
COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1994

94
Fast Contact Force Computation for

Nonpenetrating Rigid Bodies

David Baraff

Robotics Institute

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract
A new algorithm for computing contact forces between solid

objects with friction is presented. The algorithm allows a mix

of contact points with static and dynamic friction. In contrast to

previous approaches, the problem of computing contact forces is not

transformed into an optimization problem. Because of this, the need

for sophisticated optimization software packages is eliminated. For

both systems with and without friction, the algorithm has proven

to be considerably faster, simpler, and more reliable than previous

approaches to the problem. In particular, implementation of the

algorithm by nonspecialists in numerical programming is quite fea-

sible.

1. Introduction
In recent work, we have established the viability of using analyt-

ical methods to simulate rigid body motion with contact[I,2,3]. In

situations involving only bilateral constraints (commonly referred

to as "equality constraints"), analytical methods require solving

systems of simultaneous linear equations. Bilateral constraints typ-

ically arise in representing idealized geometric connections such

as universal joints, point-to-surface constraints etc. For systems

with contact, unilateral (or "inequality") constraints are required

to prevent adjoining bodies from interpenetrating. In turn, the

simultaenous linear equations arising from a system of only bilateral

constraints must be augmented to reflect the unilateral constraints;

the result is in general an inequality-constrained nonlinear mini-

mization problem.

However, analytical techniques for systems with contact have

yet to really catch on in the graphics/simulation community. We

believe that this is because of the perceived practical and theoretical

complexities of using analytical techniques in systems with contact.

This paper has two goals, one of which is to address these concerns:

in particular, we present analytical methods for systems with contact

that can be practically implemented by those of us (such as the

author) who are not specialists in numerical analysis or optimiza-

tion. These methods are simpler, reliable, and faster than previous

methods used for either systems with friction, or systems without

friction.

Our other goal is to extend and improve previous algorithms for

computing contact forces with friction[3]. We present a simple, fast

algorithm for computing contact forces with friction. The restriction

of our algorithm to the frictionless case is equivalent to an algorithm

described in Cottle and Dantzig[4] (but attributed to Dantzig) for

Permission to copy without fee all o r par t of this material is granted

provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by

permission of the Association for Computing Machinery. To copy

otherwise, or to republish, requires a fee and/or specific permission.

solving linear complementarity problems. It is not our intention

to reinvent the wheel; however, it is necessary to first understand

Dantzig's algorithm and why it works for our frictionless sytems

before going on to consider the more general solution algorithm
we propose to deal with friction. We give a physical motivation

for Dantzig's algorithm and discuss its properties and implemen-

tation in section 4. For frictionless systems, our implementation

of Dantzig's algorithm compares very favorably with the use of

large-scale, sophisticated numerical optimization packages cited by

previous systems[11,7,8,6]. In particular, for a system with n unilat-

eral constraints, our implementation tends to require approximately

three times the work required to solve a square linear system of

size n using Gaussian elimination. Most importantly, Dantzig's

algorithm, and our extensions to it for systems with friction, are

sufficiently simple that nonspecialists in numerical programming

can implement them on their own; this is most assuredly not true

of the previously cited large-scale optimization packages.

Interactive systems with bilateral constraints are common, and

there is no reason that moderately complicated interactive simu-

lation with collision and contact cannot be achieved as well. We

strongly believe that using our algorithms, interactive simulations

with contact and friction are practical. We support this claim by

demonstrating the first known system for interactive simulations

involving contact and a correct model of Coulomb friction.

2. Background and Motivation
LiStstedt[10] represents the first attempt to compute friction forces

in an analytical setting, by using quadratic programming to compute

friction forces based on a simplification of the Coulomb friction

model. Baraff[3] also proposed analytical methods for dealing with

friction forces and presents algorithms that deal with dynamic fric-

tion (also known as sliding friction) and static friction (also known

as dry friction). The results for dynamic friction were the more

comprehensive of the two, and the paper readily acknowledges that

the method lJresented for computing contact forces with static fric-

tion (a Gauss-Seidel-like iterative procedure) was not very reliable.

The method also required an approximation for three-dimensional

systems (but not for planar systems) that resulted in anisotropic

friction. Finally, the results presented did not fully exploit earlier

discoveries concerning systems with only dynamic friction, and no

static friction.

In this paper, we present a method for computing contact forces

with both dynamic and static friction that is considerably more

robust than previous methods. Our method requires no approxima-

tions for three-dimensional systems, and is much simpler and faster

than previous methods. We were extremely surprised to find that

our implementation of the method, applied to frictionless systems,

was a large improvement compared with the use of large-scale opti-

mization software packages, both in terms of speed and, especially,

© 1994 ACM-0-89791-667-0/94/007/0023 $01.50 23
!

Permission to make digital or hard copies of part or
all of this work or personal or classroom use is
granted without fee provided that copies are not made
or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGGRAPH ’94, July 24-29, Orlando, Florida
© ACM 1994 ISBN: 0-89791-667-0 ...$5.00

SIGGRAPH 94, Orlando, Florida, July 24-29, 1994

simplicity. 1 Previous simulation systems for frictionless contact

that we know of have used either heuristic solution methods based

on linear programming[11], quadratic programming algorithms[7],

or constrained linear least-squares algorithms[6]. In all cases the

numerical software required is sufficiently complicated that either

public-domain or commercially available software packages are

required. The problems with this are:

• Serious implementations of linear programming codes are

much less common than serious implementations for solving

linear systems. Serious implementations for quadratic pro-

gramming are even rarer.

• A fair amount of mathematical and coding sophistication is

required to interface the numerical software package with the

simulation software. In some cases, the effort required for an

efficient interface was prohibitively high[12].

• The packages obtained contained a large number of adjustable

parameters such as numerical tolerances, iteration limits, etc.

It is not uncommon for certain contact-force computations to

fail with one set of parameters, while succeeding with another,

or for a problem to be solvable using one software package,

but unsolvable using a different package. In our past work in

offline motion simulation, reliability has been a vexing, but

tolerable issue: if a given simulation fails to run, one can

either alter the initial conditions slightly, hoping to avoid the

specific configuration which caused the difficulty, or modify

the software itself prior to rerunning the simulation. This

approach is clearly not practical in an interactive setting.

• Along the same lines, it is difficult to isolate numerical prob-

lems during simulation, because of the complexity of the soft-

ware packages. Unless great effort is put into understanding

the internals of the code, the user is faced with a "black box."

This is desirable for black-box code that is bullet-proof, but a

serious impediment when the code is not.

Given these hurdles, it is not surprising that analytical methods

for systems with contact have not caught on yet. Our recent work

has taught us that the difficulties encountered are, in a sense, self-

created. In computing contact forces via numerical optimization, we

translate a very specific problem (contact-force computation) into a

much more general problem (numerical optimization). The trans-

lation loses some of the specific structure of the original problem,

making the solution task more difficult. The approach we take in

this paper is to avoid (as much as possible) abstracting our specific

problem into a more general problem. The result is an algorithm

that solves a narrower range of problems than general purpose

optimization software, but is faster, more reliable, and considerably

easier to implement.

3. Contact Model
In this section we will define the structure of the simplest problem

we deal with: a system of frictionless bodies contacting at n distinct

points. For each contact point p~ between two bodies, let the scalar

ai denote the relative acceleration between the bodies normal to the

contact surface at pi. (We will not consider the question of impact

in this paper; thus, we assume that the relative normal velocity of

bodies at each contact is zero.) We adopt the convention that a

positive acceleration ai indicates that the two bodies are breaking

contact at Pi. Correspondingly, ai < 0 indicates that the bodies

are accelerating so as to interpenetrate. An acceleration of ai = 0
indicates that the bodies have zero normal acceleration at pi and

1Actually, not being numerical specialists, any working numerical software
we were capable of creating would have to be simpler. We automatically
assumed however that such software would be slower than the more com-
prehensive packages written by experts in the field.

remain in contact (although the relative tangential acceleration may

be nonzero). To prevent interpenetration we require ai > 0 for each

contact point.

For frictionless systems, the force acting between two bodies at

a contact point is normal to the contact surface. We denote the

magnitude of the normal force between the bodies at pi by the scalar

fi. A positive fi indicates a repulsive force between the bodies at

Pi, while a negative fi indicates an attractive force. Since contact

forces must be repulsive, a necessary condition on fi is fi > O. Also,

since frictionless contact forces are conservative, we must add the

condition fiai = 0 for each contact point. This condition requires

that at least one of f i and a~ be zero for each contact: either ai = 0
and contact remains, or ai > 0 , contact is broken, and fi is zero.

We will denote the n-vector collection of ai 's as a; the ith element

of a is ai. The vector f is the collection of the f / s . (In general,

boldface type denotes matrices and vectors; the ith element of a

vector b is the scalar bi, written in regular type. The symbol 0

denotes on appropriately sized vector or matrix of zeros.) The

vectors a and f are linearly related; we can write

a - - - - A f + b (1)

where A C R nx" is symmetric and positive semidefinite (PSD),

and b C R" is a vector in the column space of A (that is, b = Ax

for some vector x). The matrix A reflects the masses and contact

geometries of the bodies, while b reflects the external and inertial

forces in the system. At any instant of time, A and b are known

quantities w h i l e f is the unknown we are interested in solving for.

The problem of determining contact forces is therefore the prob-

lem of computing a vector f satisfying the conditions

ai > O, f i > 0 and f iai = 0 (2)

for each contact point. We will call equation (2) the normal force
conditions. Using equation (1), we can phrase the problem of

determining a suitable f in several forms. First, since fi and ai are

constrained to be nonnegative, the requirement that f~ai = 0 for

each i is equivalent to requiring that

n

fiai = f r a = 0 (3)

i=1

since no cancellation can occur. Using equation (1), we can say that

f must satisfy the conditions

A f + b _ > 0 , f > 0 and f r (A f + b) : O . (4)

Equation (4) defines what is known as a linear complementarity

problem (LCP). Thus one solution method for computing contact

forces is to formulate and solve the LCP of equation (4). We

can also compute contact forces by considering the conditions of

equation (2) as a quadratic pi'ogram (QP): we can equivalently say

that a vector f satisfying equation (4) is a solution to the quadratic

program

min f r (A f +b) subjectto { A f + b _ > 0 }
s f > 0 • (5)

Phrasing the computation o f f as a QP is a natural choice. (The

problem of solving QP's has received more attention than the prob-

lem of solving LCP's. Both problems are NP-hard in general but

can be practically solved when A is PSD.) Having transformed the

problem of computing contact forces into a QP, we have a variety of

techniques available for solving the QP. Unfortunately, by moving
T to an optimization problem--minimizef (A f + b) - - w e necessarily

lose sight of the original condition f~a~ ---- 0 for each contact point.

Because of this, we are solving a more general, and thus harder,

24

COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1994

problem than we really need to. In developing an algorithm, we

prefer to regard the relationship between f and a in terms of the

n separate conditions f i a i = 0 in equation (2) rather than the
single constraint f r a = 0 in equation (4) or the minimization of

f r a in equation (5). In the next section, we describe a physically-

motivated method for solving equation (2), along with a practical

implementation. Following this, we consider friction in section 5.

4. Frictionless Systems

In this section we present a restriction of our algorithm for com-

puting contact forces with friction to the frictionless case. We also

sketch a proof of correctness. We extend the algorithm in section 5

to handle static friction, and dynamic friction in section 6. A de-

scription of Dantzig's algorithm for solving LCP's, and an excellent

treatment of LCP's in general can be found in Cottle et al.[5].

4.1 Algorithm Outline

Dantzig's algorithm for solving LCP's is related to pivoting

methods used to solve linear and quadratic programs. The major

difference is that all linear and most quadratic programming algo-

rithms begin by first finding a solution that satisfies the constraints

of the problem (for us, A f + b _> 0 and f > 0) and then trying to

minimize the objective function (for us, f r A f + f r b) .

In contrast, Dantzig's algorithm, as applied to the problem of

computing contact forces, works as follows. Initially, all contact

points but the first are ignored, and fi is set to zero for all i. The

algorithm begins by computing a value for f l that satisfies the nor-

mal force conditions---equation (2) - - for i = 1, without worrying

about those conditions holding for any other i. Next, the algorithm

computes a value for f2 that satisfies the normal force conditions for

i = 2 while maintaining the conditions for i = 1. This may require

modification of f t . The algorithm continues in this fashion: at any

point, the conditions at contact points 1 < i < k - 1 are satisfied

for some k and fi = 0 for i > k, and the algorithm determines fk,

possibly altering some of the f i ' s for i < k, so that the conditions

now hold for all i < k. When the conditions hold for all n contact

points, the algorithm terminates.

To make this concrete, imagine that we have so far computed

values f l through f , - i so that the normal force conditions hold

everywhere except possibly at the nth contact point. Suppose that

with f~ still set to zero we have a, > 0. If so, we immediately

have a so lu t ionf that satisfies the normal conditions at all n contact

points.

Suppose however that for f , -- 0 we have a, < 0. Our physical

intuition tells us that since we currently have f , ---- 0, the problem

is that the nth contact force is not doing its fair share. We must

increase f , until we reach the point that a , is zero, and we must

do so without violating the normal force conditions at any of the
first n - 1 contact points. Since increasing f , may change some

of the ai's, we will generally need to modify the other f i variables

as we increase f , . Our goal is to seek a strength for f , that is just

sufficient to cause an to be zero. (We emphasize that this is not a

process which takes place over some time interval to to tl during a

simulation; rather, we are considering the proper value t h a t f should

assume at a specific instant in time.)

The adjustments we need to make to f~ through f , - I as we

increase f , are simple to calculate. Since the order in which contacts

are numbered is arbitrary, let us imagine that for the current values

of the f i ' s we have al = a2 = ak = 0 for some value

0 < k < n - 1, and for all k + 1 < i < n - 1, we have ai > O.

Remember that a~ < 0. To simplify bookkeeping, we will employ

two disjoint index sets C and NC. At this point in the algorithm,

let C = {1,2 , . . . ,k} ; thus, ai = 0 for all i E C. Similarly, let

NC = {k + 1,k + 2, ...,n - 1}; since ai > 0 for all i C NC,

and we have assumed that fiai = 0 for i < n - 1, it must be that

f i = 0 for all i E NC. Throughout the algorithm, we will attempt to

maintain ai = 0 whenever i C C. Similarly, we will try to maintain

fi = 0 whenever i C NC. When i C C, we say that the ith contact

point is "clamped," and when i C NC we say the ith contact point

is "unclamped." (If i is in neither, the ith contact point is currently

being ignored.)

For a unit increase of fn (that is, if we increase fn to f , + 1) we

must adjust each f i by some amount z2xfi. Let A f , = 1, and let us

set A f i = 0 for all i C NC, since we wish to maintain f i = 0 for

i E NC. We wish to choose the remaining A l i ' s for i E C such that

Aai = 0 for i E C. The collection A a of the Aai ' s is defined by

A a - - A (f + A f) + b - (A f + b) = A A f (6)

where A f denotes the collection of the Ali ' s .

Intuitively, we picture the force fi at a clamped contact point

undergoing some variation in order to maintain ai -- 0, while the

force at an unclamped contact remains zero. Modifications of this

sort will maintain the invariant that fiai = 0 for all 1 < i < n - 1.

Since C currently has k elements, computing the unspecified A f / s

requires solving k linear equations in k unknowns. (In general, C

will vary in size during the course of the algorithm. At any point

in the algorithm when we are establishing the conditions at the rth

contact, C will contain r - 1 or fewer elements.)

However, we also need to maintain the conditions f i > 0 and

ai > O. Thus, as we increase f , , we may find that for some i C C,

fi has decreased to zero. At this point, it may be necessary to

unclamp this contact by removing i from C and adding it to NC,

so that we do not cause f i to decrease any further. Conversely, we

may find that for some i 6 NC, ai has decreased to a value of zero.

In this case, we will wish to clamp the contact by moving i from

NC into C, preventing ai from decreasing any further and becoming

negative. The process of moving the various indices between C and

NC is exactly the numerical process known as pivoting. Given that

we start with suitable values for f l through f , - l , computing f , is

straightforward. We set A f , = 1 and ~xf i = 0 for i E NC, and

solve for the Af i ' s for i E C so that z~xai = 0 for all i E C. Next,

we choose the smallest scalar s > 0 such that increasing f by sz~f

causes either a , to reach zero, or some index i to move between C

and NC. If a, has reached zero, we are done; otherwise, we change

the index sets C and NC, and loop back to continue increasing f , .

We now describe the process of computing A f along with the
step size s. After this, we present the complete algorithm and discuss

its properties.

4.2 The Pivot Step

The relation between the vectors a a n d f is given by a = A. f+ b.

Let us continue with our example in which C = { 1,2, . . . , k} and

NC = {k + 1, k + 2, ..., n - 1 }. We need to compute A f and then

determine how large a multiple of A f we can add to f . Currently,

we have an < 0. Let us partition A and A f by writing

A = A~2 A22 v2 and A f = 0 (7)

1

where All and A22 are square symmetric matrices, vi E R k,

v2 C R ("- l) -k , a is a scalar, and x E R k is what we will need

to compute. The linear system A a = A A f has the form (x)
A a = A A f = A 0 = A~2x + v2 . (8)

1 vtrx + c~

Since the first k components of A a need to be zero, we require

A11x + Vl = 0; equivalently, we must solve

AllX = --Vl.

25

SIGGRAPH 94, Orlando, Florida, July 24-29, 1994

After solving equation (9), we compute A a ---- A A f , and are

ready to find the maximum step size parameter s we can scale A f

by. For each i C C, if Af i < 0, then the force at the ith contact point

is decreasing. The maximum step s we can take without forcing fi

negative is

f i (1 O)
S < --Af i"

Similarly, for each i E NC, if zXai < 0 then the acceleration ai is

decreasing; the maximum step is limited by

s < a_._j__ (11)
-- --Aai"

Since we do not wish a. to exceed zero, if A a . > 0, the maximum

step is limited by

s < -a_~. (12)
- - A a n '

Once we determine s, we increase f by s A f , which causes a to

increase by A (s A f) = sAa. If this causes a change in the index sets

C and NC, we make the required change and continue to increase

f . . Otherwise, a. has achieved zero.

4.3 A Pseudo-code Implementation

The entire algorithm is described below in pseudo-code. The

main loop of the algorithm is simply:

function compute-forces

f = 0
a = b

C = N C = 0

while 3d such that ad < 0

drive-to-zero(d)

The function drive-to-zero increases fd until ad is zero. The

direction of change for the force, A f , is computed by fdirection.
The function maxstep determines the maximum step size s, and the

constraint j responsible for limiting s. I f j is in C or NC, j is moved

from one to the other; otherwise,j = d, meaning ae has been driven

to zero, and drive-to-zero returns:

function drive-to-zero(d)

Ll:

A f = fdirection (d)

A a = A A f

(s, j) = maxstep(f, a, A f , Aa , d)

f = f + s A f
a = a + sAa

i f j E C

C - - - - C - { j }

NC = NCU { j }

goto L1

else i f j C NC

NC ---- NC - { j }

C = C U { j }

goto Li
else j must be d, implying aa : 0

C = C U { j }

return

The function fdirection computes A f . We write Acc to denote

the submatrix of A obtained by deleting the j th row and column of

A for all j ~ C. Similarly, Acd denotes the dth column of A with

e lement j deleted for a l l j 9~ C. The vector x represents the change

in contact force magnitudes at the clamped contacts. The transfer

of x into A f is the reverse of the process by which elements are

removed from the dth column of A to form Acd. (That is, for all

i C C, we assign to Af i the element of x corresponding to the ith

contact.)

funetion fdirection(d)

A f = 0 set all A f i to zero

A f d : 1
let Air : Acc

let Vl = Acd
solve A n x : -V l

transfer x into A f

return A f

Last, the function maxstep returns a pair (s,j) with s the maxi-

mum step size that can be taken in the direction A f a n d j the index

of the contact point limiting the step size s:

function maxstep(f, a, A f , Aa , d)

s = o o

j = - I

i f A a d > 0

j : d

S = --ad/Aad
f o r / C C

if A f i < 0

s' = - f i / A f i
i fs ' < s

S : S t

j = i

for i C NC

if ~ a i < 0

S t = --ai /Aai

i f s' < s
S : S t

j = i

return (s , j)

It is clear that if the algorithm terminates, the so lu t ionf will yield

ai > 0 for all i. Since each fl is initially zero and is prevented from

decreasing below zero by maxstep, at termination fi > 0 for all i.

Last, at termination, f iai = 0 for all i since either i E C and al = O,

or/¢~ C and f i = O.
The only step of the algorithm requiring substantial coding is

fdirection, which requires forming and solving a square linear sys-

tem. Remarkably, even if A is singular (and A is often extremely

rank-deficient in our simulations), the submatrices All encountered

in the frictionless case are never singular. This is a consequence of

b being in the column space of A.

4.4 Termination of the Algorithm

We will quickly sketch why the algorithm we have described

must always terminate, with details supplied in appendix A. Exam-

ining the algorithm, the two critical steps are solving AllX = -V l

and computing the step size s. First off, could the algorithm fail

because it could not compute x? Since A is symmetric PSD, if A

is nonsingular then All is nonsingular and x exists. Even if A is

singular, the submatrices AlL considered by the algorithm are never

singular, as long as b lies in the column space of A. x As a result,

the system AllX : -Vl can always be solved. This is however a

theoretical result. In actual practice, when A is singular it is possible

2A complete proof of this is somewhat involved. The central idea is that if

thejth contact point has not yet been considered and represents a "redundant

constraint" (that is, adding j into C makes Air singular) then aj will not be
negative, so there will be no need to call drive-to-zero on j. Similarly, if

j G NC and moving j to C would make All singular, it will not be the case

that aj tries to decrease below zero, requiringj to be placed in C. Essentially,

the nonzero fi's will do the work of keeping aj from becoming negative,

without fj having to become positive, allowing j to remain outside of C.

26

COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1994

J

P

that roundoff errors in the algorithm may cause an index j to enter

C so that the resulting matrix A11 is singular. This is a very rare

occurrence, but even so, it does not present a practical problem.

Appendix A establishes that the vector Vl is always in the column

space of the submatrix All arising from any index set C. Thus, even

if At1 is singular, the equation All x = - v l is well-conditioned, and

is easily solved by standard factorization methods) In essence, we

assert that "All is never singular, and even if it is, AHx = - v l is

still easily solved."

Since it is always possible to solve A~lX = - v l and obtain

A f , the real question of termination must depend on each call to

drive-to-zero being able to force ad to zero. To avoid being bogged

down in details, let us assume that A is nonsingular, with specific

proofs deferred to appendix A; additionally, appendix A discusses

the necessary extensions to cover the case when A is singular.

Although the singular versus the nonsingular cases require slightly

different proofs, we emphasize that the algorithm itself remains

unchanged; that is, the algorithm we have just described works for

both positive definite and positive semidefinite A.

The most important question to consider is whether increasing f

by an amount s A f actually increases ad. Given a change s A f in f ,

from equation (8) the increase in ad is

s(vlrx -F c~) : sAad. (13)

Theorem 2 shows that if A is positive definite, VlrX + c~ is always

positive. Thus, ad will increase as long as s is always positive. Since

Vl r + ~ = Aad > 0, this shows that maxstep never returns with

s---- ~ and j---- - 1 .

Can the algorithm take steps of size zero? In order for maxstep

to return s = 0, it would have to the case that either fi = 0 and

A f i < 0 for some i C C or ai : 0 and z~xai < 0 for some

i E NC. Theorems 4 and 5 shows that this cannot happen. Thus, s

is always positive. Therefore, the only way for ad to not reach zero

is if drive-to-zero takes an infinite number of steps s A f that result

in in ad converging to some limit less than or equal to zero. This

possibility is also ruled out, since theorem 3 in appendix A shows

that the set C of clamped contact points is never repeated during a

given call to drive-to-zero. Thus, drive-to-zero can iterate only a

finite number of times before ad reaches zero.

4.5 Implementation Details
The algorithm just described is very simple to implement and

requires relatively little code. The most complicated part involves

forming and solving the linear system Al lx = -Vl . This involves

some straightforward bookkeeping of the indices in C and NC to

correctly form A11 and then distribute the components of x into A f .

It is important to note that each call to fdirection will involve an

index set C that differs from the previous index set C by only a

single element. This means that each linear system Attx -- - v t

will differ from the previous system only by a single row and

column. Although each such system can be solved independently

(for example, using Cholesky decomposition), for large problems it

is more efficient to use an incremental approach.

In keeping with our assertion that nonspecialists can easily im-

plement the algorithm we describe, we note that our initial imple-

mentation simply used Gaussian elimination, which we found to

be completely satisfactory. (Anticipating the developments of the

next section when Atx is nonsymmetrical, we did not bother to

use a Cholesky factorization, although this would have performed

significantly faster.)

Gill et al. [9] describe a package called LUSOL that incrementally

factors a sparse matrix A into the form A = LU where L is lower

3Since An is both symmetric and PSD, All will still have a Cholesky

factofization All = LL T, although L is singular. Since L can be simply
and reliably computed, this is one possible way of solving for x.

triangular and U is upper triangle. Given such a factorization, if A

has dimension n and a new row and column are added to A, or a row

and column are eliminated from A, a factorization of the new matrix

can be recomputed quickly. Unfortunately, the coding effort for

LUSOL is large. One of the authors of the LUSOL package was kind

enough to provide us with a modified version of the software[13]

that treats A as a dense matrix and computes a factorization LA = U

(where L is no longer triangular). In the dense case, an updated fac-

torization is obtained in O(n 2) time when A is altered. The modified

version contains a reasonably small amount of code. For a serious

implementation we highly recommend the use of an incremental

factorization routine.

In addition, it is trivial to make the algorithm handle standard

bilateral constraints. For a bilateral constraint, we introduce a pair

fi and ai, and we constrain ai to always be zero while letting fi be

either positive or negative. Given k such constraints, we initially

solve a square linear system of size k to compute compute initial

values for all the bilateral fi's so that all the corresponding a~'s are

zero. Each such i is placed into C at the beginning of the algorithm.

In maxstep, we ignore each index i that is a bilateral constraint, since

we do not care if that fg becomes negative. As a result, the bilateral

i's always stay in C and the bilateral ai's are always zero. Exactly

the same modification can be made in the algorithm presented in the

next section.

5. Static Friction
The algorithm of the previous section can be considered a con-

structive proof that there exists a solution f satisfying the normal

force conditions for any frictionless system. The algorithm pre-

sented in this section grew out of an attempt to prove the conjecture

that all systems with static friction, but no dynamic friction, also

possess solutions. (The conjecture is false for systems with dynamic

friction.) The conjecture currently remains unproven. We cannot

prove that the algorithm we present for computing static friction

forces will always terminate; if we could, that in itself would con-

stitute a proof of the conjecture. On the other hand, we have not yet

seen the algorithm fail, so that the algorithm is at least practical (for

the range of simulations we have attempted so far).

Let us consider the situation when there is friction at a contact

point, The friction force at a point acts tangential to the contact

surface. We will denote the magnitude of the friction force at the

ith contact by fFi, and the magnitude of the relative acceleration in

the tangent plane as aFi. We will also denote the magnitude of the

normal force as fNi, rather than fi, and the magnitude of the normal

acceleration as aNi rather than ai. To specify the tangential acceler-

ation and friction force completely in a three-dimensional system,

we would also need to specify the direction of the acceleration and

friction force in the tangent plane. For simplicity, we will begin by

dealing with two-dimensional systems. At each contact point, let ti

be a unit vector tangent to the contact surface; ti is unique except for

a choice of sign. In a two dimensional system, we will treat fFi and

aFi as signed quantities. A friction force magnitude of fF i denotes

a friction force of fFiti, and an acceleration magnitude ar~ denotes

an acceleration of aFiti. Thus, if aFi and fF i have the same sign,

then the friction force and tangential acceleration point in the same

direction.

Static friction occurs when the relative tangential velocity at a

contact point is zero; otherwise, the friction is called dynamic fric-

tion. In this section, we will consider only static friction. Any con-

figuration of objects that is initially at rest will have static friction,

but no dynamic friction. Additionally, a "first-order" (or quasistatic)

simulation world where force and velocity are related by f = mv

also has static friction but never any dynamic friction

27

SIGGRAPH 94, Orlando, Florida, July 24-29, 1994

5.1 Static Friction Conditions

At a contact point with static friction, the magnitude VFg of the

relative tangential velocity is zero. If the effect of all the forces in

the system produces ari = 0, meaning that the condition vFi = 0 is

being maintained, then fei need satisfy only

-- #fNi <_ fFi _< #fNi (14)

where the scalar # denotes the coefficient of friction at the contact

point. (We will not bother to index # over the contact points,

although this is easily done.) If the tangential acceleration is not

zero, then the conditions on ffei are more demanding: [fFi[must be

equal to #fNi and f t i must have sign opposite that of ari.
Following the pattem of section 4, we write that fNi, aN~, fFi and

aFi must satisfy the normal force conditions

fNi ~ O, aNi >_ 0 and fNiaNi ---- 0, (15)

as well as

IlEal ~ ~fNi, aFifei _< 0 and avi(#fNi -- IlEal) = 0. (16)

The condition aF~(#fNi -- IfF, I) = 0 forces fFi to have magnitude

f Ni if aFi is nonzero. The condition aFif F i _< 0 forces aFi and f Fi tO

have opposite sign, which means that the friction force opposes the

tangential acceleration. We will call the conditions of equation (16)

the static friction conditions; unless specifically noted, a contact

point said to satisfy the static friction conditions implies satisfaction

of the normal force conditions as well.

The approach taken by previous attempts[10,3] at modeling static

friction has been to form an optimization problem. If we define the

quantity scalar z by

z = E (l a r i [(# f N i - ISFA) + fNiaNi) (1 7)

i

then the problem becomes

m i n z subjectto { fN i - ->O} and { aeifFi-<O }
f~',,fei aNi > 0 ISF, I _< l , tfNi "

Computing contact forces in this manner does not appear to be

practical.

5.2 Algorithm Outline

We believe it is better to deal with the problem as we did in

the frictionless case: as a number of separate conditions. Let us

consider the static friction condition with that perspective. We can

state the conditions on a l l and fFi by considering that the "goal" of

the friction force is to keep the tangential acceleration as small as

possible, under the restriction I fEll < ~ fN i. Accordingly, whenever

aFg is nonzero we insist that the friction force do its utmost to

"make" aF~ be zero by requiring that the friction force push as hard

as possible opposite the tangential acceleration. The reason that

we find this a useful characterization is that it is essentially the
same characterization we employed in section 4 to motivate the

development of Dantzig's algorithm.

In section 4.1, we assumed that the normal force conditions were

initially met for contacts 1 through n - 1 and began with fg . = 0.

If this resulted in a s . being nonnegative, then we immediately had

a solution. Otherwise, it was in a sense fN.'S "fault" that a s . was

negative, and we increased fN. to remedy the situation. We can do

exactly the same thing to compute static friction forces! Suppose

that the first n - 1 contacts of our system satisfy all the conditions for

static friction and that the normal force condition holds for the nth

contact point. We s e t fFn = 0 and consider aN.. If n E NC, or n C C

but fN. = 0, then the static force condition is trivially met since

28

]fe.] = 0 = #fN.. If not, but it happens that ag. = 0, again, we

have satisfied the static friction conditions, since IfF. I = 0 < #fN..
Otherwise, aF. is nonzero and following our characterization of

static friction we must increase the magnitude of the friction force

to oppose the tangential acceleration as much as possible.

The procedure to do this is essentially the same as in the friction-

less case. Without loss of generality, assume that at the nth contact

point aF. < 0. We will gradually increase f t . while maintaining the

static friction and normal conditions at all the other n - 1 contact

points and the normal condition at the nth contact point. As we

increase rE., at some point, one of two things must happen: either

we will reach a point where fF. = /ZfN., or we will reach a point

where ae. = 0. In either case, the static friction conditions will then

be met.

5.3 Maintaining the Static Friction Conditions

Once we have established the static friction conditions at a con-

tact point, we need to maintain them. As before, we maintain the

conditions fsl _> O, aNi > 0 and fNiaNi -~" 0 using the index sets

C and NC, To maintain the conditions on the ffFi and aFi variables,

we introduce the sets CF, N C - and NC +. The set Cr is analogous

to C; whenever i C CF, we manipulate fel to maintain aFi -~ O.
(We can have i E Ce and i C C. The fact that i C Cr means we

are maintaining aFi = 0, while the fact that i E C means we are

maintaining asi = 0.) In contrast to CF, if i C NC +, then we have

aFi (0 and f F i ---- # f N i. As long as i E NC +, we vary f F i SO that it

is always equal to #fNr If aF~ becomes zero, we move i from NC +

into CF. Thus, NC + denotes the set of contacts that have fFi positive

and at the upper bound of # fNr Conversely, if i C N C - , then we

have aFi > 0 and f F i = - - ~ f N i. Again, as long as i E NC- we

will maintain the condition fFi = --#fNg, and move i into Cr if aNi
becomes zero. Whenever we are increasing some fsd or increasing

or decreasing some fed, computing the corresponding changes in

the other fri and fNi variables, along with the maximum possible

step size, is exactly the same as in the previous section.

In the frictionless case, when we managed to drive aNd to zero,

we added d into C. For static friction, if the driving process stops

because aFd has reached zero, we insert d into Cr. Otherwise,

the process stopped because IfFdl = #fgd and we add d into

N C - or NC + as appropriate. Before we present our algorithm for

computing static friction forces iu two dimensions, we discuss why

the algorithm we present is not guaranteed to terminate.

5.4 Algorithm Correctness

In section 4, we showed that as we increased fd, the acceleration

ad always increased in response, guaranteeing that a sufficiently

large increase of fd would achieve ad = 0. We also showed

that the index set C would never repeat while forcing a particular

ad to zero, guaranteeing we would not converge to some negative

value. Finally, we showed that steps of size zero would not occur,

guaranteeing that we would always make progress towards ad = O.
For static friction, we can show all these properties except for the

last.

First, let us show that if we start with aFd ~ 0 , a s we increase

fFd, either we will reach a point where frd = #fNd, or we will reach

a point where aFd = 0. This is not obvious. Since fsd is nonzero

(otherwise fFd = 0 would satisfy the static friction conditions), we

must have d E C. This means that as we increase frd, we may also

be requiring that fNd change as well. If #fNd increases faster than

fed does, then fed will never reach a value of #fNd.
Similarly, it is not necessarily the case that increasing fFd will

cause aFd to increase. The reason for this is the following: the

relation between the acceleration variables and force variables is

COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1994

still linear, and we can write

I aNl I
aFl

a :

aNn
aFn

= A

fel

fN.
fen

+ b = A f + b (18)

where A E R 2"xz" and b E R 2" a n d f and a are the collection of the

f and a variables• As long as we have no dynamic friction, it is still

the case that A is symmetric and PSD. For a unit increase in fed, we

solve for Afgi and Afe i exactly as we did in section 4. That is, for

i E C, we require ~aNi : 0 , and for all other i, we have AfNi = O.
For the friction forces, almost the same holds: for i E CF we require

AaFi = 0. However, for i E NC- , instead of setting AfFi = O,

we require ~XfF i = --#AfNi, to maintain fFi : --#fNi. Similarly,

for i E NC + we require AfFi = #AfNi to maintain fFi = #fNi.
The side conditions AfFi = ±#AfNi prevent us from applying

theorem 2 as we did in section 4 and claiming that aFd increases as

fFd increases. In fact, in some situations, increasing fed will cause

aed to decrease. The same holds for fNd as well; prior to working

on fed we may find that increasing fNa to establish the normal force

conditions may cause causes and to decrease.

Is it possible then that we can drive some fFd or fNd infinitely far

without reaching a stopping point? Fortunately, it is not. Theorem 3

of appendix A states that for frictionless systems, as we increase

fN~ the index set C never repeats. Exactly the same theorem is

trivially extended to cover static friction. Thus, we will never

encounter exactly the same sets C, NC, CF, NC- and NC + while

driving a given fN, or fF, variable. We can use this to show that

increasing fud will eventually cause and to increase. Exactly the

same argument shows that increasing fFd eventually causes aed to
increase.

THEOREM 1 In a problem with static friction only, if aNd < 0 and

f Nd = 0 hold initially, a large enough increase in f Nd will eventually
force and to increase.

PROOF. Suppose that we could arbitrarily increase fNd without

causing aNd to increase. Since A is positive definite, in light of

theorem 2 this can only happen if one or more of the side conditions

AfFi = ~IZAfNi hold, implying that NC- U NC + ~ 0. Since the

index sets C, NC, CF, NC- and NC + never repeat, there are only

finitely many combinations of those sets that can be encountered

while increasing fNd. That means that we can only undergo finitely

many changes of the sets while increasing fNd. Eventually, we settle

into a state where we can increase fNd without aNd increasing and

without any change occurring in the index sets.

However, this cannot be, because of the definition of the index

sets. For i E C, to avoid a change in index sets, we must have

AfNi > 0; otherwise, a sufficiently large step will move i into NC.
The same logic requires that for i C NC we must have ~XaNi > 0,

otherwise aNi will fall to zero. This yields ~fNiZ~aNi : 0 for all i.

For the friction forces, if i E CF, then z~xaFi : 0 SO z~XaFi~fFi = O.

F o r i E NC +, we haveaFi < 0, requiringAaFi < Otoavoid

having to move i from NC + to CF. Since Z~fN i ~ 0 for all i and

AfFi = tzAfNi, we have Z~fF i > O. This yields ~xaFiZ~fF i < 0 for

all i E NC +. A symmetric argument holds, yielding z~XaFi~X f Fi ~ 0

for all i ~ NC-.

Additionally, for at least one i in NC- or NC +, both AaFi and

AfF~ are nonzero; otherwise, we could remove each side condition

~fFi : ±#~XfNi and add the conditions AfF i : 0 and z~xaFi = 0
without altering any other AfNi or AfFi. If we did so however,

we would then be entitled to apply theorem 2, contradicting our

assumption that and is nonincreasing. Thus, for at least one i we

have •aFiAfFi strictly less than zero. Combining that with the fact

that AaNiAfNi < 0 and AaFiAfFi < 0 for all i we obtain

± n
~xaNiz~xfNi "-[- ~ z~XaFiz~XfFi : A a r A f < 0 . (1 9)

i i

Since Aa -- A~xf, this gives us

A a r A f = A f r A A f < 0. (20)

Since A f is nonzero and A is PSD, this is a contradiction (even i f A

is singular). Thus, fNd cannot be increased without bound without

eventually causing aNd to increase. D

However, there is still the possibility of taking steps of size zero,

and this is something that can and does occur when running the

algorithm. Theorems 4 and 5 may fail to hold because of the side

conditions AfF i : ±#AfNi . The following scenario is possible:

for some i E C, fN i decreases to zero. Accordingly, i is moved from

C to NC. Upon computing A f with the new index set, we may

find that AaNi < 0 (which is ruled out in the frictionless case by

theorem 4). As a result, a step of size zero is taken, and i is moved

back into C. Clearly, the algorithm settles into a loop, alternately

moving i between C and NC by taking a step of size zero each

time. We cannot rule this behavior out in our algorithm for static

friction• (This is also our current sticking point in trying to prove the

conjecture that all systems with only static friction have solutions.)

Fortunately, we have found a practical remedy for the problem.

While attempting to establish the normal force or static friction

conditions at some point k, if we observe that a variable i is al-

ternating between C and NC (or between NC- and Cr or NC +

and CF), we remove i from both C and NC (or from CF and NC-
or NC+). Temporarily, we will "give up" trying to maintain the

normal or static friction conditions at the ith contact point. We do

so at the expense of making "negative progress," in the sense that

although we will have achieved our immediate goal (establishing

normal or friction conditions at a particular contact point), we will

have done so by sacrificing normal and/or static friction conditions

previously achieved at other contacts. The algorithm will be forced

to reestablish the conditions at the points we have given up on at

some later time. Since contact points no long necessarily keep

their static friction or normal force conditions once established, we

cannot prove (as yet) that this process will ever terminate.

We have however used this algorithm on a large variety of

problems, and we have never yet encountered any situation for

which our algorithm went into an infinite loop. We speculate that

either no such situation is possible, meaning that all systems with

static friction have solutions, or it requires an extremely carefully

constructed problem to cause our algorithm to loop (although the

latter possibility does not necessarily imply that there is in fact no

solution f) . A third possibility of course is that we simply have not
sufficiently exercised our simulation system.

5.5 Algorithm for Computing Static Friction Forces

We now describe the necessary modifications to Dantzig's algo-

rithm to handle static friction forces. The modifications increase the

complexity of the "logical" portion of the algorithm, but the heart

of the numerical code, computing A f , remains the same. We give a

description of the necessary modifications of each procedure of the
algorithm.

Modifications to compute-frictionless-forces

The sets C, NC, CF, NC +, and NC- are all initially empty. The

main loop continually scans for a contact point at which the normal

or static friction conditions are not met. If no such points exist, the

algorithm terminates, otherwise, drive-to-zero is called to establish

29
/

SIGGRAPH 94, Orlando, Florida, July 24-29, 1994

the conditions. Note that one must first establish the normal force

conditions at a given point before establishing the static friction

conditions there. In the event that the algorithm gives up on a

contact point i which has the normal conditions established, it will

do so because fNi is oscillating between C and NC. At this point

fN~ = 0, and the normal conditions can be reestablished later.

If however we give up on the static friction conditions at the ith

contact point, fF i may be nonzero. (We cannot discontinuously

set ffr~ to zero as this might break the conditions at all the other

contact points.) Later, when the algorithm attempts to reestablish

the static friction conditions at i, we first drive fF i to zero (simply bY

instructing drive-to-zero to increase or decrease f F i until f ri = 0).

Modifications to drive-to-zero

This function is the same, except that there are more ways for

the index sets to change. If the limiting constraint j returned by

maxstep is the index of the force being driven, j is moved into C if

it represents a normal force, and otherwise into CF, N C - , or NC +
as appropriate; the procedure then returns. Otherwise, j is moved

between C and NC if it represents a normal force, and otherwise

between CF and N C - or NC + as appropriate. I f j attempts to move

into a set it just came from, and the previous step size was zero,

j is removed from whatever index set it was in. This is the point

at which the algorithm temporarily gives up on maintaining the

conditions at the jth contact point.

Modifications to fdirection

The modifications are minor. First, if we are driving a normal force,

we set AfNd = 1, otherwise we set AfFd = =El, depending which

way we want to drive the force. The index sets establish the set

of equations to solve: for i E NC, we set ~xfNi = 0; for i E C

we require AaNi : 0; for i E CF we require ~xaFi = 0; and for

i E NC + U N C - we require AfFi : ± A f N r

Modifications to maxstep

The modifications here are obvious. For each memberj in an index

set, we compute the minimum step size s that causes j to need to

change to another set. For the driving index d, we compute the step

size that causes us to reach aNa = 0 for a normal force, and aFd = 0

or fFd ---- d=#fNd for a friction force. The minimum step s that can

be taken, along with the constraint j responsible for that limit, is

returned.

5.6 Three-dimensional Systems
We have been assuming that our system is two-dimensional. The

extension to three dimensions is straightforward.At each contact

point, let us denote vectors u E R 3 tangent to the contact surface as

pairs (x, y) by choosing a local coordinate system such that (1,0)

and (0, 1) denote an orthornormal pair of tangent vectors. Let

(axi, ayi) and (fxi, fyi) denote the relative tangential acceleration

and friction force, respectively, at the ith contact point. In three

dimensions, the Coulomb friction law requires that the friction force

be at least partially opposed to the tangential acceleration; that

is,

(fxi, fYi) " (ax,, ayi) = fxiaxi q- fyiayi ~ O. (21)

The optimization approach taken in previous work[10,3] makes

enforc ing I f F i [~ # f N i difficult, because

[SFil ~- (fx~ -~- Sy~) ½ ~ #SNi (22)

is a nonlinear constraint. However, this constraint is easily dealt

with by our algorithm. In place of the two sets N C - and NC +,
for three-dimensional systems, we use a single set NCF. In two

dimensions, given AfNi and AfFi, determining the step size s so

that fFi + SAfFi = #(fNi + SAfNi) is trivial. In three dimensions,
computing s > 0 so that

(fxi + S~fx i) 2 + (fYi + S~fy i) 2 = (~(fNi + S~fNi)) 2 (23)

is also trivial. As a result, it is easy to augment maxstep to move i

into NCF when f.~ + fy~ ..~ (#fNi) 2 and also easy to detect when

to move i back into CF. When i moves into NCF, we record the

direction that the friction force is pointing in. As long as i remains

in NCe, we require the friction force (fxi, .~'i) to maintain the same

direction it had when i most recently entered NCr. Once i moves

back into Cr, the pair (fxi, ff~'i) may point in any direction.

To initially establish the static friction conditions for fxi and fyi,

we first increase fxi (assuming axi < 0) until either i moves into

NCF, or axi reaches zero. If i is in NCF, we are done, otherwise, we

now adjust fyi so that either ay i reaches zero, or i moves into NCe.
Reversing the order with which one considers x and y, or rotating

the local coordinate system in the tangent plane may give rise to

different solutions o f f with this method. This is a consequence of

the condition of equation (21), which does not completely specify

the direction of friction when the tangential acceleration is nonzero

at a contact point.

6. Dynamic Friction

If the relative tangential velocity at a contact point is nonzero,

then dynamic friction occurs, as opposed to static friction. Re-

gardless of the resulting tangential acceleration, the strength of the

friction force satisfies

IfF, I = #fNi, (24)

with the direction of the force exactly opposite the relative tan-

gential velocity. Since fFi is no longer an independent variable,

when we formulate equation (18), we can replace all occurences

of fF i with ± # f N i. This replacement results in a matrix A which
is unsymmetric and possibly indefinite as well. Because of this,

systems with dynamic friction can fail to have solutions for the

contact force magnitudes, requiring the application of an impulsive

force. Another consequence of A losing symmetry and definiteness

is that all the theorems in this paper which require A to be symmetric

and PSD fail to hold. Remarkably, this turns out to be a fortunate

development.

Previously, Baraff[3] presented an algorithm for computing fric-

tion forces and impulses for systems with dynamic friction but no

static friction; the intent was to treat the problem of nonexistence

of a solution f . Baraff's method for computing either regular or

impulsive forces for systems with dynamic friction involved using

Lemke's algorithm[5] for solving LCP's. It is noted that Lemke's

algorithm can terminate by encountering an "unbounded ray." The

algorithm we have just presented for static friction requires abso-

lutely no modifications to handle dynamic friction in this manner.

An unbounded ray corresponds to finding a state in which one can

drive a variable fNi or fF i tO infinity without forcing aNi or aFi to

zero, or inducing a change in the index sets C, NC, CF, NC + orNC- .
When this occurs, it is easily detected, in that maxstep returns a step

size of s = ~ . Note that theorem 2 tells us that an infinite step

cannot occur if A is symmetric and PSD. which means that infinite

steps are possible only if there is dynamic friction in the system.

Either our algorithm finds a solution f , or at some point s = c~,

and the current force direction A f matches the definition proposed

by Baraff for suitably applying impulsive forces to systems with

dynamic friction. As a result, we can unify our treatment of both

dynamic and static friction in a single algorithm. We note in closing

that we' feel that this is mostly a theoretical, and not a practical

concern, because we have encountered this infinite driving mostly

in situations where # has been made unrealistically large.

30

COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1994

7. Results
Our method for computing contact and friction forces is both

reliable and fast. Like most pivoting algorithms (for example, the

simplex algorithm for linear programming), worst-case problems

resulting in exponential running times can be constructed. Empiri-

cally however, the algorithm appears to require about O(n) calls to

drive-to-zero for systems with and without friction. Our real interest

however is the performance of the algorithm in actual practice.

We have implemented the two-dimensional algorithm for static

friction in an interactive setting and the three-dimensional algorithm

in an offline simulation system. For frictionless systems, our so-

lution algorithm compares favorably to Gaussian elimination with

partial pivoting. Given a matrix A and vector b, the algorithm of

section 4 takes only two to three times longer to compute the contact

forces than it would take to solve the linear system Ax = b, using

Gaussian elimination. Compared with the best QP methods we

know of, our algorithm runs five to ten times faster, on problems up

to size n = 150. For systems with friction, there is no comparable

solution algorithm we can compare our algorithm to.

Interactive simulations of 2½D mechanisms are shown in fig-

ures 1 and 2. Fixed objects are colored in black. Objects in different

"levels" are different colors (orange, purple, and green) and have

no collision interaction. White circles indicate a bilateral point-

to-point constraint. In figure 2, the green circles indicate contact

points. Both systems can be simulated robustly at a consistent

framerate of 20-30Hz on an SGI R4400 workstation.

Acknowledgements
This research was funded in part by an NSF Research Initiation

Award and an AT&T Foundation Equipment Grant. We would

like to sincerely thank Michael Saunders and Richard Cottle for

supplying us with a dense version of the LUSOL package and for

clarifying several technical and historical points about LCP's.

Appendix A: Theorems
In this appendix, we prove some theorems necessary to show that

the algorithm for frictionless contact forces in section 4 terminates.

For simplicity, we consider only the case when A is nonsingular and

sketch the modifications necessary if A is singular.

THEOREM 2 Let the symmetric positive definite matrix A be par-

titioned as in equation (7). I f x satisfies ANx = - v t , then the

quantity VlrX + a is always positive.

PROOF. Principal submatrices of A are positive definite, so a > 0,

An is positive definite and the submatfix

v~ r c~

is positive definite. Applying a Cholesky factorization, we can

write

(All Vl) (L I , 0) (LiTi Li2) (25)
V T Ol = LIT2 LZ2 0 L22

where LH and Li2 have the same dimensions as All and vl respec-

tively, and L22 is a positive scalar. Note that since All = LHLirl

is invertible, LH is also invertible and A~ l = L~rL~ 1. From

equation (25), we have vl = LHL12. Since A u x = - v l , we also

have x = --A~llVl. Then

VITX -}- O~ = O~ -- vlTA~ilvI
= c z - (L~2Lir,)A~I(Lt1Li2)

T T --T --I
= o~- -L izLl lL n Ltl LllLl2

= 0~-- Llr2Li2.

From equation (25) we have a = LiT2Li2 + L~2; thus

v~x + c~ = c~ - L~2L,2 = L.~2. (26)

Since L22 is positive, v~x + c~ is positive. []

Almost the same result applies when A is not inverlible. In this

case, Al~ may be singular; note however that a Cholesky factoriza-

tion can still be obtained although LII may now be singular. Since it

is still the case that All = LHL~1, and L n and LHLirj have exactly

the same column space, the fact that vj = LllLj2 implies that vl is

in the column space of AH. Thus, the equation AHx = --vl will

always have a solution. Using basic continuity principles 4 it can be

shown that in the singular case, v~x + a > 0.

THEOREM 3 During a given call to drive-to-zero, the same index

set C is never repeated.

PROOF. Suppose some index set C was repeated during a call to

drive-to-zero. Since CUNC remains constant during a given invoca-

tion of drive-to-zero (except at the last step, where the driving index

d is added to C), whenever C is repeated, NC is repeated as well.

Let the values o f f the first time and second time C is encountered

be denoted f(1) and f(2) respectively. Let a (1) = A f 0) + b and

a (2) ---- A f (2) + b. The intuition of the proof is simple: if the

algorithm could have increased f along a straight line from f 0)

t o f (2), it would have done so. The fact that it did not means that

increasing f r o m f 0) t o f (z) must have required a change between C

and NC. We show that this cannot happen because of the inherent

convexity involved, contradicting the fact that C was repeated.

Specifically, we have a} ~) ---- a} 2) = 0 for a l l / C C and a} ~) > 0

anda} 2) _> 0 f o r a l l i C NC. Given C a n d N C , the vector f is

increased in the direction A f where A f i = 0 for i E NC, A fd = 1

and Aai = 0 for i C C. However, the vector

f~2) _ f o) (27)
Y -- f~2) _ ade(l)

fulfills all the conditions for A f , since Yd = 1, Yi = 0 for i E NC,

and the vector

A(f(2) _ f (I)) a(2) _ a O)
Ay -- -- (28)

s ? - ') 2 ' - ')

has its ith component equal to zero for all i E C. Thus, when C was

first encountered, A f = y was chosen. If aa = 0 could have been

achieved by increasingf in this direction, drive-to-zero would have

terminated, and C would not have been repeated. This means that

in increasing f r o m f O) in the direction A f = y, it was necessary to

change C and NC prior to reaching f(2); that is for some value t in

the range 0 < t < 1, either

(Aft(,) + t(f(2) _ f (l))) + b)j < 0 (29)

for somej E NC or

(f(') + t (f (2) - f ('))) j < 0 (30)

for somej E C. However, since neither of the above two equations

are satisfied when t = 0 or t = 1, and the equations involve only

4If A is a symmetric PSD singular matrix, then there exist arbitrarily small
perturbation matrices e such that A + c is symmetric positive definite (and

hence nonsingular).

31

SIGGRAPH 94, Orlando, Florida, July 24-29, 1994

linear relations and inequalities, by convexity, neither of the two

above equations are satisfied for any value 0 < t < 1. This

contradicts the assumption that the same set C was encountered

twice during a call of drive-to-zero. []

This theorem also extends to the algorithm for static friction in

section 5. Namely, we claim that the index sets C, NC, CF, NC-

and NC + are never repeated while driving a given force variable

fNa or fra. The proof is exactly the same, the only difference being

that extra conditions of the form AfFi = :kz#AfN i may be present.

However, given that f 0) and f(2) satisfy these extra conditions, any

vector f(1) +t(f(2) _ f 0)) for0 < t < 1 will satisfy these properties

as well. Again, this means that the algorithm should have gone

directly from f 0) to f(2), contradicting the fact that the index sets

were repeated.

The last two theorems guarantee that the frictionless algorithm

never takes steps of size zero, as long as the system is not degener-

ate. A degenerate problem (not to be confused with A being singu-

lar) is one that would require the algorithm to to make two or more

changes in the index sets C and NC at exactly the same time (for

example, if two normal forces decreased to zero simultaneously).

When degeneracy occurs, it is possible that some number of size

zero steps are taken. Cottle[5, section 4.2, pages 248-251] proves

that the frictionless algorithm cannot loop due to degeneracy.

Proving that a nondegenerate problem never takes steps of size

zero is relatively straightforward. We need to show that whenever

i ¢ C moves to NC, ai immediately increases. As a result, i cannot

immediately move back to C without taking a step of nonzero size.

Similarly, we need to show that whenever i G NC moves to C, fi

immediately increases.

THEOREM 4 In a nondegenerate problem, when an index i moves

from C to NC, ai immediately increases.

PROOF. Without loss of generality, let C = { 1,2,.. . , k - 1 } and

let us assume that the kth contact has just moved from C to NC.

When k was still in C, we computed z~xfi by solving the system

AIIX = --Vl and setting Af i = xi. Let All and x be partitioned

by

(. w)(u)(z)
A l l x : w r fl y : C : - - V I (31)

where B E R (k-1)x(k- l) , u , w , z C R k and y, fl, and c are scalars.

This yields

u = B - l (z - wy) and w r u = c - fly (32)

or
w r B - t (z - wy) = c - fly. (33)

Since this A f caused fk to decrease to zero, Ark = y must have

been negative.

Once k moves into NC and we recompute Aff, we need to show

the new Aa~ will be positive. Let 6 and S' denote the new values

computed for u and y when we resolve for A f . Since k is now in

NC, we set Ark = ~ = 0, and solve

Bfi + w~ = z (34)

to obtain
fi = B - I z . (35)

From equations (8) and (31), the new Aak is

Aak : wrfi + fl.~ -- c = wTfi -- c. (36)

Substituting from equations (35) and (33), we have

Aak = wTB-Iz -- c

= - - w r B - l w y - - fly (37)

-- - - y (w T B - I w + f i) .

Since All is positive definite, B - I is positive definite, and fl is

positive, so w r B - t w + / 3 must be positive. Since y is negative,

- y is positive, and we conclude that Aak > 0. []

This theorem extends immediately to the case when A is singular,

because the index sets C encountered never produce a singular

submatrix All.

THEOREM 5 In a nondegenerate problem, when an index i moves

from NC to C, f i immediately increases.

PROOF. The proof is constructed in the same way as the proof of

the previous theorem. []

R e f e r e n c e s

[1] D. Baraff. Analytical methods for dynamic simulation of

non-penetrating rigid bodies. In Computer Graphics (Proc.

SIGGRAPH), volume 23, pages 223-232, ACM, July 1989.

[2] D. Baraff. Curved surfaces and coherence for non-penetrating

rigid body simulation. In Computer Graphics (Proc. SIG-

GRAPH), volume 24, pages 19-28. ACM, August 1990.

[3] D. Baraff. Issues in computing contact forces for non-

penetrating rigid bodies. Algorithmica, 10:292-352, 1993.

[4] R.W. Cottle and G.B. Dantzig. Complementary pivot theory

of mathematical programming. Linear Algebra and its Appli-

cations, 1:103-125, 1968.

[5] R.W. Cottle, J.S. Pang, and R.E. Stone. The Linear Comple-

mentarity Problem. Academic-Press, Inc., 1992.

[6] P. Gill, S. Hammarling, W. Murray, M. Saunders, and

M. Wright. User's guide for LSSOL: A Fortran package

for constrained linear least-squares and convex quadratic pro-

gramming. Technical Report Sol 86-1, Systems Optimiza-

tion Laboratory, Department of Operations Research, Stanford

University, 1986,

[7] P. Gill, W. Murray, M. Saunders, and M. Wright. User's guide

for QPSOL: A Fortran package for quadratic programming.

Technical Report Sol 84-6, Systems Optimization Labora-

tory, Department of Operations Research, Stanford University,

1984.

[8] P. Gill, W. Murray, M. Saunders, and M. Wright. User's guide

for NPSOL: A Fortran package for nonlinear programming.

Technical Report Sol 86-2, Systems Optimization Labora-

tory, Department of Operations Research, Stanford University,

1986.

[9] P.E. Gill, W. Murray, M.A. Saunders, and H.W. Wright. Main-

taining LU factors of a general sparse matrix. Linear Algebra

and its Applications, 88/89:239-270, 1987.

[10] P. L6tstedt. Numerical simulation of time-dependent contact

friction problems in rigid body mechanics. SlAM Journal of

Scientific Statistical Computing, 5(2):370-393, 1984.

[11] R.E, Marsten. The design of the XMP linear program-

ming library. ACM Transactions on Mathematical Software,

7(4):481--497, 1981.

[12] B. Murtagh and M. Saunders. MINOS 5.1 User's guide.

Technical Report Sol 83-20R, Systems Optimization Labora-

tory, Department of Operations Research, Stanford University,

1987.

[13] M. Saunders. Personal communication. September 1993.

32

COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1994

Figure 1: Time-lapse simulation sequence ofa blockfeeder.

33

SIGGRAPH 94, Orlando, Florida, July 24-29, 1994

I

I

34

Figure 2: Time-lapse simulation sequence of a double-action jack.

