate conditions. Let us 

consider the static friction condition with that perspective. We can 

state the conditions on a l l  and fFi by considering that the "goal" of 

the friction force is to keep the tangential acceleration as small as 

possible, under the restriction I fEll < ~ fN  i. Accordingly, whenever 

aFg is nonzero we insist that the friction force do its utmost to 

"make" aF~ be zero by requiring that the friction force push as hard 

as possible opposite the tangential acceleration. The reason that 

we find this a useful characterization is that it is essentially the 
same characterization we employed in section 4 to motivate the 

development of Dantzig's algorithm. 

In section 4.1, we assumed that the normal force conditions were 

initially met for contacts 1 through n - 1 and began with fg .  = 0. 

If this resulted in a s .  being nonnegative, then we immediately had 

a solution. Otherwise, it was in a sense fN.'S "fault" that a s .  was 

negative, and we increased fN. to remedy the situation. We can do 

exactly the same thing to compute static friction forces! Suppose 

that the first n -  1 contacts of our system satisfy all the conditions for 

static friction and that the normal force condition holds for the nth 

contact point. We s e t  fFn = 0 and consider aN.. If n E NC, or n C C 

but fN. = 0, then the static force condition is trivially met since 
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]fe.] = 0 = #fN.. If not, but it happens that ag. = 0, again, we 

have satisfied the static friction conditions, since IfF. I = 0 < #fN.. 
Otherwise, aF. is nonzero and following our characterization of 

static friction we must increase the magnitude of the friction force 

to oppose the tangential acceleration as much as possible. 

The procedure to do this is essentially the same as in the friction- 

less case. Without loss of generality, assume that at the nth contact 

point aF. < 0. We will gradually increase f t .  while maintaining the 

static friction and normal conditions at all the other n - 1 contact 

points and the normal condition at the nth contact point. As we 

increase rE., at some point, one of two things must happen: either 

we will reach a point where fF.  = /ZfN., or we will reach a point 

where ae. = 0. In either case, the static friction conditions will then 

be met. 

5.3 Maintaining the Static Friction Conditions 

Once we have established the static friction conditions at a con- 

tact point, we need to maintain them. As before, we maintain the 

conditions fsl  _> O, aNi > 0 and fNiaNi -~" 0 using the index sets 

C and NC, To maintain the conditions on the ffFi and aFi variables, 

we introduce the sets CF, N C -  and NC +. The set Cr is analogous 

to C; whenever i C CF, we manipulate fel to maintain aFi -~ O. 
(We can have i E Ce and i C C. The fact that i C Cr means we 

are maintaining aFi = 0, while the fact that i E C means we are 

maintaining asi  = 0.) In contrast to CF, if i C NC +, then we have 

aFi ( 0 and f F i ---- # f N i. As long as i E NC +, we vary f F i SO that it 

is always equal to #fNr  If aF~ becomes zero, we move i from NC + 

into CF. Thus, NC + denotes the set of contacts that have fFi positive 

and at the upper bound of # fNr  Conversely, if i C N C - ,  then we 

have aFi > 0 and f F  i = - - ~ f N  i. Again, as long as i E NC-  we 

will maintain the condition fFi = --#fNg, and move i into Cr if aNi 
becomes zero. Whenever  we are increasing some fsd or increasing 

or decreasing some fed, computing the corresponding changes in 

the other fri and fNi variables, along with the maximum possible 

step size, is exactly the same as in the previous section. 

In the frictionless case, when we managed to drive aNd to zero, 

we added d into C. For static friction, if the driving process stops 

because aFd has reached zero, we insert d into Cr. Otherwise, 

the process stopped because IfFdl = #fgd and we add d into 

N C -  or NC + as appropriate. Before we present our algorithm for 

computing static friction forces iu two dimensions, we discuss why 

the algorithm we present is not guaranteed to terminate. 

5.4 Algorithm Correctness 

In section 4, we showed that as we increased fd, the acceleration 

ad always increased in response, guaranteeing that a sufficiently 

large increase of fd would achieve ad = 0. We also showed 

that the index set C would never repeat while forcing a particular 

ad to zero, guaranteeing we would not converge to some negative 

value. Finally, we showed that steps of size zero would not occur, 

guaranteeing that we would always make progress towards ad = O. 
For static friction, we can show all these properties except for the 

last. 

First, let us show that if we start with aFd ~ 0 ,  a s  we increase 

fFd, either we will reach a point where frd = #fNd, or we will reach 

a point where aFd = 0. This is not obvious. Since fsd is nonzero 

(otherwise fFd = 0 would satisfy the static friction conditions), we 

must have d E C. This means that as we increase frd, we may also 

be requiring that fNd change as well. If #fNd increases faster than 

fed does, then fed will never reach a value of #fNd. 
Similarly, it is not necessarily the case that increasing fFd will 

cause aFd to increase. The reason for this is the following: the 

relation between the acceleration variables and force variables is 



COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1994 

still linear, and we can write 

I aNl I 
aFl 

a :  

aNn 
aFn 

= A  

fel 

fN. 
fen 

+ b = A f + b  (18) 

where A E R 2"xz" and b E R 2" a n d f  and a are the collection of the 

f and a variables• As long as we have no dynamic friction, it is still 

the case that A is symmetric and PSD. For a unit increase in fed, we 

solve for Afgi  and Afe i  exactly as we did in section 4. That is, for 

i E C, we require ~aNi : 0 ,  and for all other i, we have AfNi = O. 
For the friction forces, almost the same holds: for i E CF we require 

AaFi = 0. However, for i E NC- ,  instead of setting AfFi = O, 

we require ~XfF i = --#AfNi, to maintain fFi : --#fNi. Similarly, 

for i E NC + we require AfFi = #AfNi to maintain fFi = #fNi. 
The side conditions AfFi = ±#AfNi  prevent us from applying 

theorem 2 as we did in section 4 and claiming that aFd increases as 

fFd increases. In fact, in some situations, increasing fed will cause 

aed to decrease. The same holds for fNd as well; prior to working 

on fed we may find that increasing fNa to establish the normal force 

conditions may cause causes and to decrease. 

Is it possible then that we can drive some fFd or fNd infinitely far 

without reaching a stopping point? Fortunately, it is not. Theorem 3 

of appendix A states that for frictionless systems, as we increase 

fN~ the index set C never repeats. Exactly the same theorem is 

trivially extended to cover static friction. Thus, we will never 

encounter exactly the same sets C, NC, CF, NC-  and NC + while 

driving a given fN, or fF, variable. We can use this to show that 

increasing fud will eventually cause and to increase. Exactly the 

same argument shows that increasing fFd eventually causes aed to 
increase. 

THEOREM 1 In a problem with static friction only, if  aNd < 0 and 

f Nd = 0 hold initially, a large enough increase in f Nd will eventually 
force and to increase. 

PROOF. Suppose that we could arbitrarily increase fNd without 

causing aNd to increase. Since A is positive definite, in light of 

theorem 2 this can only happen if one or more of the side conditions 

AfFi = ~IZAfNi hold, implying that NC- U NC + ~ 0. Since the 

index sets C, NC, CF, NC-  and NC + never repeat, there are only 

finitely many combinations of those sets that can be encountered 

while increasing fNd. That means that we can only undergo finitely 

many changes of the sets while increasing fNd. Eventually, we settle 

into a state where we can increase fNd without aNd increasing and 

without any change occurring in the index sets. 

However, this cannot be, because of the definition of the index 

sets. For i E C, to avoid a change in index sets, we must have 

AfNi > 0; otherwise, a sufficiently large step will move i into NC. 
The same logic requires that for i C NC we must have ~XaNi > 0,  

otherwise aNi will fall to zero. This yields ~fNiZ~aNi : 0 for all i. 

For the friction forces, if i E CF, then z~xaFi : 0 SO z~XaFi~fFi = O. 

F o r i  E NC +, we haveaFi < 0, requiringAaFi < Otoavoid 

having to move i from NC + to CF. Since Z~fN i ~ 0 for all i and 

AfFi = tzAfNi, we have Z~fF i > O. This yields ~xaFiZ~fF i < 0 for 

all i E NC +. A symmetric argument holds, yielding z~XaFi~X f Fi ~ 0 

for all i ~ NC-.  

Additionally, for at least one i in NC- or NC +, both AaFi and 

AfF~ are nonzero; otherwise, we could remove each side condition 

~fFi : ±#~XfNi and add the conditions AfF i : 0 and z~xaFi = 0 
without altering any other AfNi or AfFi. If we did so however, 

we would then be entitled to apply theorem 2, contradicting our 

assumption that and is nonincreasing. Thus, for at least one i we 

have •aFiAfFi strictly less than zero. Combining that with the fact 

that AaNiAfNi < 0 and AaFiAfFi < 0 for all i we obtain 

± n 
~xaNiz~xfNi "-[- ~ z~XaFiz~XfFi : A a r A f  < 0 .  ( 1 9 )  

i i 

Since Aa  -- A~xf, this gives us 

A a r A f  = A f r A A f  < 0. (20) 

Since A f  is nonzero and A is PSD, this is a contradiction (even i f A  

is singular). Thus, fNd cannot be increased without bound without 

eventually causing aNd to increase. D 

However, there is still the possibility of taking steps of size zero, 

and this is something that can and does occur when running the 

algorithm. Theorems 4 and 5 may fail to hold because of the side 

conditions AfF i : ±#AfNi .  The following scenario is possible: 

for some i E C, fN i decreases to zero. Accordingly, i is moved from 

C to NC. Upon computing A f  with the new index set, we may 

find that AaNi < 0 (which is ruled out in the frictionless case by 

theorem 4). As a result, a step of size zero is taken, and i is moved 

back into C. Clearly, the algorithm settles into a loop, alternately 

moving i between C and NC by taking a step of size zero each 

time. We cannot rule this behavior out in our algorithm for static 

friction• (This is also our current sticking point in trying to prove the 

conjecture that all systems with only static friction have solutions.) 

Fortunately, we have found a practical remedy for the problem. 

While attempting to establish the normal force or static friction 

conditions at some point k, if we observe that a variable i is al- 

ternating between C and NC (or between NC- and Cr or NC + 

and CF), we remove i from both C and NC (or from CF and NC- 
or NC+). Temporarily, we will "give up" trying to maintain the 

normal or static friction conditions at the ith contact point. We do 

so at the expense of making "negative progress," in the sense that 

although we will have achieved our immediate goal (establishing 

normal or friction conditions at a particular contact point), we will 

have done so by sacrificing normal and/or static friction conditions 

previously achieved at other contacts. The algorithm will be forced 

to reestablish the conditions at the points we have given up on at 

some later time. Since contact points no long necessarily keep 

their static friction or normal force conditions once established, we 

cannot prove (as yet) that this process will ever terminate. 

We have however used this algorithm on a large variety of 

problems, and we have never yet encountered any situation for 

which our algorithm went into an infinite loop. We speculate that 

either no such situation is possible, meaning that all systems with 

static friction have solutions, or it requires an extremely carefully 

constructed problem to cause our algorithm to loop (although the 

latter possibility does not necessarily imply that there is in fact no 

solution f) .  A third possibility of course is that we simply have not 
sufficiently exercised our simulation system. 

5.5 Algorithm for Computing Static Friction Forces 

We now describe the necessary modifications to Dantzig's algo- 

rithm to handle static friction forces. The modifications increase the 

complexity of the "logical" portion of the algorithm, but the heart 

of the numerical code, computing A f ,  remains the same. We give a 

description of the necessary modifications of each procedure of the 
algorithm. 

Modifications to compute-frictionless-forces 

The sets C, NC, CF, NC +, and NC- are all initially empty. The 

main loop continually scans for a contact point at which the normal 

or static friction conditions are not met. If no such points exist, the 

algorithm terminates, otherwise, drive-to-zero is called to establish 
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the conditions. Note that one must first establish the normal force 

conditions at a given point before establishing the static friction 

conditions there. In the event that the algorithm gives up on a 

contact point i which has the normal conditions established, it will 

do so because fNi is oscillating between C and NC. At this point 

fN~ = 0, and the normal conditions can be reestablished later. 

If however we give up on the static friction conditions at the ith 

contact point, fF i may be nonzero. (We cannot discontinuously 

set ffr~ to zero as this might break the conditions at all the other 

contact points.) Later, when the algorithm attempts to reestablish 

the static friction conditions at i, we first drive fF i to zero (simply bY 

instructing drive-to-zero to increase or decrease f F i until f ri = 0). 

Modifications to drive-to-zero 

This function is the same, except that there are more ways for 

the index sets to change. If the limiting constraint j returned by 

maxstep is the index of the force being driven, j is moved into C if 

it represents a normal force, and otherwise into CF, N C - ,  or NC + 
as appropriate; the procedure then returns. Otherwise, j is moved 

between C and NC if it represents a normal force, and otherwise 

between CF and N C -  or NC + as appropriate. I f j  attempts to move 

into a set it just came from, and the previous step size was zero, 

j is removed from whatever index set it was in. This is the point 

at which the algorithm temporarily gives up on maintaining the 

conditions at the jth contact point. 

Modifications to fdirection 

The modifications are minor. First, if we are driving a normal force, 

we set AfNd = 1, otherwise we set AfFd = =El, depending which 

way we want to drive the force. The index sets establish the set 

of equations to solve: for i E NC, we set ~xfNi = 0; for i E C 

we require AaNi : 0; for i E CF we require ~xaFi = 0; and for 

i E NC + U N C -  we require AfFi  : ± A f N r  

Modifications to maxstep 

The modifications here are obvious. For each memberj  in an index 

set, we compute the minimum step size s that causes j to need to 

change to another set. For the driving index d, we compute the step 

size that causes us to reach aNa = 0 for a normal force, and aFd = 0 

or fFd ---- d=#fNd for a friction force. The minimum step s that can 

be taken, along with the constraint j responsible for that limit, is 

returned. 

5.6 Three-dimensional Systems 
We have been assuming that our system is two-dimensional. The 

extension to three dimensions is straightforward.At each contact 

point, let us denote vectors u E R 3 tangent to the contact surface as 

pairs (x, y) by choosing a local coordinate system such that (1,0) 

and (0, 1) denote an orthornormal pair of tangent vectors. Let 

(axi, ayi) and (fxi, fyi) denote the relative tangential acceleration 

and friction force, respectively, at the ith contact point. In three 

dimensions, the Coulomb friction law requires that the friction force 

be at least partially opposed to the tangential acceleration; that 

is, 

(fxi, fYi) " (ax,, ayi) = fxiaxi q- fyiayi ~ O. (21) 

The optimization approach taken in previous work[10,3] makes 

enforc ing  I f F i [ ~ # f N i difficult, because 

[SFil ~- (fx~ -~- Sy~) ½ ~ #SNi (22) 

is a nonlinear constraint. However, this constraint is easily dealt 

with by our algorithm. In place of the two sets N C -  and NC +, 
for three-dimensional systems, we use a single set NCF. In two 

dimensions, given AfNi and AfFi,  determining the step size s so 

that fFi + SAfFi = #(fNi + SAfNi) is trivial. In three dimensions, 
computing s > 0 so that 

(fxi + S~fx i )  2 + (fYi + S~fy i )  2 = (~(fNi + S~fNi ) )  2 (23)  

is also trivial. As a result, it is easy to augment maxstep to move i 

into NCF when f.~ + fy~ ..~ (#fNi) 2 and also easy to detect when 

to move i back into CF. When i moves into NCF, we record the 

direction that the friction force is pointing in. As long as i remains 

in NCe, we require the friction force (fxi, .~'i) to maintain the same 

direction it had when i most recently entered NCr. Once i moves 

back into Cr, the pair (fxi, ff~'i) may point in any direction. 

To initially establish the static friction conditions for fxi and fyi, 

we first increase fxi (assuming axi < 0) until either i moves into 

NCF, or axi reaches zero. If i is in NCF, we are done, otherwise, we 

now adjust fyi so that either ay i reaches zero, or i moves into NCe. 
Reversing the order with which one considers x and y, or rotating 

the local coordinate system in the tangent plane may give rise to 

different solutions o f f  with this method. This is a consequence of 

the condition of equation (21), which does not completely specify 

the direction of friction when the tangential acceleration is nonzero 

at a contact point. 

6. Dynamic Friction 

If the relative tangential velocity at a contact point is nonzero, 

then dynamic friction occurs, as opposed to static friction. Re- 

gardless of the resulting tangential acceleration, the strength of the 

friction force satisfies 

IfF, I = #fNi, (24) 

with the direction of the force exactly opposite the relative tan- 

gential velocity. Since fFi is no longer an independent variable, 

when we formulate equation (18), we can replace all occurences 

of fF i with ± # f N  i. This replacement results in a matrix A which 
is unsymmetric and possibly indefinite as well. Because of this, 

systems with dynamic friction can fail to have solutions for the 

contact force magnitudes, requiring the application of an impulsive 

force. Another consequence of A losing symmetry and definiteness 

is that all the theorems in this paper which require A to be symmetric 

and PSD fail to hold. Remarkably, this turns out to be a fortunate 

development. 

Previously, Baraff[3] presented an algorithm for computing fric- 

tion forces and impulses for systems with dynamic friction but no 

static friction; the intent was to treat the problem of nonexistence 

of a solution f .  Baraff's method for computing either regular or 

impulsive forces for systems with dynamic friction involved using 

Lemke's algorithm[5] for solving LCP's. It is noted that Lemke's 

algorithm can terminate by encountering an "unbounded ray." The 

algorithm we have just presented for static friction requires abso- 

lutely no modifications to handle dynamic friction in this manner. 

An unbounded ray corresponds to finding a state in which one can 

drive a variable fNi or  fF i tO infinity without forcing aNi or aFi to 

zero, or inducing a change in the index sets C, NC, CF, NC + orNC- .  
When this occurs, it is easily detected, in that maxstep returns a step 

size of s = ~ .  Note that theorem 2 tells us that an infinite step 

cannot occur if A is symmetric and PSD. which means that infinite 

steps are possible only if there is dynamic friction in the system. 

Either our algorithm finds a solution f ,  or at some point s = c~, 

and the current force direction A f  matches the definition proposed 

by Baraff for suitably applying impulsive forces to systems with 

dynamic friction. As a result, we can unify our treatment of both 

dynamic and static friction in a single algorithm. We note in closing 

that we' feel that this is mostly a theoretical, and not a practical 

concern, because we have encountered this infinite driving mostly 

in situations where # has been made unrealistically large. 
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7. Results 
Our method for computing contact and friction forces is both 

reliable and fast. Like most pivoting algorithms (for example, the 

simplex algorithm for linear programming), worst-case problems 

resulting in exponential running times can be constructed. Empiri- 

cally however, the algorithm appears to require about O(n) calls to 

drive-to-zero for systems with and without friction. Our real interest 

however is the performance of the algorithm in actual practice. 

We have implemented the two-dimensional algorithm for static 

friction in an interactive setting and the three-dimensional algorithm 

in an offline simulation system. For frictionless systems, our so- 

lution algorithm compares favorably to Gaussian elimination with 

partial pivoting. Given a matrix A and vector b, the algorithm of 

section 4 takes only two to three times longer to compute the contact 

forces than it would take to solve the linear system Ax = b, using 

Gaussian elimination. Compared with the best QP methods we 

know of, our algorithm runs five to ten times faster, on problems up 

to size n = 150. For systems with friction, there is no comparable 

solution algorithm we can compare our algorithm to. 

Interactive simulations of 2½D mechanisms are shown in fig- 

ures 1 and 2. Fixed objects are colored in black. Objects in different 

"levels" are different colors (orange, purple, and green) and have 

no collision interaction. White circles indicate a bilateral point- 

to-point constraint. In figure 2, the green circles indicate contact 

points. Both systems can be simulated robustly at a consistent 

framerate of 20-30Hz on an SGI R4400 workstation. 
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Appendix A: Theorems 
In this appendix, we prove some theorems necessary to show that 

the algorithm for frictionless contact forces in section 4 terminates. 

For simplicity, we consider only the case when A is nonsingular and 

sketch the modifications necessary if A is singular. 

THEOREM 2 Let the symmetric positive definite matrix A be par- 

titioned as in equation (7). I f  x satisfies ANx = - v t ,  then the 

quantity VlrX + a is always positive. 

PROOF. Principal submatrices of A are positive definite, so a > 0, 

An is positive definite and the submatfix 

v~ r c~ 

is positive definite. Applying a Cholesky factorization, we can 

write 

( All Vl ) ( L I ,  0 ) ( LiTi Li2 ) (25) 
V T Ol = LIT2 LZ2 0 L22 

where LH and Li2 have the same dimensions as All and vl respec- 

tively, and L22 is a positive scalar. Note that since All = LHLirl 

is invertible, LH is also invertible and A~ l = L~rL~  1. From 

equation (25), we have vl = LHL12. Since A u x  = - v l ,  we also 

have x = --A~llVl. Then 

VITX -}- O~ = O~ -- vlTA~ilvI 
= c z -  (L~2Lir,)A~I(Lt1Li2) 

T T --T --I 
= o~- -L izLl lL  n Ltl LllLl2 

= 0~-- Llr2Li2. 

From equation (25) we have a = LiT2Li2 + L~2; thus 

v~x + c~ = c~ - L~2L,2 = L.~2. (26) 

Since L22 is positive, v~x + c~ is positive. [] 

Almost the same result applies when A is not inverlible. In this 

case, Al~ may be singular; note however that a Cholesky factoriza- 

tion can still be obtained although LII may now be singular. Since it 

is still the case that All = LHL~1, and L n  and LHLirj have exactly 

the same column space, the fact that vj = LllLj2 implies that vl is 

in the column space of AH. Thus, the equation AHx = --vl will 

always have a solution. Using basic continuity principles 4 it can be 

shown that in the singular case, v~x + a > 0. 

THEOREM 3 During a given call to drive-to-zero, the same index 

set C is never repeated. 

PROOF. Suppose some index set C was repeated during a call to 

drive-to-zero. Since CUNC remains constant during a given invoca- 

tion of drive-to-zero (except at the last step, where the driving index 

d is added to C), whenever C is repeated, NC is repeated as well. 

Let the values o f f  the first time and second time C is encountered 

be denoted f(1) and f(2) respectively. Let a (1) = A f  0) + b and 

a (2) ---- A f  (2) + b. The intuition of the proof is simple: if the 

algorithm could have increased f along a straight line from f 0 )  

t o f  (2), it would have done so. The fact that it did not means that 

increasing f r o m f  0) t o f  (z) must have required a change between C 

and NC. We show that this cannot happen because of the inherent 

convexity involved, contradicting the fact that C was repeated. 

Specifically, we have a} ~) ---- a} 2) = 0 for a l l / C  C and a} ~) > 0 

anda} 2) _> 0 f o r a l l i  C NC. Given C a n d N C ,  the vector f is 

increased in the direction A f  where A f i  = 0 for i E NC, A fd  = 1 

and Aai = 0 for i C C. However, the vector 

f~2) _ f o )  (27) 
Y -- f~2) _ ade(l) 

fulfills all the conditions for A f ,  since Yd = 1, Yi = 0 for i E NC, 

and the vector 

A(f(2) _ f ( I ) )  a(2) _ a O) 
Ay -- -- (28) 

s ? -  ') 2 ' -  ') 

has its ith component equal to zero for all i E C. Thus, when C was 

first encountered, A f  = y was chosen. If aa = 0 could have been 

achieved by increasingf in this direction, drive-to-zero would have 

terminated, and C would not have been repeated. This means that 

in increasing f r o m f  O) in the direction A f  = y, it was necessary to 

change C and NC prior to reaching f(2); that is for some value t in 

the range 0 < t < 1, either 

(Aft( ,)  + t(f(2) _ f ( l ) ) )  + b)j < 0 (29) 

for somej  E NC or 

(f( ' )  + t ( f  (2) - f ( ' ) ) ) j  < 0 (30) 

for somej  E C. However, since neither of the above two equations 

are satisfied when t = 0 or t = 1, and the equations involve only 

4If A is a symmetric PSD singular matrix, then there exist arbitrarily small 
perturbation matrices e such that A + c is symmetric positive definite (and 

hence nonsingular). 
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linear relations and inequalities, by convexity, neither of the two 

above equations are satisfied for any value 0 < t < 1. This 

contradicts the assumption that the same set C was encountered 

twice during a call of drive-to-zero. [] 

This theorem also extends to the algorithm for static friction in 

section 5. Namely, we claim that the index sets C, NC, CF, NC- 

and NC + are never repeated while driving a given force variable 

fNa or fra. The proof is exactly the same, the only difference being 

that extra conditions of the form AfFi = :kz#AfN i may be present. 

However, given that f 0) and f(2) satisfy these extra conditions, any 

vector f(1) +t(f(2) _ f 0 ) )  for0 < t < 1 will satisfy these properties 

as well. Again, this means that the algorithm should have gone 

directly from f 0 )  to f(2), contradicting the fact that the index sets 

were repeated. 

The last two theorems guarantee that the frictionless algorithm 

never takes steps of size zero, as long as the system is not degener- 

ate. A degenerate problem (not to be confused with A being singu- 

lar) is one that would require the algorithm to to make two or more 

changes in the index sets C and NC at exactly the same time (for 

example, if two normal forces decreased to zero simultaneously). 

When degeneracy occurs, it is possible that some number of size 

zero steps are taken. Cottle[5, section 4.2, pages 248-251] proves 

that the frictionless algorithm cannot loop due to degeneracy. 

Proving that a nondegenerate problem never takes steps of size 

zero is relatively straightforward. We need to show that whenever 

i ¢ C moves to NC, ai immediately increases. As a result, i cannot 

immediately move back to C without taking a step of nonzero size. 

Similarly, we need to show that whenever i G NC moves to C, fi 

immediately increases. 

THEOREM 4 In a nondegenerate problem, when an index i moves 

from C to NC, ai immediately increases. 

PROOF. Without loss of generality, let C = { 1,2,.. . ,  k - 1 } and 

let us assume that the kth contact has just moved from C to NC. 

When k was still in C, we computed z~xfi by solving the system 

AIIX = --Vl and setting Af i  = xi. Let All and x be partitioned 

by 

(. w)(u)(z) 
A l l x :  w r fl y : C : - - V I  (31) 

where B E R (k-1)x(k- l ) ,  u , w , z  C R k and y, fl, and c are scalars. 

This yields 

u = B - l ( z  - wy)  and w r u  = c - fly (32) 

or 
w r B - t ( z  - wy)  = c - fly. (33)  

Since this A f  caused fk to decrease to zero, Ark = y must have 

been negative. 

Once k moves into NC and we recompute Aff, we need to show 

the new Aa~ will be positive. Let 6 and S' denote the new values 

computed for u and y when we resolve for A f .  Since k is now in 

NC, we set Ark = ~ = 0, and solve 

Bfi + w~  = z (34) 

to obtain 
fi = B - I z .  (35)  

From equations (8) and (31), the new Aak is 

Aak : wrfi + fl.~ -- c = wTfi -- c. (36) 

Substituting from equations (35) and (33), we have 

Aak = wTB-Iz  -- c 

= - - w r B - l w y - -  fly (37) 

-- - - y ( w T B - I w + f i ) .  

Since All is positive definite, B - I  is positive definite, and fl is 

positive, so w r B - t w  + / 3  must be positive. Since y is negative, 

- y  is positive, and we conclude that Aak > 0. [] 

This theorem extends immediately to the case when A is singular, 

because the index sets C encountered never produce a singular 

submatrix All. 

THEOREM 5 In a nondegenerate problem, when an index i moves 

from NC to C, f i immediately increases. 

PROOF. The proof is constructed in the same way as the proof of 

the previous theorem. [] 
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Figure 1: Time-lapse simulation sequence ofa blockfeeder. 
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Figure 2: Time-lapse simulation sequence of a double-action jack. 


